9,173 research outputs found

    Enhancing simulation education with intelligent tutoring systems

    Get PDF
    The demand for education in the area of simulation is in the increase. This paper describes how education in the field of simulation can take advantage of the virtues of intelligent tutoring with respect to enhancing the educational process. For this purpose, this paper gives an overview of what constitutes the objectives and the content of a comprehensive course in discrete event simulation. The architecture of an intelligent tutoring system is presented and it is discussed how these sophisticated learning aids offer individualised student guidance and support within a learning environment. The paper then introduces a prototype intelligent tutoring system, the simulation tutor, and suggests how the system might be developed to enhance education in simulation

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system

    Designing intelligent computer‐based simulations: A pragmatic approach

    Get PDF
    This paper examines the design of intelligent multimedia simulations. A case study is presented which uses an approach based in part on intelligent tutoring system design to integrate formative assessment into the learning of clinical decision‐making skills for nursing students. The approach advocated uses a modular design with an integrated intelligent agent within a multimedia simulation. The application was created using an object‐orientated programming language for the multimedia interface (Delphi) and a logic‐based interpreted language (Prolog) to create an expert assessment system. Domain knowledge is also encoded in a Windows help file reducing some of the complexity of the expert system. This approach offers a method for simplifying the production of an intelligent simulation system. The problems developing intelligent tutoring systems are examined and an argument is made for a practical approach to developing intelligent multimedia simulation systems

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Data-driven misconception discovery in constraint-based intelligent tutoring systems

    Get PDF
    Students often have misconceptions in the domain they are studying. Misconception identification is a difficult task but allows teachers to create strategies to appropriately address misconceptions held by students. This project investigates a data-driven technique to discover students' misconceptions in interactions with constraint-based Intelligent Tutoring Systems(ITSs). This analysis has not previously been done. EER-Tutor is one such constraint-based ITS, which teaches conceptual database design using Enhanced Entity-Relationship (EER) data modelling. As with any ITS, a lot of data about each student's interaction within EER-Tutor are available: as individual student models, containing constraint histories, and logs, containing detailed information about each student action. This work can be extended to other ITSs and their relevant domains

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture
    corecore