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1. Multimedia for VLSI education 

The teaching of VLSI (very large scale integration)1, with its emphasis on both products and 

processes, can benefit enormously from the use of educational systems, particularly where 

such systems take advantage of the use of multimedia to enhance positively the teaching-

learning experience.  Exploiting multimedia, such as animated graphics, video, and audio, in 

engineering education goes back a long way (e.g. Bailey & Thornton, 1992/93; El-Sharkawy, 

1993; Iksander et al., 1993) and the advantages are numerous (Ranky et al., 1997).  In terms 

of VLSI education, multimedia offers significant benefits because it enables the various 

products and processes to be demonstrated ‘in action’, thereby affording better understanding 

on the part of the student.  For example, photographic images may be used to demonstrate 

different applications of VLSI (e.g. memory chips, microprocessors) and video segments may 

be used to demonstrate the fabrication process for making the wafer of monolithic circuits.  

The use of text alone, while useful, often adds little value over the information provided in 

textbooks, whereas multimedia can provide a pragmatic alternative for real-life observation 

(as the above examples illustrate). 

 This paper presents the Bigger Bits system, which uses multimedia to teach VLSI 

within the context of a fictitious computer electronics manufacturer called Bigger Bits Ltd.  

Bigger Bits was built with COSMOS, which is a modelling scheme that we developed to 

enable the semantic content of multimedia to be used within interactive systems, and which 

has proved successful in the development of other educational systems. 

                                                 

1 We use the term VLSI broadly to encompass all integration that is beyond LSI (large scale integration), 

including ULSI (ultra large scale integration). 



 3

 This paper is now structured as follows.  In Section 2, we present an overview of 

COSMOS.  Section 3 then presents the Bigger Bits system and discusses how COSMOS was 

used to build its architecture.  Section 4 closes the paper with some concluding remarks. 

2. An overview of COSMOS 

Our content-modelling scheme, COSMOS (Content Oriented Semantic Modelling Overlay 

Scheme) (Agius & Angelides, 1999a), has been used to develop a number of educational 

multimedia systems (Agius & Angelides, 1999b; Tong & Agius, 1999; Agius & Angelides, 

2000).  The multimedia frame (m-frame) forms the basis of COSMOS.  The m-frame serves 

as the conceptual representational structure in which semantic multimedia content is 

modelled.  As its name suggests, the m-frame is a ‘slot-and-filler’ type structure, consisting 

of a set of perspectives on the semantic content and a set of more specific instances of that 

content.  Each m-frame includes an mt perspective to denote the m-frame type, an st 

perspective to denote the sub-type of the m-frame, and an id perspective to denote an 

identifier for the m-frame. 

 COSMOS uses three types of m-frames: 

 

1. Syntactic m-frames (SYMs): A SYM models spatial relationships between objects for an 

individual frame of a time-based visual media segment (e.g. video or animated graphics).  

Thus, there is a strict one-to-one relationship between the frames of segments and the 

SYMs within COSMOS.  Figure 1 illustrates the structure of a SYM.  The id takes the 

form of the name of the video segment ("videoname") followed by the frame number 

(denoted by a # in the figure).  As the figure illustrates, a SYM has two perspectives: (1) 

OBJECTS which store the object names and their co-ordinates (the co-ordinates are a 
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series of points representing a polygon), and (2) SPATIALRELS to store the spatial 

relationships between the objects.  We use the term ‘object’ to refer to any visible or 

hidden object depicted within a video frame at any necessary level of detail, e.g. it may be 

as entire as a chicken or as decomposed as a chicken’s beak.  Each spatial relationship 

(indicated by SR in Figure 1) is represented using one or more of the primitives detailed in 

Table 1. 

[** Figure 1 near here **] 

[** Table 1 near here **] 

2. Semantic m-frames (SEMs): SEMs model events (occurrences within the media), actions 

(shorter sub-segments of the events), or object properties over an arbitrary number of 

frames of a visual and/or aural media segment (e.g. video, animated graphics, or audio).    

Figure 2 depicts the structure of these three SEMs, known as Objects SEMs, Events SEMs, 

and Actions SEMs.  As the figure indicates, the three SEMs are treated together and 

represent the semantic content for a particular object.  Shots are shown for the instances in 

the figure through the use of shot identifiers located in brackets after the instance.  

Multiple shots may be associated with each instance, and there are no restrictions on the 

number of times that the same shot may be used with the same SEM or other SEMs.  In 

this way, SEMs may be used to reflect multiple perspectives on (i.e. different points of 

view of) the same semantic content.  Non-content-based information may also be included 

within SEMs, and this is shown in the figure through sets of empty brackets next to the 

instances.  The perspectives of the Objects and Events SEMs are able to be freely defined 

by the developer, and are not restricted to a pre-defined set, as with the SYMs.  Thus, the 
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SPECIALISATION OF perspective given in the Objects SEM in Figure 2 is not 

obligatory, but has been given by way of an example as to how relationships may be 

defined between objects.  However, the perspectives of Actions SEMs are indeed 

restricted, namely to the event names given in associated Events SEMs. 

[** Figure 2 near here **] 

3. Temporal m-frames (TEMs):  TEMs model the temporal relationships between events 

and actions modelled in the SEMs.  There are two types of TEMs: (1) an Event TEM 

models the temporal relationships of one event to all other events defined within 

COSMOS, (2) an Action TEM models the temporal relationships between one action 

within one event, and all other actions within the same event and all other events.  

COSMOS uses the 13 temporal relationship primitives derived by Allen (1983) within the 

TEMs, and these form the perspectives of the TEM.  In this way, one Event (Action) TEM 

exists for each and every event (action) modelled within the Events (Actions) SEMs, and 

each perspective contains all the events (actions) that have the defined temporal 

relationship with the specified event (action).  Allen’s temporal relationship primitives are 

detailed in Table 2.  The structure of an Action TEM is shown in Figure 3.  The structure 

of the Event TEM is similar, but the instances of the st and id perspectives differ 

accordingly, and the instances for each of the temporal relationship perspectives are event 

rather than action identifiers. 

[** Table 2 near here **] 

[** Figure 3 near here **] 
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 We have also developed a formal definition language (COSMOS-DL) and a formal 

query language (COSMOS-QL) to support the creation of the structure, population, and 

querying of the model (Agius & Angelides, 1999b).  To reduce the need to use the languages 

directly, we have developed three front-end software tools that facilitate the creation of 

SYMs, SEMs, and TEMs, known as the SYMulator, SEMulator, and TEMulator respectively 

(Agius & Angelides, 2000).  The relationship between these supplementary components, 

their relationship to COSMOS, and their relationship to the final developed interactive 

multimedia system is illustrated in Figure 4. 

[** Figure 4 near here **] 

 In the following section, we present Bigger Bits, an interactive multimedia learning 

environment that we developed using our modelling scheme and which teaches VLSI within 

the context of computer electronics. 

3. Bigger Bits: an interactive multimedia learning environment for VLSI 

Bigger Bits is an interactive multimedia learning environment that was built with COSMOS.  

The system teaches about VLSI within the context of a fictitious computer electronics 

manufacturer called Bigger Bits Ltd.  Our objective in developing the system was to provide 

an environment whereby a student would be able to see the application of the theoretical 

knowledge of product and process that they had learned in the classroom and through reading 

their textbooks.  We therefore based our domain knowledge on information provided in 

textbooks like those of Streetman (1995) and Shur (1996) and that provided in more 

advanced handbooks such as that of Sze (1988).  We then looked for media that exemplified 
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this knowledge, and drew on a variety of educational videos, footage from electronics and 

computer companies’ promotional videos, and our own footage that we filmed especially for 

the system. 

 Bigger Bits uses an intelligent tutoring system (ITS) architecture, composed of 

domain, remedial, tutoring, and student knowledge (Tong & Angelides, 2000).  COSMOS 

forms the domain knowledge of the system.  However, since SEMs may also be used to 

represent non-content-based information, we use them to form the basis of the rest of the 

architecture, i.e. for the remedial, tutoring, and student knowledge.  This is an approach that 

we have used in other multimedia ITSs that we have developed (Agius & Angelides, 1999b; 

Agius & Angelides, 1999a; Tong & Agius, 1999), since it yields a uniform, consistent, and 

flexible ‘component-based’ architecture, that may represent both procedural and non-

procedural, and content-based and non-content-based information within a consistent 

framework. 

 Although the SEMs used in the remedial, tutoring, and student knowledge maintain 

the perspective and instances structure of their COSMOS counterparts, the nature of the 

perspectives and instances differs.  Since the structure differs throughout the architecture, we 

discuss each type of SEM in the appropriate sub-sections that follow.  We begin, however, by 

discussing the domain knowledge in the system. 

3.1. Domain knowledge in Bigger Bits 

The domain knowledge in Bigger Bits is COSMOS, as it was detailed in Section 2.  

Examples of the SYMs, SEMs, and TEMs that are used in the system are given in Figures 5-7.  

As is illustrated by Figure 5, the objects that are modelled in the SYMs are the detailed parts 

and sub-parts of computer electronic devices such as integrated circuits, transistors, CCDs 

(charge coupled devices), wafers, packages, package posts, leads connecting pads on chip 



 8

peripheries to posts, etc.  We also use objects to delineate the functional areas of the 

microprocessor within the system’s video footage of the architecture of the chip.  In the case 

of the SEMs, we use objects to represent the computer electronic devices.  These are related 

together through the use of a PART OF perspective.  An example of this is given in Figure 6, 

whereby a microprocessor is part of a motherboard.  The Objects SEMs model information 

regarding the properties of the various devices, while the Events and Actions SEMs model 

information concerned with how these devices are manufactured and how they operate and 

are connected with other devices.  The TEMs therefore represent the temporal order of these 

events and actions. 

[** Figure 5 near here **] 

[** Figure 6 near here **] 

[** Figure 7 near here **] 

3.2. Remedial knowledge in Bigger Bits 

The remedial knowledge in Bigger Bits consists of a set of remedial SEMs.  These remedial 

SEMs contain remedial information that is used in conjunction with remedial strategies to 

remedy the student.  The remedial SEMs mirror the structure and the relationships of the 

COSMOS SEMs (i.e. the SEMs constituting the domain knowledge).  The major difference is 

that remedial information rather than shots are adjacent to the instances.  In addition, the m-

frame sub-type (st) includes an additional (R) to denote that it is a remedial SEM.  The 

remedial information provided is intended to guide the student towards the remedial goals, 

and thus the tutoring goals, of the system.  The set of remedial SEMs for an object are used in 
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conjunction with the SEMs for the same object within the domain knowledge so that specific 

misconceptions may be illustrated to the student through the use of suitable media segments.  

For example, if the student were having difficulty identifying a pin grid array (PGA) 

package, then the multimedia-based remedial strategies (contained in the tutoring knowledge, 

which is discussed in the next section) would show the student a video segment depicting a 

PGA as given in the package Object SEM in the domain knowledge.  The set of remedial 

SEMs for the microprocessor object in Bigger Bits are shown in Figure 8. 

[** Figure 8 near here **] 

3.3. Tutoring knowledge in Bigger Bits 

Bigger Bits’ tutoring knowledge is divided into four main components, each of which has its 

own form of SEMs: (1) tutoring goals, (2) tutoring strategies, (3) remedial goals, and (4) 

remedial strategies.  Portions of Bigger Bits tutoring knowledge are illustrated in Figure 9.  

This figure will be referred to in the discussion which follows. 

[** Figure 9 near here **] 

 Tutoring goals.  The tutoring goals determine what the individual student should be 

instructed on.  Goal attainment by the student is achieved through the use of associated 

tutoring strategies.  Bigger Bits has one tutoring goals SEM for every object within the 

domain knowledge.  Figure 9(a) shows Bigger Bits’ microprocessor tutoring goals SEM.  As 

the figure illustrates, tutoring goals SEMs have an appropriate sub-type name, and the 

perspectives serve to specify the order in which the goals are to be achieved.  Each goal 

within the SEM consists of the name of the perspective that the goal is concerned with, the 
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minimum number of instances that a student must name in order to satisfy the goal, and a 

number of tutoring strategies that may be used to try to achieve the goal (identified using a 

tutoring strategy identifier, e.g. 1, 2, M1, or M2, each of which refers to a particular tutoring 

strategy SEM).  Where the perspective named for the goal is event-oriented, e.g. 

MANUFACTURED BY, the goal is achieved if the student names at least the number of events 

specified by the goal and all of the constituent actions of these events (an individual tutoring 

strategy is therefore used both for tutoring about the events and their actions). 

 Tutoring strategies.  Each tutoring strategy encompasses one way in which a student 

may be taught a particular subset of knowledge.  Tutoring strategies present material that will 

allow students to master a particular tutoring goal (teaching) while also evaluating the 

student’s reaction to the instruction (testing).  To this end, the use of tutoring strategies is 

guided by the student’s individual needs as reflected by the student knowledge. Bigger Bits 

uses both non-multimedia-based and multimedia-based tutoring strategies.  Multimedia-based 

tutoring strategies use media within the teaching-learning interaction and each tutoring 

strategy provides a different way in which a particular subset of knowledge may be taught 

appropriately using the media.  For example, tutoring how and where a microprocessor is 

inserted onto the motherboard by showing a video of this.  Most of the tutoring in Bigger Bits 

uses multimedia-based tutoring strategies.  However, the additional inclusion of non-

multimedia-based tutoring strategies enables the student to be taught when media cannot be 

used (e.g. because media segments are not available) or the use of media is unnecessary (e.g. 

it is sufficient to teach about the number of transistors on a microprocessor using text only).  

A tutoring strategy SEM has four perspectives: (1) TEACHING TACTICS, which provides 

the procedures for presenting the tutoring goal to the student; (2) CHECK TEACHING 

TACTICS, which provides the procedure for checking the teaching that took place previously 

for missing concepts and misconceptions; (3) TESTING TACTICS, which provides the 
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procedures for testing the student according to the tutorial goals; and (4) OPERATIONS, 

whose instances evaluate the responses of the student and model them as student knowledge.  

A portion of a tutoring strategy SEM from Bigger Bits is given in Figure 9(b).  Bigger Bits 

has a number of different tutoring strategies including ‘question and answer’, ‘multiple 

choice’, and ‘true or false’.  These different tutoring strategies (through their use of the 

semantic content embodied in COSMOS) enable the system to use media in a variety of 

interactive ways — e.g. referring to objects by their relative spatial locations by exploiting 

the spatial relationships in the SYMs, highlighting events as they occur within the media by 

exploiting the temporal relationships in the TEMs — and enable the student to make their 

responses in a variety of ways — e.g. clicking on an object in the video using the mouse, 

typing answers into an input line, selecting from multiple-choice options.  Figure 10 shows a 

tutoring strategy being used to teach (top screen shot) and test (bottom screen shot) the first 

tutoring goal that was shown in Figure 9(a). 

[** Figure 10 near here **] 

 Remedial goals.  The remedial goals are used to provide remedial assistance to the 

student with the aim of correcting students’ misconceptions.  There is one remedial goals 

SEM for each and every tutoring goals SEM within Bigger Bits.  The microprocessor 

remedial goals SEM is depicted in Figure 9(c).  As can be seen, the structure of a remedial 

goals SEM is similar to that of a tutoring goals SEM.  Each remedial goal in a remedial goals 

SEM consists of a number of sub-goals, each of which has a number of associated remedial 

strategies, which are used to carry out the remediation.  Typical remedial sub-goals are 

illustrated in Figure 9(c) and are explained as follows: 
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• ME remedies the student by using the remedial information in the associated remedial SEM 

in conjunction with the information tutored to the student initially, 

• SIMILAR remedies the student by present similar objects, object properties, events, or 

actions, depending on the associated tutoring goal, to enable the student to make 

comparisons, 

• BLANKOUT remedies the student by presenting the student with the information tutored 

initially in conjunction with a ‘blanking out’ of certain parts of the required answer(s) so 

that the student can fill in the blanks. 

 Remedial strategies.  Remedial strategies reflect ways in which a student may be 

remedied against a particular tutoring goal.  As with tutoring strategies, Bigger Bits uses both 

multimedia-based and non-multimedia-based remedial strategies.  A remedial strategy SEM 

has only one perspective, TACTICS, which provides the procedures for presenting a 

remedial goal to the student.  A portion of a remedial strategy SEM from Bigger Bits is given 

in Figure 9(d). 

3.4. Student knowledge in Bigger Bits 

The student knowledge provides valuable information during tutoring about the status of the 

student so that tutoring processes may be altered accordingly, i.e. changing the tutoring 

and/or remedial strategy to one that may prove more successful in tutoring the student.  

Unlike the domain and tutoring knowledge, the majority of the student knowledge is 

constructed during the course of the student’s interaction with the system as student overlay 

knowledge of the domain knowledge and diagnosed student misconceptions.  This 

knowledge is complemented by a bugs library. 
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 Student overlay knowledge.  This is a representation of the current status of the 

student in terms of the correct knowledge they have attained.  It is represented as student 

overlay SEMs, whose structure and organisation mirrors that of the SEMs contained with the 

domain knowledge (i.e. COSMOS).   The main difference between student overlay SEMs and 

domain knowledge SEMs is that the student overlay SEMs store additional information within 

their instances (a student overlay SEM also uses an (S) after the sub-type to denote that it 

models student knowledge).  Each instance in a student overlay SEM records the instance 

name (which is equivalent to the correct answer given by the student during testing), the 

strength of the acquired knowledge during teaching and testing modes (rated between 0 and 

1), the successful tutoring strategy used to elicit this response, and the media segments used 

if a multimedia-based tutoring strategy were used.  Figure 11(a) shows a typical 

microprocessor student overlay Object SEM in Bigger Bits (the microprocessor Events and 

Actions SEMs are not shown in the figure, but would also exist within the student knowledge, 

assuming that the student had been taught and/or tested on the events and actions for the 

object). 

[**  Figure 11 near here **] 

 Student misconceptions.  Student misconceptions are represented with student 

misconception SEMs.  These are similar to the student overlay SEMs, except that the 

instances record the incorrect answers given by the student and the appended numbers 

indicate the seriousness of this bad knowledge (on a scale between -1 and 0).   

 Bugs library.  The bugs library contains common student misconceptions about the 

domain.  It is composed of mal SEMs, each of which records a number of common 

misconceptions for the equivalent SEM within the domain knowledge.  Mal SEMs therefore 
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mirror the structure and organisation of the domain knowledge SEMs.  This information is 

used during remediation to inform the student that their mistake is a common one and it is 

taken into account when judging the seriousness of the bad knowledge and when altering the 

tutoring and/or remedial strategies.  Figure 11(b) depicts a portion of the microprocessor mal 

Object SEM from Bigger Bits (microprocessor Events and Actions mal SEMs also exist but 

are not shown in the figure).  The sub-type of the SEM is assigned as OBJECT (MAL)to 

denote that this is an Object SEM that forms part of the bugs library.  The perspectives mirror 

those of the domain knowledge Object SEM, but the instances differ since they reflect the 

common misconceptions. 

4. Concluding remarks 

This paper has presented the Bigger Bits interactive multimedia learning environment, which 

was built with COSMOS.  The development of Bigger Bits, like our previous developments, 

serves two short-term purposes: (1) a testbed for experimentation on COSMOS, and (2) the 

use of COSMOS for the development of interactive multimedia environments in diverse 

domains.  Our long-term goal is for end-users to develop their own applications using 

COSMOS, be they learning environments, business applications, medical systems, or any 

other applications that would benefit from having semantic multimedia content modelled 

using a scheme such as COSMOS. 
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Table captions 

Table 1 Primitives for spatial relationships between objects. 
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Table 2 Allen’s (1983) 13 temporal relationships. 

 

Figure captions 

Figure 1 Conceptual representation of the structure of a SYM. 

Figure 2 Conceptual representation of the structure of an Object, an Events, and an Actions SEM. 

Figure 3 Conceptual representation of the structure of a TEM. 

Figure 4 Relationships between COSMOS, its supplementary components, and a COSMOS-based interactive 

multimedia system. 

Figure 5 A portion of one of the SYMs from Bigger Bits. 

Figure 6 Portions of the Object, Events, and Actions SEMs for the microprocessor object in Bigger Bits. 

Figure 7 A portion of one of the TEMs from Bigger Bits for one of the microprocessor actions (only the actions 

from Figure 6 are shown). 

Figure 8 A portion of the set of remedial SEMs for the microprocessor object in Bigger Bits. 

Figure 9 A portion of the tutoring knowledge from Bigger Bits for the microprocessor object: (a) a tutoring 

goals SEM, (b) a tutoring strategy SEM; (c) a remedial goals SEM; (d) a remedial strategy SEM. 

Figure 10 Teaching (top) and testing (bottom) in progress in Bigger Bits. 

Figure 11 A portion of the student knowledge from Bigger Bits for the microprocessor object: (a) a student 

overlay Object SEM, (b) a mal Object SEM. 
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Table 1 

Regular Inverse 
Spatial Relation Notation Spatial Relation Notation  
O1 touches O2 O1 = O2 O2 touches O1 O2 = O1 2-D spatial 
O1 above O2 O1 ↑ O2 O2 beneath O1 O2 ↓ O1 primitives 

O1 left O2 O1 < O2 O2 right O1 O2 > O1  
O1 inside O2 O1 ⊆ O2 O2 encapsulates O1 O2 ⊇ O1 3-D spatial 
O1 before O2 O1 ⇑ O2 O2 behind O1 O2 ⇓ O1 primitives 
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Table 2 

Temporal 
relation 

Notation Inverse 
notation 

Conceptual example 

A before B < > AAA BBB 
 

A equal B = = AAA 
BBB 

A meets B m mi AAABBB 
 

A overlaps B o oi AAA 
 BBB 

A during B d di AAA 
BBBBBB 

A starts B s si AAA 
BBBBB 

A finishes B f fi  AAA
 BBBBB
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mt: SYM
id: "videoname":#
OBJECTS: object1 (x1,y1,x2,y2, ..., xn,yn)

object2 (x1,y1,x2,y2, ..., xn,yn)
...

SPATIALRELS: object1 SR object2
...

 

Figure 1 
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mt: SEM
st: OBJECT
id: object1
SPECIALISATION OF: object12 ()
PERSPECTIVE2: instance1-1 ("video3":0-52)

instance1-2 ("video9":12-90)
...

PERSPECTIVE3: instance2-1 ("audio2":58-104)
...

...

mt: SEM
st: EVENTS
id: object1
PERSPECTIVE1: event1 ("video2":0-1675)

event2 ("video2":1211-1675)
...

...

mt: SEM
st: ACTIONS
id: object1
EVENT1: action1-1 ("video2":0-598)

action1-2 ("video2":74-357)
...

...

object1

 

Figure 2 
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mt: TEM
st: ACTION
id: object1:event1:action1-1
<: ...
>: ...
=: ...
m: ...
mi: ...
o: ...
oi: ...
d: object1:event1:action1-2

...
di: ...
s: ...
si: ...
f: ...
fi: ...

 

Figure 3 
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COSMOSCOSMOS

SEMulator
SYMulator

TEMulator

Interactive Multimedia System

COSMOS-DL

COSMOS-QL

 

Figure 4 



 24

mt: SYM
id: "assembly":7624
OBJECTS: signal-trace-1 (44,13,52,13,52,48,44,48)

signal-trace-2 (63,13,71,13,71,48,63,48)
...
package (20,4,20,240,305,240,305,4)
lead-1 (85,36,103,75)
...

SPATIALRELS: signal-trace-1 < signal-trace-2
signal-trace-1 ⇑= package
...

 

Figure 5 
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mt: SEM
st: OBJECT
id: microprocessor
PART OF: motherboard ("mproc":0-3074)
NO OF TRANSISTORS: 3300000 ()
MINIMUM FEATURE SIZE: 0.6 μm ()
ARCHITECTURE: RISC ("arch":1002-5603)
FUNCTIONS: translation lookaside buffer ("arch":0-100)

branch processing unit ("arch":204-361)
pipeline control ("arch":746-933)
floating point registers ("arch":101-203)
...

...

mt: SEM
st: EVENTS
id: microprocessor
MANUFACTURED BY: assembly process ("mpa":6090-11108)
...

mt: SEM
st: ACTIONS
id: microprocessor
ASSEMBLY PROCESS: batch wafer fabrication ("mpa":6090-8185)

separation of circuits ("mpa":7573-8975)
bonding ("mpa": 8976-10423)
packaging ("mpa":9624-11108)

...

microprocessor

 

Figure 6 
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mt: TEM
st: ACTION
id: microprocessor:assembly process:separation of circuits
<: microprocessor:assembly process:packaging

...
>: ...
=: ...
m: microprocessor:assembly process:bonding

...
mi: microprocessor:assembly process:batch wafer fabrication

...
o: ...
oi: ...
d: ...
di: ...
s: ...
si: ...
f: ...
fi: ...

 

Figure 7 
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mt: SEM
st: OBJECT (R)
id: microprocessor
PART OF: motherboard (Think about what a microprocessor is used for)
NO OF TRANSISTORS: 3300000 (Remember that the microprocessor is very powerful)
MINIMUM FEATURE SIZE: 0.6 μm (This has to be tiny because of the high number of transistors)
ARCHITECTURE: RISC (Consider that a microprocessor this powerful must be high optimised)
FUNCTIONS: translation lookaside buffer (This is a cache for page table entries)

branch processing unit (This helps with the order of instructions)
pipeline control (This is akin to managing an assembly line)
floating point registers (This is a form of "real-ly" high speed memory)
...

...

mt: SEM
st: EVENTS (R)
id: microprocessor
MANUFACTURED BY: assembly process (It involves putting lots of things together)
...

mt: SEM
st: ACTIONS (R)
id: microprocessor
ASSEMBLY PROCESS: batch wafer fabrication (Lots of "bases" have to made simultaneously)

separation of circuits (Our batch needs to be split up)
bonding (Remember that the chip needs to be connected to the package)
packaging (This stage concerns protecting the chip from its environment)

...

microprocessor

Figure 8 
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mt: SEM
st: TUTORING GOALS
id: microprocessor
GOAL 1: PART OF 1 (M1,M2,M3)
GOAL 2: NO OF TRANSISTORS 1 (1,2,3)
GOAL 3: MINIMUM FEATURE SIZE 1 (1,2,3)
GOAL 4: MANUFACTURED BY 1 (M1,M2,M3,M4)
GOAL 5: ARCHITECTURE 1 (M1,M2,M3,M4)
GOAL 6: FUNCTIONS 3 (M1,M2,M3,M4)
...

(b) mt: SEM
st: TUTORING STRATEGY
id: M1
TEACHING TACTICS: sCurrentInstanceNo of this book = 0

send doNextMultimediaInstance
CHECK TEACHING TACTICS: send askQuestion_Multimedia_1 FALSE
TESTING TACTICS: send askQuestion_Multimedia_1 TRUE
OPERATIONS: if pClicking = false then

send NonMultimediaBasedTutoringStrategy_1_Operations
else

sysCursor = 4
sNoOfRightAnswers of this book = 0
if ASYM_ItemOffset(sCurrentPerspective of this book,sEvents of this book) <> 0\

OR ASYM_ItemOffset(sCurrentPerspective of this book,sObjectProps of this\
book) <> 0 then
clear sEventsNamed of this book

end if
 increment sNoOfAttempts of this book

clear vSoundsLikeTextlineNos
clear vTooManyWordsTextlineNos
clear vWrongTextlineNos
clear vCorrectTextlineNos
clear vCorrectJTextlineNos
vWhatStudentShouldMatchTo = sCurrentValidInstances of this book
vActualStudentAnswer = whatStudentClickedOn (pFrameNo,pWhereClicked) of page\
"Domain Knowledge"

...

(a)

mt: SEM
st: REMEDIAL GOALS
id: microprocessor
GOAL 1: ME (M1,M2)

SIMILAR (1,2)
BLANKOUT (1,2)

GOAL 2: ME (1,2,3)
SIMILAR (1,2,3)
BLANKOUT (1,2,3)

...

(c)

mt: SEM
st: REMEDIAL STRATEGY
id: M1
TACTICS: sysCursor = 4

clear vRemedialInfo
conditions

when sCurrentRemedialSubgoal of this book = "ME"
vRemedialInfo = getMe()
conditions

when sCurrentTutoringStrategy of this book = "1" OR sCurrentTutoringStrategy of this book = "M1"
vTextlineNoToUse = random(textlineCount(vRemedialInfo))
if (vTextlineNoToUse mod 2) = 0 then

decrement vTextlineNoToUse
end if

...

(d)

 

Figure 9
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mt: SEM
st: OBJECT (S)
id: microprocessor
PART OF: motherboard TEACH 0.94 M3("mproc":0-3074)
NO OF TRANSISTORS: 3300000 TEACH 0.94 3()
MINIMUM FEATURE SIZE: 0.6 μm TEACH 0.94 3()
ARCHITECTURE: RISC TEACH 0.94 M4("arch":1002-5603)

...
...

mt: SEM
st: OBJECT (MAL)
id: microprocessor
PART OF: IC

CPU
register
...

NO OF TRANSISTORS: <= 3000000
>= 3600000

...

(a)

(b)

 

Figure 11 

 


