
Open Research Online
The Open University’s repository of research publications
and other research outputs

An application of formal semantics to student
modelling : an investigation in the domain of teaching
Prolog
Thesis
How to cite:

Fung, Pat (1989). An application of formal semantics to student modelling : an investigation in the domain
of teaching Prolog. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1989 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Centre for Information
Technology In Education

An Application of Formal Semantics to Student
Modelling:

an investigation in the domain of teaching Prolog

Pat Fung

CITE Ph.D. Theses No.5

Institute of Educational Technology
Open University

Watton Hall
Milton Keynes

Great Britain
MK76AA

OPEN UNIVtK~lrY LIBRARy

31 0005424 5

IIIIII1IIII1 DX837g+
UNRt5TH'~

An Application of Formal
Semantics to Student Modelling:

an investigation in the domain of teaching
Prolog

Pat Funs, B.A.,MSc.
Thesis submitted inpartial fulfilment of requirements for the degree of

Doctor of Philosophy inCognitive Science
Open University, Milton Keynes,

~trtc(S fumcef .. tfll()2.~~X Odober1989

l1tt.i ~ cstJbmssIOt1: ~". &Pte t\.W' \~3~
Thle ~ Award: \3th \)~ \'1~~

EXl2

HIGHER Da:;REES OFFICE

LIBRARY AU'IHORISATION FORM

STUDENT: f~A_~~.__~f_u~~_J~~·; __
DEGREE: FH-. D------~~~-----------------------------

SERIAL 00: -----------

TITLE OF THESIS:

P. hi : l'v ;,,'i~S TT (. ttT I C (I)

[Ye HA-, [\" t_; ;:. Tf;lt(i+ i CJ F
i

I ccn:finn that I am willing that my thesis be made available to readers
and maybe pt"x)tocopied, subject to the discretion of the Librarian.

SIGNED: ('=f-t-Vv'd:j----------~--~~--~~-----------------DATE: 9S? - SS--~--~--~~----

Abstract

This thesis reports on research undertaken in an exploration of the use
of formal semantics for student modelling in intelligent tutoring
systems. The domain chosen was that of tutoring programming
languages and within that domain Prolog was selected to be the target
language for this exploration. The problem considered is one of how to
analyse students' errors at a level which allows diagnosis to be more
flexible and meaningful than is possible with the 'mal-rules' and 'bug-
catalogue' approach of existing systems. The ideas put forward by Robin
Milner [1980] in his Calculus of Communicating Systems (CCS) form
the basis of the formalism which is proposed as a solution to this
problem. Based on the findings of an empirical investigation, novices'
misconceptions of control flow in Prolog was defined as a suitable area
in which to explore the application of this solution. A selection of
Prolog programs used in that investigation was formally described in
terms of CCS. These formal descriptions were used by a production rule
system to generate a number of the incomplete or faulty models of
Prolog execution which were identified in the first empirical study. In a
second empirical study, a machine-analysis tool, designed to be part of a
diagnostic tutoring module, used these models to diagnose students'
misconceptions of Prolog control flow. This initial application of CCS
to student modelling showed that the models of Prolog execution
generated by the system could be used successfully to detect students'
misunderstandings. Results from the research reported here indicate
that the use of formal semantics to model programming languages has
a useful contribution to make to the task of student modelling.

Dedication

To the memory of our brother John, who died inMarch 1987

Acknowledgements

Thank you to my supervisor, Dr. Mark Elsom-Cook, who has been a

constant source of encouragement throughout my doctoral studies. He

always, without fail, made time to discuss and criticise my work. On

the other hand, at those times when the last thing on earth I wanted to

do was to discuss my work, he showed patience and understanding.

What more could a research student want of a Ph.D. supervisor?

I would like to thank Ann Jones, not only for her willingness to read

and criticise my work, but also for the moral support she has given me

in times of crises throughout my research studies.

Thank you to all the research members of CITE, past and present, whose

help, encouragement and friendship have been invaluable to me. In

particular I would like to thank the following: Tim O'Shea, Eileen

Scanlon, Di Laurillard, Claire 0' Malley, Alistair Edwards, Rick Evertz,

Sara Hennessy, Mike Baker, Simon Holland, Kate Stainton-Ellis, Rachel

Hewson and Fiona Spensley (a special thank you to Fiona for the final

proof reading of my thesis).

For very much the same reasons, I would like to thank the following

research members of HCRL, Marc Eisenstadt, Mike Brayshaw, Tony

Hasemer, Tim Rajan and John Domingue.

Thank you to the members of the Prolog groups at Edinburgh and at

Sussex who have read and criticised my papers and shown interest in

my work.

Thank you to all the D309 summer school students who contributed to

the empirical work in this thesis. A thank you also to all the summer

school organisers and tutors who directly or indirectly were a help to

me in doing that work. In particular my thanks to Ingrid Slack and

Hank Kahney.

A special thank you to Olwyn Wilson, who has always been a source of

help and common sense in times of need and to Di Mason and Pat

Cross for their cheerfulness in the face of my frequent interruptions to

their work.

lowe a particular thank you to Dr. Benedict Du Boulay. It was he who

initially gave me the opportunity to discover the excitement of

computers and Artificial Intelligence. I am in debt to him for that and

for the continuing interest he has shown in my work during my Ph.D

studies.

Finally, lowe the biggest debt of thanks to my family. To Igie, without

whose love and support this work would not have been possible. To

Tony and Jackie, for being understanding about a mother who is rarely

home. To sisters and brother, Cathy, Sheila, Val and Quentin for their

love and encouragement when the world seemed tough. To my

mother, who really is the best mother in the world.

This work was funded by an ESRCgrant (no. 000426624233)

Table of Contents

Introduction

Chapter One
1. Related research
1.1. What sort of difficulties do novice programmers have?

1.1.1. Finding an algorithm
1.1.2. Program planning -using plans
1.13. Problems in program coding
1.1.4. Debugging problems
1.1.5. Difficulties related to learning Prolog

1.2. What help is available for Prolog novices?
1.2.1. Prolog courses
1.22. Prolog environments
1.2.3. Summary

1.3. Tutoring systems
13.1. Lisp tutors
13.2. Pascal Tutors
1.33. Help in Fortran

L4. Tutoring for Prolog
1.4.1. Tutoring modules - PITS

1.5. The Prolog Interpreter
1.6. Summary

Chapter Two
2. Novices' misconceptions of the Prolog interpreter
2.1. A proposed taxonomy

2.1.1. Errors related to Prolog search and backtracking
2.1.2. Incomplete or faulty knowledge of unification.
2.1.3. Confusion over the effect of the cut operator
2.1.4. Implications

2.2. An empirical study
2.2.1. The experiment
2.2.2. Problem design
2.2.3. Results
2.2.4. Comments

2.3. Summary

Chapter Three
3. Formal Models
3.1. Modelling students
3.2. Formal desaiptions
33. A Calculus of Communicating Systems

3.3.1. Synchronised communication
3.3.2. Observational equivalence
3.3.3. Composition
3.3.4. Applying the expansion theorem
3.3.5. Restriction
3.3.6. Equivalences

3.4. Summary

(i)

1

6
6
8
10
13
15
17
23
24
30
43
46
48
55
59
60
61
61
62

65
66
68
72
74
76
78
79
82
89
1~
110

112
112
116
118
119
121
125
126
128
130
134

Chapter Four

4. A Prolog Application
4.1. System overview
4.2. Producing formal descriptions of Prolog programs

4.2.1. Query components
4.2.2. The condition component
4.2.3. The right hand side component
4.2.4. Fact and nomore components
4.2.5. A program converted

4.3.Expanding the formal description of a program
4.3.1.Composmg two program components
4.3.2. Applying the expansion theorem
4.3.3. Tagging the silent communications of a program
4.3.4. Restricted observation of a program

4.4. Summary

Chapter Five

S. Production rule modelling
5.1. A production rule approach
5~ Developing rule conditions

5.2.1. Node-types
5.2.2 Node positions

5.3. Rule actions
5.3.1. Action at nochoice-nodes
5.3.2. Action at disjunctrhs and disjunctprime nodes
5.3.3. Actions at disjunct nodes
5.3.4. Action at failchoice-nodes
5.3.5. Action at final nodes

5.4. A ruleset for normal Prolog search
5.5. Modelling misconceptions· some examples

5.5.1. Try once and pass
5.5.2. Redo from left
5.5.3. Facts before rules
5.5.4. One pointer per clause

5.6. Summary

Chapter Six

6. An evaluation.
6.1. A second empirical study

6.1.1. Subjects taking part
6.1.2. Experiment design
6.1.3. Problem design
6.1.4. Confidence ratings
6.1.5. Data analysis
6.1.6. Machine-analysis

(ii)

135
136
138
140
143
144
148
148
150
151
152
155
158
160

162
162
166
167
172
174
175
177
177
181
182
183
186
186
187
191
194
197

199
200
200
201
204
205
206
206

6.2. Experiment results
6.2.1. Answers analysed
6.2.2. Errors found
6.2.3. Differences between analyses
6.2.4. Confidence rating results
6.2.5. Discussion of results
6.2.6. Machine-analysis (1987 summer school experiment)

6.3. Machine-analysis comments
6.4. Summary

Chapter Seven
7. Conclusions
7.1. Achievements

7.1.1. An initial taxonomy
7.1.2. A study of novices' models of the Prolog interpreter
7.1.3 The development of a machine-analysis tool
7.1.4. A production rule description language
7.1.5. A computer-based empirical study.

7.2. The significance for intelligent tutoring
7.2.1. A contribution to diagnosis in tutoring systems
7.2.2 A contribution to student modelling
7.2.3. A contribution to empirical research ...
7.2.4. Summary

7.3. Future directions
7.3.1. Extensions to existing work
7.3.2 Longer term research - the role of formal semantics

References

Appendices
A. Empirical study 1987

Al Experiment booklet
A2. Table of results
A3. Individual results
A4. Percentages of problems showing errors

B. Listing of programs
BI. Conversion of Prolog programs
B2. Expansion theorem
B3. Production rule system

Appendix C. Empirical study 1988
Cl. Screen dumps of programs used
Q. Results of machine-analysis
C3. Results of hand-analysis
C4. Confidence ratings
CS. Machine-analysis of 1987 results

D. Screen dumps of CCS reprentations of programs

(iii)

209·
209
210
212
219
223
225
230
232

236
236
237
238
239
240
241
243
243
245
245
246
246
247
251

254

264
272
274
282

284
292
300

310
316
320
322
326

330

Table of figures
Chapter One

Fig.l.l Areas of skill used in constructing a program
Fig.I.2 Byrd Box Model of simple Prolog goal.
Fig.1.3 Model of embedded goals.
Fig.I.4 An Arrow Model of Prolog control
Fig.I.S A Tree Model
Fig.1.6 Sample standard Byrd box trace
Fig.I.7 Sample trace of Prolog Trace Package

. Fig.1.S Snapshot of APT tracing tool
Fig.I.9 TPM trace of a program at the point of goal satisfaction
Fig.I.IO Detail ofTPM status box .
Fig.1.11 Long distance view of TPM trace
Fig.I.12 Approximation of teaching strategy of Greaterp
Fig.1.13 Design of Impart tutoring system
Fig.I.14 Section of Trill's semantic network
Fig.I.IS Matching process in Proust

Chapter Two

Fig.2.1 Arrow diagram
Fig.2.2 Control flow snapshot
Fig.2.3 Facts before rules
Fig.2.4 Rules before facts
Fig.2.5 Correct interpretation
Fig.2.6 Incorrect interpretation
Fig.2.7 Redo from left
Fig.2.S Can two variables have the same value?
Fig.2.9 The correct answer
Fig.2.10 Correct interpretation of the scope of the cut operator
Fig.2.11 Correct scoping of the cut operator
Fig.2.12 Vnder-estimation of the scope of the cut operator
Fig.2.l3 Correct scoping of the cut operator
Fig.2.l4 Over-estimation of the scope of the cut operator
Fig.2.lS Programming experience prior to the O. V.course.
Fig.2.l6 Correct interpretation
Fig.2.17 Incorrect interpretation
Fig.2.18 Problem design
Fig.2.19 Breakdown of total number of errors (217).
Fig.2.20 Number of errors made by each student
Fig.2.2l Distribution of numbers of errors made by students
Fig.2.22 Breakdown of identified errors
Fig.2.23 Distribution of 'one pointer per clause' errors
Fig.2.24 Distribution of the 'meta-knowledge' misconception
Fig.2.25 Number of students related to error type
Fig.2.26 Problems and expected errors
Fig.2.27 Distribution of errors across problems
Fig.2.28 'Redo from left' misconception
Fig.2.29 'One pointer per clause' misconception
Fig.2.30 Comparison of errors
Fig.2.3l Errors related to programming experience
Fig.2.32 Comparison of error averages

(iv)

7
26
27
28
29
35
38
40
42
42
43
51
52
54
57

68
68
69
70
71
71
72
73
73
74
75
75
76
76
79
83
84
88
91
91
92
93
97
98
99
101
102
103
103
105
106
107

Chapter Three

Fig.3.1 Actions of two systems
Fig.3.2 Two agents combined
Fig.3.3 A more abstract representation
Fig.3.4 Equivalent behaviours
Fig.3.S A nondeterministic choice of actions - Fred
Fig.3.6 A nondeterministic choice of actions - Hatter
Fig3.7 Agent f
Fig.3.S Agent h
Fig.3.9 Composition of agents f and h
Fig.3.10 Definition of composition
Fig.3.11 Composite machine f Ih expanded
Fig.3.12 Definition of expansion
Fig.3.13 Machine f Ih
Fig.3.14 Restricted machine fl h\a
Fig.3.1S A formal definition of restriction
Fig.3.16 Equivalence levels
Fig.3.17 A binary relation over f
Fig.3.1S A silent communication action
Fig.3.19 Oservationally equivalent
Fig.3.20 Observational equivalence of customers behaviours.
Fig.3.21 Examples of observational equivalence

Chapter Four

Fig.4.1 Process outline
Fig.4.2 Formulating components
Fig.4.3 Components of program
Fig.4.4 Actions of query component
Fig.4.S Actions of condition component
Fig.4.6 Actions of the right hand side
Fig.4.7 Actions of fact and nomore components
Fig.4.S Formal description of actions of machines
Fig.4.9 Actions of fact component and nomore component
Fig.4.10 Composition of fact and nomore machines
Fig.4.11 Possible sequences of actions from the expansion of the
Fig.4.12 Possible complementary actions of SAl- and SAl
Fig.4.13 Restricted expansion of (SA1(SA1-» (SA2(FA2-»
Fig.4.14 CCS tree representation of program 'p if a'. 'a'.

(v)

119
120
121
122
123
124
124
124
125
126
127
128
129
129
130
130
131
132
132
132
133

137
139
139
142
144
145
148
150
151
152
153
155
159
161

Chapter Five

FigS.l CCS tree of p if a & b.
Fig.S.2 Section of semantic tree showing branches traversed
FigS.3 Branches of CCS tree traversed in 'try once and pass'
FigS.4 Components of production rule interpreter
FigSS Disjunct points with same names
FigS.6 Disjunct point with different names
Fig.S.7 Another 'different name' disjunct
FigS.8 No-choice nodes in CCS tree
FigS.9 Directions of actions
FigS.l0 Ruleset for normal Prolog search
Fig.S.ll Returning to disjunctrhs
Fig.S.12 Identifying a rule clause
Fig.S.13 Once used, other instances of the branch are lopped off.

Chapter Six

Fig.6.1 Layout of window shown to student
Fig.6.2 Window with student input
Fig.6.3 Total number of answers analysed successfully
Fig.6.4 Subjectby subject breakdown of answers
Fig.6.S Breakdown of 190errors found bymachine-analysis
Fig.6.6 Breakdown of 184errors found by hand-analysis
Fig.6.7 Comparison of error totals
Fig.6.8 Hand-analysis results of subject 15.
Fig.6.9 Prediction given by subject 15for problem one
Fig.6.10 Layout of buttons for goal 'p',
Fig.6.11 Prediction for problem one given by subject 9.
Fig.6.12 'Abbreviated' answers of subject 28
Fig.6.13 Prediction given by subject 16
Fig.6.14.Breakdown of total number of predictions
Fig.6.1S Relationship between confidence and accuracy
Fig.6.16 Some individual cases showing differences
Fig.6.17 Total number of errors, hand-analysis,1987 data.
Fig.6.18 Breakdown of identified errors, hand-analysis, 1987.
Fig.6.19 Differences, hand/machine-analysis, 1987 data
Fig.6.20 Hand-analysis results for subject 29, 1987data
Fig.6.21 Results of hand-analysis of subjects 6 and 8, 1987data
Fig.6.22 Results of subject 5, hand-analysis, 1987data.

Chapter Seven

Fig.7.1 A first representation of a variable
Fig.7.2 Components of a Var machine

(vi)

163
163
164
166
168
168
170
172
175
183
190
192
195

203
203
209
210
211
211
213
214
214
215
216
217
218
221
221
222
225
226
227
228
228
229

248
248

1

An Application of Formal Semantics to Student Modelling:
an investigation in the domain of teaching Prolog

Introduction
The research reported in this thesis was undertaken in the context of

developing a diagnostic tutoring module which would be capable of

making a useful contribution to an intelligent tutoring system in the

domain of programming languages. The problem addressed is one of

student modelling, since the ability to provide meaningful on-line

diagnostic help to a novice programmer centres on the successful

identification of that student's faulty or incomplete perception of the

programming language. To identify that a student has made an error is

rarely in itself sufficient, it is far more important to identify the most

likely misunderstanding which has led to the error, i.e. to identify the

faulty or incomplete model of the language which the student may have

formed. A possible solution to the problem of identifying such models,

put forward in this thesis, is the use of a formal semantics. A very exact

picture of program behaviours can be obtained by formally describing

the programming language being tutored. This information can then be

utilised to construct the models which novices form and can provide

the basis for appropriate diagnostic help where this is necessary. The

formalism which has been experimented with in applying this solution

to the problem of student modelling is based on R.Milner's [Milner

1980] Calculus of Communicating Systems (CCS). The programming

language Prolog was chosen as the vehicle to investigate its use. In

outline, the objectives in exploring this solution were as follows. An

initial goal was to define an area in the task of learning the

programming language which presents difficulties for novice Prolog

2

. programmers. The next objective was to investigate the ideas of CCS as

a formalism which could provide diagnostic help in representing

. students' models of that area. Subsequently, these ideas were translated

into a Prolog context and incorporated in the initial development of a

diagnostic component of a tutoring system. This work was then

evaluated and the advantages and disadvantages of this approach to the

problem of student modelling considered in the light of the evaluation.

The following outline of the chapters of this thesis indicates the

structure of the research undertaken in the course of pursuing these

objectives. Essentially this entailed defining a specific area of difficulty

for novice Prolog programmers, based on an overview of the existing

research literature and the results of an empirical study. The formalism

proposed for constructing models of novice programmers'

misconceptions was then investigated and its application to this area

explored. A program designed to illustrate the use of this formalism in

diagnosing Prolog novices' misunderstandings was implemented and

subsequently evaluated in a second empirical study.

In chapter one we put the current work into the context of previous

research in this area. To do this we initially consider what research has

shown us of the difficulties which novice programmers experience

when they begin to learn a programming language, since it is these

difficulties which provide the motivation for this work. Drawing on

the research literature in this field, a significant conclusion emerges. In

addition to many of the problems generally encountered by students

learning to program, students learning Prolog face additional problems

which are specific to that language and these are considered. One such

problem in particular is the task of understanding the behaviour of the

Prolog interpreter.

3

Having considered the problems which research has shown that

students encounter, a brief survey is made of the help which is available

to novice programmers to overcome these problems. Research in this

area has provided automated help which ranges from trace-packages

and tools to tutoring systems, but in this overview we indicate certain

shortcomings in this help. We regard these shortcomings as evidence of

the need for intelligent on-line tutoring. An essential feature of such

tutoring must be that it addresses the problem of student modelling in a

meaningful way. It is in this context that we advocate the development

of a tutoring module for diagnosing those errors which are indicative of

novices' faulty perceptions of the programming language.

In chapter two we draw on our review of the problems encountered by

students learning to program in order to define an area of difficulty for

Prolog novices, the task of understanding the actions of the Prolog

interpreter. In chapter one we described certain models of the

interpreter which are offered to novices to help them interpret the

execution behaviour of Prolog, but students often form their own

incomplete or faulty models. In this chapter we discuss possible

misconceptions of the Prolog interpreter which may underlie these

incorrect models. Following this discussion we describe an empirical

study in which students were asked to predict the steps taken by the

interpreter in proving certain Prolog programs. This study was

undertaken to investigate in more detail the models students form of

the backtracking process in Prolog. The results confirmed that Prolog's

backtracking processes do present difficulties for novices and that

models of the interpreter formed by students in the early stages of

learning the language were indeed often faulty and incomplete. Some

4

of the models which students had formed of Prolog backtracking were

easier to identify than others and the results showed that particular

-models appeared relatively consistently in their answers. In view of the

results, a selection of these faulty models were used as the basis for

exploring the use of CCS in constructing computational models of the

misconceptions of novice Prolog programmers. In the third chapter we

explain why this formalism was chosen as the basis for representing

such models and discuss the ideas central to CCS, i.e. synchronised

communication and the notion of observational equivalence, since it is

the potential of these ideas which make CCS of particular interest in

relation to the tutoring of programming languages.

Translating the ideas of CCS to Prolog was an important stage in the

research project and in chapter four we look at the process of developing

a formal description of a Prolog program. Using a simple program as an

example, we then show how this formal description provides the terms

from which we derive the possible backtracking behaviours, correct and

incorrect, of that program. It is this semantic information, generated

from the formal description, which is used in constructing models

representing students' misconceptions and which can be used for

diagnostic tutoring. Chapter five outlines the design of the system in

which this information is incorporated and discusses the development

of the production rules which are used in the modelling process. Using

a production rule interpreter approach, the basic set of rules which

model the normal search process in Prolog can be modified to reproduce

the faulty models of Prolog search which novices form. The primitives

used in the ruleset form the potential building blocks which can be used

to construct the particular model of backtracking that a student may

have developed.

5

Chapter six is concerned with a second empirical study which was

undertaken in order to provide a means of evaluating the work of

representing students' models of Prolog execution. This was a

computer-based experiment investigating students' models of

backtracking and the results were machine-analysed using the

computational models and subsequently hand-analysed. The results of

the earlier experiment discussed in chapter two were also retrospectively

machine-analysed. The relative merits of the analyses are discussed and

implications of the results for the system being developed are

considered in the light of these results.

The thesis concludes, in chapter seven, by summarising the results of

the research undertaken in relation to its goals, looking both at what has

been achieved in the course of this work and what appear to be the most

promising avenues for further investigation. The use of a formal

semantics in generating the computational representations of students'

models of Prolog backtracking proved to be a successful step in

identifying misconceptions of the Prolog interpreter. It also indicated

further potential in this approach that has not yet been explored, but

which could ultimately contribute to solving other problematic aspects

of student modelling which were not the focus of this thesis.

6

Chapter One

1. Related research
In this chapter we give a brief overview of research related to this thesis.

The purpose in doing so is to answer two questions, "What sort of

dlfflcultles do novice programmers have, particularly Prolog novices?"

and "What help is available to assist the latter in overcoming these

difficulties?" Both questions are essential in identifying an area of

difficulty for novice Prolog programmers and in putting the current

work of developing a diagnostic tutoring module into context in the

field of tutoring programming languages. We therefore look at

problems which novices encounter in learning to program, as reflected

in the research literature and end this overview by considering the

relevance of this to Prolog novices. Having outlined the areas in which

novices experience problems, we then, in the concluding section of this

chapter, discuss the extent to which research to date has attempted to

alleviate the difficulties of Prolog novices by the development of

programming tools and tutoring systems.

1.1. What sort of difficulties do novice programmers have?

The term 'novice' has been used in various studies of programmers

[Taylor 1987], [Kahney 1982] and is generally taken to mean a subject

who has had little or no experience of programming. Although

[Shneiderman 1976]used the expression rather more precisely to denote

the level of programming experience, i.e. one who has attended or

7

completed a first programming course, the term will be used here in a

more general sense covering both categories (this will be discussed

. further on p.17-18). Many of the studies referred to here have been of

novices learning languages other than Prolog. This in no way

invalidates their relevance to this work, but rather helps to underline

the commonality of some difficulties across languages whilst helping to

identify those problems specific to Prolog.

One must also be aware of the warning given in [Shei11981] that the

complexity of programming behaviour makes evaluation difficult. It is

not possible to say with complete certainty to what extent problems in

one area of the skills involved in programming are due to or are the

cause of, problems in another area. Any classification of novices'

problems is therefore to some extent an arbitrary one. However, for the

purposes of this thesis, we classify the following four 'areas' as ones in

which novices are known to experience problems, finding

computational solutions to problems, program planning, program

coding and debugging programs.

Fig.l.l. Areas of sklll used in constructing a program

We see these areas as relating approximately to the steps of finding an

algorithm for the solution of the programming problem, planning a

computer program expressing this solution, coding and running the

8

program and finally the process of refining or debugging the program.

The difficulties which novices experience in these areas will be

discussed in tum in the following sections.

1.1.1. Finding an algorithm

The problems which novice programmers are asked to solve are not, or

should not be intrinsically complex [du Boulay & O'Shea 1981], often

being related to background knowledge which they would be expected to

possess. This is not always true, particularly if the student is studying a

programming language in isolated circumstances, but holds true in

most cases. Most often the problems given to novices are such that they

would be relatively easy to solve in everyday life, such as finding the

largest number in a given set of numbers, finding how many elements

there are in a given list, reversing the elements of a list, or solving well

known puzzles. Given paper and pencil and allowed time for trial and

error, most students would soon find an algorithm for arriving at a

correct solution. The every-day natural language algorithms which

students might put forward as solutions to such problems are not

however necessarily suitable ones for representing computationally.

The task of formalising their solution into an algorithm that can

eventually be expressed in a computer programming language is a new

experience.

Given, of course, that there may be significant differences between

individuals which make it much harder or easier for some to

accomplish this task than for others [Kahney 1982], this process of

finding an algorithm is nevertheless often a difficult one for novices. In

his study, Kahney [1982] points to the amount of knowledge that novices

must employ in this. process of describing the problem and its solution

9

in a way that can be utilised as a computer program. Students must not

only know the 'everyday' solution to the problem. They must also have

'enough understanding of the particular programming language to relate

features of the problem to the programming constructs which would be

pertinent to the solution.

As stressed by [Jones 1981],in order to construct a valid representation of

the problem, the novice needs both a dear conceptual model of the

problem and an awareness of the programming language constructs. In

this context a dear conceptual model of the problem would imply one

which contained the problem's salient points. It would imply the ability

of the student to discard any data irrelevant or superfluous to finding an

algorithm for its solution. An awareness of the programming language

would imply familiarity with the basic structures of the language and a

knowledge of how to manipulate those structures. It is highly likely

that a novice, not having such an awareness, would form a model of the

problem and its solution drawn only from her own everyday

knowledge.

It has been shown that novices do not come to programming as 'empty

heads' [Kahney 1982pp 1-3],but bring to programming a background of

existing knowledge to which they attempt to relate their 'new'

knowledge. This 'active' learning in a domain where students may not

be aware of which items of their existing knowledge-store are relevant

and which are not, can lead to inappropriate expectations [Jones 1984]. A

model of the problem and its solution which is too firmly rooted in

everyday knowledge can be a hindrance, since it may obscure the goal of

finding a solution that is amenable to computation.

10

A study undertaken to clarify the issues governing suitability of

programming languages for programming tasks [Petre &: Winder 1988]

revealed an interesting insight into the importance which 'expert'

programmers attach to this stage of the programming process.

Protocols showed that they considered that the task of finding an

algorithm was far more important than the actual coding of that

algorithm. However, the data revealed that the algorithms referred to

by these experts were in most cases written in 'pseudo-code', a mixture

of natural language and programming language terms (in some cases

from more than one programming language). This indicates to what

extent they brought their awareness of programming constructs to the

task of finding a suitable algorithm, so it is not surprising that novices,

with relatively little awareness, face difficulties in this area.

In summary then, work on novice programmers and their approaches

to finding algorithms to solve given programming problems has shown

that they are likely to have difficulties in representing the solutions to

those problems in a computationally viable way. Suggested sources of

these difficulties have been the misapplication of 'everyday' problem-

solving techniques, inadequate knowledge of appropriate programming

constructs and the sometimes misleading similarities between the

semantics of natural language and of programming languages.

1.1.2. Program planning - using plans

The stage of the programming process being discussed in this section

refers to the phase in which the algorithm is turned into a program

structure or outline (it is perhaps worth mentioning again the arbitrary

nature of dividing the programming task into stages [see section 1.1],

11

which is used in this case to provide a framework for discussing the

problems novices encounter). The programmer is not writing the final

'code, but is planning the shape of the program which will implement

the algorithm. At this point of planning the programmer draws on her

knowledge of the structures of the language being used and formulates

an overall plan of how to implement the algorithm. The achievement

of this main plan will normally entail the use of lower level plans.

The. role of plans in programming has been the subject of much recent

investigation. The concept of programming 'plans' is not a recent

development, but there does not as yet seem to be a clear cut standard

definition of what comprises a plan. Rich, Shrobe &: Waters (1976)

considered a plan as an abstract description of a program, which may be

composed of subplans, or may itself be a fragment of another plan.

Johnson [1986)defines plans as stereotypic action sequences in programs,

used to map intended goals to code. Bonar &: Weil [1986]refer to plans

as the standard concepts and techniques for implementing common

tasks chosen by the programmer in order to realise a higher level goal

plan. Initially these plans would probably be only partially instantiated.

Later the 'slots' of these skeletal plans would be fleshed out, the fillers

for the slots perhaps being other lower-level plans which would also

have to be coded and assembled. Rist [1986)discusses plans in terms of

the 'focal' plan used to implement the main goal of the program. This

focal plan then determines the number of other plans which have to be

implemented. Again the principle is that a plan can be subdivided into

lower-level plans, or can itself form part of a higher level plan.

The psychological importance of the role of plans in programming is

also not clear cut, but remains an issue of debate. Spohrer Soloway &:

12

Pope [1985] interpret their empirical studies as support for the

development of a theory of novices' programming, in which the misuse

of plans forms the underlying structure of programming problems. A

mismatch between novices' intended plans and the plans they actually

use to achieve their goals, omission of these plans, or a faulty merging

of plans with the consequence of unwelcome or unexpected side effects,

is seen to explain the majority of errors that occur in novices' programs.

This view is not shared by Gilmore [1988], who points out that it cannot

validly be claimed that plans represent the underlying structure of

programming problems until empirical studies have shown that they

play the same role in languages other than Pascal. This question of the

role of plans in other languages is particularly relevant to Prolog and

will be discussed in section [1.1.5]. There is no disagreement however

about the importance of plans, in that they are seen as central to the

process of turning an algorithm into a program [Johnson 1986].

Not only must the programmer have an awareness of the constructs of

the programming language in order to form plans, but in order to assess

the effect of the plans they use, they must also have some concept of

how the computer executes them. It has been suggested by Du Boulay &t

O'Shea [1981] and by Du Boulay, O'Shea &t Monk [1981], that problems

are much more likely to arise if the novice has not formed a satisfactory

model of program execution and empirical work by Mayer [1981] has

given support to this theory. This does not imply that the student must

know the complete workings of the computer down to machine level,

but that the student should have some model of how the machine

interprets the particular constructs that constitute the program.

Without a clear idea of what operations the machine performs in

response to the program that is input, or in what order these operations

13

are performed, a student is unlikely to be successful in program

planning.

It can therefore be concluded from existing research that problems are

likely to occur at the planning stage of programming since novices may

well be unfamiliar with the constructs of the programming language

and so be unable to formulate the necessary plans. In languages such as

Pascal, work has shown that problems do often arise from a

misapplication of, or faulty knowledge of programming 'plans'.

Novices may also lack a satisfactory model of program execution,

resulting in inappropriate planning or choice of plans.

1.1.3. Problems in program coding

Much of the knowledge about problems that students experience in

coding their programs has been deduced either from in-depth protocols

of novice students attempting to write their own programs or by error-

analysis of programs written by novices. Both methods have features to

recommend them and both have drawbacks. The former method is

valuable, since it provides a rich source of students' attitudes, thoughts

and difficulties as they actually write the program code, but it is

expensive in terms of time and resources [Rajan 1986]. The latter

method, i.e. analysis of completed code, allows the work of many more

students to be assessed and broadens the numerical basis, in the light of

errors found, from which conclusions may be drawn. Unfortunately

this method also precludes first-hand evidence of the cause of many

errors, so making the task of analysing data in a meaningful way a more

complex one.

14

In spite of these drawbacks, research has produced some significant

indicators of novices' problems at this stage of the programming

process. The classification of the sorts of errors found in novices' code

has rightly occupied much research time, the crux of the problem being

the identification of the causes of those errors. Edward Youngs [1973],

offers four broad areas of error: syntax, semantic, logical and clerical.

This classification was based on a study covering five programming

languages. It was extended by Du Boulay &: O'Shea [1981] to include

stylistic errors to cover, for example, instances of code which works but

is very inefficient, or very hard to comprehend. According to Youngs,

logical errors may be due to a misfit of the program to the problem, i.e.

they are symptomatic of problems at the planning stage. Clerical errors

may be relatively trivial, such as spelling mistakes, or programming

syntax errors, the correction of which sometimes add little to an

understanding of programming [du Boulay, O'Shea and Monk 1981].

Syntactic errors arise from incorrect use of the syntax of the language

and would be indicated by error messages when the program is

compiled or interpreted.

Semantic errors while not necessarily producing error-messages at run

time, result in faulty or unexpected output and may be symptomatic of

problems at a different level. They indicate that the student has a

problem or problems that cannot be accounted for in terms of simple

syntactical mistakes or clerical slips [Allwood 1986] and point to a

misunderstanding of the semantics or the behaviour of a construct in

the programming language being used. Research attempts have been

and are being made to identify the potentially more serious problems

indicated by this 'semantic' level of error. Such problems could relate

to:

15

_ fundamental misunderstandings of the language, [Brna, Bundy, Pain
&: Lynch, 1987]

- inaccurate models of program execution [Jones 1984]
- misapplication of plans [Spohrer, Soloway, &: Pope,1985]
- interference from pre-programming knowledge [Bonar &: Soloway

1985]
- limitations of short term memory, as has been suggested by

[Anderson &: Jeffries 1985].

Clearly, we can conclude that problems experienced in writing program

code, other than those related to difficulties of a relatively superficial

syntactic sort, are intimately related to problems encountered at other

stages of the programming process.

1.1.4. Debugging problems

As noted by Lukey [1981], debugging is closely connected to program

comprehension since to do it successfully requires a certain level of

understanding of the program being debugged. Program

comprehension is an essential part of the programming process, used in

correcting buggy programs and adapting programs. Much of what has

been learned about the problems that novice programmers experience

in comprehending and debugging programs, is based on comparative

experiments between 'experts' and 'novices' [Adelson 1984], [Jeffries

1982], [Gugerty &: Olson 1986]. In these experiments the groups are each

given a particular program or section of a program to 'debug'.

Unsurprisingly, results show that novices take longer and find it harder

to debug programs than do experts, they are unable to make as much use

of error messages as are experts [Davis 1983], experts possess much more

information and that information is organized more efficiently [Mayer

1981]. As Kahney [1982] rightly points out, insights gained from

comparative studies tend to give information about experts' knowledge

while conclusions regarding novices tend to be of the default kind, that

16

they do not have whatever particular skill, knowledge, expertise it is

shown that experts possess.

There are two factors which are often quoted as contributing to the

higher success rate of experts in debugging programs. One is that experts

possess a more sophisticated model of program execution, the other is

that they have a more thorough understanding of the programming

language [Jeffries 1982]. It is safe to assume therefore that basic problems

mentioned in the previous section also have bearing on the difficulties

novices experience in debugging. i.e. misconceptions concerning the

language and lack of understanding of the program execution. Added to

this, when they are debugging programs, novices have the problem of

interpreting machine error-messages that for the inexperienced are

sometimes unhelpful, sometimes obscure and possibly both [du Boulay

& Matthew 1984]. Jeffries [1982] is the only exception to this in the

literature. In this study she found that for a certain type of error

message, e.g. "missing semi-colon on previous line", it was apparent

that Pascal novices were very familiar with these error messages and

were obviously quite experienced at tracking down the offending code.

She attributes this to the relative frequency with which they

inadvertently commit such syntax errors. This apart, error messages

produced by the machine are often hard for novices to understand since

understanding them can require more knowledge of the machine

interpreter than novices possess.

1.1.5. Difficulties related to learning Prolog

We have looked at the literature related to learning to program. These

studies have covered subjects beginning to learn not just Prolog, but

other languages as well. We have seen that novice programmers have

difficulties in finding algorithms to provide solutions to programming

17

problems and in producing coherent program plans from these

algorithms. Difficulties stem from their misapplication of everyday

problem-solving knowledge to the computing domain and possibly

from their semantic confusion between natural language expressions

and similar expressions in the formal languages of programming. They

have semantic and syntactic problems in coding their program plans

and difficulties in debugging the resulting programs should these

produce error-messages at run-time, or if the output is incorrect.

Studies of novice programmers have shown that these problems lie not

only in beginners' comparative lack of knowledge of the programming

language being learned and relatively small store of plans of how to

achieve goals with the language constructs, but also in their lack of a

model of program execution. The greater part of these difficulties seem

to be common to most novices and not necessarily related to a specific

language. To what extent do Prolog novices share these difficulties?

Before answering this question it seems sensible to clarify the term

Prolog novices. It may be argued that the term 'novice Prolog

programmers' should also include those who, although having

considerable experience of other programming languages, have no

experience of Prolog. Those used to an instruction oriented language

may have difficulties in reconciling themselves to the declarative and

propositional character of Prolog code. The control flow mechanisms

responsible for the backtracking behaviour and 'matching' process in

Prolog could give rise to problems for those who, even though

relatively experienced programmers, are newcomers to Prolog. Work by

van Someren [1984], [1987] and by White [1987], has shown that such

students may well have particular problems, due to faulty transference

of knowledge from more procedural languages. The transfer of

18

knowledge from another language is an interesting problem, but is not

within the scope of this work and wi1l not be dealt with further. While

not specifica1ly excluding this class of student from the issues discussed

here, the term 'novice' will be used in this context primarily to refer to

those students who are new to both programming and Prolog.

Prolog novices do seem to experience difficulties in much the same

contexts as novices of other languages, but for Prolog novices the

problems may well be more acute [Taylor 1987]. This is largely due to

language-specific factors, which we will discuss in the following

sections.
...

Firstly, the syntax of Prolog is based on predicate calculus statements

formulated in terms very similar to those used in natural language

reasoning, which increases the likelihood of natural language

interference. Although one might think that a programming language

which more closely approximates the natural language 'reasoning' used

to solve problems, would help novices in the process of developing an

algorithm, this is not necessarily the case. Research by Taylor [1987] has

investigated the effect on novices of the surface similarity between

natural language equivalents and the predicate logic used in Prolog. She

concludes that rather than this similarity being a built-in advantage

when students are developing an algorithmic solution to the

programming problem, it can, on the contrary, lead to errors, since the

semantics of natural language differ from those of formal logic. Studies

by Johnson-Laird & Wason [1977] have also shown that although

'naturallanguage' reasoning is in many ways similar to reasoning using

predicate calculus, this does not hold in all cases. People presented with

predicate calculus statements and asked to use these for a reasoning task,

19

are likely to make inferences which could be valid in a 'natural

language' situation, but are not valid in formal logic. In natural

language situations for example, use is made of implicit knowledge and

conventional interpretations of quantifiers. In formal logic these factors

do not come into play and a failure to appreciate this can be a source of

confusion for Prolog novices.

Secondly and related to the similarity of Prolog syntax to natural

language is the lack of easily recognisable programming constructs

which can be incorporated in 'plans' to achieve program goals. As

discussed in section [1.1.2], the application and integration of plans and

sub-plans may well be a major source of errors by the novice

programmer using Pascal (Spohrer, Soloway &: Pope 1985] or any other

programming language which has a syntax structure which lends itself

to the formation of skeletal plans which can then be fleshed out in a slot

and filler fashion. The situation is somewhat different in relation to

Prolog. As a 'declarative' language rather than an instruction-oriented

or functional language, the syntactic structure of Prolog does not lend

itself readily to 'plans'. This does not mean that the novice Prolog

programmer therefore has no problems, or no plans at the stage of

programming planning. As Taylor &: du Boulay [1986]make clear, at the

planning stage students of Prolog have particular difficulty in

transforming their solutions into programming plans. Unlike more

obviously procedural languages, although the procedural aspect of

Prolog programming is of great importance, its syntax does not offer any

clear pointers to what is happening 'behind the scenes'. There are for

example no structures such as 'while' loops or 'if ... then' statements

which give perceptual clues to what operations are being performed as a

result of the chosen syntax and which could help students to formulate

20

plans to achieve their programming goal. Strategies and techniques that

are commonly used by Prolog programmers do exist but are syntactically

and structurally more opaque [Ross 1987]. There are structures or

"routines" that are standardly used to achieve certain results, such as

construction and destruction of lists and current research work on

"techniques" in Prolog [Bma et al 1988] is seeking to identify and clarify

these. The syntactic difference between structures which produce very

different results can however, often be slight and not obvious to a

beginner. The predicate 'append' for instance, can be used to combine

two given lists, when called with two instantiated arguments and a

third uninstantiated argument, e.g. append (+,+, -). It can also be used

with two uninstantiated arguments and a third instantiated, e.g. append

(-, -, +) to produce all possible 'splits' of a given list. To a novice the

mode changes in these two uses of append, Le. the use of the predicate

with arguments instantiated or uninstantiated in a particular order, give

very little indication of the contrasting purposes for which they would

be employed.

Thirdly, it is possible to interpret the language in two ways, declaratively

and procedurally. This is a feature of Prolog and merits a brief

explanation. The declarative model of Prolog is one based on its

development as a logic programming language. This allows the user to

see a program as a collection of facts. These facts are stated in a subset of

predicate calculus and from them other facts can be inferred to be true,

or false, e.g. in the following program:

21

pifaleblec.

and given the goal'p', the declarative model would be

The goal 'p' is true if and only if

there is an instance of 'p' in the program.

This instance of 'p' in the program is true if and only if,

'a' is true, 'b' is true and 'c' is true.

A procedural model of the same program would be:

We can satisfy the goal 'p'

if we can find a matching instance of 'p' in the program.

Having found an instance,

we must try and satisfy the subgoals,

firstly 'a', then 'b', then 'c' in order to satisfy goal 'p'.

The former model is one of a logical statement, the latter of a list of

goals and subgoals to be satisfied.

The declarative model represents the programming problem in terms of

logical relationships which will allow the solution to fall out from the

logical inferences that can be made. First examples are often based on

family relationships of the following sort :

sister (A, B) if

female (A) le

parents (C, D, A) &

parents (C, D, B).

There are advantages to this, since 'everyday' knowledge can be

employed and it is possible for the novice to form a model of the

22

language relatively quickly (although work by Ormerod [1986] has cast

some doubt on whether the typical family programs used in presenting

the declarative model to beginners does in fact allow much transference

of problem-solving skills to other problem situations).

The procedural model of the language is based on seeing Prolog as a

goal-directed language. A program is seen as a process of goal

satisfaction, rather than a collection of logical rules and facts from which

inferences can be made. This model emphasises 'how' a solution is

found rather than what logically constitutes a solution.

If the logic-based declarative view of the language is stressed, which is

often the case when introducing beginners to Prolog, novices are often

encouraged to view Prolog as natural language statements couched in

predicate calculus terms. This serves to obscure the procedural aspect of

Prolog [Ormerod 1986], [Rajan 1986]. Students are tempted to translate a

natural language reasoning of the problem directly into Prolog code

[Taylor &t du Boulay, 1986]. Since Prolog has relatively few syntactic

rules, it is possible for students to do so, unaware of the importance of

such things as clause ordering and without having a clear idea of how

the procedural 'machine' will act on this code. Not unsurprisingly, this

leads to problems at a later stage when the resulting program produces

unexpected results.

Finally, another important factor contributing to problems which are

specific to Prolog novices, is the opaque nature of Prolog's procedural

execution. There are very few syntactic markers to give novices dues to

this procedural nature of the execution [Looi & Ross 1987]. The syntactic

structures, such as the 'if then' or 'begin end' of more instruction-

23

oriented and procedural languages, which serve as clues to the

machine's behaviour, are absent in Prolog. This lack of surface markers

can make it much harder for students to form a clear model of program

execution. The lack of a reliable model of execution for Prolog, which

has an exceptionally powerful backtracking mechanism and matching

process, is likely to hinder students' attempts to construct a program

from their algorithm and to cause significant difficulties for them at the

debugging stage.

From these research findings it is apparent that in addition to whatever

other help can be given, it is important that Prolog novices are given

help in forming reliable and useful models of Prolog's execution. This

will be discussed more fully in the next section in which we look at help

currently available to Prolog novices.

1.2. What help is available for Prolog novices?

Given that in studies of novice programmers there have been at least

five classes of errors identified, syntactic, semantic, logical, clerical and

stylistic [du Boulay & O'Shea 1981], it is apparent that there is ample

scope for offering help to novices. It is equally apparent that the help

must also address different aspects of the programming task. At one end

of the scale as it were, help is needed for the 'clerical' type of errors,

syntactical errors which are due to slips, oversights, lack of familiarity

with a keyboard, or tiredness, the sort of errors referred to by [Hasemer

1983] as 'silly errors'. Time spent chasing a missing separator for

instance, could usually be better spent. At the other end of the scale

students need help in understanding the concepts of the programming

language. In this context, 'concepts' of the language encompasses the

role of variables, permitted syntactic structures and the type of

24

operations and programming techniques that can be performed in the

language being learnt. Some of these concepts, recursion for example,

are common to most programming languages while others, such as the

role of variables, can be specific to the language. Closely related to this

level of help and particularly relevant for Prolog novices is the help

needed in developing a model of the machine interpreter, of program

execution. In a brief overview of help which is provided for novice

Prolog programmers and of research work related to extending and

improving that help, we consider how the needs of the novice are met.

1.2.1. Prolog courses

Courses for Prolog novices are usually textbook-based, augmented by a

combination of lectures and hands on experience. Usually there is also

individual help provided in tutorials, which through constraints of

time and expense are necessarily at set times and of a limited duration.

For the rest of the learning experience, Prolog novices rely on whatever

automated help is available. A more recent development has been the

Integrated Prolog Course, developed by Eisenstadt &: Brayshaw [1988] at

the Open University, designed for distance learning, which incorporates

textbook, audio and video-taped sessions. These teaching materials are

intended for integrated use with a Prolog environment package

[Eisenstadt &: Brayshaw 1987] which will be discussed later in this

chapter. Central to this course, is the goal of helping the student to

develop a useful and reliable model of Prolog execution, which is

reinforced in each type of teaching material being used. At this point it

is perhaps useful to expand a little on what is implied by a useful and

reliable model of execution.

25

The need for the programming student to form a representation of the

machine's behaviour on which they can draw when planning or

debugging a program has been supported by, among others, du Boulay,

O'Shea &: Monk [1981]. In their work they describe this modelling of

program execution as the development of a conceptual model of the

'virtual' machine. This is similar to the "conceptual" model described

by Young [1981],but in the case of learning to program it is not in fact the

behaviour of the machine itself which the user is normally attempting

to understand, but the behaviour of the machine at the level at which it

is interpreting the programming language being used. H Lisp is being

run, or Pascal, or Prolog, this behaviour will differ accordingly, hence

the term 'virtual' machine.

On the majority of Prolog courses, the model of program execution, that

is usually provided for students to help them understand the 'virtual'

machine, is one of, or a combination of, the following three: a Byrd box

model, an arrow diagram model or a tree model. We will look briefly at

these and the way in which each attempts to provide a model of the

actions of the Prolog interpreter during execution of a program.

The Byrd BoxModel

This is the model upon which the conventional Prolog trace package is

based. Developed by Byrd [1980], the program execution of Prolog is seen

as a series of boxes denoting the goals to be satisfied. Control flow is

represented by a path through entry and exit ports in these boxes. On a

goal being called at predicate level, the goal 'box' is entered from the left.

H the goal conditions are satisfied, the box is exited to the right - the goal

has succeeded. If the goal fails, it is retried, the box being re-entered

from the right. If this 'redo' fails, then the box is exited by a 'fail' port on

26

the left - the goal has failed. The simple program and query below,

followed by the equivalent Byrd box model, will illustrate this.

program: sister (ann, bill)

query: 1-sister (ann, bill)

To satisfy this goal, flow of control enters the 'call' port, succeeds and

leaves via the 'exit' port. If it had failed, because the fact had not been

found in the data-base, the redo port would have been used. If the redo

had failed, then flow of control would have left the goal box via the

'fail' port. These four ports, 'call', 'exit', 'redo' and 'fail' form the basis

of the control flow description.

call-I- goal

slster (ann, bill)

_ exit

fall _~
-~ redo

Fig.1ol. Byrd BoxModel of simple Prolog goal.

In the case of goals which have subgoals, these are represented as boxes

nested within boxes. If for instance the goal above had been a subgoal of

a higher level goal, such as in the following program:

aunt(X,z) if

sister(X,Y) &

parent(Y, Z).

where the parent goal calls on two subgoals, then given the goal query:

1- aunt (ann, jill)

using the Byrd box model this would be represented as shown below:

27

Fig.l.3. Model of embedded goals.

The Arrow Model

Representations of this model may vary to some degree, but the

modelling principle is basically the same, in that it consists of using

arrows to show the flow of control from goal to goal through the

program [Clocksin and Mellish 1981] , or 'swinging' arrows [Pain and

Bundy 1987] to indicate the state of the goal stack in relation to the

database. An illustration of its use is shown below in the program:

aunt(X,z) if

sister(X,Y) &it

parent<y, z).
in which the query:

1- aunt (ann, jill).

is matched with a rule, causing the goal stack to expand to include the

two subgoals, sister (ann,y) and parent (Y, jill), these two subgoals then

being matched against facts in the data-base.

28

sister (ann, bill) ..

parent (bill, jill).
?- parent (V, jill).

Database Goal stack

aunt (X,Z) if
sister (X, Y) &
parent rr, Z).

I
----I
""""""-1----

?- aunt (ann, jill).

?- sister (ann, V).

Fig.l.4. An Arrow Model of Prolog control

This model is a good one when used with simple goals, showing clearly

the relationship between the goal search and the database, though when

used for problems of any complexity it could become difficult to

illustrate clearly the global flow of control.

The AndlOr Tree Model

The parent goal is the 'root' of the tree, which branches out according to

the number of subgoals that must be satisfied in order to satisfy the

parent goal. These branches are traversed depth first, left to right.

Conjunctive goals, i.e. 'and' branches, are usually represented by

connecting arcs between them, indicating that the goals represented by

all the connected branches must be satisfied, while disjunctive goals, 'or'

branches are recognised by the lack of these connecting arcs, indicating

that it is sufficient for one of these branches to be followed successfully.

29

An 'or' tree representing
a disjunctive goal

An 'and' tree representing
a conjunctive goal

aunt(ann, jill) parent (V, jill).

mother (V, jill)parent (V, jill) father (V,jill)sister (ann, V)

Fig.l.S. A Tree Model

In the first tree, both 'branches' must be successfully instantiated in

order to satisfy the parent goal 'aunt (ann, jill)' whereas in the second,

the parent goal will succeed if either one or the other of the branches

result in success.

This representation is the one favoured by the Edinburgh Prolog group

as a model which offers the best opportunity to novices to develop a

simple but informative model of the Prolog interpreter. The work of

this group on Prolog 'stories' [Bundy 1984], [Bundy, Pain, Bma & Lynch

1985] [Pain & Bundy 1987] focuses on the need to offer students a model

of Prolog execution, i.e, the 'story' which students should be told to help

them understand the procedural semantics of Prolog. In their work they

stipulate that ideally it should be one which:

- covers all the important aspects of Prolog behaviour, so that it
can be safely used to predict the behaviour of Prolog programs

- is simple to understand and use, even by people with no
previous computing experience

- would illuminate the tricky aspects of Prolog behaviour such as
pattern directed invocation, backtracking

- would be used universally by Prolog teachers, primers, trace
messages, error messages etc.

30

While progress has been made towards this goal by such courses as the

Integrated Prolog Course mentioned above [Eisenstadt & Brayshaw

1988], the reality of Prolog courses does not always match this ideal.

Apart from any other considerations, 'live' help for novices in the form

of experienced Prolog teachers is an expensive resource, not freely

available in any sense of the word. The average novice faces hours of

'on-line' experience without necessarily receiving any 'live' help in that

time. Any available automated help is likely to play an important role

in the learning process. At present this is principally help given by the

programming environment to which students have access. In the

following section we look at this help. The term automated help

includes computerised tutoring help. This latter type of help will,

however, be discussed in a subsequent section. This decision to

differentiate between environmental help and computerised tutoring is

based on the judgement that the overall difference in their respective

aims and objectives merits such a distinction.

1.22. Prolog environments

The term environment is used here to include the editing tools offered

to the student, the version of Prolog being used and its incorporated

automatic debugging tools. The basic role of tools in automated help for

novices is to make it easier for students to design better programs and to

help them find errors when a program fails to produce correct or

expected results. A programming environment would normally

include editing tools and static or dynamic debugging tools. A 'static'

tool usually refers to a process of code-analysis which takes place at

compile time and a 'dynamic' tool to an analysis applied when the

program is being executed. The distinction is not clear cut, since some

debugging systems such as [Eisenstadt & Brayshaw 1987],store the results

31

of the 'dynamic' analysis and this is consequently used in a 'static'

analysis. The dynamic tools are usually incorporated in the trace

package being used with the Prolog implementation.

Research by Bma, Bundy, Pain & Lynch [1987],undertaken to construct a

coherent framework on which to base the design of programming tools,

came to the conclusion that their investigation of available debugging

strategies had been fruitful in terms of revealing the shortcomings of

existing Prolog environments. There are two factors which could

contribute to the validity of such a conclusion, which we will briefly

consider before going on to look at the tools supplied in Prolog

environments. One factor, though perhaps of secondary importance, is

the relative recency of the Prolog programming language. Developed by

Alain Colmerauer and his group at Marseilles in 1974, the first textbook

for beginners [Clocksin & Mellish 1981] is not yet ten years old. Prolog

has simply not gone through as long and as wide a developmental

process as many other longer established programming languages.

Accruing research in the area of novice Prolog programmers, of which

the above mentioned paper is part, is beginning to form the basis of

developments taking place, but this process takes time.

The other factor, probably of primary importance, lies in the structure of

the language itself, in its lack of syntactic markers, as was discussed

earlier. Syntactic 'markers' are useful in developing automatic

debugging tools, and the relative lack of them in Prolog is a

disadvantage in such developments. Work to develop tools which

would recognise 'plans', or 'techniques' [Brna et al 1988] is made

difficult, since due to the backtracking and unification features of the

Prolog interpreter, the same, or very similar syntactic structures are used

32

to achieve different results, as was pointed out earlier in the contrasting

uses of the 'append' predicate. Work by Payne, Sime & Green [1984]on

perceptual cueing has indicated that relatively minor changes made to a

program by a text editor, (in their experiment one such change was to

put operation codes into upper case), could significantly decrease error

frequency. It is not clear that in Prolog such developments would

necessarily be of the same value to novices, since there are relatively few

structural syntax cues which could be highlighted or emphasised in

some way to help students pick up errors when writing or checking

their code. These are factors which must be borne in mind in assessing

the quality and development of tools designed for use in programming

environments for Prolog.

Editing Tools

There are text editor features which can be of great help, such as

parentheses balancers plus good text manipulation facilities in general.

A powerful example of this is the Prolog mode of the emacs editor

. which offers features such as automatic indenting and easy loading of

marked sections of code. These and other facilities such as multi-

windowing to allow easier reference to the program text during

execution, should be considered essential in helping to build a suitable

environment for novice programmers. Unfortunately this level of

editing tools is, as yet, rarely an integral part of the Prolog environment

(MacProlog being a notable exception). Provision of such editing tools

usually depends to a large extent on the resources available locally. It

must be concluded that for many Prolog novices, editing tools leave

much to be desired.

33

Debugging tools

Static tools have been developed to do code-analyses which at compile

time check modes i.e. whether the expected parameters of a predicate are

instantiated or not [Mellish 1981]; check types, i.e. whether parameters

are of the expected or necessary data type, for example, list, numerical or

atom; check dataflow, syntax-errors and even look for possible

typographic errors [Looi 1986]. The average Prolog environment

however provides only a syntactic check to find errors such as missing

separators or unmatched parentheses, leaving other errors, such as

missing predicates or wrong arity to be detected at run time by the

dynamic tools incorporated in the trace package. An exception to this is

Quintus Prolog, which in conjunction with an emacs editor in Prolog
"mode can offer not only powerful editing, but also style-checking. With

this system for instance, a single occurrence of a variable would be

signalled, e.g. a variable occurring in a clause head and not re-appearing

in the clause body. As an optional facility at run-time, a failed goal due

to a predicate not found would result in an automatic drop into

debugging mode. Dynamic tools are usually included in a 'trace

package' based on a control flow trace of program execution and to

varying degrees are designed to be interactive. The extent of the

interaction ranges from the 'oracle' type interaction developed by

Shapiro [1982], in which the system diagnoses errors acting upon

information requested from the user, to systems which simply ask the

user if she wishes to continue the trace. The degree to which the trace

package can help novice programmers is equally varied, since some are

potentially far easier to interpret than others. An overview of

debugging tools for Prolog by Bma, Brayshaw, Bundy, Elsom-Cook, Fung

& Dodd [1988] illustrates this point amply. Below we discuss a selection

of trace packages.

34

Trace packages

The first case looked at, using the Byrd box model, was chosen because it

represents the automated help that almost every beginner is likely to

encounter. Others, even though only prototypes or not yet widely

available, have been selected because they represent stages and

improvements in the development of automated tracing tools which

are likely to be more helpful for novices. As Lieberman [1985] has

pointed out:

.Watching a program work step-by step, where each step is
reflected in visible changes to the display screen, greatly
facilitates understanding of the internal workings of a
program.

This can equally be applied to Prolog trace packages, but the operative

word must be 'visible', since the visibility, or transparency of some

execution traces is far superior to others.

Byrd box based trace packages

The trace packages most widely known and available for Prolog at

present, are built around the Byrd box model of execution illustrated

graphically in section [1.2.1].

Their trace outputs show the control flow of the program in terms of the

'ports', usually the four illustrated, the call, exit, redo and fail ports. A

fragment of a typical example of trace-output from this type of trace

package is shown below (taken from the trace of a sorting program

'qsort').

I 1- qsort([2,1,3],P).
(1) 0 Call: qsort([2,1,3],_SOl) 1
(.2) 1 Call: split([1,3],2,_619,_620) 1
(3) 2 Call (built_in) : 1<2 1
(3) 2 Exit (built in) : 1<2 1
(4) 2 Call : split([3],2,_681,_620) 1
(5) 3 Call (built_in) : 3<2 ?
(5) 3 Fail (built in) : 3<2 1
(6) 3 Call (buill.in) : 3>=2 ?
(6) 3 Exit (built in) : 3>=2 ?
(7) 3 Call : split([],2,_681,_753) ?
(7) 3 Exit : split([],2,[],[)) ?
(4) 2 Exit : split([3],2,[],[3» 1
(2) 1 Exit : split([1,3],2,[1],[3» ?
(B) 1 Call : qsort([1],_629) 1
(9) 2 Call : split([],1,_B79,_BBo) 1
(9) 2 Exit : split([],l,[],[» 1
(10) 2 Call : qsort([],_889)?
(10) 2 Exit : qsort([],[]) 1
(11) 2 Call : qsort([],_B9B) 1
(11) 2 Exit : qsort([],[]) 1
(12) 2 Call : append([],[l],_629) 1
(12) 2 Exit : append([],[l],[1]) ?
(B) 1 Exit : qsort([l],[1])?
(13) 1 Call : qsort([3],_63B) 1
(14) 2 Call : split([],3,_1092,_1093) 1
(14) 2 Exit : split([],3,[],[]) 1
(15) 2 Call : qsort([],_1102)?
(15) 2 Exit : qsort([],(]) 1
(16) 2 Call : qsort([],_l1l1)?
(16) 2 Exit : qsort([],[])?
(17) 2 Call : append([],[3],_63B) 1
(17) 2 Exit : append([],[3],[3]) ?
(13) 1 Exit : qsort([3],[3]) 1
(lB) 1 Call : append([1],[2,3],_501) ?
(19) 2 Call : append([],[2,3),_129B) ?
(19) 2 Exit: append([],[2,3],[2,3]) ?
(lB) 1 Exit : append([l],[2,3],[1,2,3]) 1
(1) 0 Exit: qsort([2,1,3],[l,2,3]) 1

35

Fig.l.6. Sample standard Byrd box trace

Each line of the trace displays (left to right):

i a number, uniquely associated with a particular goal call and used
each time a port in that goal call is used

ii the depth of that call within the execution of the program
iii the name of the port currently being used
iv the call and its parameters.

For novices there are several disadvantages to this trace model, these are

discussed in detail by Dewar & Cleary [1986]. The most obvious are the

amount of detail displayed and the strictly linear display of information.

36

While appreciating the amount of information that it contains and the

help that this can be in debugging a faulty program, for a novice it can be

simply confusing to see line after line of similar trace. Although the

information is there, it is presented in such a way that there are no

immediate visual cues which would enable the novice user to relate the

trace to the structure of the program. Embedded calls are uniquely

numbered, but to follow the path of those numbers from their original

calling to their satisfaction or failure, meanwhile bearing in mind their

significance in the overall structure of the program, requires a degree of

experience in debugging that novices could not be expected to have

acquired.

There are usually options of restricting output to certain of those ports,

of 'skipping' through the output or inspecting it a step at a time, this

varies from implementation to implementation. Taking advantage of

these options allows the user to 'spy' or trace only one or some

predicates, which reduces the overwhelming amount of trace

information output on screen. This does presuppose that the user has a

good idea of which clause or part of the program is either causing an

error or producing unexpected output. In addition, to interpret the

significance of the path of just one or two predicates taken out of the

context of a whole program trace requires the user to be in possession of

a good working model of the program's overall execution path, again, a

requirement that often cannot be met by novices. Although an

invaluable aid for programmers once they have enough experience to

make use of it, the Byrd box model based trace as it is most often

encountered is a tool that is not significantly helpful for novices.

37
Improved trace packages

While trace packages such as the model described above are widely

available and used, research and development has gone ahead on

producing trace packages which will either minimise or eliminate the

problems mentioned, making them more of more practical help for

beginners. As pointed out earlier, it may well be simply a matter of time

before other trace packages for Prolog, based more directly on what

research has shown novices and programmers need, will be developed

and become widely available. The direction of certain of these

developments are outlined below.

Staying with the Byrd box model of program execution, [Eisenstadt 1985]

has produced an improved Prolog Trace Package (PTP) [Eisenstadt 1984],

a means of tracing and debugging Prolog programs by 'retrospective

zooming'. This system stores an exhaustive trace of the program

execution and subsequently subjects this information to an analysis with

the goal of detecting 'suspicious clusters', Le, sections of the trace output

. which could be indicative of an error. This section only can then be

'zoomed' in on by the user. Several extra symbols are introduced into

the trace, including the provision of more informative categories of

'fail' and 'succeed'. This system, although in principle much more

sympathetic to the needs of the user, suffers from some of the faults of

the standard trace. The output is still linear and while increasing the

amount of information given, it involves, in the case of novice users,

the trade-off of interpreting the added trace symbols. A small section of

trace from the improved PTP is given below.

38

PTP: qsort([2,11,R).
1 : ? qsort([2,1],_44)
18 : - qsort([2,1],_ 44) (2)

PTP: retrotrace.
1 : ? qsort([2,1],_44)
2: > qsort([2,1],_44) (2)
3: ? split([1],2,_ 44,_45)
4: >split([1],2,[1L44L 45) (1)
5: @ 1<2
6: ++1<2

&
7: ? split(D,2,_44,_45)
8: - -split(D,2,_ 44,_45)

Fig.l.'. Sample trace of Prolog Trace Package

Other developments directly based on the Byrd box model, which seek

to improve and extend the quality and visual impact of its output

include work by Plummer [1987]on the CODA system (Clause Oriented

Debugging Aid) and work by Dichev & du Boulay [1988]on a data tracing

system for Prolog. Both are concerned with enriching the model of

Prolog which is presented by the trace output. Plummer's system is

designed to extend the control of the user over information shown

about the unification process, in that the user can interactively

determine the effect of instantiations in chosen clauses as they are made.

The main thrust of Dichev & du Boulay's work is twofold. One aim is

to present the trace output in a way which will show information in a

format that is more meaningful to novices, relating it to the matched

clauses and original variable names. The other is to make it useful to

beginners in terms of building a model of the unification process and of

understanding how through unification the data manipulation which

takes place in executing a Prolog program is achieved. One of the

conclusions which arose from their discussion of design principles and

the initial implementation of such a system was that a more

39

diagrammatic format may have a significant contribution to make to

this approach. This could alleviate one of the main problems associated

with developments based on the Byrd box trace, i.e. the volume of

textual information which is produced and the difficulties this presents

for novices trying to interpret that information.

Rajan [1986]has developed a prototype debugging tool, APr (Animated

Prolog Tracer), constructed according to design principles he has

formulated for animated tracing of program execution. It is based on the

arrow model described above in section [1.2.1]rather than the Byrd box

model. Aimed at novices, its goal is to give the learner a dynamic view

of program execution, showing the matching process and the

instantiation process as the program proceeds. Database information

and the current state of goal execution are displayed in two separate

windows. Database rules or facts in the upper window are highlighted

as they become matched with the current goal, which is displayed in the

lower window, where the resulting instantiation of variables is also

displayed in inverse highlighting. A status line reports on the current

state of execution. At present not developed beyond a prototype, it is a

very interesting example of a tracing tool which actively reinforces a

conceptual model of program execution. Results from a first study of

differences between novices using APT and a control group not using

APT have been encouraging [Rajan 1986]. They show that there is a

statistically significant improvement in the ability of novices to solve

queries to Prolog programs after seeing an animated demonstration of

program execution. This gives reason to believe that the novices using

APT also have an improved conceptual model of the action of the

Prolog interpreter.

40
Editor Windov

Prolog Windov

Editor Windov
likes (mary IU!!I1).
likes (mary I "'fO'Oa'}.
likes(john, food).
likes (john I mazy).

bothllkes(_X) :-
like s (mazy I _X) I

vri1!(_X) I

likes(johnl _X).

likes (mary .IiI!mI) .
likes{nwy~.
likes(johnl food).
likes(john, mazy).

bothlikes(_X) :-
likes(rnary, _X),
vrite(_X),
likes(john, _X).

Prolog Windov? step.
YES
? bothlik.es(_X).
bothlik.es{III' :-

lik.es(mary, _,
vrite(_),
likes(jOJiii,.).

? step.
YES
? both.lik.es(_X).
bothlikesfi"Q) :-

likes(mary ,1ImI) ,
vrite(1im!rI) ,
likes(jonn,-lImI) .

Fig.l.S. Snapshot of APT tracing tool

Continuing work towards a trace package which would be yet more

comprehensible to the user and more supportive of a conceptual model

of the language, led to the development by Eisenstadt and Brayshaw

[1987] of the 'Transparent Prolog Machine' (TPM), a trace package which

incorporates a graphical debugger. With increased availability of

graphics and workstations which support them, there will almost

certainly be a growing interest in graphical tracers, but as yet there has

otherwise been relatively little work undertaken for graphical debugging

tools for Prolog. Work on graphical debugging by Dewar & Cleary [1986]

in this direction has not yet reached the stage at which their system

'Dewlap' could be considered a production tool. The TPM system is

designed as a tool to be used by both novices and experienced Prolog

programmers. It is, however, a major contribution to an environment

41

in which the different levels of help given to a novice, whether in the

form of tutoring, of text material or programming tools, would be

supportive of the same model and explanations of the language and

program execution. This corresponds to the ideals outlined by Bundy,

Brna, Pain & Lynch [1985],discussed earlier in section[1.2.1].

Trace information is displayed in an 'and/or' tree representation,

considered by Bundy, Bma, Pain & Lynch [1985],as the most suitable way

of modelling program execution for novices. Called AORTA diagrams

(And/Or Tree, Augmented) by the authors, these trees are designed in

such a way that each node of the tree is replaced by a 'status box', which

gives the current goal status and shows the clause currently being tried.

The whole execution tree of the program is displayed, but the user has

the facility of being able to 'zoom' in on a particular part of the tree and

open up a node and investigate all the execution information available

at that point. This tracing tool was designed to be used as part of a text-

book and video-supported distance learning package, and its model of

program execution is clean, clear and consistent with all the teaching

material contained in the course. A full description of TPM is given in

[Eisenstadt & Brayshaw 1987]. It seems clear that this represents a

milestone in the development of tracing tools for Prolog. In addition to

the course participants for whom it was originally developed, its use is

currently planned in several major universities and evaluations should

start in the near future.

The three pictures below will give the flavour of a few of TPM's

features. The first shows the overall tree model of control flow for a

simple program determining the conditions for holding a party, Le.

either because one is happy and has a birthday, or to cheer up a sad

42

friend. Notice the 'cloud' which represents the frozen variable values

of goals satisfied prior to invocation of the cut, and the scissors symbol

indicating the removal of remaining clause branches from the goal

'happy'.

Fig.l.9. TPM trace of a program at the point of goal satisfaction

Black status boxes represent failed goals, white boxes show successful

ones, and grey boxes represent goals which were initially successful but

consequently failed.

In this second picture, below, we show a close-up view of the status box,

which records the failure or success of the goal, how many clause

branches it has and which clause branch is currently being tried. The

symbols are all designed to be interpreted as intuitively as possible.

~ - goal status

clause counter2

"_T-T-:.."'- clause branch
.. clause status box

Fig.I.IO. Detail of TPM status box

43

Optionally, the goal and its current instantiations can be displayed

alongside the box. The variables shown would be those defined by the

user.

The third picture has been chosen in order to give the reader an idea of

the graphical long distance overview of a larger program, though its

reproduction as a small diagram hardly does it justice. From this long

distance view, the user can zoom in to 'open-up' a particular section of

the search tree and display the information given by the status boxes.

1.2.3. Summary

Fig.1.11. Long distance view of TPM trace

This outline of debugging tools which in theory could help novices is by

no means exhaustive, details of other debugging tools developed for

Prolog can be found in [Brna, Bundy, Pain & Lynch, 1987] and [Brna,

Brayshaw, Bundy, Elsom-Cook, Fung & Dodd 1988]. Some of those tools

have stood the test of time but have been of limited direct use to

beginners. Sometimes this has been because a prerequisite of their

effective use is a level of programming knowledge beyond that of the

average beginner, as is needed for interactive debuggers of the 'oracle'

type [Shapiro 1982]. Sometimes it is because the computer facilities

44

available at the time limited their usefulness, such as the semi-graphical

trace package developed by Mellish [1984]. Others have been

refinements of the basic Byrd box trace, but have not overcome the basic

drawbacks, discussed above, which this trace holds for novices. The

outline given above is, however, almost a complete outline of the

automated help that is available for Prolog novices and not all of those

systems described are yet available to the majority of Prolog novices.

Even if they were, is this help enough? As we pointed out at the

be~nning of section [1.2.2], debugging tools are designed to help

programmers construct better programs with fewer errors and to help

them find any errors they may nevertheless have made. Novice

programmers need more than this. They need guidance in how to

interpret and use the information provided by the tools, and in

identifying what information is relevant and what is not. When a

novice makes an error, an explanation of why it is an error and some

insight into what misunderstanding led to the error are extremely

important elements of the learning process. Debugging tools are

essential, since they allow errors to be detected, but in terms of

automated help for beginners, their scope is necessarily limited, since

they are designed to reveal errors rather than explain or investigate

them. For experienced programmers this is usually enough, for novices

this is rarely so.

It is at the point of discovering an error that beginners would most

benefit from tutorial guidance or explanation. At present this help is

only available for Prolog novices from their text-books or tutors. The

limitations of this help means that novices can spend frustratingly long

periods of time at a terminal without necessarily finding the underlying

cause of an error, or how to correct it. It is a difficult task for a beginner

45

to relate the general principles of a programming language, set out in a

text-book, to the particular problem or error which she or he is faced

with on screen, whilst tutorial help, which is most needed at such a

point, is a relatively scarce commodity, often only available on the scale

of an hour or so a week. From a practical point of view too, since

learning to program entails using a computer, it is not sensible to have

students sitting at terminals in need of tutoring, and yet to leave

untapped such a source of teaching potential as the computer itself.

There is then a need for automated help, in addition to the debugging

tools currently available, which can provide some of the much needed

expertise of a tutor. The growing body of research on the role of

computers in learning and in education [Scanlon & O'Shea (ed) 1987],

[Jones, Scanlon & O'Shea (ed) 1987] indicates that the development of

computer tutoring is probably one of the most challenging areas of

current educational research in computing. The idea of a computer

tutor taking the place of a human teacher is one that has not proved to

be practical, as shown by the American experience [O'Shea and Self,

1983]. It is doubtful if this would even be desirable. Nevertheless it is of

great benefit when even a measure of an experienced human tutor's

expertise can be formalised and made available on line for learners.

When interest in Prolog as a logic-based programming language of the

future gained ground, it was hoped, if not expected, that its superficial

likeness to natural language would eliminate some of the problems

faced by novice programmers. It has only been in recent years that

consideration has been paid to the fact that while Prolog has simple

structures and syntax, its powerful procedural execution and its very

similarity to natural language poses problems for novices [Taylor 1987].

46

The need for tutoring in Prolog is every bit as essential as in other

languages, but only recently has attention turned to the task of

providing some of that tutoring on-line [Coombs & Stell, 1985], [Looi &

Ross 1987], while for other languages such as Pascal and Lisp, work on

computer tutoring systems has already produced some interesting and

impressive results. Compared to these longer established programming

languages, Prolog is a relatively recent development. This too may be a

contributory factor in the relative lack of development in tutoring

systems for Prolog. In the following section we will look at some of the

existing computer tutoring systems for these other programming

languages and at the implications of this for designing tutoring help for

Prolog novices.

1.3. Tutoring systems

In the development of tutoring systems some domains have proved to

be more amenable to formalisation than others, since they provide very

precisely formed knowledge boundaries and problems and solutions

have much more well defined limits. This holds true for the field of

electronics [Brown & Burton 1975], physics [Scanlon & Hawkridge 1984]

or mathematics [Young & O'Shea 1981], [O'Shea 1982]. In such domains,

even where the problems of student-tutor interactions and student-

modelling have not yet been fully addressed, benefits from factors such

as group discussion of simulation models have made their

development a worthwhile goal [Laurillard 1978].

Other domains have more imprecise boundaries, and solutions to their

problems are much more open-ended. In many respects learning to

program is such a domain. Rather like using natural language, there are

more ways than one of writing a program to achieve a particular result.

47

A given problem may have any number of "correct" solutions [Elsom-

Cook 1986]. On the other hand a programming language is a formal

language with constraints which may not be violated, at risk of the

machine producing an erroneous result or no result at all. This open-

endedness combined with a need for precision poses problems for

tutoring strategies and implementation problems, which existing

systems for tutoring programming languages have approached in

various ways.

Several comprehensive and accurate surveys of important

developments in the field of computer tutoring have now been written

[Sleeman& Brown (ed) 1982], [du Boulay & Sothcott 1987], [Wenger 1987]

and we will not attempt to replicate these here, but rather discuss a

selection of tutoring systems in order to give an outline of the work and

illustrate approaches which have been taken. It is worth bearing in

mind a point made by du Boulay & Sothcott [1986], that at present no

one tutoring system definitively addresses all the major issues in

computer tutoring, such as teaching strategies, student modelling or

subject representation, but rather each tackles some aspects of certain

issues with varying degrees of success. Neither do they all address the

same stages of learning, some being designed for complete beginners,

others for students who are able to write syntactically correct programs.

For convenience the tutoring systems discussed in the following

sections have been grouped according to language, although of course

many of the points discussed are applicable across languages.

1.3.1. Lisp tutors

The programming language Lisp has a range of examples of

development of on-line tutoring aids to choose from, among them,

48

Talus [Murray 1985], Struedi [Wender, Weber &t Waloszek 1988],

Greaterp [Anderson &t Reiser 1985], Impart [Elsom-Cook 1984] and Trill

[Cerri, Fabbrizzi &t Marsili 1983], [Cerri, Elsom-Cook &t Leoncini 1988].

The latter three systems have been chosen for discussion here, since all

three address the problem of tutoring complete novices, while each

takes a different approach to this task. Greaterp differs somewhat, in

that its structure presumes that the learner will have access to relevant

teaching-text written by the same authors.

Greaterp

The original system takes a beginner through the first stages of

programming, teaching the student how to write correct programs.

Programs are written step by step, helped with templates of Lisp

functions, which then have to be filled out correctly. A set of

production rules for a 'correct' solution of the programming problem

and a set of 'buggy' rules, based on past experience of common mistakes,

are used as a framework for teaching and monitoring the beginners

progress. Each section of code input by the student is immediately

evaluated. If student input matches a 'correct' production rule, then the

lesson goes ahead. If it does not and a match for the incorrect code is

found among the 'buggy' rules, then advice is given. This advice is

based on templates related to the suspected error. Following this the

student is given another opportunity to try and input correct code.

Menu-driven dialogue controls the interaction between student and

system. If the system cannot interpret the student input, then she is

reminded of the current goal and asked if she would like advice. This is

constrained to a choice of receiving more explanations, seeing examples

or starting again. At no point is the learner allowed to continue if her

program is incorrect.

49

The teaching strategy is completely "top-down", the student being given

a task and monitored closely to ensure that it conforms to the expert's

model. Several disadvantages of this method are apparent. One is that

it is difficult for the system to have an overall appreciation of the

student's problems, since the learner is corrected at the first occurrence

of an error or deviation from the system solution. Another is that it

makes no allowances for different learning styles. Work by Pask [1976]

and, by Coombs, Gibson & Alty [1982] has suggested that there are

important differences in learning styles. The significance in this context

lies in that while the operational approach of learning to program step

by step adopted by Greaterp may suit some students, it may be unhelpful

for others. As opposed to those who may appreciate the security of being

led step by step, there are those for whom this serial approach could be

unduly frustrating and who would benefit from more freedom to

attempt the programming task in its entirety. Such students may well

benefit from an opportunity to experiment and learn from their

mistakes.

The top down step by step approach also raises the question of the

comparative educational merit of preventing the novice building a

syntactically illegal program as against explaining what is wrong if she

does so [du Boulay & Matthew 1984]. The authors justify their teaching

strategy on the grounds that it is better to use correct and only correct

code right from the start, and that the immediate interrupt mode is in

keeping with the observation that "humans learn better with

immediate feedback" [Anderson, Farrell & Reiser 1984]. This strictly

monitored top-down approach also has significant benefits at

implementation level. The student is never allowed to offer more than

50

one faulty input at a time, which greatly reduces the search space for

errors.

Also a problem is the fact that emphasis throughout is laid upon the

student achieving a syntactically correct program. The system is

designed in such a way that there is no possibility of modelling the

student's learning over the complete programming task, since each line

of code must be correct before the student may take the next step. The

tutor cannot address the underlying semantics of the language or

problems associated with a misunderstanding of these. Another major

difficulty is that although 'buggy' code is recognised and matched by the

catalogue of 'faulty' production rules, the system itself has no

representation of its 'knowledge' about program code. Information

about the program being used is prestored. Code input by the learner

which is syntactically faulty and code which while syntactically correct

does not match the prestored solution are considered equally erroneous.

Nevertheless it is a system that is operational and the content of which

is based on many years of teaching novices to program in Lisp.

Pragmatically viewed, in spite of the limited teaching strategy and

relatively narrow concept of programming that is offered to the learner,

it must rate as an important source of help to novices.

More recent work on the system is designed to incorporate changes

which allow students to choose whether or not to continue in spite of

being notified by the system that their input is incorrect. The

implications of this for the student modelling process are not yet clear.

incorrect
code

incorrect
code

Incorrect
code

incorrect
code

51

Fig.l.12. Approximation of teaching strategy of Greaterp
...

Impart

In contrast to Anderson's fixed curriculum and top down approach to

tutoring Lisp, the curriculum in Impart is not predetermined and allows

for experiment, the emphasis being laid on developing general skills of

programming without memorising particular detail [Elsom-Cook 1984].

The author describes the system as ideally being "regarded as a teacher

watching an interaction between pupil and environment, only

interrupting if it seems necessary". The environment referred to is a

Lisp syntax directed editor and interpreter, previously implemented as a

menu and template interface to Lisp [Elsom-Cook1983].

This open-ended approach requires relatively sophisticated student

modelling. This is achieved in a three stage process, creating a 'bounded

user model', which should reflect the likely level of learning at a given

stage. The student model is arrived at by successive refinement of

estimates of the user's progress. Based on a lower bound of the

S2

minimum amount a student would have learned from a particular

interaction and the optimal learning which could have taken place,

adjustments are made by the system using machine learning techniques,

till an acceptably accurate model is reached.

I
learning model
(inductive)

-
Fig.1.13. Design of Impart tutoring system

The role of the 'teacher' is envisaged as one based on the 'principles of

computer coaching' discussed by Burton and Brown [1982]. The

educational theory underpinning interaction between the pupil and

'teacher' is that of guided discovery. Provided with a suitable

environment, a student would be left to explore it, but not be left

entirely unaided or without guidance. On the one hand the student

would be discouraged from pursuing unfruitful lines of learning and on

the other would be encouraged to progress to new topics if the student

model indicated that the pupil's current state of learning was a suitable

53

basis for doing so. This is somewhat akin to Goldstein's 'new

knowledge frontiers' principle for topic selection incorporated in his

design for a tutoring system [Goldstein 1982]. The diagram above

(fig.l.13) gives some idea of the architectural design of the system.

Trill

The Rather Intelligent Little Lisper [Cerri, Elsom-Cook & Leoncini 1988],

is a system designed specifically to perceive and correct misconceptions

which may underlie novice Lisp programmers mistakes. Based on a

semantic network of types of concepts and types of relations, the

progress of the student is tagged, following a semantic path of text given,

text satisfactorily answered and text-knowledge verification. In practice

this means that should the student make a mistake in answering the

given questions about a Lisp concept, the system follows its concept-

analysis path back through the internal subconcepts. At the juncture on

this concept-analysis path at which the student shows by correct

answering of questions that she has understood the material presented,

the system then begins to work its way back "up" the path to the original

concept being taught. If, for instance, given the following question:

"What is (CDR L) when L is the argument

(SWING (LOW SWEEn CHERRY) r
the student failed to perform the operation of removing an element

from the head of a list and returning the tail correctly, i.e.

«LOW-SWEEn CHERRY)

then the system would begin a series of checks to discover whether or

not the student understands the concepts involved i.e. the 'head of a

list', or a 'list'. A "rock bottom" situation where there are no more

relevant subconcepts to present, triggers explanatory text about the last

54

topic, after which the system attempts to lead the student back "up"

through the subconcepts again.

The teaching strategy of Trill is strictly socratic, with similarities to the

Scholar tutoring system [Carbonell 1970], the student model being

basically an overlay of the "expert" semantic net of Lisp concepts. It has

relatively limited aims and has not yet been extended to include more

than a limited subset of Lisp. It is interesting however in that it

attempts to tackle possible misunderstandings of basic concepts, a

problem that must be addressed in any computer tutoring system. Such

misunderstandings can be the cause of errors at a higher level and the

earlier they are diagnosed the better.

~ ~ Is-expression I
subset

/~-method

remove the first I atom I [!£Js-exoresslon

enabled-by I is
~ Instance for8identify the first s nng

s-expression

formed y ~nnlng-withenabled-by
identify and I number I-G-Iletter Iquantify ~object

Fi .1.14. Section of Trill's semantic networkg

As can be seen from the above diagram (fig.1.14), the system has links

from the top-level operation, in this case finding the cdr of a list, to the

concepts involved in carrying out that operation. Here this entails

knowing what the head of a list (first s-expression) is and ultimately

knowing what a list is.

55
1.3.2. Pascal Tutors

Two systems designed to tutor Pascal are described briefly below. One

system, 'Proust' [Johnson & Soloway 1985] is designed to help students

who have sufficient programming experience to produce a syntactically

correct program on their own, while the other system, 'Bridge' [Bonar &

Cunningham 1986] does not presuppose any programming experience

whatsoever.

Proust

Although Proust (Program Understanding for Students) as it stands does

not call itself a programming tutor, it is currently being designed as such

[Johnson 1986] and must be considered in the same class, since its

purpose is to identify semantic errors in novices' programs and to give

them advice and instruction where it judges these errors are

symptomatic of underlying misconceptions.

Novice programmers complete their programs and if the programs are

compiled without errors being signalled, they are then passed to the

Proust system and undergo 'intention-based analysis' before being

executed. The system uses a library of stored descriptions of the

programming problems to be solved by the students, a library of

programming plans or 'cliches' which are considered necessary to solve

these problems and a library of 'buggy' plans, based on errors gathered

from the work of novice programmers.

The system 'knows' the intentions of the programmer, because it is

following a formal problem description of the programmers problem,

reduced to the goals and subgoals which are necessary to achieve the

solution.

56

Analysis is based on program synthesis; the system working through the

goals of the problem description, matching them to plans likely to be

used to achieve these goals, then trying to match these plans against the

code used by the student. If no correct plan approximates code in the

student program, then a match is sought in the library of 'buggy' plans.

If an approximate match is found then the suspected error is stored and

when the analysis is completed, the student is given the results and

appropriate advice.

Although in some twenty percent of cases the system cannot diagnose

with certainty the error and probable cause, its perfonnance seems to

indicate that it is effective within the range of programs that it can

handle. An eighty percent success rate (Johnson & Soloway 1985] in

giving novices on-line help and advice about the probable source of

their errors, possibly at the level of underlying misconceptions of the

programming language, seems impressive.

It must be borne in mind though that at present only a limited number

of programs can be used, within a subset of Pascal and its analysis by

synthesis method involves an extremely high overhead of stored

information.

57
READ PLAN

(ReadVal)
?New- Val

Student's program I ~~::nel-process-R.ad-While
Wrlteln('Entervalue:'); ~
Read(Val); ((SUBGOAL(lnput?Input))
WHILEVal<>99999 DO (WHILE« > ?Input99999)
BEGINWHILEVal <-.-0-0-0------------ (BEGIN

BEGIN r
Wrlteln('Invalidentry, reenter'); (SUBGOAL(Input?Input)))))
Read(Val);
END;

Sum :- Sum+ Val;
Count :- Count+ 1;
Writeln('Entervalue:');
Read(Val);

END;

?New-Val

READPLAN

(ReadVal)

Fig.l.lS. Matching process in Proust
substituting in known values e.g. 99999 is filled in as the value of

Sentinel

Bridge

In contrast to Proust, the Bridge system [Bonar & Cunningham 1986],

currently being developed as a commercial software product, is designed

to help novices from the very beginning of their programming

experience. One of the main aims of the authors of this system is to

address the problems novices experience in the program planning stage.

The system helps the pupil to write a complete program solving a

predetermined problem. This is done by helping the student progress

through successive stages of approximation from a natural language

solution of the program problem to the complete coded program.

The system is multi-windowed, menu based, and breaks down the

programming process into three stages. Initially the student is given the

problem to be solved, displayed in a window on the left of the screen. A

window in the middle of the screen lists the sort of natural language

58

phrases that the student might use in producing an algorithm. The

pupil constructs an algorithm from these in a third window on the right

of the screen. In the next phase this algorithm is translated into

programming 'plans', again by matching its components to a given

choice of programming plans, and in the final stage these plans are

matched to programming constructs and used to build the final

program. Templates are provided for the programming constructs,

appropriate advice is displayed in an upper window and at any point

'hints' can be chosen from the menu display. The hint facility bases its

response on the results of an analysis of the student's work to date. This

analysis is carried out by comparing prestored plan requirements i.e.

what phrases should appear in the program and in what order, against

the student's solution, not unlike the basis of Proust's analysis by

synthesis method.

The system is an attractive one. The use of multi-windows allows the

student to see the development of the programming process and make

connections between the natural language solution, an algorithm,

programming plans and programming constructs. This process of

working from level to level in the construction of a program is very

important [Taylor 1987] and the menu selection principle provides a

loosely structured framework within which the beginner is unlikely to

go too far astray. It is not clear how far this visual representation of the

planning process can be taken before the amount of information

displayed on the screen becomes overwhelming. Monitoring the

progress of the pupil relies heavily on prestored information, and at

present makes it very problem specific. The flexibility of choosing from

a selection of language constructs at each stage, be it natural language or

programming plans, is apparent rather than real, since these must be

59

constrained to a selection that the system has prestored information

about and can operate upon. Given these points, the system provides

what its authors intended to offer to the novice, a system of learning to

program which 'bridges' the gap between the novice 'line by line'

approach to programming and the expert's higher level view of

programming as a series of plans to accomplish the necessary goals

[Jeffries 1982]. It is also a compromise between the inflexible step by step

approach of Greaterp and that of allowing students the freedom of

completing a program without on-line tutoring help, with the attendant

risk of the results being then too 'bug-ridden' for successful analysis.

1.3.3. Help inFortran

The system 'Laura' [Adam & Laurent 1980] is, like Proust, called by its

authors 'a debugger to teach programming' rather than a tutor, but

similarly to Proust, it is designed to tutor novices. It takes as input a

syntactically correct program and analyses it in order to detect semantic

errors. Unlike Proust, it is not based on 'best' matching between a set of

stored goals,programming plans, buggy plans and the student's

program. The system has a prestored 'program model' which represents

the 'correct' programming solution and this is compared with the

student program. If the two do not match, both the student program

and the model program undergo a series of transformations in order to

reduce them to representations of their functionality. If the resulting

transformations can be shown to be similar, the program is judged

correct, if not, then the areas of dissimilarity are suspected to be

symptomatic of an error or errors in the student's program. Like

Proust, it allows the student to complete a program before getting on-

60

line help, but the student is constrained to producing a program which

functions in the same way as the 'expert' model.

1.4. Tutoring for Prolog

Having looked at the tutoring systems developed for other languages, it

is interesting to consider which features of these tutoring systems would

be of use or relevant to tutoring Prolog novices, what lessons could be

learnt from their experience and what directions work on a tutoring

system for Prolog should take. The first point that is obvious from the

above section, is that there can be no one 'tutor' for Prolog. Each of the

systems described above was created and designed to fulfil a need for a

certain sort of tutoring at a certain stage of learning. To a certain extent

. the significant differences between these systems reflect different

perceptions of novices' needs. These needs vary from help with the

most basic concepts of the language and seemingly trivial details to quite

sophisticated 'bug' detection to explain why their first programs don't

work as expected. At times they need guided, even structured learning,

at others they must have opportunities to make mistakes, but must also

receive assistance so that they can learn from their mistakes. A Prolog

tutor must be thought of as an integrated system comprising a variety of

modules designed to meet these different needs. This being so, then it

must also be an Intelligent system since it must have some sensitivity

to the current needs of the user. This suggests inclusion of a component

equivalent to the design of the 'teacher 'element in the Lisp tutor

Impart, incorporating a dynamic model of student behaviour

established by modelling processes similar perhaps to those described by

Elsom-Cook [1984], which in combination with direct pupil-interaction

could determine the module currently best suited to the student.

61

1.4.1. Tutoring modules - PITS

Consideration of which kind of modules would be incorporated must be

dictated by the different levels of learning at which novice programmers

need help and by what sort of help they need at those levels. A

proposed module designed for inclusion in the construction of an

intelligent tutoring system for Prolog, PITS [Looi &Ross 1987], [Looi 1988]

has been developed and tested at Edinburgh. It is intended for students

who have learnt the basics of Prolog syntax and semantics and have a

reasonable grasp of Prolog's control flow [Looi and Ross 1986]. It is

envisaged that a novice could use a module such as this within the
..

framework of an intelligent tutoring system, to explore and experiment

with constructing programs, getting almost immediate feedback about

code that she has input. The automatic-debugger 'Apropos' currently

deals with a small class of programs involving recursive list processing.

Using a combination of analyses to check the student's program, it

attempts to recognise standard techniques used in recursion, tutoring

the student on any data-flow anomalies, type errors, missing base cases

or certain classes of typing errors. Reporting on results using actual

students' solutions, the authors found that for most students the

message returned when an error was discovered enabled the users to

correct their work successfully. This represents a useful contribution to

the current research into Prolog 'techniques' [Brna et al 1988].

1.5. The Prolog Interpreter

There is however, also a need to provide on-line tutoring help for

novices at other levels. It is apparent from overviewing the problems

which novices experience, that for those beginning Prolog it is extremely

important that they develop reliable models of the 'virtual' machine

62

discussed in section [1.2.1]. Ideally, in a declarative language, errors

should be able to be explained in terms of a missing case or an incorrect

representation. While this logic-based declarative view of the language

is often a beginner's introduction to Prolog, the interpreter is

relentlessly procedural in its depth-first goal directed search. As we saw

in section [1.1.5], a significant number of novices' problems can stem

from a misunderstanding of this procedural behaviour of the language.

Students who are not aware of the importance of clause order in Prolog

execution, or are not aware that on failure the interpreter will

systematically backtrack, trying to resatisfy previously satisfied goals, will

find that their programs produce unexpected, often 'buggy' results.

Coombs and Stell [1985] stress this distinction between what they term

'specification' errors, i.e.errors in the specification of the solution to the

programming problem, and 'procedural' errors, i.e. errors due to

misunderstanding of the procedural aspect of Prolog. Detection and

analysis of these procedural errors would allow an understanding of the

student's model of the interpreter, thus providing the basis for offering

useful tutorial help.

1.6. Summary

In this chapter we have overviewed the problems which are

experienced by novice programmers. A conclusion to emerge from this

overview was that not only do novice Prolog programmers experience

problems which are common to most students in the initial stages of

learning to program, but that they also encounter difficulties which are

language specific. In particular they face problems posed by the hidden

procedural nature of the Prolog interpreter. We have also considered

what help is currently available to novice Prolog programmers to ease

63

this learning process and to encourage their awareness of this powerful

procedural aspect of the language.

Current research indicates that in the not too distant future there are

likely to be significant improvements in Prolog environments,

particularly with the advent of graphical debugging. This will not

however necessarily address their problems in understanding the

underlying mechanisms of the Prolog interpreter.

The inclusion of a trace package such as the Transparent Prolog Machine

[Eisenstadt & Brayshaw 1988]within an on-line Prolog tutoring system,

would almost certainly help students to develop a valid model of the

Prolog interpreter right from the start, thus helping to eliminate

'procedural' errors due to a misunderstanding of the Prolog interpreter.

However, there would, on the one hand, always be students who would

need extra help in interpreting this model and on the other, students

who would develop models of their own, which mayor may not be

valid. As Jones [1981]quite rightly points out, we may provide models,

but novices do not necessarily adopt these models. Rather, they may

form their own models based on their personal conceptions,

misconceptions, interpretations, misinterpretations of the language and

its execution.

This underlines the need, not currently met, for on-line tutoring to help

novices with problems they may have in this area. In developing a

tutoring module which would provide such help, a major component

must be a diagnostic component designed to identify the procedural

64

errors associated with students misunderstandings and misconceptions

of Prolog's interpreter.

In the following chapter, after discussing the kind of misconceptions

that are thought to underlie these procedural errors, we report on an

empirical study which was undertaken to investigate in more detail the

Prolog execution models which novices form.

65

Chapter Two

2. Novices' misconceptions of the Prolog interpreter

In the preceding chapter we considered the problems of novice Prolog

programmers and in particular the need to understand the largely

hidden procedural aspect of that language. It is essential that students

form reliable models of Prolog execution in order to write, comprehend

and debug programs. We stressed the need to help students form

correct models of the Prolog interpreter and put forward the case for

developing a tutoring module to give on-line help in cases where

students may have formed incorrect or incomplete models. The

student modelling element is an essential feature of such a module,

since, should it be desirable to amend or enrich the models which

students form, it is first necessary to appreciate those students'

perceptions of the interpreter.

In this chapter we investigate those perceptions, initially by looking at

novices' errors which may indicate a misunderstanding or

misconception of Prolog execution and by discussing the possible

underlying causes of those errors. In doing so we draw on the work of

[Fung, du Boulay & Elsom-Cook 1987] which considered the possible

sources of control flow errors made by novice Prolog programmers and

consider the contribution their findings make to the analysis of errors

in tutoring Prolog. We then go on to report on an empirical study,

undertaken to investigate specific control flow errors in more detail.

The purpose of this study was to provide more information on models

of the interpreter which novices do form as opposed to the models

which we would like them to form. We conclude the chapter by

outlining the significance of the study results in relation to addressing

66

the problem of automatically diagnosing faulty models of the Prolog

interpreter.

2.1. A proposed taxonomy

The work of [Fung, du Boulay, &t Elsom-Cook 1987] has as its aim the

construction of a framework for empirical studies of novices learning

Prolog. In that work we attempt to establish an initial taxonomy of

'control flow misunderstanding' errors which could be used as a basis

for classifying novices' misconceptions of the Prolog interpreter and

could also serve as a guide in designing diagnostic tutoring aids. As is

indicated in that initial study it is clear that the area deserves closer

investigation and could usefully be extended in further research. A

series of empirical studies designed within the framework outlined in

that study should serve to confirm and/or clarify the areas of Prolog

control flow which give rise to difficulties for novices. Results may

show our initial classification of students' difficulties into the different

hierarchies of misconceptions discussed below, i.e. misunderstandings

of the search, unification and cut processes, to be a valid one. On the

other hand results from such empirical studies could indicate that this

hierarchical structure, which we have seen as underlying Prolog

students' misconceptions, needs to be revised. The distinction we have

made in our initial study, between search errors and unification errors,

for example, may be less clear cut than we have implied. This would

indicate that the framework outlined in our initial study needs to be

revised and would lead us to adjust our taxonomy accordingly. In this

section we briefly overview the ideas of that initial study and indicate

the implications of it for the research reported in this thesis.

67

The discussion of possible control flow errors draws on two sources,

previous empirical work in this field and observations made by the

those involved in the teaching of Prolog to novices. As Prolog is a

relatively new language, a sizable body of established empirical work

with novices is not yet available, but this work can be seen as building

on and extending that of [Coombs&:Ste111985],[Bma&:Pain 1985],[van

Someren 1985] and [Taylor 1987]. In it we see control flow errors as

falling into three main categories, those which seem to be related to

misunderstanding of the search and backtracking process in Prolog,

those which seem to have their source in an incomplete or faulty

knowledge of Prolog's method of unification and a class of errors which

seem to arise from confusion over the effect of the cut operator. In

sections 2.2.1 through to 2.2.3 we give a small selection of the errors

which are discussed in that work and the misconceptions which are

considered as the underlying causes of these errors. These are drawn

from each of the categories listed above, though as will subsequently

discussed, in the research work reported here the system being

developed deals only with the those in the first category, Le.

misconceptions arising from a misunderstanding of the search and

backtracking processes in Prolog. We show below the two types of

diagram used in the proposed taxonomy to illustrate correct and

incorrect models of Prolog execution and notes on their interpretation.

The aim of the first type is to make the execution behaviour of the

program in relation to the database explicit, by using arrows to show the

correspondence between subgoals and their satisfying relations in the

database. The diagram below for example would be interpreted as

indicating that given the program:
p if a&:b.
a.
b,

68

and the goal of proving lp' the Prolog interpreter would try to prove the

subgoal by matching it with the subgoal 'a' and then go on to prove the

subgoal 'b', When both subgoals have been matched successfully the

program has succeeded since 'p' is proved true .

b. ...
Fig.2.1. arrow diagram (taken from Fung et al [1987])

The second type of diagram shows the execution space of a given goal by

the interpreter: either the actual interpreter, or the actions of the

interpreter hypothesised in the novice's misconception. Disjunctions

are shown as separate branches and conjunctive branches are linked by

lines.

e

Given the program:
P if a~b.
aifd~e.
b.
a.
and the goal P, this diagram illustrates the program after the call
of p to the subgoal a and then to its subgoal d. The heavier dark

p _ ... ~____ b line indicates the flow of control up to that point and should be
"'- _' seen as flowing from left to right. The two a clauses have been

subscripted for clarity.

d

Fig.2.2. Control flow snapshot (taken from Fung et al [1987])

2.1.1. Errors related to Prolog search and backtracking

In the search pattern of the Prolog interpreter, goal queries are proved

to be true or otherwise by a process of unification and resolution e.g.

Robinson [1965]. The order of resolution implemented by the Prolog

interpreter is strictly linear and depth-first. This determines the way in

69

which the interpreter searches systematically left to right across and top

to bottom down through the database in an attempt to satisfy the

current goal. A goal failure instigates strictly chronological

backtracking, the interpreter returning to the most recently proved goal

to seek an alternative proof. If this is done successfully, the search

continues again in a forward direction, if not, then backtracking

continues to earlier goals. In the case of no earlier goals being able to be

resatisfied, the program fails. The following errors are a few of those

seen by Fung et al [1987] to be related to misconceptions concerning this

search process.

Facts before rules

As example of this error, in the following program, when attempting to

satisfy the goal p, students expect Prolog to choose the fact a2 in

preference to the rule at if d & e & f.

~' ~

pifa&b. ,
at if d&e &f.

2 2at' P b P bb.

Correct interpretation after Faulty interpretation
first call to subgoal ' a' after first call to subgoal' a'

Fig.2.3. fads before rules

The misconception that the interpreter scans facts before rules, which

gives rise to this error, may come about because facts are typically used

as stopping conditions for recursive calls and consequently are often

deliberately placed earlier in the database. The vocabulary used in

teaching Prolog does also in many courses tend to stress the difference

between 'facts' and 'rules', perhaps leading students to believe that

70

Prolog itself chooses to scan facts before rules, rather than being

dependent on the choice made by the programmer. A variant on this,

again possibly due to attaching undue importance to the format of

programs and the vocabulary used in teaching novices, or from faulty

generalisation from examples [Bma personal communication], is that,

similarly, the Prolog interpreter distinguishes between rules and facts,

but in this case the belief is that it scans rules before facts. In the

program below this would lead to a situation where the student tries to

match the subgoal a with the rule a2 before trying to match it with the

fact al. Again the goal is p.

al·b.
a 21f d a. a f.
p "aab.

ay d -v {.aA"2(,. p ~2 ,
P

b b

Correct interpretation FluRy Int erpretatlon
attertlr3t call to sUbgoall attertirst call to SUbgOall

Fig.2.4. rules before facts

Try once and pass

Here the student fails the parent goal immediately after the first failure

of any subgoal that is encountered. This reflects an incomplete model

of the interpreter in which the student is unaware of the exhaustive

backtracking which takes place when a subgoal fails. It has also

previously been noted by Coombs &t Stell [1985]. In the following

program for instance, given goal p, the correct interpretation would be:

71

p Ifa&b&c.
b1 .
b 2.
a.

P If a & b &c. P If a & b&c.b'j J fli :.;jj f.1b .
2

a.

elt er 'c' fIb the Int erpret er resells" es
subgoel 'b' 'Withclause 'b 2

Fig.2.5 correct interpretation

However, a novice with a 'try once and pass' model of the interpreter,

although correctly predicting the failure of p, predicts it at too early a

stage in the program's behaviour, as shown below:

P Ifa&b&c.

b1j~ fell
b2.
a.

The student Inc orreetly tails
the progrwn 'Without
ba.ektrackln g

Fig.2.6 incorrect interpretation

Redo from left

Again, previously noted by Coombs & Stell [1985], this is a

misconception about the behaviour of the Prolog interpreter in the

backtracking process, an example of which is given below. Given a

query p to the program:

pifa&h&c.
bj,

b2.
a.

72

the f1rst cln to subCjoll 'c' does not try to resetisfy 'b'
p if a & b & c. p if a & b & c.
b i ~ reu b1 . fe11

b2. b2·

a.~ a.

lnstead of becktreck1n~ through 'b' the 1nterpreter
is thought to attempt 0 reset1sfy the leftmost goel,
whtch in thfs case it retts to do.

Fig.2.7 redo from left

the student imagines that on the failure of the subgoal c, the flow of

control returns immediately to try and resatisfy the leftmost subgoal,

rather than backtracking chronologically to reprove subgoal b. The

outcome of the query is correct, but it is based upon a faulty model of

the interpreter.

2.1.2. Incomplete or faulty knowledge of unification.

The term unify is used here, although strictly speaking it is not identical

to the unification used in resolution [Clocksin and Mellish 1984]. There

are only three essential principles:
- two terms unify if they are identical.
- if the terms contain variables, they unify, if when the variables

become instantiated, they then become identical.
- a variable can be unified with any structure.

Nevertheless unification manages to give rise to errors, of which the

following two are examples.

One value can only unify with one variable

This misunderstanding entails the belief that only one variable may

unify with a particular value [van Someren, 1988]. This misconception

arises perhaps from a failure to appreciate that a variable is simply a

73

value holder. It is possible to store a particular value under several

different 'addresses', much as the same [oe-Bloggs may turn out to be

the value of 'Owner-of-Rose-Cottage', the value of 'Owner-of-

Knightsbridge-Pad' and also the value of 'Owner-of-Pido', In predicting

the backtracking or failure of unification, this buggy belief that two

variables may not instantiate to the same value would cause the

following query to fail

(?- g ([A.S)) - g ([2. 2)).)

Fig.2.S. Can two variables have the same value?

whereas the correct prediction is that the variables 'A' and 'B' will

succeed on assuming identical values, since both unify with the integer

two.

false interpretation

?- g ([A,B]) - g ([2, 2]).
no

correct interpretation
?- 9 ([A,B]) = 9 ([2, 2)).

Fig.2.9. the correct answer

One variable can unify with many values

In Prolog a particular variable may be correctly assigned only one value

within the predicate in which it occurs. A call to retrieve the value

stored under a particular variable name will always produce only that

one value. The position of the variable and its repeated use in a clause

does not alter this. A student misunderstanding this may believe that

the same variable can simultaneously hold two different values, or that

the same variable name repeated within a predicate may represent

different values. This results in the belief that a call to that variable

may sometimes return one of these values, while at other times the

74

second value may be returned. A query, in order to test the success or

failure of unifying the following terms,

1- f (pat, igie) = f (Z, Z).

would be incorrectly predicted as resulting in success with the

ins tan tia tions

Z = igie

Z=pat

2.1.3. Confusion over the effed of the cut operator

The cut is an inbuilt operator which can be used to limit the Prolog

backtracking process. When invoked, it always succeeds. In doing so it

effectively 'freezes' the values of any variables which have been bound

in the subgoals of the predicate in which it is invoked, the parent goal,

and any further untried clauses of that parent goal are removed from

the search space. The diagram below shows a program in which the cut

is used.

I

P If a & I & b.
P If c.
a.
c.

This program for example,
given goal' p' when the p
first' p' clause is tried,
succeeds on ' a', the cut is
invoked and then' b' fails, so
'p' fails completely. The
second' p' clause may not
be called.

a

b

Fig.2.10. correct interpretation of the scope of the cut operator

The two following examples however, illustrate the sort of confusion

which arises for students who have trouble forming a correct model of

75

the cut operator, the first under-estimating , the second over-estimating

its scope.

The cut freezes the clause but not the parent goal

Given the following program and the query p,
PI if a&d &b.
P2 if a.
a.
in a correct interpreta tion,

a~, Correct 1nterpretet1on
P1 -, ! 'p' retts on cteuse 1

b feil

Figel.ll. eorred seoping of the cut operator

In a faulty interpretation, rather than regarding the cut as freezing the

current predicate and its clauses, the student may assume that the cut

has the effect of freezing only the particular clause in which it occurs,

so assumes that after PI fails, the second clause of the parent goal p

may then be tried:

false interpretation, p 2is not frozen, so 'p' succeeds

Fig.2.12. under-estimation of the scope of the cut operator

The cut freezes the grandparent goal

In this faulty model of the interpreter, instead of the cut immediately

freezing the parent goal of the clause in which it occurs, the student

76

perceives it as freezing the clause which invoked this parent goal, the

'grandparent', e.g. in the following program and given the query d,

d1 if
d2 if
p(X) if
a(l).
a(2).
b(2).

p(l).
p(2).
a(X) &t ! &t b(X).

where a correct interpretation would be as shown on below (fig.2.13).

Correct Interpretation
'd' ~UCCQ.dc

Fig.2.13. correct scoping of the cut operator

in a faulty interpretation the student has seen the scope of the cut as

extending beyond its own parent goal p to the parent goal of p, i.e. d.

a(1)
I

tHO ren,
p (2)

The scope of the cut is thought to extend
beyond the parent goal to •d', thus the
second cIause of 'd', i.e. d 2 is never tried
and the program fails on the failure ofb (i),

Fig.2.14. over-estimation of the scope of the cut operator

2.1.4. Implications

The approach taken in Fung et al [1987] is of twofold significance. In

this discussion of novices' control flow errors, an attempt is made to

clarify the possible sources of novices' misconceptions and

77

misunderstandings of program execution which lead to those errors.

The errors reported in that work, of which a selection were shown

above, are drawn from the small amount of established empirical work

available and from observations of novices' work, although that work

did not form part of a controlled study. The investigation of possible

misconceptions and misunderstandings of Prolog control flow showed

that these errors could stem from several sources, ranging from the

manner in which Prolog is taught to the attitudes and experience which

the learners bring to the task of programming. In attempting to relate

the error to the underlying source of that error, this work is a step

towards the goal of a more meaningful analysis of errors in Prolog

tutoring. It is also Significant in that it highlights the range of

difficulties which students have in appreciating the underlying

mechanisms of the Prolog interpreter and the need for planned

empirical research to be undertaken in order to increase our knowledge

of these problems. The implications of that work for the research

reported in this thesis are that if we are to tutor Prolog novices

effectively, we must undertake the necessary empirical work to

examine more closely the areas which cause difficulties and produce

errors. Having done so, the emphasis must lie on treating the

underlying misunderstandings which cause these errors. The

following section of this chapter reports on such a study, which focused

on one particular area of Prolog control flow. It was designed to elicit

novice Prolog programmers' predictions of the backtracking process, the

intention being to conduct the experiment in a way which would reflect

as nearly as possible the subjects' models of control flow. The results

were expected to be of interest in terms of gaining insight, firstly, into

the level of difficulty which novices experience in understanding this

aspect of control flow and secondly, into the underlying misconceptions

78

which lead to incorrect predictions. The results would also establish an

empirical base which would be of use in the wider goal of developing a

diagnostic module formodeUing and identifying students'

misconceptions of the interpreter.

2.2. An empirical study

The students who took part in the experiment did so on a voluntary

basis and out of fifty possible subjects, thirty-six completed the

questionnaire. The analysis of the results of this experiment is based on

data from thirty-two of these students (four students had received help

while completing the questionnaire, so this data was omitted from the

results). The students were approximately the equivalent of third year

psychology students (an exact equivalence is not possible, since these

students were distance learners taking an Open University degree

course). As part of their course, the students were attending a summer

school week at Sussex University, during which time they completed a

psychology project which involved programming in Prolog. The

project took about two days, during which they were able at any time to

ask advice and help from the course tutor. Their task consisted of

designing an algorithm which attempted to model a cognitive process.

The students were then required to write, run and debug a short Prolog

program which implemented this algorithm.

Prior to the summer school week all these students had studied a short

preparatory book-based introduction to Prolog [Eisenstadt 1987]. This

introductory booklet covers the basic concepts of Prolog, i.e. facts and

queries, the query interpreter, conjunctive queries, rules, database

search. All students were expected to have completed the book-based

79

course and accompanying exercises, but some had not had any hands-

on experience of Prolog programming before their summer school

work. Others had some experience of programming but in a language

or languages other than Prolog, while a few had some hands-on

experience of Prolog and of other languages. Figure 2.15 overleaf shows

the relatively small percentage of the subjects who had prior experience

of programming both in Prolog and one or more other .programming

languages.

• none

• Prolog only

II No Prolog, but other
languages

III Prolog and other

experience prior to the o. U.course.

2.2.1. The experiment

In the experiment each subject was given six Prolog programs and

asked to describe what she believed would be the action of the Prolog

interpreter in each program. Of the six Prolog programs in the

questionnaire given to the subjects, in five, a query to p, in a correct

model of Prolog search, would instigate backtracking due to failure of a

subgoal. A sixth program was expected to produce a correct prediction

in every case. i.e.

P if a.
a.

80

The latter was included in order to give all the students the opportunity

of feeling confident about at least one of the programs and as an

example of a program in which no backtracking normally takes place.

A sample copy of the questionnaire which was given to each subject is

included in appendix AI. For the purposes of the experiment a

variable-free subset of Prolog was used. This was to restrict the area of

errors which could be made to those involving the order of search and

backtracking of the Prolog interpreter and to narrow the range of

possible interpretations of students' errors. The programs were chosen

to be as simple as possible while allowing the students' answers to

reflect their belief about the order in which a Prolog program is

executed. For example, in the following program:

a.
h
h
pifa&b&c.

given the query p, a correct prediction of the Prolog's search would be to

try and prove p. To succeed in doing this, the interpreter tries to prove

a, succeeds, then tries to prove b, succeeds, then tries to prove c. On

failing to prove C, the interpreter would backtrack and try to resatisfy b.

In this case, the goal b can be resatisfied, leading to another attempt to

prove c.

In the notation used in the experiment this would be represented as:
p

1 a 1·:..- b I·~_od e e I bbytry try try try fai

b 1Cbysucceed

A student may, however, predict that after the first failure to prove c,

the interpreter returns to the top of the database and tries to resatisfy a,

which would be recorded in the way shown below:

81

p
try

a
try I~ e

try
e
fall la.. I

If this faulty pattern of backtracking is consistently predicted in similar

problems, then it is reasonable to assume that the student has formed a

particular model of the Prolog interpreter, in this case an incorrect one,

the 'redo-from-left' discussed earlier. By following the student's step-

by-step prediction of program behaviour in a selection of simple

problems, any consistently faulty or incomplete model of Prolog's

execution which has been formed by the student should become

apparent.

The experiment was carried out as a paper-and-pencil exercise. The

students were told that they were not expected to spend more than half

an hour over their answers, and might well complete them in less time

than this. They were asked to work individually rather than

collaboratively and it was explained in the questionnaire that if they felt

unsure about their answers, then they were free to consult a tutor after

they had first completed the questionnaire. They used the notation

shown in the preceding paragraph in order to record their predictions of

the steps the Prolog interpreter would take to prove each query. An

explanation of the notation and an example program and answer were

given at the beginning of the questionnaire. If requested, the

experimenter also presented this example page verbally when giving

the booklet to the subject.

The results of the experiment were analysed as follows. The prediction

of the interpreter's action given by each student to each problem was

compared with a 'correct' prediction of the interpreter's behaviour.

Where a difference was found, the student's answer was then compared

with the answer which would have been produced if the student had

82

given her or his prediction based upon one of the hypothesized faulty

models of the interpreter described below. If the student's prediction

fitted the pattern produced using one of these faulty models, it was

noted as an error of that category, otherwise it was noted as an error of

an unidentifiable sort.

2.2.2. Problem design

In designing the problems set in the experiment, an attempt was made

to produce a range of simple programs which would allow certain

expected misconceptions to be apparent. There were five error types felt

to be representative of novices' misconceptions of the interpreter and

which we were expecting to find in the subjects' answers. Three of

these have been described earlier in this chapter, i.e. 'facts before rules',

'try once and pass' and 'redo from left'. Of the remaining two, one is

briefly described below, while a description of the second, 'redo from

left preserving pointers', forms part of a subsequent discussion on the

subject of multiple errors.

One pointer per clause

In normal Prolog search, when a goal or subgoal has been satisfied i.e.

matched successfully against a fact or rule in the database, this match is

recorded by the Prolog interpreter in case an attempt to resatisfy the goal

must be made at a later point in the program. If this happens and the

goal in question cannot be resatisfied, then it fails and any 'match' in

the database is 'forgotten'. Consequently, if a fresh call to that goal is

made, a match can again be made in the database. In discussing this

error [Fung et al1987] we suggest that this misconception may be related

to the method of teaching the order of Prolog search. This is often

taught in terms of cl 'marker' or 'pointer' which the interpreter places

83

in the database as program execution proceeds. A student suffering

from the 'one pointer per clause' misconception imagines that once a

goal or subgoal has been matched against a fact or rule in the database,

then the 'marker' placed by that fact or rule remains there for any

subsequent execution of that clause, disallowing its use in any further

goal calls which may legitimately be made. A possible

misunderstanding is to believe that only a single marker is available for

each clause and that as various goals are marked this pointer moves

monotonically down through the database, so making it impossible to

satisfy certain goals if the "marker" has passed the clause in question.

In, for example the program below and given the goal p.

Plif a&b&c.
P2if a&b.
al·
a2·
b.
in a correct interpretation, the first clause, PI eventually fails because
there is no definition of the relation c in the database, but the second
clause, P2 succeeds.

clause one ralls subgoal c clause two succeeds

P, if a & b & c. P 2 if a & b.

ai·
~

feil al' ~

a· a 2'2
b. f- b. f-

(In a correct interpretatio n P2 succeedS)

Fig.2.16. correct interpretation
In an incorrect interpretation, the attempt to satisfy subgoal c in order to
prove PI moves the "marker" for an a clause and a b clause down past
the first clause of each.

84

Clause one ra lis Ctil use two rails
P, ifa& b &0. P2 ifa& b.
a
1

. ~j fall al' j fen
a2 .

a 2' b.
b.

Faulty Interpretation, P2 ralls because rmrker II reached b' In clause one

Fig2.17. incorrect interpretation

In the attempt to then succeed in P2, the subgoal a is satisfied trivially by
the fact a2, but the subgoal b fails, because its marker has moved past it
in the attempt to succeed in P1, so P2 fails.

Multiple bugs

The question of multiple bugs is one that is frequently raised when

error analysis is under discussion [Burton 1982], [VanLehn 1983] and is

occasionally put forward as grounds for invalidating the 'error analysis'

approach to on-line tutoring. It is perhaps worth taking a quick look at

the area and putting the question into perspective, since if we were to

accept that conclusion, we run the risk of throwing the baby out with

the bath water. The use of error analysis to determine the tutoring

needs of students is not by any means a new concept. This approach

was the basis of work by [Brown and Burton 1978] and [Young &t O'Shea

1981] in the domain of arithmetic. A realistic gauge of a student having

mastered a skill is when we can see that a task which demands the

application of that skill has consistently been successfully completed.

When, on the other hand, a student consistently fails to complete a task

requiring that skill, then there are reasonable grounds for believing that

the skill has not been mastered. Depending upon the nature of the task,

an analysis of the errors which an unsuccessful student makes can give

85

valuable insight into which aspect of the skill is giving rise to

difficulties. The results of this analysis can then be used to provide

suitable remedial help. In both the works referenced above, the

detection and analysis of errors in the subtraction process was used to

diagnose students' misapplications of the skills and sub-skills involved.

We have seen in the previous section that an analysis of errors made by

students in predicting the control flow of simple Prolog programs can

indicate what misconceptions they harbour concerning the action of the

Prolog interpreter. Detection of these errors in students' work would

then indicate the area(s) in which help is needed and facilitate the task

of offering tutoring which is relevant to their difficulties.

So far so good, but then come the awkward questions. How do we

define consistency in this context? How many times must a student

produce a correct solution before it can be presumed that the relevant

skill has been mastered? How can errors be distinguished from slips

caused through temporary lack of concentration [Norman 1981]. How

do we separate out overlapping errors, or 'multiple bugs'? As has been

pointed out in other studies of errors [Burton 1982]their classification is

made more complex by this possibility of combinations of particular

'bugs'. It is not difficult to imagine a situation in which a novice

programmer might produce an interpretation of a program which

displays symptoms of more than one misconception. How do we deal

with apparently haphazard errors? It is a possibility that a novice

displaying the symptoms of a bizarre misconception or combination of

misconceptions in predicting the behaviour of a particular program is

evidencing the student behaviour which VanLehn [1983] describes in

his work on repair theory. This latter rests upon the hypothesis that a

student reaching an impasse in the given task, which in the work

86

referenced above is the subtraction process, will not usually put down

pen or pencil and retire from the struggle, but will attempt to use some

alternative strategy to deal with the problem. This strategy may be a

similar, but slightly 'buggy' one, or one that is invented as an

emergency procedure. A novice producing a prediction for the

behaviour of a program and who is unsure of the control flow process

can be described as facing a similar predicament when a Prolog subgoal

fails. Knowing, or not knowing, as the case may be, that backtracking

plays a significant part in the behaviour of a program, the student, in

producing a faulty interpretation may well be attempting a 'repair' as a

way of resolving the current impasse.

It can readily be seen that the search for answers to such questions is a

non-trivial task. However, this does not necessarily indicate that the

error analysis approach should be abandoned. Answers to some of

these questions may well be found in a closer investigation of teaching

strategies and tutorial actions. Meanwhile the benefits that can be

derived from error analysis should be exploited in the situations where

in doing so there is likely to be a reasonable gain in understanding of

students' problems. In this study we have only briefly explored the

possibility of multiple bugs (see chapter five for a full discussion of the

errors which were modelled), the two compound errors shown below

being examples of such bugs that would be relatively amenable to

detection should they present themselves in the students' answers.

Redo from left preserving pointers

This error can be seen as a combination of two previously described

bugs, 'redo from left' and 'one pointer per clause'. Given the program:

87

and the query p, after the failure of e, following the 'redo from left'

model, control flow would be seen as returning to the leftmost subgoal

a, which can be resatisfied by a2 and then, following the 'one pointer

per clause' misconception, the fresh call to prove b would mistakenly be

predicted as failing.

try P try a try b try c try a try b
succeed succeed fall succeed fail

try b
fall

Facts first in try once and pass

Here, given the program:
pifa&:b&:c.
al if x.
h
a2.

and the query p, the interpreter is correctly seen as proceeding from left

to right, but incorrectly, seen to scan the clause a2 before the clause al

and then on the first failure of c, to terminate the search. The

prediction of the interpreter's steps in executing the above program

would then be:

try P try a
succeed

try b
succeed

tryc
fail

pfail

Error exclusion

As a result of designing the programs so that it would be possible for

each of the above errors to be apparent in at least one of the problems

set, particular errors were necessarily precluded from appearing in

88

certain problems. The 'facts before rules' error, for instance, could only

appear in problem five (fig.2.18), since this problem was designed to

highlight that particular misconception and was the only problem

which included a rule and a fact with the same head.

Problem four: query 'p'
a.
p if a.

Problem five: query 'p'
pifa&b&c.
a if x.
b.
le.
a.

Problem one: query 'p
a.
b.
b.
pifa&b&c.

Fig.2.18. problem design

The 'one pointer per clause' misconception would not be apparent in
\

problem one (fig.2.18), because on backtracking to 'a', an attempt to

resatisfy it fails and 'b' is not called again. In problem four (fig.2.18),

none of the misconceptions described earlier would be seen because

backtracking does not occur.

Predictions

In carrying out the experiment, several aspects of the results were of

interest. One interest lay in learning if the results would validate the

hypothesis [Fung et a11987] that Prolog's control flow is a serious source

of misconceptions for the novice. Others were to discover whether

there was corroboration of 'established' bugs in control flow models, if

any of the bugs would be evidenced which had been informally

observed but for which there is not as yet any formal empirical

evidence, if certain models appeared more consistently than others.

In addition it was of interest, though not a major focus, to note if

previous programming experience was relevant to Prolog control flow

89

errors, and/or if students who had completed all the relevant exercises

in the book-based course showed any gain in understanding Prolog's

control flow over those who had not. Questions relevant to this were

therefore included in the questionnaire

2.2.3. Results

This section reports on the outcome of the experiment. It considers the

stability of these errors across the range of problems and in the

predictions of individual students. In doing so, it initially takes an

overall look at the number of errors produced, their types and

distribution, and relates these to earlier empirical results. It

subsequently looks at the data relating to the occurrence of error types

in each problem and the frequency with which each student made

particular errors. It also notes the inconclusiveness of any relationship

between the results of students who had completed all the course book

exercises and those who had not, and indicates the pattern of results in

relation to any previous programming experience which the students

had acquired.

Errors in total

Within the context of the relatively small number of empirical studies

of novice Prolog programmers' errors which have previously been

undertaken, the predictions given by many of the students indicated the

misunderstandings of the Prolog interpreter which had been expected.

Some predictions corroborated established misconceptions [Coombs and

Ste111985],[Taylor 1987],while others replicated misconceptions which

90

had been informally observed in novices' work, but not to date

empirically supported [Fung et al 1987]. Appendix A2 contains a

complete summary in table form of the type(s) of error which each

student's predictions showed, of how many correct predictions each

student made, of their programming experience and whether they had

completed all the exercises set in the preparatory book-based

introduction to Prolog. Appendix A3 contains a complete record of the

erroneous predictions made by each student in each problem.

In addition to those backtracking errors described above and some

errors whose patterns were able to be interpreted with reasonable

certainty, there were many other errors which at this stage were not able

to be clearly identified. Although some of these presented patterns

suggestive of a particular, if incorrect, model of Prolog control flow,

they need further investigation before a meaningful interpretation can

be attempted. In the following discussion this type of error has been

classified as 'unidentified' and unless relevant to the point under

consideration is not discussed here in any detail.

The bar chart below (figure 2.19) shows the total number of errors

which occurred in the predictions of control flow in the six problems

set. Out of this total, 47% were classed as unidentified and 53% as

identified.

91

un ide ntified errors

identified errors

o 20 tlO 60 80 100 120
Fig.2.19. Breakdown of total number of errors (217).

The following graph (fig.2.20) shows the number of errors which each

of the thirty-two students showed in their predictions.

The largest number of errors made by anyone student was sixteen and

only one student made no false predictions whatsoever. The median

number of errors per student was seven, the mean was 6.8.

number of errors
16

15

104

13

12
11

10

~
e
7
6

5..
:3

2
1

o

number of errors
16

15

14
13

12
11

10

'3
e
7
6

5..
:3

2

,_
~--

'r- - >--
~ i-- - ~ -

,.- -
i-- - I-- ~
i-- - f0- r-
~

El I. - tI o
1 2 3 04 5 6 7 e ~ 101112131041516 1718 1~20 212223204 252627 282'3~0~1 ~2

subject no. ..

Fig.2.20. Number of errors made by each student

The chart on the following page (fig.2.21), shows the spread of numbers

of errors which students made. While a few students have made a low

number of false predictions and equally, a few have made a relatively

92

high number of false predictions, most students have made between six

to nine false predictions.

number of
.students5-----------------------------

number of
students~~r-----------------------~5

2

1

15 1l.J°2 J 4
number of erro rs

Fig.2.2l. Distribution of numbers of errors made by students

Types of error

"Theterm 'identified errors' is used to denote those errors which follow

a pattern consistent with the five control flow errors described in the

first part of this paper, plus two additional errors which appeared with a

certain consistency in the students' predictions. These two errors are

discussed in the paragraphs following fig.2.22 overleaf, in which they

are referred to as 'rules-facts exclusion' and 'meta-knowledge'.

Out of a total of 115 identified errors, the following barchart shows how

many times each type of error which was found in the students'

predictions. The percentage number marked beside each error type bar

indicates its share of the overall total of identified errors.

93
0 5 10 15 20 25 30 35 40 45

meta-knowledge

rules-facts exclusion
redc-r-l-keeptnq polnters

facts before rules

one po inter per c lause 35%

try 0nce and pass

redo from left

0 5 10 15 20 25 30 35 40 45
Fig.2.22. Breakdown of identified errors

Rules-facts exclusion

In its database search the Prolog interpreter does not distinguish facts

from rules, the former simply being rules with no conditions. In their

predictions however, it seemed obvious that many of the students had

formed a model of the Prolog interpreter which did not reflect this

correctly. Problem five was designed to test whether students

mistakenly presumed that the interpreter checked facts before rules. In

predicting the goal search in this problem, many of the students seemed

to exercise a rules-facts exclusion. Overleaf, to illustrate this, are

predictions given by two of the students evidencing this misconception.

In this problem the students were asked to predict the steps the

interpreter would take in answering the goal query p I given the

following program:

pifa&b&c.
al if x.
b,
x.

94

In this example the student has predicted that clause at is tried first

(correctly), but has predicted that on backtracking the interpreter will

fail to find another way of satisfying a. The clause a2 is ignored.

a
try

x
try I~ I~

b
try

b
fail

x
try

In this next example, the student has predicted that the interpreter will

match the clause a2 first, and on backtracking will fail to find another

way of satisfying the call to a. The clause at.is ignored.

p
try

e
fail

b
fail I~

It seems that a model had been formed in which the interpreter makes

a distinction between rules and facts, though this distinction is not

necessarily determined by database ordering. This model predicts that if

an attempt to match a subgoal succeeds using a fact, then subsequent

attempts at matching will not make use of a rule and vice-versa. Ten

students out of thirty-two exhibited this model of the interpreter. It

seems that the interpreter is seen as having a capability of matching

rules or facts, but not both in the course of anyone particular goal

search. This adds strength to the hypothesis that a model has been

formed in which the interpreter distinguishes between rules and facts.

95

Meta-knowledge

In all the problems except number four, the eventual outcome of the

program would be a failure to prove the given query, the point of

interest lying in the prediction of the search made by the interpreter in

order to reach that conclusion. It was interesting to find that in several

cases, although the students concerned predicted the correct conclusion,

it was apparent that they did not have an accurate model of how the

interpreter reached this conclusion. Given that with one exception the

programs would ultimately fail, a number of students predicted this

failure at a point where the interpreter was still able to resatisfy

subgoals. This would imply that in prematurely failing such programs

they had used a level of reasoning based on their knowledge of the real

world rather than following through the backtracking process of the

interpreter. To them it was visually apparent perhaps that at a certain

stage there would be no further point in backtracking, since the

program would necessarily fail if a certain fact could not be proved.

While for a human being this is a reasonable way of analysing a

problem, the interpreter does not possess this meta-knowledge. As

pointed out in Fung et al [1987]in the description of this error, which is

termed 'meta-analysis' and also noted by Taylor [1987],there may well

be some relation between this phenomenon and the 'superbug'

phenomenon discussed by Pea [1986]. Pea points out that in computing,

the novice programmer has no analogy to draw upon except that of

issuing instructions which are to be acted upon by another human.

Since in such a person to person situation, one takes for granted that

the other person has a store of implicit knowledge to bring to bear upon

the subject, the novice could be unwittingly attributing to the

interpreter implicit knowledge of a clever search strategy that in reality

it does not have. The term 'meta-knowledge' used here indicates that a

, 96

student has exhibited the symptoms of this type of error. Below is a

typical example of a prediction of the interpreter's actions by a subject

who may well be suffering from this misconception. Given the

following program:

a.
a.
b,
pifa&tb&tc.

and the query to prove p
p
try

a
try

e
fail

b
fail

a
try

Note that although the second call to a succeeds, the student has

prematurely failed the program at that point without even attempting

to retry b. The normal action of the interpreter of course would be to

proceed to try b again and then c and once more backtrack

unsuccessfully to p before finally failing.

Distribution of error types

In this section we look at the distribution of identifiable errors,

including the two described above, which students showed in their

answers.

Corroboration of established misconceptions

Both the 'redo from left' and 'try once and pass' misconceptions which

have been identified in previous studies, [Coombs&:Stell 1985], [Taylor

1987]were found. Interestingly, the small percentage of 'try once and

pass' errors seems to indicate that even in cases where students were

not sure of the interpreter's actions, the majority were aware that some

97

backtracking process would take place. Comparatively few showed

evidence of a control flow model which omitted the process entirely.

This is of particular interest in view of the results of a second empirical

study which was undertaken in the following year and which had

strongly contrasting results in this respect (see chapter six).

Evidence of other expected misconceptions

The 'one pointer per clause' misconception, observed informally but

not previously empirically supported was present in a comparatively

large number of predictions. A factor contributing to this large number

was the consistency with which some students predicted this behaviour

of the Prolog interpreter in each of the problems "in which this

misconception could feasibly be applied. Problems one and four

excluded the possibility of displaying this model of the interpreter, so

are not shown in the figure below (fig.2.23).

14
12
10

number of times 8
error round 6

4
2
0'----

4

8
6
4
2
o

problem problem
lvv'o three

problem prob lern
five six

Fig.2.23. distribution of 'one pointer per clause' errors

A model of the Prolog interpreter which indicated the misconception of

'facts before rules' also seemed to be supported by the results, since

fifteen out of thirty-two students predicted that the interpreter would

choose to match a fact before a rule with the same head, even though in

the example program the rule appeared before the fact.

98

The seven instances in which the multiple bug 'redo from left

preserving pointers' occurred (see fig.2.22) were accounted for by the

predictions of three students. One student showed this error in four

problems, another in two problems and the third displayed it in one

problem only.

Evidence of unexpected misconceptions

The two bugs which we felt merited classifying as 'rules-facts exclusion'

and 'meta-knowledge' and described above, appeared with some

consistency, ten occurrences of the former and twenty of the latter being

noted. 'Rules-facts exclusion' necessarily appeared solely in problem

five, the only problem to involve rules and facts, while, as can be seen

below, examples of 'meta-knowledge' misconceptions appear in all

except problem four, the problem which involved no backtracking.

6

5

4

6

5

4
numberof times
error found

2

3

2

o 0
problem problem problem problem problem
one lvv'o three five six

Fig.2.24. distribution of the 'meta-knowledge' misconception

Distribution of error types among subjects

As opposed to the number of errors which each student made, the bar

chart below (fig.2.25) shows the number of students who made each of

99

the types of errors mentioned, e.g. 6 students showed the 'redo from

left' misconception.

number of students maki ng error
o 2 4 6 8 10 12 14 16

meta-knowledge ~~~~~~~~~
rules-facts exclusion

redo-f-I-keeping pclnters J--__ -'

facts before rules

one po inter per clause

try 0nee and pass

redo from left

o 2 4 6 8 10 12 14 16

number of students making error
Fig2.2S. number of students related to error type

Clearly, the number of 'one pointer per clause' errors and 'facts before

rules' misconceptions seem to have been far more prevalent than any

of the other identified errors, in terms of the number of students who

made these erroneous control flow predictions. If one regards the

number of students making errors concerning the interpreter's

treatment of rules and facts Le. the total number of 'facts before rules'

errors and 'rules-facts exclusion' errors, this indicates that there is

strong support for the hypothesis that some novices believe the Prolog

interpreter distinguishes between facts and rules in its database search.

Similarly, looking at the number of students making the 'one pointer

per clause' error, there seems to be evidence that this aspect of control

flow presents difficulties for them.

100

Bug stability

There are two aspects of the distribution of bugs which are of interest in

this respect. One is the distribution of error types across the six

problems. The other is the stability of a bug type across each student's

predictions. The term 'stability' is used here to refer to how

consistently a student used a particular buggy model of the interpreter

in each of the problems in the process of completing the questionnaire.

We look first at the distribution of error types over the range of

problems.

The following matrix shows how many students made which of the

expected errors in each problem. When designing the experiment each

problem was chosen with a potential misconception of the interpreter

in mind. The purpose of this was to allow an opportunity for that

particular error to occur, since as mentioned above, certain programs

could exclude certain errors. This is analogous to making sure that in a

selection of subtraction sums there would be one or more which would

allow a false model of the process to be apparent, e.g. including a sum

which necessitated using decomposition or equal addition. If none

were included, then there would be no possibility of judging whether or

not the student had mastered those processes.

The shaded boxes indicate which misconception had been 'allowed for'

in each problem, e.g. in problem three it was ensured that the program

involved a fresh call to a previously failed subgoal, so that the 'one

pointer per clause' misconception could occur, in problem five the

program included a fact and a rule with the same head in order to test

the hypothesis that some students believe the interpreter scans facts

before rules.

101

number of students displaying particular error (s)

Facts Redof-l
problem Redo from Try once One pointer before preserving
number lett end pass percla.use rules pointer

1 ""',.'~,."" 1 0 0 0,.,,. ",.,,,~~","",
2 5 '''''';!'''''',. 8 0 1,,,,, ,,.,,,,,,, ,,,,,

4 2 "';'aO.' .""",. 0 23 ~~~:14~~~
3 1 7 '''~~''~~ 35 ",. ",~~~",,~~~~

6 4 1 13 0 """",,,,";"'~I"'''';'",'" "'","", ,.""
Fig.2.26. problems and expected errors

This could raise the question of whether this would encourage the

appearance of a particular error in certain problems, or constrain the

subjects to making that error in one particular problem only. However,

this proved not to be the case, with one obvious exception Le.

erroneous predictions concerning rules and facts. Since only problem

five contained a rule, in this case, the 'expected' error could only be

found in that slot. The table above shows that, with this exception, each

error was, in general, fairly well distributed over the problems in which

it could occur. In each shaded box, the total number of students

displaying the 'expected' error in that problem is not notably higher

than in other problems. Problem four was not included in this table,

since it was not expected that any of these errors would occur in it and it

did not, in the event, account for any of the identified errors. The bar

chart overleaf (fig.2.27), makes the same point more graphically.

Bearing in mind the exception of problem five, mentioned above,

problem selection exercised no significant constraint upon the

distribu tion of errors across the problems.

'Redo from left' for example, was found in four subjects' answers to

problem one, in five subjects' answers to problem two, in four subjects'

102

answers to problem three, three subjects' answers to problem five and

four subjects' answers to problem six.

number of errors
o 5 10 15 20 25 30 35 40 45

meta-knowledge

rules and facts exclusion

redo-f-l preserv;ng po;nters

facts before rules

one pointer per clause

try once and pass

redo from left

o 5 10 15 20 25 30 35 40 45

number of errors
Fig.2.27. distribution of errors across problems

~ problem six

o problem five

IiliII problem four

1'1 problem three

DIll problem two

• problem one

This leads on to the second point regarding the stability of bug

distribution, that of stability in the individual student's predictions.

Tables showing the percentage of occurrence of each of the individual

error types in the students' predictions across the range of problems are

included in Appendix A4. Two of these are shown below. They

indicate the percentage of problems in which each student displayed

that particular error.

The 'redo from left' model of the interpreter was consistent among

those students who displayed this error. Among the six students

concerned, four showed the error in at least four out of the five

problems in which it could have been apparent. Of these six students,

three also showed the 'one pointer per clause' error, accounting for the

103

occurrences of the multiple bug 'redo from left preserving pointers'

described earlier.

100~ 100~
90~ 90~
80~ 80~

. h t ta 70~ 709i$
Inw a percen ge 60~ 609i$
of problems 509i$ 509i$
error was made 40~ 409i$

30~ 309i$

20~ 209i$

10~ 109i$
O~ 09i$

s1 57 518 520 s27 s29

subjects who made 'redo Fromleft' errors
Fig.2.2B. 'redo from left' misconception

Percentage of problems inwhich each student made this error

The distribution of the error 'one pointer per clause' also appears to

have been a consistent model, in that nine out of the fifteen subjects

concerned made this error in at least three out of the four problems in

which it could have appeared.

in what percentage
of problems
error was made
100~

90~
80~
70~

60~

50~

40~

30~

20~

10~
O~

s1 54 sS s7 s12 s13 s15 s17 s18 s19 s23 s24 s25 s28

subjects making 'one pointerperclause' error
Fig.2.29. 'one pointer per clause' misconception
Percentage of problems in which students made errors

1009i$

909i$
809i$

709i$

609i$

S09i$

409i$

309i$

209i$

10~
09i$

s30

104

As noted in an earlier section, relatively few students showed the 'try

once and pass' misconception noted by [Coombs & Ste111985]. There are

two factors which may have played a part in the relative non-

appearance of this bug. There is some possibility that the experiment

itself may have discouraged this error, since subjects would be able to

deduce from the examples given that the interpreter does not finish

abruptly on the first failure of a subgoal. The other factor is perhaps

related to a combination of the type of program which the students had

written and debugged for their projects and the manner in which the

language had been presented to them by the tutors. This combination

may well have emphasized to the students the fact that the Prolog

search process involved backtracking, even when the exact nature of

that backtracking was not clear to them. In a similar experiment

undertaken in the following year, analysis of the results showed a very

different pattern for the occurrence of this error. This will be discussed

more fully in chapter six when those results are reported

Previous course experience

As noted in section [2.2.2] one of the secondary intentions in the

experiment was to note if the group of students (group A), who had

completed the exercises set in the book-based introductory course for

Prolog would make less errors than those who had not (group B). This

hypothesis was based on the possibility that completion of the exercises

provided in the introductory course book, would, by reinforcing the

procedural aspect of Prolog's database search, help to reduce the number

of errors made. The difference however, between the results of these

two groups was not significant (Mann Whitney test) and did not allow

an unambiguous interpretation of the data.

105

number or stuce nts mak ing error
o 5 10 15 20 25

meta-knowl.dge

rules and facts exclusion

redo-f-l keeping pointers

facts before rules

unidentifiable error

• total no. students making error

IIthose who had completed exercises

III those who had not

try once and pass

redo from left

o 5 10 15 20 25
Fig.2.30. Comparison of errors

(made by students who had completed book-based exercises
prior to summer school and those who had not).

There were, however, interesting (but statistically non-significant)

differences between the two groups. Out of a total of seven identified

misconceptions and the category of unidentified errors, equal numbers

of students in each group evidenced 'meta-knowledge' and 'redo from

left errors'. In all the other categories of errors, with the exception of

'rules-facts exclusion' (where rather less group A students made errors,

as had been hypothesized), the number of group A students showing

each type of error was slightly greater than the number of group B

students.

Since no investigation was made into why the book-based exercises had

not been completed, the reason for this result must remain unclear.

One hypothesis is that the students who felt they had grasped the

106

essential points of the course did not bother to complete the exercises.

For the time being however this must remain an untested hypothesis.

Previous programming experience

Nwnber of students showl.... e'fldence of the errors noted
Md ,.Iatlon to prog~ln" e.erienoe

total no. stud''''ts stud''''ts stud,"'ts stud''''ts Wllth
twe studt"'ts Wllthno with P.01og with p.01.1. e)q) .of P.oroSI
of showing e>q>.only I>q>.but not and other
error p.og.a>q>

of P'.olorl langu-OI(s)error
n-10 n= 9 n- 9 n=4

Redo
from left 6 2 2 2 0

Tryonoe
1Mdpus 3 1 1 0

One pointer 15 5 6 3 1perol..,,.

Unidentifi- 23 7 I 6 2
able error

Facts
15 3 .. 5 3beto,. rules

Redof~plus 3 1 1 1 0
pointers

RuleSMd
10 1 3 5 1facts .)CI.

Meta-
I 3 3 2 0knowledge

Fig.2.3l. Errors related to programming experience

The number of students who had programming experience of both

Prolog and another language was too small to allow any statistical

analysis of the data, so it is not possible to point to any significant

differences between these subjects and those with less experience.

There is, however, an interesting trend in the results of the four groups.

It is remarkable that the students with previous experience of Prolog, or

107

previous experience of one language only, made more errors than those

who came to the course with no programming experience whatever.

This can be seen more clearly in terms of the average number of errors
which each group made, shown below in fig.2.32. Unfortunately there
was no way of investigating this phenomenon within the limits of the
study, since there are several factors which could have contributed to
this result but which could not have been taken into account. Apart
from factors such as individual differences in ability, it is also possible
that the way in which the previous programming experience was
gained, for example, could have had an effect upon the performance of
these students. In contrast to this, the average number of errors made
by those students who had used both Prolog and another language(s)
prior to the course was lower than the error average of any of the other
three groups. Although the small number of subjects in this group
precludes statistical testing of this difference, it is a result which would
intuitively be expected.

average no. average no.
of errors of errors
8 8

7 7

6 6

5 5

4 4

3 3

2 2

(n = 10) (n = 9)

exoenence 0 0
Prolog and
other language(s)

(n = 4)

o +---~~~~~~-
no programming
experience

Fig.2.32 -. Comparison of error averages

108

2.2.4. Comments

As [Sheil 1981]points out, it would be unwise to make generalisations

from the results of one study and apply these over the whole spectrum

of novices being investigated. Different methods of teaching Prolog

must certainly have some part to play in determining the kind of

mental models students form of the interpreter. The results

corroborate earlier work on novices' backtracking errors by Coombs and

Stell [1985]and by Taylor [1987]i.e. the misconceptions 'redo from left'

and 'try once and pass'. They provide data which support the existence

of possible misconceptions put forward in Fung et al [1987], i.e. 'one

pointer per clause', 'facts before rules', while raising questions which

merit further investigation regarding the misconceptions students have

of the Prolog interpreter's treatment of rules and facts, i.e. the 'rules-

facts exclusion' noted in the results. It is possible that these

misconceptions are a product of the way in which Prolog is often

taught. As was discussed earlier, the vocabulary of teaching Prolog

often reinforces, for instance, the idea that facts and rules are different.

This is valid from the programmer's point of view, in that for various

reasons they often merit different ordering in the database. It may be

however that this emphasis on 'facts' and 'rules' over-rides the idea

that to the Prolog interpreter they are both simply logical statements,

the latter with conditions and the former without. A change in the

description language used to explain Prolog structures to beginners

could well go some way towards eliminating this particular source of

confusion.

The misconception which appeared in the students' predictions and

which is described here as 'meta-knowledge' is also one that needs

further attention. Similar to a misconception described by Rajan [1986]

109

as 'real-world knowledge', it may well be, as discussed, a manifestation

of one of Pea's [1986]'superbugs'. This could prove a difficult error to

tackle, being as Taylor [1987]points out:

of diverse origins and a function of assumptions on the part
of the learner, teaching methods and the way in which the
programming language presents itself

It is clear however that such a misconception needs to be tackled. Its

manifestation in predicting the execution of a short simple program

may make little difference to the outcome, and indeed can be of use

when mentally simulating execution for debugging purposes. In terms

of understanding larger or even slightly more complex programs,

harbouring such a misconception can cause serious confusion. In such

circumstances a student may well presume that at a particular juncture

a goal will fail because she or he can see that a certain fact is not present

in the database. The interpreter, however, continues to backtrack in a

completely mechanistic fashion and may succeed in resatisfying a goal

or subgoal through another search path, producing an unexpected or

wrong solution to the given query.

At a level more specific to the results obtained in this study, there did

appear to be a certain stability in many of the faulty models exhibited.

This stability relates both to the type of errors seen across the range of

students and also within the predictions of individual students. The

subjects concerned were very much in the early stages of learning to

program in Prolog and the results help to underline just how quickly

students do form some kind of execution model. The results also

indicate how common it is for students beginning to use Prolog to

110

develop a faulty or incomplete model of the most basic operations of

the interpreter.

As an exercise in gaining insight into novice Prolog programmers'

conceptions of program execution this study has provided evidence of

some of the models which beginners form. While some errors which

came to light raised questions for which there is no immediate answer,

other errors were sufficiently well defined and their occurrence

frequent enough to be considered as likely symptoms of novices'

misconceptions of the Prolog interpreter.

2.3. Summary

The empirical study reported in this chapter confirmed that many

novices have difficulty in understanding the highly procedural nature

of the Prolog interpreter. Of the subjects taking part, the majority

showed by their predictions of Prolog execution that they had

incomplete or incorrect models of the backtracking process.

A selection of those models appeared with a consistency that suggested

they could play a useful role in the task of developing a system of on-

line analysis of novices misconceptions of the Prolog interpreter. They

provide a suitable starting point to explore the use of formal semantics

in modelling control flow errors, the approach put forward in this

thesis as a solution to the problem of student modelling in a diagnostic

tutoring module.

The first step in this exploration is to model these misconceptions,

generating them from the formal descriptions of a selection of

111

programs used in tutoring. These computational models would then

be available for use in automatic analysis of control flow errors.as a

basis for providing appropriate tutoring help to those students. Longer

term they could serve as heuristics to reduce the search space in the task

of on-line reconstructi?n of the student's perception of Prolog control

flow in cases where this does not conform to one of the more common

misconceptions. In the next chapter, we discuss the formalism which

we have chosen for the task of constructing computational models of

the errors reported here.

112

Chapter Three

3. Formal Models

In the context of considering the help available to novice programmers

we looked briefly in chapter one at a selection of tutoring systems for

programming languages. We refer to them again in this chapter in

order to show the need to explore another approach to student

modelling and put forward our reasons for basing this approach on a

formal semantics. The focus of this chapter is a discussion of the

formalism which we have chosen as a basis for that exploration. In it

we outline the ideas central to that formalism and discuss the features

which make it attrac.tive for the task of formalising novices'

misconceptions in the domain of programming language.

3.1. Modelling students

As we pointed out earlier, it would seem obvious to employ the

computer itself to assist in the teaching of programming languages

since the student, by virtue of the domain, is in a position to take direct

advantage of anyon-line help [Du Boulay &: Sothcott 1987]. The

research problems faced in providing such help, are, as we have seen,

challenging. In his 'framework for adaptive teaching' [Hartley 1973]

stipulated that computer-assisted teaching systems must incorporate

four components. These were knowledge of the domain, knowledge of

113

the student, a set of teaching operations (i.e. a curriculum and a plan for

implementing this curriculum, be it through a directive approach or

one based on enquiry) and lastly, a set of teaching strategies, the use of

which should be directed by the response of the student. Of these, the

task of representing the knowledge of the student, Le. student

modelling, has, in particular, proved to be a difficult one. In forming a

model of a student's knowledge state, error diagnosis is only one of

many indicators which a human tutor can use to assess learning. In

computer tutoring the means of assessing a student's progress are

necessarily more limited, since assessment can only be based on the

information received and inferred from the user's input. Although its

use, as we have previously discussed, is not without limitations, error

diagnosis remains a significant method of on-line assessment of

progress and plays an important part in the student modelling

techniques of any system for tutoring programming languages. Careful

error diagnosis not only allows the more superficial syntactic mistakes

to be signalled, but can be used as a means of providing insight into

underlying misconceptions held by a student concerning the language

being tutored. In the following section we look again at two of the

systems which we discussed earlier and consider how they have

approached this difficulty of interpreting learners' input.

The approach adopted in the system 'Greaterp' [Anderson & Reiser

1985] is a pragmatic one. Using prestored programs and their prestored

'correct' solutions, this system constrains the user to following a

particular learning path. Should the student at any stage input code

which does not match the prestored model solutions, an error is

signalled. As we pointed out in chapter one, no differentiation is made

between code which is syntactically faulty and code which, while

114

syntactically correct, does not match the prestored solutions. In both

cases the code is treated as incorrect. This close constraint upon the

student to follow a particular learning path poses problems for the

construction of a deeper level student model related to the individual's

understanding or misunderstandings of programming concepts and

program execution. The system contains only prestored information

about expected correct and incorrect code and contains no

representation of 'knowledge' about program code. Consequently it

cannot offer any explanation other than prestored text. If this

'knowledge' of the domain were able to be incorporated, it could then

be used to give more directly relevant tutoring information concerning

the error or the misconception which underlay the error.

The tutoring system for Pascal, 'Proust' [Johnson and Soloway 1985],

which we looked at in chapter one, attempts to analyse the student's

intentions underlying the input code (in this respect 'intention' can be

interpreted as 'the programming goal'). The system suffers however,

from handicaps in its approach to student modelling. On the one hand,

as with 'Greaterp' a great deal of information for each programming

problem must be pre-stored. On the other hand and probably more

important, is that the system itself, as in the 'Greaterp' system, has no

representation of 'knowledge' of the language being taught. This

'knowledge' is an essential component of a tutoring system if it is to

have explanatory power. Ideally a system should be able to trace the

correct behaviour of the constructs of the language being taught, in

order to contribute to the goal of analysing input meaningfully. One

way of achieving this is to incorporate in the system an exact and

unequivocal interpretation of the possible behaviours of the

programming language being taught.

115

A step in this direction has been proposed by [Reiser, Friedmann,

Kimberg &: Ranney 1988],in order to remedy the implicit lack of system

knowledge discussed above with regard to the Lisp tutor 'Greaterp'. It is

suggested that such a system be augmented with knowledge of the

intermediate programming processes involved in the programming

tasks. To do so they propose the addition of a problem solving

component which gives a more finely grained analysis of the execution

process of each programming task, which could then be used for

reasoning in relation to the student's input. While this is an approach

to the goal of incorporating knowledge of the domain into the system, it
..

does not address the problem fully. In a sense this approach tackles the

problem at one remove. It attempts in its rule-base to give a more

accurate description of the actual execution of a programming goal, in

order to afford scope for reasoning about the shortcomings of student

input or the need for a certain approach to a programming task. As

described in their paper [Reiseret al 1988]this relies on a quasi natural-

language description, in terms of input, output and goals, of the process

concerned. While this is certainly a direction which can usefully be

taken to provide tutoring systems with the level of explanatory power

necessary, long term it would seem more appropriate to tackle this

description at the level of the language itself. A precise semantic

description of the language which incorporates the execution model of

the language would overcome the problem of scope of explanation. At

present this is limited by the strategy of describing each process

individually as it occurs [Reiser et al1988], whereas if it were described

at the more global level of the language the scope of reasoning about

the programming code could be correspondingly extended.

Additionally, such a description demands an accuracy and correctness

116

which is best supplied by a formal semantics. While there have been

instances where programming languages have been defined in English,

this can result in ambiguity and inconsistency, as has been pointed out

by [Knuth 1967] in referring to ALGOL 60. To avoid this demands the

mathematical rigour of a formal description. The underlying

mathematics of a formal semantics, to quote Hoare [1985], provides

a secure, unambiguous, precise and stable specification of the
language to serve as an agreed interface between its users and
its implementors.

In the next section we look briefly at the role of formal descriptions in

relation to programming languages.

3.2. Fonnal descriptions

While Backus-Naur form has provided an adequate way of formally

describing the syntax of programming languages since at least the late

1950's [Wirth 1963], formal semantic descriptions of programming

languages have taken longer to develop. Nevertheless they are equally

essential, not only as discussed here in terms of use as a tool for

precisely describing the execution and correctness of programs in

tutoring systems, but in a broader context of reaching a viable

comparison for standardization purposes between the different

implementations of a programming language or between the properties

of different programming languages. In such contexts semantics

are as essential to the objective of language standardization as
measurement and counting are to the standardization of nuts
and bolts. [Hoare 1985]

117

There are also several different kinds of formal semantics which have

been developed, the most well-known of these being 'denotational'

'operational' and 'axiomatic' semantics. Each has grown out of a

concern to achieve a particular goal in the semantic description of

programming languages. Put very simplistically, denotational

semantics are concerned with defining languages, axiomatic semantics

with developing rules of inference for reasoning about programs and

operational semantics with describing the implementation of

languages. A succinct appraisal of the potential of each of these

different kinds of semantics as a basis for a formalisation to be used in

programming language tutoring systems can be found in [Elsom-Cook

1984], in which the author quite rightly concludes that each of the

above-mentioned semantics, taken alone, has drawbacks in the context

of teaching a programming language. This arises because any

formalism to be used in a tutoring system for programming languages

must serve to achieve multiple goals, as we discuss in the following

paragraph.

In the formalisation of Prolog errors which is currently being

investigated, the formal semantics chosen must serve to define the

language, to test the correctness of programs and to describe its

implementation. For the purposes of a tutoring system such a

semantics must possess not only the ability to generate a description of

the 'correct' model of the language concerned but also the ability to

generate a description of incorrect models. It must also have the

capability of affording a semantic explanation of the student's input. To

do this requires a notation which supports an intuitive interpretation

of program execution. This being so, we are looking for a formalism

possessing the properties necessary to achieve each of these goals whilst

118

preserving the mathematical foundation which distinguishes a formal

semantic description from one that relies solely on intuitive

description. In recent years the potential power of parallel

programming, with the attendant questions it raises in relation to

running concurrent processes, has stimulated interest in, and

development of, formalisms capable of fulfilling such aims. The results

of this interest also has important implications for sequential

languages. Two significant advances in this area have emerged in the

work of Milner [1980]and Hoare [1985]. The formalisms developed in

these works both have a mathematical basis of a systematic collection of

algebraic laws and are suitable vehicles for reasoning about program

design, specification and implementation. In addition to this

mathematical basis both support an intuitive interpretation, a

significant advantage in relation to its use in a tutoring system.

However it is the first of these formalisms, Milner's Calculus of

Communicating Systems (CCS) [Milner 1980],which is of major interest

to us here, since it specifically has the potential of formulating different

levels of equivalence of processes or programs based on observations

that can be made about their behaviour. Within the context of

interpreting student input this is an aspect of particular interest. The

key ideas of his work are described in the following section.

3.3. A Calculus of Communicating Systems

We give here a broad view of the ideas and principles originally

developed by Milner. For a fuller and more technical description, the

reader is referred to [Milner 1980]. His purpose in this work was to

develop a calculus which would offer a way of describing concurrent

systems with accuracy and would provide a means of reasoning about

119

those systems. CCS serves as a framework for building different models

and undertaking a comparison of these models at differing levels of

abstraction. Among the applications he envisaged was the semantic

description of parallel programming languages, the work of Beckman

[1987] on parallel Prologs being an interesting example of this area of

application. Underlying the calculus is the concept that the behaviour

of a system can be determined by observation. The two key ideas central

to this are (0 synchronised communication between the agents or

machines of a system and (ii) the notion of observational equivalence

of behaviours of systems. In the following sections we look briefly at

each of these ideas.

3.3.t. Synchronised communication

The first idea central to the calculus is that a system in CCS is seen as a

set of linked communicating agents or machines (the two terms are

used synonymously by Milner). Each agent, or machine, of the system

has certain actions which it may perform. The description of the

actions of each of the agents in a system forms the basis of the

description of the whole system. Imagine for instance, a miniature

retail system with only two components, Fred the customer and Hatter

the shopkeeper. A simplified approximation of the individual set of

possible actions of agent Fred and of agent Hatter, the shop proprietor,

could be viewed as follows

E) ~t.r ~ .hul

0··' seIlO····· open
leave buy

Fig.3.t. Actions of two systems

120

The two agents each has a range of actions, i.e. the customer can enter

the shop, buy a hat and finish by leaving the shop while the shop

proprietor can open the shop, sell hats and finishing by closing the

shop. If we put these two agents together to form a retail system, at

some point in performing the actions open to each, an action of agent

Fred's can be to buy and an action of Hatter's can be to sell. We can

regard those two actions, of buying and selling, as complementary

actions. At the point where these two complementary actions

synchronise, there is communication between the two agents. In the

diagram which follows, this communication has been shown by the

dotted line joining the two complementary actions of buying and

selling. Milner [1980]terms this process of combining agents to form

one system, a composition operation. We will enlarge on the actual

process in a subsequent section.

enter shut

leave ·~, eopen
~ sell

Fig.3.2. Two agents combined

Having performed a composition operation on them, the two systems

then form a composite machine, in the case of Fred and Hatter a

microcosm of the retailing world, which allows synchronised

communication between the complementary actions of its agents. We

could equally describe the combination of the above agents more

abstractly as follows, in this case the letters a and a- representing the

complementary actions of the machines F and H :

121

c d

b0 0·
a a-

Fig.3.3. A more abstract representation

We now go on to look at the second idea central to the calculus,

observational equivalence, again using our miniature retail system as

illustration.

3.3.2. Observational equivalence

Intrinsically related to the first idea is that the behaviours, or actions, of

a system can be determined by observation, thus a comparison of

systems can be made by observing their behaviours. H the observable

behaviours of those systems are indistinguishable, they can be defined

as observationally equivalent. As this implies, not all the behaviours of

a system need be visible, certain actions may be unobservable. Thus the

observable behaviour of two systems may be equivalent although one

undertakes actions which the other does not. Imagine, for example,

that we are standing on the pavement opposite Hatter's establishment

observing the actions of Fred. Some of Fred's actions are observable to

us and some are hidden from us. The communication action between

Fred and Hatter as they perform the complementary actions of buying

and selling would, for example, be unobserved by us. Milner calls these

communications between complementary actions 'silent'

communications, since they are not seen by the observer. This is the

basis of the second idea, that of observational equivalence. It is possible,

for example, that having in the morning observed Fred enter and later

exit the hatshop, that again in the afternoon, from the same vantage

point, we see him enter and leave the hatshop for a second time. From

122

an observational point of view, Fred's shopping behaviour in the

morning is equivalent to his shopping behaviour in the afternoon. To

us as observers, on each occasion the silent communication action due

to the synchronisation of the complementary actions of buying and

selling, mayor may not have taken place.

leave shop

Fig.3.4. equivalent behaviours

(silent communication)

Applied to a programming language both the ideas outlined above are

potentially very interesting in relation to student modelling. Using

them we can think of a program as a set of linked communicating

agents, or components. The computation of the silent communications

which take place as a result of the composition of the components of a

program can be exploited to produce an exact picture of program

behaviours, incorrect as well as correct, while the concept of

'observational equivalence' offers the potential of comparing

equivalences of programs and parts of programs. The potential of this

latter concept for tutoring systems is significant since ultimately it offers

the possibility of comparing equivalences of programs and parts of

programs.

After this brief overview of the ideas of CCS, we now look more closely

at how they are applied. As we have seen, the descriptions derived

from the composition of the set of agents which form the system,

provide the terms used in the calculus for reasoning about that system

and for determining equivalences between systems. For example, from

the process of combining the two agents Fred and Hatter to form a

123

system, we then had a larger set of possible actions resulting from that

combination. Using that larger set, we were· able ·to describe two

possible sequences of actions which we could say were observationally

equivalent. We did not at that point however, enlarge on the actual

combination process. When we looked at the 'silent' communication

between Fred and Hatter, made possible by the complementary actions

of buying and selling, we ignored all the other possible sequences of

actions which could have taken place as a result of combining the two

agents. From the result of composing the two agents we could have

derived a variety of possible sequences of actions or behaviours. We

could have expressed all those behaviours by applying Milner's

'expansion theorem', that is, by rewriting the terms of that composition

as the sum of all the possible sequences of actions we could derive from

that composition. The processes of combining the agents, i.e. the

composition operation, and subsequently deriving the sequences of

actions made possible by that operation, i.e. applying the 'expansion

theorem' [Milner 1980], are basic to the calculus and merit a closer

description. Prior to this we should mention one feature which has not

yet been mentioned, that non-deterministic choice of actions can also be

represented in the system. If for instance we had made a small

adjustment to our hat shop scenario and widened the range of goods

sold, so that not only hats may be purchased but also cravats, then agent

Fred's range of actions could be seen as follows:

enter

leave leave

Fig.3.5. a nondeterministic choice of actions - Fred

and the range of Hatter's actions could be seen as follows

124

~ open
sell hat

shut shut

Fig.3.6. a nondeterministic choice of adions - Hatter

Having seen that a choice of actions can be expressed in the system, we

now look in more detail at some basic operations of the calculus, using

as illustration a system made up of two agents, f and h.

The actions of agent f are an a action or a b action.

so f = (a. ft + b. fv
(where the + symbol represents a nondeterministic choice of actions)

f I:

Fig.3.'. agent f

i.e. the agent f can perform the action a, followed by the actions which

remain to be performed (any other actions of f that are left) at that state

of the tree ft, or can perform the action b followed by the actions which

remain to be performed (any other actions of f that are left) at that state

of the tree f2' In this particular case, both ft and f2 are equivalent to nil,

which denotes inaction, since at each of those states, f has no remaining

actions.

The action of agent h is a-,

so h = (a-, ht)

h =

Fig.3.S. agent h

125

Le. the agent h can perform the action a- followed by the actions which

remain to be performed (any other actions of h that are left) at that state

of the tree ht, which again in this particular case is equivalent to nil

since h has no remaining actions.

The bar symbol - of a- is used to denote that it is a complementary

action, in this case complementary to a. As the complementary actions

of buying and selling in our hat shop could produce a silent

communication when the agents are composed, so the two

complementary actions a and a- can also produce a silent

communication when these two agents are composed.

3.3.3. Composition

Having defined our two machines, f and h in terms of their actions, we

now perform the operation of composing them. The result is a

composite machine f Ih, shown below, in which the choice of possible

actions offered by the combined agents is represented by the branches of

the composite tree. In [Milner 1980] these diagrams are referred to as

synchronisation trees, since they serve to represent the synchronised

communications between the agents of the system.

f Ih =

Fig.3.9. composition of agents f and h

This composite machine now offers a choice of actions sequences such

that:

- the first action of f , Le. a or b, can be followed by the composition of
the remaining actions of £ with h, i.e. respectively, £t with h, or £2
with h.

126
- or likewise the first action of h, i.e. a- , can be followed by the

composition of the remaining actions of h with f, i.e. h1 with f.

- or in this case the composite machine also offers the choice of a silent
action, because of communication between the complementary
actions of a and a- followed by the compostion of f1 with h1 (which
is nil, since in this case both f1 and h1 are nil).

In the diagram above (fig.3.9) we have denoted this silent

communication by the branch of the composite tree labelled tau. A

more formal definition of composition, taken from [Milner 1980], is

shown below.

If f = ~ :
I

and h = L;~~,
J J J

+ Lv (flh) + L
J J J

then

f Ih = LJ.1 (f Ih)
I I I ~ • v-

I J
Fig.3.10. definition of composition

't (flh)
i J

So far we have built a description of this system f Ih by describing the

actions or choice of actions of each agent f and h. We then performed a

composition operation on these agents to produce the choice of possible

action sequences which the composite system f Ih can offer.

3.3.4. Applying the expansion theorem

As we said earlier, this process of constructing a description of the

system(s) provides the terms of the calculus. By imposing on these a

schema of derivation rules the level of equivalence between systems

can be determined. Central to the calculation rules is Milner's

expansion theorem. Applied to the result of the composition of a set of

agents to form a system, this rewrites the composed agents as a sum of

the sum of the actions of each agent. This produces what can be seen

intuitively as a tree of all the possible behaviours or actions of the

127

system. Taking the agents f and h, which we composed to produce the

composite machine f Ih, if we apply the expansion theorem to this, it

unfolds, as it were, the complete set of possible sequences of actions for

.that composite machine, describing each possible sequence of actions at

each state of the tree.

Fig.3.11. composite machine f Ih expanded

i.e. f I h = (+ (a(a-))

(b (a-))

(a- (+ (a) (b)))

(,t))

The list notation used above to show the results of unfolding the choice

of action sequences, is the one we have adopted in the computer

implementation of the expansion theorem, which will be described in

the following chapter. It should be read as

"the composite machine f Ih offers the choice of
either:

an a action followed by an a- action

or a b action followed by an a- action

or an a- action followed by
either

an a action
or a b action

or a 't action (a silent communication action)"

128

The expansion theorem producing the tree above is described formally

by Milner [1980] p.31 as follows.

Given a synchronization tree 't', expressed as

t = L J7 ti i.e. the sum of all actions at each state of that tree,
(1 SiS n)

let 'to = (t11 t21..... 11m) \A. where each ti is a sum as above and A
represents a set of action names

then

t =IIJ.d{t 11 •••.. [t ~ 1.••• ltm)\A); 1s1Sm, J.1\'asummandOf t;. (J.1)~A}

+ ~ {'t ((t 1..... 1t ·1.···1 t. ·1··.·1 t) \A) ;~ 1 1 J m
1Si<jSm, »:t i' a summandof t i •)...-t j' a summandof t j}

(»; represents a set of actions,
>.- represents the set of actions complementary to >.)

Fig.3.12. definition of expansion

3.3.5. Restriction

Applying the expansion theorem allows us to rewrite the composition

of the agents which go to make up a system. If, however, we are not

interested in all the possible sequences of actions, but only interested in

sequences which contain or start with certain actions, we can make use

of Milner's 'restriction' operator. This allows us to hide the actions

which are not of current interest. This operation can be thought of as a

pruning one, in that it allows us to specify that certain actions in a

system can be considered as hidden behaviours. The ability to consider

specific parts of an overall system while ignoring others is a useful one

as Zislis [1975] points out in his work on the semantic decomposition of

programs and as does Weiser [1981] in his work in Pascal on 'program

slicing'. In terms of describing a program the restriction operation

allows us to be selective since we can then choose which set of program

behaviours we wish to observe. Restriction is represented in Milner

129

[1980] as a postfix operation and restriction of a particular action or

actions applies in every case to the complementary action(s) as well, e.g.

£ Ih \a would restrict all a and all a- actions in the composition of the

machines f and h. Similarly, f Ih\b would restrict all band b- actions in

the composition of f and h. If for instance, in the composition of the

machine £ Ih, we had restricted the observable actions so that there

would be no occurrences of a or a- in the results, then instead of the

composite machine we originally had as a result of composing f and h,

i.e.

1I h =

Fig.3.13. machine £ Ih

we would then have the restricted composite machine,

(1 Ih) \ a =

Fig.3.14. restrided machine f Ih\a

which would in fact only produce two possible sequences of actions,

either a b action or a silent communication action, since the

composition of £2 Ih \ a would produce nil and so would the

composition of £11hI \a.

A more formal description of this operation on machine f is shown

overleaf:

130

for f = L~! we then have
I I I

f \ a = 1: III (f; \ a)

J.1; e (a, a-)

Fig.3.1S. a formal definition of restriction

3.3.6. Equivalence

As we stated earlier, applying the expansion theorem to the

composition of the agents which make up a system is used to derive all

possible behaviours or actions of the composed agents. The terms

derived from this rewriting of the action sequences are used in the

calculus to prove the equivalence of systems. In comparing the actions

of systems, or of parts of systems, Milner [1980] puts forward four levels

of equivalence: direct equivalence, strong congruence, observational

congruence and observational equivalence, in decreasing order of

strength. The notation used to represent these equivalence levels is

illustrated below:

e--

equivalence level

direct equ Ivalence
strong congruence
observational congruence
observational equivalence

denoted by

--
B Ii C Implies B - C Implies B -l C implies B:::: C

Fig.3.16. Equivalence levels

Direct equivalence in CCSis a strong relation in that it requires the

actions of directly equivalent processes be identical. Strong congruence

is also a strong relation, in which in all contexts in the systems being

131

compared, processes must resemble each other both in their observable

behaviour and in the structure of their hidden behaviour. Milner does,

however, offer through his calculus a way of formulating definitions of

.weaker equivalence, in which aspects of the hidden behaviour of

systems are disregarded, giving the concept of 'observational'

equivalence discussed earlier. Since it is this level of equivalence

which is potentially most interesting to us in the context of tutoring

systems, we will look at how Milner defines observational equivalence

and give a few examples to illustrate this.

We have seen that an agent, for instance agent f, can offer, or perform

an action, or range of actions, or communications. If it does so, we can

describe this as

- agent f performing certain actions and subsequently behaving as f'
or

- agent f undergoing certain communication events and subsequently
behaving as fl. This is defined as a binary relation over the agent, i.e.

f action (S) f I

Fig.3.17. a binary relation over f

The action(s) could also be unobservable, as in our hatshop scenario,

where complementary actions can give rise to a silent communication

between agent Fred and agent Hatter. The silent communication is

represented here by a tau, i.e.

't
f---~) fl

Fig.3.18. a silent communication action

132

Observational equivalence is defined in the following way. If two

agents perform the same set of observable actions and their subsequent

behaviours are equivalent, then they are observationally equivalent.

f •) fl g.) gl
Fig.3.19. observationally equivalent

For example, picture that we introduce Gertrude, another member of

the hatshop clientele. From our observation post on the pavement we

see Fred and Gertrude each in tum enter the hatshop and each leave

the hatshop. They have performed the same observable action initially,

(entering the shop) and their subsequent behaviours are equivalent

(leaving the shop), so we can class their behaviours as observationally

equivalent.

(8l1ent communication) (8nent communication)

~ed gertrude
Fig.3.20. observational equivalence of customers' behaviours.

Regardless of whether or not Gertrude purchased a cravat while Fred

purchased a top hat, or indeed purchased anything at all, to us as

observers, their behaviours were indistinguishable.

A few more examples of pairs of agents which are observationally

equivalent are given below to illustrate the concept, preceded by some

of the equational axioms of observational equivalence [Milner 1980]

against which the examples can be checked.

133

b ::::'tob
b+'t.b ::::'t.b
a.'t.b::::a.b
a. (b + 'toc) + a. c ::::a. (b + t ,c)

(i)

agent 'J'
(ii)

agent '0' Y]b
(iii)

agent 'I'

(iv)

agent

agent 'n'
~b

agent 'm' ~

agent 'p' agent 'q'

c
Fig.3.21. examples of observational equivalence

An aspect of CCS which is of particular importance is that as well as

having an intuitive interpretation of equivalences which we have put

forward here in this chapter, it also offers formal mathematical proofs

of the completeness of system descriptions and equivalences. The

details of these proofs are not the focus of this work, it being sufficient

in this context to note that proofs are based upon accepted mathematical

formulae rather than a formalism specific to CCS. Significant

contributions to reducing the length of relevant proofs and to

producing efficient computer implementations of them have been

134

made by Milner [1982],Hennessy & Milner [1983],Milner [1985]and by

others working on the mathematical foundations of CCS, in particular

by Sanderson [1982]and Sanderson [1985]. The exploration of CCS as a

formalism in this research focuses principally upon the ideas of the

calculus and the diagnostic and explanatory potential which these offer.

3.4. Summary

In this informal description of Milner's calculus, we have outlined the

principal ideas of CCS which we feel are relevant to the work in this

thesis. We have indicated the relevance of these ideas to diagnostic..
tutoring, i.e. the possibility of using them to model the behaviours of

programs and their promise of providing a means of comparing

equivalences of programs or parts of programs. This potential of

providing both an exact and accurate semantic description of programs

plus the prospect of comparing those programs with a certain flexibility

of equivalence levels based upon sound mathematical proofs makes

CCS an interesting candidate for exploration in the context of on-line

tutoring. In the following chapter we expand on the application of its

ideas to Prolog and to formalising novices' misconceptions of the

Prolog interpreter which were discussed in the previous chapter.

135

Chapter Four

4. A Prolog Application

The task of defining a formal semantics for Prolog is not in itself a

novel one [Apt &: van Emden 1982], [Allison 1983]. It might be thought

that as a logic-based programming language Prolog would benefit from

having its own inbuilt semantics, those of logic. This has not proved to

be the case for anything other than a pure Prolog, Le. Prolog as a non-

deterministic logic programming language. As Fitting [1985] points out,

control is not taken into account, although in practice issues of control

are often vital, the statement order of a program making the difference

between output and no output. In most practical applications Prolog

often entails the inclusion of extra-logical features which are

implementation dependent. This has led to attempts to formulate a

semantics which will encompass such features as the cut [Jones &:

Mycroft 1984] and other non-logical features such as assert and retract

[North 1986]. This work has been undertaken primarily with the goal of

checking the correctness of implementations. The focus of our interest

in exploring a formal semantics for Prolog has been to produce a formal

description of the underlying execution of Prolog. This formal

description supports an intuitive procedural interpretation which is

used in diagnosing novices' control flow errors. Milner's CCS is

designed to handle both synchronisation and value passing in

concurrent systems, but to allow a meaningful discussion of

backtracking errors we need only use programs drawn from a variable

free subset of Prolog. In our exploration of the use of CCS we have

therefore restricted ourselves to a subset of Milner's [1980] complete

calculus, which involves synchronisation but does not require value-

passing.

136

As was outlined in chapter two, the area chosen for this exploration of a

formal semantics, is that of the search and backtracking processes of the

Prolog interpreter. An approach to modelling these processes which

has been previously tried, is the use of meta-interpreters [Coombs and

Stell 1985]. Using CCs however we can produce a precise description of

all the execution behaviours which may occur from given Prolog code,

rather than a pre-determined selection of those behaviours. We see

this as offering a potential flexibility of diagnosis which the

implementation of a meta-interpreter would not provide.

The system implemented in this research does not at present deal with

errors involving the use of the cut or unification. An extension of the

present system would, however, as discussed in chapter seven,

necessarily incorporate these aspects of control flow. In this section we

initially outline the steps of developing the ideas of CCS in relation to a

subset of Prolog. In the remainder of this chapter we then look in more

detail at the process of generating semantic descriptions of Prolog

programs. The step of incorporating these descriptions in the

construction of computational models of those novices'

misconceptions of the Prolog interpreter which were discussed in

chapter two is postponed until chapter five.

4.1. System overview

The formalism of CCs provides a means of constructing a precise and

accurate representation of the possible behaviours of a given system,

derived from observation of that system in operation. To relate our

previous overview of CCS to programming languages, we must then

consider a program as a process comprising a certain number of

components, each component itself being a process. Thus observing a

137

program in this context consists of observing the actions and

interactions of the combined processes in operation, since each

component process is able to execute certain actions and in doing so

may interact, or communicate, with the other processes. By an

expansion operation, we examine in more detail what those

interactions may be for any given program, i.e. we unpack the actions or

behaviours of the combined component processes. This combination

and expansion produces, as it were, a parallel semantics of a given

program, that is, it allows us to represent the parallel execution of each

program. In a Prolog program this representation includes not only

'correct' backtracking behaviours, but also 'incorrect' backtracking

behaviours. We are not however, necessarily interested in all the

actions and interactions or communications of a particular process, so

we make use of the restriction operation, which effectively allows us to

stipulate which actions or communications we wish to be concealed, or

hidden, and which interactions we wish to examine. It is from this

expansion of selected interactions of the component processes that we

extract the semantic representation of a given program which traces all

the possible execution paths of that program. By using this

representation in conjunction with a production rule system, we then

construct and verify the models of backtracking behaviours to be used

in diagnosis.

~_,-----....

system

production
rule

semantic
representation

Fig.4.1. Process outline

138

The diagrammatic outline of the overall process given above (fig.4.1),

illustrates the relationships between the sections of work which are

discussed in this and the following chapter. As can be seen from that

diagram, initially we produce a formal description of the Prolog

program being used. The results of this process are subsequently

employed to generate its semantic representation. This semantic

representation is then used within the framework of a production rule

system to construct models of students' misconceptions of the Prolog

interpreter to be used in diagnosis. We now look in more detail at each

part of the overall process outlined above.

4.2. Producing formal descriptions of Prolog programs

Formally describing the actions of each component of a Prolog program

entails defining what constitutes its components, just as we defined the

agents Fred and Hatter as being the components of our miniature retail

system in chapter three.

In doing this for Prolog programs our purpose has been to capture their

most general features. We have been influenced to a certain extent by

the goal of our current work of diagnosing backtracking errors. The

definition of a program's components which we have arrived at is

therefore not necessarily the only one possible, but rather one which

seemed most appropriate for the task.

We have defined a Prolog program as being made up of some or all of

the following components: query elements, condition elements, right

hand side elements and fact elements. Take for example the simple

program:
P if a.
a.

139

As can be seen in fig.4.2 below we have defined this program as

containing two query components, a conditional component and a fact

component. In the diagram, 'lhs-If-rhs' represents the conditional

element of the program (that the left hand side of the program is true if

the right hand side is true). The right hand side is represented by

'rhands', which in this case has only one element, 'a'. Each component

and its semantic function will be discussed in detail in sections.[4.2.1] to

[4.2.5].

In addition to these components, we also include 'nomore' elements.

The purpose of this is to express the 'closed world' assumption of

Prolog explicitly and to allow the system to exhibit the full range of

backtracking possibilities for each program. Thus the program above,

with the addition of 'nomore p' and 'nomore a' would be fully defined

as having seven components.

The components are represented below in the format used as input for

the program which produces. the description of each machine's possible

actions.

140
«query "P" 2)
Qhs.if-rhs "P" 1)
(rhands "P" 1 "A")
(query "A" 2)
(fad "A" 1)
(nom ore "P" 2)
(nomore "A" 2»
As with the agents or machines referred to in the previous chapter,

each component process is capable of a certain sequence or sequences of

actions. Just as we then combined the actions of the agents Fred and

Hatter by making use of the CCS composition operation, these seven

'agents' or 'machines' of the program can be combined and can interact

or communicate with each other through their complementary actions.

In the following sections, we look at the components in tum and show

the action sequences which we have assigned to each.

4.2.1. Query components

Taking the head of the list first (although the ordering is not in any way

significant to the results), we look in more detail at each component,

the actions of which it is capable and explain the syntax used in

converting it into a CCS machine.

The first element of the three element list (query "P" 2), is a component

identifier. The second element is the name of the component and the

third element is its clause number. In the case of query components the

clause number is always one higher than the actual number of clauses

present with this particular name. This, working together with

'nomore' components, is to satisfy the objective of showing all possible

backtracking behaviours.

The initial action of a query component is to contact an instance of a

machine of that name, which in the case of a query to p, is a p clause.

This could result in a successful communication or an unsuccessful

141

communication, Le, a call to p, starting the process in motion and

which we represent as (SP), would instigate contact with a machine

(SPl). The numeral '1' serves to distinguish this as the first p clause of

possibly multiple p clauses which might be contacted in a given

program. The result of this action is either that (SPl) is contacted

successfully, in which case (SP) performs its final action successfully, as

(SP-), or it is not, in which case the failure of (SP) is denoted by a final

action (FP-). As there is only one p clause, the syntax of our query

machine for p would look, so far, as follows (the '+' symbol

representing non-deterministic choice):

(SP (SPt- (+
(SPt (SP-»
(FPt (FP-»»)

This syntax can be read as 'this machine is able to offer the action SP

followed by the action SPI-, followed by either the action SPI followed

by the action SP-, or the action FPl followed by the action FP-'.

However, the extra clause to each query, included to represent explicitly

the closed world assumption in Prolog and to produce all the possible

backtracking behaviours, means that the call to p can also instigate

contact with a second p clause (SP2-).

This action too may lead to a successful or unsuccessful

communication, correspondingly performing either a successful final

action (SP-) or an unsuccessful (FP-). Thus a function call with the

input (query "P" 2) would produce the following description of that

component's actions as output:
(SP (+

(SPt- (+
(SPl (SP-»
(FPt (FP-»»

(SP2- (+
(SP2 (SP-»
(FP2 (FP-»»»

142

So our 'query p' component of fig.4.3, seen with its actions or

behaviours explicitly marked, starting from 'SP' would look as follows:

SP1

SP1-
.sp-..
sp-

Fig.4.4 Actions of query component

Likewise, if we were to convert the program:

breakfast if eggs.
eggs.
the same list of components would be applicable and the conversion of

the query component, l.e.

(query ''BREAKFAST' 2)

would similarly, in the syntax we have used for the implementation,

produce the following description of the machine's actions:

(SBREAKFAST(+
(SBREAKFASn- (+

(SBREAKFASTI (SBREAKFAST-»
(FBREAKFASn (FBREAKFAST- »»

(SBREAKFAST2- (+
(SBREAKFAST2 (SBREAKFAST-»
(FBREAKFAST2 (FBREAKFAST- »n»

while given the program:

breakfast if eggs.
breakfast if bacon.
eggs.
the result of converting the query machine to produce a description of

its actions would reflect the additional 'breakfast' clause, so

(query "BREAKFAST' 3)

shows the actions of that machine as:

143

(SBREAKFAST (+
((SBREAKFASTI- (+

(SBREAKFAST1 (SBREAKFAST-»
(FBREAKFASn (FBREAKFAST-»»

(SBREAKFAST2- (+
(SBREAKFAST2 (SBREAKFAST-»
(FBREAKFAST2 (FBREAKFAST-»»

(SBREAKFAST3- (+
(SBREAKFAST3 (SBREAKFAST-»
(FBREAKFAST3 (FBREAKFAST-»»»

As shown, this component has the possibility of contacting both the

'breakfast' clauses available and a third possibility of contact which

would allow for contact with the relevant 'nomore breakfast 3'

machine.

4.2.2. The condition component

This component Ohs-if-rhs "P" 1) expresses the condition that the left

hand side of the program is true if the right hand side is true. Again

represented as a three element list, the first element is the component

identifier, the second the name of the left hand side and the third

element the number of the clause concerned. The actions of this

machine consist of the left hand side clause contacting its right hand

side. In our example program p if a, this would be represented as the

first left hand clause of p, (SP1)contacting its right hand side (SPIRHS-).

This may be a successful communication (SPIRHS), in which case the

first clause p of the left hand side is successful (SP1-)or it may be an

unsuccessful communication (FPIRHS), in which case the first clause of

p of the left hand side is unsuccessful (FP1-). So, inputting the

component (lhs-if-rhs "P" 1) would produce the following description

of this machine's actions:

(SPI (SPIRHS- (+
(SPIRHS (SP1-»
(FPIRHS (FPI-»»)

144

This amounts to representing explicitly the actions of the 'lhs-if-rhs'

component of fig.4.3, as in the diagram below (start SPl):

<J hs-if-rhs)
Fig.4.5 Actions of condition component

Converting the same component for our breakfast if eggs program, for

example,

(lhs-if-rhs "BREAKFAST" 1)

would produce the following description of the actions Qf that machine:

(SBREAKFASn (SBREAKFAST1RHS- (+
(SBREAKFAST1RHS (SBREAKFAST- »
(FBREAKFASnRHS (FBREAKFAST- »i»

We can read this as expressing that the left hand side of the program

statement, 'breakfast', at clause one, is true if the condition on the right

hand side of the program statement is true and conversely, that it is

false if the right hand side of the statement is false.

4.2.3. The right hand side component

The actions of the component 'rhands', representing the right hand

side of the given program, allow for successful contact or unsuccessful

contact of the elements of the right hand side. Taking the example

program p if a, the right hand side component (rhands 'a') offers contact

with a machine of its named element 'a', this is denoted by (SPIRHS

(SA-», and this contact can be either a successful communication, in

which case the final action of the right hand side is a successful one (SA

(SPIRH5-», or, if the contact is an unsuccessful one, the last action of

145

the right hand side would be an unsuccessful one (FA (FP1RHS-».

Converting the component (rhands "P" 1"A") would thus produce the

following description of the actions of that machine:

(SPIRHS (SA- (+
(SA (SPIRHS-»
(FA (FPIRHS-»»)

Thus the rhands component of fig.4.3 with its actions explicitly stated

can be represented as follows:

...........:::::' .. SP 1RHS-

Qhend~
Fig.4.6 Actions of the right hand side

If we are converting a program which has more than one condition as

its right hand side, for example the program:

'p if a & b'•

or the program:

'breakfast if eggs & bacon.'

the conversion of this component to produce a description of the

actions of that component would in doing so reflect the logical

conjunction. In these cases the right hand side is only successful if

successful contact is made with all the relevant machines, which in the

first program would be both a and b, in the second both eggs and bacon.

This is expressed in terms of a parallel 'and', allowing for

communicative actions in any order, again, in order to capture

'incorrect' as well as 'correct' behaviours of the program. Let us take for

example, the machine (rhands "P" 1 "A" "B") which would be a

146

component of the program p if a & b. The actions of the machine

produced from this component would allow for successful contact of

the right hand side,

-either if successful contact is made with the a component followed by
successful contact with the b component,

-or if successful contact is made first with the 'b' component followed by
successful contact with the 'a' component.

Reflecting the logical conjunction, at the first unsuccessful contact of

the right hand side, the contact offered by this component is then an

unsuccessful one, as we can see from the output produced, for example,

from converting the component (rhands2 "P" 1 "A" "B") to a

description of its actions.

(SP1RHS ;contacts
(+ ;either

(SA- (+ ;which either
(SA (SB· ;succeeds, so contacts 'b'

(+ i which either
(SB (SP1RHS- »;succeeds, so rhands succeeds
(FB (FP1RHS· »») ;or fails so rhands fails

(FA (FP1RHS- »»;or fails, so rhands fails
;or
(SB· (+ ;which either

(SB (SA- ;succeeds, so contacts 'a'
(+ ;which either
(SA (SP1RHS-» ; succeeds, so rhands succeeds
(FA (FP1RHS-»») ior fails, so rhands fails

(FB (FP1RHS-»»» ;or fails, so rhands fails

Similarly, if there are three components to the right hand side, as

would be the case if, for instance, we added 'tomatoes' to our breakfast

program, making it 'breakfast if eggs &t bacon &t tomatoes', then from

the input: (rhands "BREAKFAST" 1 "EGGS" "BACON" ''TOMATOES'')

we would get the following possible actions from that machine:

(SBREAKFASnRHS(+
(SEGG5-(+

(SEGGS(+
(SBACON- (+

147

(SBACON (STOMATOES-
(+
(STOMATOES(SBREAKFASTIRHS-»
(FTOMATOES (FBREAKFASTIRHS-)))))

(FBACON (FBREAKFASTIRHS-))))
(STOMATOES- (+

(STOMATOES (SBACON- (+
(SBACON(SBREAKFASTtRHS·»
(FBACON (FBREAKFAST1RHS-)))))

(FTOMATOES (FBREAKFASTtRHS-))))))
(FEGGS (FBREAKFASTlRHS-»»

(SBACON- (+
(SBACON (+

(SEGG5-(+
(SEGGS (STOMATOES- (+

(STOMATOES (SBREAKFASTIRHS-»
(FTOMATOES(FBREAKFASTIRHS-»»)

(FEGGS (FBREAKFASTtRHS-»»
(STOMATOES- (+

(STOMATOES (SEGGS- (+
(SEGGS (SBREAKFASTtRHS-»
(FEGGS (FBREAKFASTtRHS-»)))

(FTOMA TOES (FBREAKFASTIRHS-))))))
(FBACON (FBREAKFASTtRHS-»»

(STOMATOES- (+
(STOMATOES (+

(SEGG5-(+
(SEGGS (SBACON- (+

(SBACON (SBREAKFAST1RHS-»
(FBACON (FBREAKFAST1RHS-)))))

(FEGGS (FBREAKFASTIRHS-))))
(SBACON- (+

(SBACON (SEGGS- (+
(SEGGS (SBREAKFASTtRHS·»
(FEGGS (FBREAKFASTlRHS-»)))

(FBACON (FBREAKFASTIRHS-»)))))
(FTOMATOES (FBREAKFAST1RHS-»»»

In all cases, at any stage of the enterprise, the order of contact offered is

non-deterministic (either eggs, or bacon or tomatoes can be produced in

any order), but at the first unsuccessful contact action, (if at any stage we

fail to produce one of the ingredients), then the contact offered by that

component is an unsuccessful one (the whole breakfast endeavour

fails),

148

It is worth bearing in mind that the actual behaviour of the Prolog

interpreter produces only one of those behaviour sequences captured by

the three way conjunction.

4.2.4. Fad and nomore components

Both fact and nomore components have more limited actions. Facts are

defined as simply having a successful action, while the representation

of a fact not being available, a 'nomore' component, has only an

unsuccessful action. The call (fact "A" 1) produces the description of

this machine's actions:

(SA1(SA1-»

and the input (nomore "A" 2) produces the description:

(SA2(FA2-»

SA2OFA2.
(nomore)

Fig.4.7 Adions of fact and nomore components

SAl r'>:~·....ISA1-
@

Similarly, converting the fact component in the program:

breakfast if eggs.
eggs.

i.e. a call to (fact "EGGS" 1)

produces the following description of that machine's actions:

(SEGGS1 (SEGGS1-»
and similarly, converting the 'fact not available' component, i.e., the

'nomore' component, produces, from the call (nomore "EGGS" 2), the

actions:

(SEGGS2(FEGGS2-»

4.2.5. A program converted

149

The final outcome then of converting the components of the program:

p ifa.
a.

into CCS machines is a list of all the components which comprise the

process, described in terms of their actions. i.e.

«(SP (+ (SP1- (+ (SPl (SP-)) (FPl (FP-))))
(SP2- (+ (SP2 (SP-» (FP2 (FP-»»»

(SP2 (FP2-»

(SA (+ (SA1- (+ (SAl (SA-» (FAl (FA-»»
(SA2- (+ (SA2 (SA-» (FA2(FA-))))))

(SM (FM-))

(SPl (SP1RHS- (+ (SP1RHS (SP1-»
(FPIRHS (FPI-»»)

(SP1RHS (SA- (+ (SA (SPlRHS-))
(FA (FPIRHS-»))

(SAl (SAI-»))

query component

no more component

query component

nomore component

left-hand/right-hand side
condition relationship

right-hand side
component

fact component

We have now specified the possible actions of each machine which

comprises the program, i.e. our components of fig.4.3 now have their

actions formally described. The code used in implementing this

conversion of program components into machines expressing their

range of actions is listed in Appendix Bl.

Having automated the production of the CCS machine descriptions

from the Prolog program components, i.e. formally described the

possible channels through which communication can take place

between these machines, the next step is to model those interactions.

150

We do this by composing the machines and applying the expansion

theorem to the results. In chapter three, as a result of composing the

agents Fred and Hatter to form a system we saw that if we were to

express all the possible sequences of actions that were then able to be

offered, Le. applied the expansion theorem to their composition, one

action offered was a silent communication between the two agents.

SP1

....•....•.:::::' .. SP 1RHS-

Qhand~

SP20P2.
(nomore)

SA10
" SA1-
@

SA2OFA2.
(nomore)

Fig.4.8 Formal descrlption of actions of machines
shown earlier in fig.4.3

Similarly, as a result of composition and expansion we can generate all

the possible silent communications which can take place between the

components of a program, thus representing not only the correct but

also incorrect program behaviours. This representation forms the basis

of interpreting student input and diagnosing errors. In the following

section we look more closely at the process of applying the expansion

theorem to the composition of the components of a program.

151

4.3.Expanding the formal description of a program

The composition of the machines of a process into one .system allows

communications between those machines. As we discussed in the

previous chapter, the expansion theorem [Milner 1980] is a calculation

rule which states that such a composition can be rewritten into a sum of

the sum of the actions of that system. In this section we briefly consider

again the composition operation, the kind of communication between

machines which it allows to take place and the use of the expansion

theorem in tracing these communications, but in this instance in

relation to Prolog programs. We then go on to describe the process of

automating the application of the expansion theorem, which allows us

to produce a semantic representation of a program's execution in CCS

terms, giving some examples as illustration. Code used in

implementing the expansion algorithm discussed below is included in

Appendix B2.

4.3.t.Composing two program components

We have said that by composing the machines of a process, we are

combining their possible actions and possibilities of communication.

By then applying the expansion theorem, that is, rewriting the

composition of machines into a sum of the possible actions, we are able

to see in detail all the action sequences and internal communications

which can take place between the machines of a particular system or

process. Here, using the components of a Prolog program we show

those processes in more detail. Take for instance, the fact component

and the nomore component of figA.7 [section4.2.3], illustrated here in

tree form.

152

® ISAI ~ ISAl
SAl· FAl·

Fig.4.9 Actions of fact component and nomore component

By composing these machines, just as fig.3.9 [section 3.3.3] in the

previous chapter showed that the composition of the machines f and h

resulted in the composite machine f Ih, so here the result is the

composite machine fact Inomore.

(fact Inomore)
SA

(factll nomore) (nomorell fact)

Fig.4.l0 composition of fact and nomore machines

and similarly, we now have the possibility of:

_an SAl action followed by the sequences of actions made possible by
the composition of what actions remain from the fact machine
(which in this case is SA1-) with the actions of the nomore machine

or
_an SA2 action followed by the sequences of actions made possible by

the composition of what actions remain from the nomore machine
(which in this case is the action FA2-) with the actions of the fact
machine.

though unlike the composite machine f Ih, the machine fact Inomore

does not offer a silent communication action.

4.3.2. Applying the expansion theorem

Having composed these components, we can now apply the expansion

theorem to the composite machine, to inspect the possible action

sequences in detail. As a result we will then have the sum of all the

possible sequences of their combined actions, just as we did from the

expansion of the composite machine f Ih in fig.3.11 [section3.3.4].

153

Al·

Al· Al.

Fig.4.ll Possible sequences of actions from the expansion of the
composite machine (fact Inomore)

The algorithm we have used to implement the expansion theorem

takes as input the formal descriptions of the program components in

list form and from these produces a full expanded version of the

composition of the component machines.

"Basically the expansion algorithm 'expand-machines', takes the

program components, converts them into the machines to be expanded

and then recurses down the resulting list of machines. The function

'expand-machines', takes the first element of each machine in turn and

joins it to the results of expanding the remainder of the machines in

the list.

This will be clearer if we take the process step by step, starting at the

point where the converted machines are input to the expansion

function and using the composite machine fact Inomore, whose actions

were respectively (SAl (SA1-) and (SA2 (FA2- », as illustration:

(expand-machines ,(.. (SAl (SAl- »(SAl (FAl- ») nil)

The asterisk is used to indicate that the subsequent machines are still to

be expanded, the significance of the argument 'nil' will be explained in

the following section. The first element of the first machine, (SAl) is

selected and joined to the results of expanding the rest of the list, which

154

is now «SAl-)(SA2 (FA2-»». Subsequently the first element of the

second machine, (SA2(FA2-», is selected and joined to the results of

expanding the remainder of the list «SA1(SAl-»(FA2-»). If there is

more than one machine in the list of machines to be expanded, a plus

symbol '+' is inserted as an indication that at that point there are more

machines to be expanded, i.e. that there is a choice of action sequences.

The position to date would be the choice of actions,

(+ (SAl(followed by the expansion of rest»
(SA2(followed by the expansion of rest»).

In each case, as we can see above, there is still more than one machine

in the remaining list of machines to be expanded, so the algorithm is

applied again to that list. In the next steps the first element of each

machine in that remaining list would be joined to the expansion of any

remainder, so the position would subsequently be:

(+ (SAl (+
(SAl- (followed by expansion of rest)

i'rest'=one machine, «SA2(FA2-»)
(SA2 (followed by expansion of rest))))

i'rest'=two machines, «SAl-)(FA2-»
(SM t+

(SAl (followed by expansion of rest))
i'rest'=two machines, «SAl-)(FA2-»

(FA2- (followed by expansion of rest»»)
i'rest'=one machine, «SAl(SAl-»)

The algorithm is applied repeatedly until there are no more machines

to expand and the process is completed, giving us the result:

(+ (SAl (+ (SAl- (SA2 (FA2-»)
(SA2 (+ (SAl- (FA2-»

(FA2- (SAl-»»»
(SAl (+ (SAl- (FM-»

(FM- (SAl-»»
(FA2- (SAl (SAl-»»»

(SA2 (+

This can also be output in tree form since this makes it easier to

illustrate all the sequences of actions clearly and intuitively in a

155

compact layout, in which case the list output is passed on to a tree-

drawing algorithm and the results would be much as illustrated above

in fig.4.11. As can be seen from that figure, from the expansion of the

composite machine fact Inomore, we have derived six possible action

sequences.

4.3.3. Tagging the silent communications of a program

Having composed and expanded the composite machine to look at the

possible sequences of actions, there is then an opportunity to observe

any silent communications which can take place between the machines.

In our formal descriptions of Prolog programs outlined in this chapter,

we denote, as we did in our outline of CCS in chapter three, those

actions which are complementary to each other by the use of names and

co-names, the co-name being marked by a postfix bar. The actions of

(SP) and (SP-), or of (SA) and (SA-), for example, are complementary to

each other. In a composition and expansion of machines, if the action

offered by one machine synchronises with a complementary action of

another machine, a 'silent' communication can take place. To illustrate

this in a Prolog context, we take the two machines, the (query "A" 1)

component and the (fact "A" 1) component, shown previously in fig.4.8

[section 4.3.4] as components of our p if a program and whose actions

are as follows:

Fig.4.U possible complementary actions of SAl- and SAl

156

We can see that in certain sequences of actions, the actions SAl and

SAl- of the query machine, will possibly synchronise with their

complementary actions SA1- and SAl of the fact machine. This allows

internal 'silent' communications to take place between the two

machines. To illustrate this, in applying the expansion algorithm to the

composition of these two machines so that we can examine all the

possible sequences of actions which could result, we highlight the

sequences in which silent transitions occur. The function

(expand-machines '«query "A" 2)(fad "A" 1)

would initially convert these components into their CCS machines,

«SA (+ (SA1- (+ (SAl (SA-))
(FAl (FA-))))

(SA2- (+ (SA2 (SA-))
(FA2 (FA-))))))

(SAl (SA1-)))

then the function 'expand-machines', would proceed with the
expansion process:

(expand-machines '("(SA (+ (SA1- (+ (SAl (SA-)) (FAl (FA-))))
(SA2- (+ (SA2 (SA-)) (FA2 (FA-))))))

(SAl (SA1-)))nil)

giving as result the sum of all the sequences of actions obtainable from
that expansion:

(+
(SA(+

(SAl- (+
(SAl (+

(FAl (+

(SA- (SAl (SAl-)))
(SAl (+ (SA- (SAl-» (SAl- (SA-))))))

(FA- (SAl (SAl-)))
(SAl (+(FA- (SAl-» (SAl- (FA-»»»

(SAl (+ (SA- (SAl-» (SAl- (SA-))))
(FAl (+ (FA- (SAl-» (SAl- (FA-»»
(SAl- (+ (SAl (SA-» (FAl (FA-»»
("t SAl" (SA-))))))

(SAl (+

(SA2- (+

(SAl (+

(FA2 (+

(SAl (+

(SAl (+
(SAl- (+

(SA2- (+

(SAl- (+

157

(SA- (SAl (SAl-)))
(SAl (+ (SA- (SAl-» (SAl- (SA-))))))

(FA- (SAl (SAl-)))
(SAl (+ (FA- (SAl-» (SAl- (FA-))))))

(SA2 (+ (SA- (SAl-» (SAl- (SA-»»
(FA2 (+ (FA- (SAl-» (SAl- (PA-))))
(SAl- (+ (SA2 (SA-» (FA2 (FA-»»»»

(SAl (+ (SA- (SAl-» (SAl- (SA-))))
(FAl (+ (FA- (SAl-» (SAl- (FA-»»
(SAl- (+(SAl (SA-» (FAl (FA-»»
{"t SAl" (SA-»»

(SA2 (+(SA- (SAl-» (SAl- (SA-))))
(FA2 (+ (FA- (SAl-» (SAl- (FA-»»
(SAl- (+ (SA2 (SA-» (FA2 (FA-))))))

(SAl- (+ (SAl (SA-» (FAl (FA-))))
(SA2- (+ (SA2 (SA-» (FA2 (FA-»»»»

(lit SAl"(+
(SAl (+ (SA- (SAl-» (SAl- (SA-))))
(FAl (+(FA- (SAl-» (SAl- (FA-))))
(SAl- (+ (SAl (SA-» (FAl (FA-))))
{"t SAl" (SA-»»»

(SAl (+
(SA (+

(SAl- (+

(SA2- (+

(SAl- (+

(SAl- (SA (+

(SAl (+ (SA- (SAl-» (SAl- (SA-»)
(PAl (+ (FA- (SAl-» (SAl- (FA-»»
(SAl- (+ (SAl (SA-» (FAl (FA-))))
{"t SAl" (SA-»»

(SAl (+ (SA- (SAl-» (SAl- (SA-»»
(FA2 (+ (FA- (SAl-» (SAl- (FA-»»
(SAl-(+ (SA2 (SA-» (FA2 (FA-))))))

(SAl- (+ (SAl (SA-» (FAl (FA-))))
(SA2- (+ (SA2 (SA-» (FAl (FA-»»»»

(SAl- (+ (SAl (SA-»(FAI (FA-»»
(SA2- (+ (SAl (SA-»(FA2 (FA-»»»»»

It is these 'silent' communications, highlighted above, in which we are

primarily interested, since they show the channels of communications

between the components which provide the possible execution paths of

a program. In implementing the expansion theorem, we have tagged

the silent communications (which as in chapter three, are represented

158

by a tau symbol) with the action which gave rise to it. As can be seen in

the above results, in this case it was on each occasion either the action

'SAl' synchronising with the complementary action 'SAl-' or the

action 'SAl-' synchronising with the complementary action 'SAl'. The

purpose of this tagging is to identify which communications between

components have led from the start of the program to either a

successful or unsuccessful outcome.

4.3.4. Restricted observation of a program

The results shown above also serve to illustrate the potential use of the

restriction operation which we discussed in chapter three [section3.3.5].

As we indicated then, it allows us to limit the appearance in the results

of action sequences in which we are not interested. In expanding the

query and fact components above, we were basically only interested in

observing the silent communications, not the large number of other

possible action sequences. We then use the restriction operation to hide

all those other action sequences occurring between the start of the

execution process and its finish. In this case the results of expanding

the two components above, are then observed as follows,

(SA
("t SAl-It
("t SAl"

(SA-»»

allowing us only the view of program execution in which we were

interested, i.e. the successful communication sequence leading from the

start action of the machine query "A", via the silent communications

that took place between the two components and ending with the

successful state of machine fact "A".

159

As an example of another use of the restriction operator in the process

of expanding components of a program, we could look again at the

expansion of the machines in fig.4.9 above [section 4.3.1]. These are a

fact component and a nomore component and the results of their

expansion are shown in fig.4.10 of the same section. If, for instance,

instead of showing all the possible action sequences of that expansion,

we wished to hide all occurrences of the action 'FAl·' in the results, we

would specify at the outset of the process that the action 'FA2-' is to be

restricted. In our implementation of the expansion theorem, this

entails adding the name of the restricted action into the list which is the

second argument to the function 'expand-machines'. In our earlier

example of a call to 'expand-machines' [section 4.3.2] this had 'nil' as its

second argument, since at that point we did not wish to restrict any of

the actions from appearing in the result.

(expand-machines '(It (SAl (SAl·))(SAl (FAl-))) nil)

Now, in order to express this restriction of 'FA2-', the call to the

expansion function would be:

(expand-machines '(It(SAl(SAl-))(SAl(FAl-))) '(FAl-))

As the algorithm is implemented, a check is made on each element of

the machines to see if it is a member of this list of restricted actions. If it

is, that element is treated as nil, i.e, it is not added as an action in the

results, nor are the actions which follow it in the machine where it

occurs. So having restricted all occurrences of FA2- in our example, the

results will show only the following action sequences.

SAl·

Fig.4.13 restricted expansion of (SA1(SA1-» (SA2(FA2-»

160

This should be compared with the results in fig.4.10, in which no

actions were restricted. It can be seen from this example that the

restriction operator is also a useful counterbalance to the possibility of

combinatorial explosion.

4.4. Summary

In the preceding sections we have shown how by applying the ideas of

CCS to Prolog, we can generate a semantic description of a Prolog

program. We have described a program in terms of the behaviours of

the set of components which combine to form the system. The

composition and expansion of these components show us all the

possible sequences of actions and silent communications which can be

derived from that program The use of the restriction operator allows

us to hide the sequences of actions in which we are not currently

interested and to show only the silent communications. These silent

communications represent the possible communication paths between

the different components of the system. An example of this, given

below, is the set of possible communication paths for the program we

discussed earlier:

pifa.
a.
This program contained seven components (fig.4.S). These were

composed and expanded, restricting all actions between the start and

finish states except for the silent communications, which are tagged to

show which components gave rise to them. The result is a description

of the silent communications which can take place between the

components of that program from the start state to possible finish states.

161

These silent communications represent the possible flow of control

paths which could take place in the execution of that program.

(SP (+
(Itt SPI-It(ltt SPIRHS-It(ltt SA-It(+

(Itt SAI-It(ltt SAllt(ltt SAlt(Itt SPIRHSIt(ltt SPllt(SP-»»»
(Itt SA2-It(ltt FA21t(ltt FAit(Itt FPIRHSIt("t FPl"(FP-»»»»»

(Itt SP2-It(ltt FP21t(FP-»»)

It is intuitively easier to see these paths if the results are represented in

tree form, so this output is also passed to a tree drawing algorithm.

This gives us the following result:

program

t SA1-'t SA1t SA t SP1RHS'tSP1 SP-

't SP1-tSP1RHS- 'tSA-

SA2-tFA2t FA tFP1RHSt FP1 FP-

This semantic representation of the Prolog program is then used as the

basis for constructing models of the Prolog interpreter employed in the

diagnosis of students' misconceptions. This representation can be seen

as the space of possible execution paths for that program. Modelling the

paths through that space is undertaken within the framework of a

production rule system. In the following chapter we look at the

development of this system and its production of models of the Prolog

interpreter.

162

Chapter Five

s. Production rule modelling

As we have seen in the previous chapter, the semantic representation

of possible execution paths of a Prolog program can intuitively be

thought of as a CCS search tree. In this chapter we discuss our use of

these representations in diagnosing novices' misconceptions and

describe their incorporation in a production rule system designed to

undertake this diagnosis. In considering our choice of a production

rule approach, we outline the questions raised in developing such a

system and the way we have attempted to answer these. It should be

noted that the motivation for adopting a production rule approach was..
based purely on the practical advantages of such a system. The rules

which have been developed to model the execution of Prolog programs

are not intended to be interpreted as having psychological validity. The

benefits which are to be gained from using a production rule interpreter

and which therefore motivated this approach are discussed below

5.1. A production rule approach

It will be helpful in the ensuing discussion if we consider a particular

Prolog program as a point of reference, so for this purpose we shall take

the following program:

pifa&b.
a.
a.
Generating the semantic representation of this program and passing the

results as input to the tree-drawing algorithm gives the following tree,

shown overleaf in fig.S.l.

163

'tSA1· 'tSA1 'tSA'tSI· 1811· 'F11 'tFI'tFP1RHS 'tFP1 FP~

1SA2. 'tSA2 'tSA'tSB- 1811· 'F11 'FI 'tFP1RH8 'tFP1 FP·

'tFP1RHS 'tFP1 FP·

'FI 'tFP1 FP·

Fig.S.l CCStree of p if a & b.

Modelling correct and incorrect execution paths can be seen as selecting

particular paths represented by certain branches of that tree. From the

example given above in fig.S.l, the branches of the tree traversed in the

correct execution path for that program would only be the following

ones:

't SA1· 'tSA1 'tSA'tSB· 'tSB1· 't FB1 'tFB

Fig.S.2 Section of semantic tree showing branches traversed
by the Prolog interpreter in normal search

If however looking at the diagram shown overleaf in fig.S.3, we

determine that in a student's model of backtracking only the branches

indicated by darker lines had been traversed, we begin to have an

understanding of that student's model of the interpreter. The path

follows the first line of successful communications, leading on to the

164

unsuccessful communication "'t FBI" and subsequently to "FP-",

signifying the failure of the program. This indicates that the student

suffers from the misconception that on the first failure of a subgoal, the

program fails, Le. the interpreter does not backtrack. As we discussed in

chapter two, this is a backtracking model which has been previously

documented [Coombs &z: Stell 1985], [Taylor 1987], [Fung 1987 b] and is

usually referred to as the 'try once and fail' or 'try once and pass' model.

I Ipaths taken by Interpreter SB· SB1· FB1 FB

SP

SA2 St\ SB· SB1· FB1 FB

FA3 FA FP1RHS FP1

FP2 FP·

Fig.S.3 Branches of CCS tree traversed in 'try once and pass'
model of interpreter

The process of determining which model of the interpreter a student is

exhibiting and what this tells us about a student's understanding of the

backtracking process is basically one of search to reconstruct the path

taken through the semantic representation tree, as reflected by student

input. The approach adopted for this reconstruction has been to

incorporate the process within the framework of a production rule

interpreter.

Such an approach has been taken because it provides two advantages,

the first of which is discussed in this section, the second of which is

postponed for discussion until [section 5.4].

FP·

165

This first advantage lies in the possibilities it offers of dynamically

constructing a set of rules from student input, which would reflect the

particular model of the interpreter held by that student. As we

indicated earlier, a serious disadvantage of the 'bug library' approach to

interpreting student Input in tutoring systems is the inability of the

system to interpret any student input other than that which

corresponds to stored system data. The system being developed here

can generate the more common 'known' misconceptions of the Prolog

interpreter for a given program, rather than having to prestore them.

This is an important step in the development of this approach to

student modelling and is in itself a move away from the concept of

prestoring the likely 'bugs' for each program. The ultimate goal of

further research however, would be to have the flexibility to reconstruct

and generate the actual patterns of misconceptions found in students'

models of backtracking, in cases where these do not conform to the

more usual or expected patterns.

This reconstruction would require a clean way of unambiguously

describing execution as represented by the directions taken through the

semantic representation. A production rule technique therefore seems

best suited to meet that need and worth adopting in view of this long

term potential. Using such a technique allows us to reduce the process

of execution, Le. the path through the search tree, into terms of specific

situations in which specific actions are taken, a condition/action cycle

reflected in the rules of the system. In the following sections we look at

the process of developing the primitives of this system

166
5.2 Developing rule conditions

Given the starting position of execution on the semantic tree, the

production rule interpreter cycles through a set of rules, attempting to

match the left hand side of a rule with the data provided about that

position. On finding a match, the right hand side of that rule fires,

producing a new position on the tree. This is added to working

memory and the process repeated using this new position.

e mterpreter

The cycle continues until a position is encountered which, when

matched, fires the stopping condition. At this point the system returns

the list of positions which has been built up in working memory and

.which represents the execution path taken through the semantic tree.

Given a clean description of situations and actions, recording the

actions taken by a student in specific situations should allow the system

to construct a rule set which will generate that student's model of

execution. Producing this description language was the first task in

developing the production system. In principle, whether 'correct' or

'faulty', the execution path can be described informally in terms of

conditions and actions as follows:

«if at a given position, going in a particular direction and given a
certain situation)

(take a certain action))

167

In the following section we look more closely at the left hand side of the

rules we have developed, which take the following syntactic form:

«position ?node)(diredion y)(type ?node z)

where '?node' will instantiate to a node position, 'y' to the value of

either 'backward' or 'forward' and 'z' to the classification of the node

concerned. These elements will each be discussed in the following

sections. The (direction) element when instantiated to forward,

indicates that the execution path is moving forward in direction and

conversely when instantiated to backward that the execution path is

moving in a backward direction. The element (type ?node)

differentiates between the type of nodes which in turn effect the

element <position ?node) in relation to actions which take place when

the rules are instantiated.

5.2.1. Node-types

We look first at the left hand side element (type ?node). This section

discusses why there is a need to differentiate between the types of nodes

and looks at the way in which this has been done. For the purposes of

illustrating the points discussed we refer back to the semantic

representation of the program p if a & b shown in fig.S.l.

(1)Disjunct nodes

If we were to follow an execution path through this CCS representation

we would start from the beginning of the tree at the node 'SP' (fig.S.l).

This node leads to either ''t SP1-' or ''t SP2-'. At this point a choice must

be made, either to follow the 't SPI-' branch or to follow the ''t SP2-'

branch (the relevant section is shown overleaf). If we were to choose to

follow the 't SP1-' branch along, via the next node 't SPIRHS-' we

168

could then move to the node 't SA·'. Here there is again a choice to be

made, this time to follow either the branch 't SAl-' the branch 't SA2-'

or the branch 't SA3-' (shown below):

SP

t SP2-

Fig.S.S Disjunct points with same names

In each case the nodes 'SP' and 't SA· " are characterised by the fact that

at that position there is a choice to be made as to which branch to follow

next. Both nodes can be similarly described as 'disjunct' nodes, since

they are both nodes at which we have a choice of paths to follow, in the

first case either 't SP1-' or 't SP2-', in the second 't SAl-', 't SA2-' or

't SA3-'.

(2) Disjunctrhs nodes

Another situation however, arises at the node position 't SPIRHS.'

(fig.5.1), at which point in the above section we moved to 't SA-'. The

node 't SP1RHS·' is also a disjunct, since at this point there is a choice

between node 't SA-' and the node 't SB-'. It represents a different type

of choice, however. Whereas the choices shown in fig.5.5 were between

nodes of the same name, Le. 't SPI-' and 't SP2-' or 't SAl-', 't SA2-'

and 't SA3-', the choice here is between nodes with different names, i.e.

't SA·' and 't 58-'. The relevant section is shown below (fig.5.6).

tSA-~SP1RHq
t SB-

Fig.S.6 Disjunct point with different names

169

Behaviour, in terms of actions taken at these two sorts of disjunct

would not necessarily be the same, therefore a differentiation must be

made between them. This has been done in the naming process, so

while the nodes referred to above in fig.5.5, 'SP' and 't SA-' are

described as (type ?node disjunct), the node referred to in fig.5.6,

't SP1RHS-' is referred to as (type ?node disjunctrhs). The final letters

'rhs' signal that the branches following it contain the machines of the

right hand side of that clause, in this case the 't SP1-' clause. In the

program, 'p if a'" b', which the CCS representation of fig.5.1 describes,

the 'right hand side' of clause 'p " is 'a & b'. Since the CCS

representation allows for all possible execution paths through the

program, at the point of contacting the right hand side of clause lp', i.e.

at the node 't SP1RHS-', either subgoal, 'a' or 'b', could be pursued first.

In terms of following an execution path through the semantic

representation of fig.5.l, this means that at the node 't SP1RHS-' either

the branch beginning with the node 't SA-' or the branch beginning

with the node 't 58-' could be followed. In using the semantic

representation to model normal Prolog search however, the execution

path at such a disjunct would always move to the first branch leading

from the disjunctrhs i.e. to the node 't SA-' rather than the node 't 58-'.

This reflects the search order followed by the Prolog interpreter, which

orders the subgoals of a clause in strict left to right direction, trying to

prove subgoal 'a' before subgoal 'b'. The subgoal 'b' would never be

investigated before the subgoal 'a' and if this investigation failed, the

subgoal 'b' would never be tried. In terms of following the execution

path using the semantic representation, this means that in normal

Prolog search the branch beginning with the node 't 58-' would never

be followed. The movement of the execution path at a disjunctrhs, if

we are modelling normal Prolog search then, is always to move to the

170

node on the first branch leading from the disjunctrhs. It is necessary to

distinguish these 'disjunctrhs' nodes from other disjuncts, since in

constructing an execution path from student input, the system must be

able to recognise the situation when a student does not appreciate the

importance of the Prolog goal ordering process.

(3) Disjundprime nodes

Another case where a 'different name disjunct' occurs in the CCS tree is

in the semantic representation of the 'and' where there are more than

two subgoals to be proved. This is due to the parallel interpretation of

the conjunction of goals of the right hand side, which offers a non-

deterministic choice of execution paths. The type of disjunct in this case

is classed as (type ?node disjunctprime). An example of this is shown

below (fig.S.7) in a section of a CCS tree in which there are three right

hand elements: 'p if a &it b &it c.' The type of disjunct referred to is

illustrated below by the node 't SA', representing the successful

communication of 't SA-' via 't SAl', and then offering a choice of

communication paths, 't SB-' or 't SC-' (outlined in the top right hand

comer of the diagram below, fig.S.7).

t SB·
t SA1· t SA1 t SA

t SP1·

t FP2 FP·

Fig.S.7'Another 'different name' disjunct

171

Again, due to the strict left to right ordering of the subgoals by the

Prolog interpreter, at the disjunct ''t SA' in fig.5.7, the subgoals will

always be satisfied in the order, 'a', then 'b' then 'c' as the interpreter

scans from left to right. If the execution path is at the point ''t SA' in the

highlighted area in the fig.5.7, which can be interpreted as at the point

of having satisfied the subgoal 'a', then the next subgoal to be satisfied is

'b' (represented here by the communication path 't SB-'), in normal

search it would never be 'c' (''t SC-') at this stage. This type of disjunct,

found in the parallel interpretation of the 'and' component, is referred

to as a 'disjunctprime'. In normal Prolog search, only the first of the

branches offered, in this case ''t SB-', is traversed, eitherJn a forward or

backward direction. The execution path followed at this type of node is,

as with the 'disjunctrhs' type of node, simply a move to the node of the

first branch leading from this disjunct. However these nodes too, must

also be distinguished as a particular type of disjunct, in order for the

system to be able to identify abnormal choices of execution paths. This

is essential for the task of modelling and generating faulty or

incomplete models of the Prolog interpreter.

(4) Nochoice nodes

The 'nochoice' type of nodes referred to above are those such as the

nodes highlighted in the diagrams overleaf in fig.5.8. As opposed to the

types of disjunct nodes discussed above, they do not involve a choice.

Progress through the search space, or communication between such

nodes, basically consists of moving to the next position along the

branch or back to the previous position on the branch. These nodes are

described as (type ?node nochoice-nodes).

172

Flg.S.S No-choice nodes inCCS tree

(5) Fall nodes

Another type of node which also needs to be distinguished is the sort of

node representing unsuccessful communication, Le, those nodes

prefaced by an 'F', denoting failure. At this type of node, the action or

choice of actions will vary according to the model of the interpreter

held by the student. These nodes representing unsuccessful

communication have been classed as (type ?node failchoice). As we

have seen, in total there are five types of nodes to be distinguished,

(nochoice-nodes), (disjunct), (disjunctrhs), (disjunctprime) and

(failchoice} nodes. In addition to these the system must be able to

distinguish the final node encountered. To summarise very briefly,

these node-type distinctions are made because at the point in the search

tree at which each node is met, the type of node determines which

particular action or choice of actions can be taken. In generating a

model of the Prolog interpeter from input, these distinctions are vital

in constructing a picture of the particular execution path being

followed.

5.2.2Node positions

Before going on to look in more detail at the actions which form the

right hand sides of the rules, we look at the last item in the basic

construction of the left hand side of rules, i.e. (position ?node). By

173

systematically numbering the nodes of the given semantic

representation, each node is allocated a unique position according to its

level in the semantic tree. In the tree of fig.S.l, for example, the

position of the initial node 'SP' would be identified as (position (1». At

the next level, ''t SPI-' would be (position(l 1» and ''t SP2-' would be

(position (1 2». Numbered in this way, each node has its own position

identifier which the system uses in conjunction with the node-type

information in the process of instantiating the left hand sides of rules.

Putting the three elements, position, direction and type, together, the

left hand side of a rule such as the following, for example:

«position ?node)(direction forward)(type ?node disjunct»

could be instantiated by 'SP' of fig.5.1, to:

«position (l»)(direction forward)(type (I)disjunct»

but not by ''t SP1-', since in this case the node type would not match,

''t SPIt being a (type nochoice-node). To take another example:

«position ?node)(direction forward)(type ?node nocholce-ncdell

could be instantiated by ''t SP1-' to:

«position (11» (direction forward)(type (11) nocholce-nodel),

or by 't SAl-' to:

((position (11111 »(direction forward)(type (11111) nechoice-nodel)

Information about the position and type of nodes is computed from the

CCS tree and given as input to the production rule system by a function

initialising working memory [appendix B3]. This takes the semantic

tree in list form as input and produces as output a list in which each

node is allocated a number and a type. A call to the function 'initwm'

with the semantic representation of the program p if a from figA.14

174

[section 4.4] for example would initialise working memory with the

following data:

C«POSmON Cl» (DIRECI'ION FORWARD»
CCCHOICEPOINT(1» (TYPE(1) SAME-NAME-DISJUNCI') (NAME (1) SP»
«CHOlCEPOINT (11» (TYPE(11) NOCHOICE-NODE)(NAME (11) ''tSP1-''»
«CHOlCEPOINT (111» (TYPE(111) NOCHOICE-NODE)(NAME (111) "tSPIRHS-"»
«CHOlCEPOINT (1111» (nPE (1111) SAME-NAME-DISJUNCI')
(NAME (1111) "'tSA-"»
«CHOICEPOINT (11111» (T\'PE (11111) NOCHOICE-NODE)
(NAME (11111) "'tSAl-"»
«CHOICEPOINT (111111» CT\'PE (111111) NOCHOICE-NODE)
(NAME (111111) "tSAl"»
«CHOICEPOINT (1111111» (TYPE(1111111) NOCHOICE·NODE)
(NAME (1111111) "'tSAH»~
«CHOICEPOINT (11111111» CT\'PE (t 1111111) NOCHOICE-NODE)
(NAME (11111111) "tSPlRHS"»
«CHOICEPOINT (111111111» CT\'PE (111111111) NOCHOICE-NODE)
(NAME (111111111) "tSPl"»
«CHOICEPOINT (1111111111» (TYPE(1111111111) FINAL-SUCCESS)
(NAME (1111111111) SP-»
«CHOICEPOINT (11112» (T\'PE (11112) NOCHOICE-NODE)
(NAME (1111 2) "tSA2-"»
«CHOICEPOINT (111121» (TYPE (111121) FAlLCHOICE)
(NAME (1111 2 1) "'tFA2"»
«CHOICEPOINT (1 2» (T\'PE (1 2) NOCHOICE-NODE)
(NAME (1 2) "tSP2-"))
«CHOICEPOINT (121» (TYPE(121) FAlLCHOICE)
(NAME (1 2 1) "tFP2")))

5.3. Rule actions

The data which is obtained from the semantic tree and used to initialise

working memory is used by the production rules in the instantiation of

the left hand sides of rules. Each node of the semantic representation is

identified uniquely by the initialisation process. Thus at anyone state

of the process the data extracted from working memory can successfully

instantiate the left hand side of one rule only. The system does not

therefore incorporate any mechanism for conflict resolution.

The initial element of the list above, «position(l»(direction forward» is

the starting point in working memory, representing the first step in the

execution path. We now go on to look at the form of the right hand

sides, the actions to be taken when the left hand side conditions are

175

met. Again, we are interested in describing the actions which can be

taken in as clear a way as possible with the objective of using their

descriptions as building blocks in constructing an execution path. For

the purposes of discussing this, we will take as example the actions, i.e.

right hand sides, of rules from a ruleset designed to model the normal

execution path of a Prolog program. The actions which can be taken are

of two sorts, (l) those of moving forward or backward to the next

position on a particular branch and (ii) those of moving up or down

from one branch of the tree to a higher or lower numbered one. For

example in the diagram of fig.5.9 below, if we move from 't SAl-' to't

SAl', this is a forward movement along a branch a level into the tree,

while to move back from 't SAl' to 't SAl-' would be a backward

movement along the same branch. However, to move from 't SAl-' to

't SA2-' is to move up to a higher branch, while to move from ''t SA2-'

to 't SA1-' would be to move down to a lower branch.

along the branch

'tSA2·

'tSA1·

Fig.S.9 Directions of actions

These two different types of movement are represented in the system as

'next-level' and 'up-levels' actions. Which kind of action is taken on

the firing of a right hand side of a rule is determined by the type of node

specified in the left hand side.

5.3.1. Action at nocholee-nodes

In the course of normal Prolog execution, 'nochoice-nodes' do not offer

any choice of action. Where for instance, the left hand side of a rule has

176

been successfully instantiated to a 'nochoice-node' the action is 'next-

level' and the position at one move along the branch concerned is

added to working memory. When the node ''t SA1-' in fig.5.9

instantiates the following rule:

«(position ?node)(direction forward)(type ?node nochoice-node))
(left hand side)
«position (next-level ?node))(direction forward)))
(right hand side)

to:

«(position (11111))(direction forward)(type (11111)nocholce-nodej)
«position (next-level (11111)))(direction forward)))

the right hand side fires and the function 'next-lever, given the node

position (11111) as input computes the node position (111111), and the

next step in the execution path added to working memory is:

«position (111111))(direction forward))

indicating in this case that the execution path moves on to ''t SAl'. The

equivalent action where the execution path is moving in a backward

direction after the failure of a node to communicate successfully, is to

step back to the previous node. When, for instance, node ''t SA1-'

instantiates the rule:

«(position ?node)(direction backward)(type ?node nochoice-node))
«position (stepback ?node))(direction backward)))

to:

«(position (11111))(direction backward)(type (11111)nochoice-node))
«position(stepback (11111)))(direction backward)))

the right hand side fires and the function 'stepback', using (position

(11111)) as input, outputs (position (1111)) and the new position added

to working memory is:

«position (llll))(direction backward))

177

indicating that the execution path has moved back from ''t SA1-' to

''t SA-'.

5.3.2. Action at disjunctrhs and disjunctprime nodes

In normal Prolog execution, action taken at a 'different name' disjunct,

that is, either a (disjunetrhs) or a (disjunctprime), would be similar to

that taken at a 'nochoice-node', moving to the next position along the

tree in a forward direction, e.g.

«(position ?node)(direction forward)(type ?node disjunctrhs»
«position (next-level ?node))(direction forward»))

When the execution path is moving in a forward direction, the node

''t SPIRHS-' of fig.S.l would, for instance, instantiate the above rule to:

«(position (lll))(direction forward)(type (111) disjunctrhs))
«position (next-level (111)))(direction forward)))

and the new position added to working memory would then be:

«position (1111)))(direction forward)))

On reaching an unsuccessful communication the action for both the

disjunctrhs and the disjunctprime node would be like that taken at a

'nochoice' node and the new position added to working memory

would be a 'stepback' along the branch.

5.3.3. Actions at disjunct nodes

The situation at a (type ?node disjunct) is different however, as

discussed earlier in section 5.2.1 (1) and 5.2.1 (2). It can be seen if we use

fig.S.S as an illustration, that the action taken at this type of node would

vary according to the stage of execution. We shall look at the action

taken where the execution path arrives at a node in a forward direction

178

first, then consider the two cases which can.arise when the execution

path is moving in a backward direction, i.e. the program is backtracking.

(1) In a forward direction

In normal Prolog search, if the node has been reached for the first time

as the execution path is moving in a forward direction, then the action

taken would be simply to go on to the next level, which would be the

first branch of that choice. This is captured in the rule:

«(position 1node)(direction forward)(type 1node disjund»
«position (next-level 1node »(diredion forward»)

In fig.s.s for instance, at the node 'SP' this action would lead to ''t SP1-',

or at the node ''t SA-' would lead to ''t SAl-'.

(2) In a backward direction

If the execution is moving in a backward direction, as would be the case

after an unsuccessful communication, the execution path would

eventually lead back to a disjunct node. In this case, reaching a disjunct

node in a backward direction, the action taken would normally be one

of going up a level to try a higher branch. In terms of Prolog search, this

would be looking for other ways of satisfying the clause. The execution

path in this instance would then go up from 'SP' to ''t SP2-' and in the

case of ''t SA-', to ''t SA2-' rather than, respectively, to ''t SP1-' or to

''t SA1-', so the right hand side of the rule for such a case should be:

«(position ?node)(direction backward)(type 1node disjunct»
«position (go up IJ level ?node))(diredion forward»)

However, this process could be repeated, since the next branch of the

execution path could also fail. This would mean that the disjunct point

179

was again approached in a backward direction and the same rule would

fire. When the point has been reached at which there are no more

successful communication paths to follow from that disjunct, the

appropriate action is then one of stepping back along the tree. If, for

instance, all the branches leading from the disjunct ''t SA-' in fig.5.5 had

been followed and had led to failed communications, then the

execution path would be to step backwards from ''t SA-'. There are

therefore two different actions which might be appropriate on arriving

at a disjunct when the execution path is moving in a backward

direction. This must be reflected in two rules which allow for the two

differing sets of circumstances. One must allow for the situation in

which at a return to a disjunct, there are higher untried branches, in

which case the action is to move up a level to try a higher branch, the

other must allow for the situation in which there are no more untried

higher branches, in which case the action is that of stepping back. In

order to identify these circumstances, the system needs the ability to

distinguish between subsequent returns of the execution path to such a

disjunct. It must have some means of knowing at each return whether

or not there are higher level branches and if so, to know which are still

untried. A constraint, (up-levels (next-level ?node» designed to

provide this information has been incorporated in the left hand side of

each of the two rules concerned, which for convenience are discussed

below as disjunct rule (a) and disjunct rule (b).

(dis/unct rule a)•
«(position ?node)(direction backward)(type ?node disjunct)

(up-levels (next-level ?node»»
«position (up-levels (next-level ?node »)(diredion forward»)

The constraint takes the form of a function which uses information in

working memory for two purposes. One is to check on positions

180

previously recorded and the other is to check that there are higher

branches at the given disjunct. The function 'up-levels' uses as input

the lowest level branch leading from the disjunct in question, i.e. (next-

level ?node). At disjunct '~ SA-' of fig.5.5 for example this would be

'~SA1-'. It searches the positions recorded in working memory to check

whether or not a branch, one level up, leading from the disjunct has

previously been recorded. In fig.5.5 this would be '~SA2-' (the first

level branch leading from the disjunct will, in normal Prolog search,

always have been used earlier as the execution path moved forward). If

no second level position is found to have been previously recorded, the

function is successful, i.e. the constraint has been satisfied and the

action of rule (a) is fired, adding the position of this second level branch

to working memory. If however the second level branch leading from

the disjunct had been recorded in working memory, indicating that it

had been traversed, the function would repeat the search process at the

next highest level. In fig.5.5 this would mean checking the list of

recorded positions for '~SA3-'. If this too had been used, the search

process would continue, a level higher at each iteration. At each level

which is searched, the data in working memory is also checked to

confirm that there is such a branch in the CCS tree. In the case of the

disjunct in fig.5.5, this would reveal that there was no branch beginning

with '~ SA4-', so the function would return a nil result. In this case,

rule (a) would fail to be instantiated and the second rule relevant to the

situation would be applied.

(dis/unct rule b)
'"

«(position ?node)(direction backward)(type ?node disjunct)
«not(up-Ievels (next-level ?node»»)

«position (stepback ?node »(direction backward»)

181

In the case of rule (b), the constraint (up-Ievels(next-Ievel ?node» of

rule (a) is negated. The function 'up-levels' must return a nil result in

order to satisfy the constraint of rule (b), i.e. it must show that there are

no ..untried higher level branches. As explained above, the function

will return a nil result if every branch leading from the disjunct in

question has been previously recorded and there are no more higher

branches to traverse. In the example of fig.5.5, where all three branches

of the disjunct ''t SA-' in fig.5.5 have been used and no higher branch is

left to try, the function 'up-levels' would return the result nil. This

would satisfy the negation, so the constraint of rule (b), that there are no

higher levels to try, would be satisfied and the right hand side of the

rule would fire. The next position back along the tree from the disjunct

(stepback ?node) would be added to working memory.

5.3.4. Action at fall choice-nodes

In modelling the normal course of Prolog execution, the action taken at

a 'failchoice-node' is always one of stepping back to the previous node.

«(position ?node) (direction forward)(type ?node fallehclce-node))
«position(stepback ?node» (direction backward»)

The important effect of this rule firing and adding a new position to

working memory is that of changing the direction of the execution path

being constructed. From that point only the rules relating to nodes

being approached in a backward direction will be applicable, unless a

disjunct is encountered which instantiates a rule resetting the execution

path to a forward direction.

182

5.3.5. Action at final nodes

There are two situations in which the action of a rule should be to halt

the system. One is when the left hand side of a rule instantiates to a

successful completion of the program.

«(position ?node)(dlredion forward)(type ?node final-success»
«halt»)

This happens when the position reached relates to the successful

complementary node of the start node. In the case of the program 'p if

a', this would be 'SP-', denoting a successful communication path from

'SP'. In the case of our breakfast program it would be 'SBREAKFAST-',

denoting a successful communication path from 'SBREAKFAST'.

The other situation arises when the execution path has traversed all the

branches available in the course of normal Prolog search and has not

been able to establish a successful communication path. At this point

the program finally fails and the action is to add halt to working

memory.

«(position (l»(dlrection backward)(type ?node disJunct)
«used(up-levels(next-level 1node»»)
«halt»)

In this case the instantiation of the left hand side relates to the starting

posltion of the program, but arriving at it in a backward direction. At

the beginning of the program 'p if at for example, working memory is

initialised to «position(l»(direction forward». When the most recent

addition to working memory is «position(l»(direction backward» and

given that the constraint (nottup-levels) is satisfied, i.e. that there are

no higher untried branches, then the program finally fails since the last

branch has ended in 'FP-', denoting an unsuccessful communication.

183

5.4. A ruleset for normal Prolog search

Putting together the left and right hand side of the rules we have

discussed gives us then the following ruleset for Prolog search:

««position ?node)(direction forward)(type ?node noeholce-nodell
«position (next-level ?node »(direction forward»)

«Cposition ?node)Cdirection backward)(type ?node neehelee-node)
«position (stepback ?node »(direction backward»)

«Cposition ?node)(direction forward)(type ?node disjunctrhs»
«position (next-level ?node»(dlrection forward»)

«(position ?node)(dlrectlon backward)(type ?node disjunctrhs»
«position (stepback ?node»(direction backward»)

«(position ?node)(direction forward)(type ?node disjunct»
«position (next-level ?node»(direction forward»)

«(position (l»(direction backward)(type (1) disjunct)
«not(up-Ievels(next-Ievel (1»»»
«halt»)

«(position ?node)(diredion backward)(type ?node disjunct)
«up-levels (next-level ?node»»
«position (up-levelstnext-level ?node»)(direction forward»)

«(position ?node)(direction backward)(type ?node disjunct)
«not(up-Ievels (next-level ?node»»)
«position(stepback ?node»(direction backward»)

«(position ?node)(direction forward)(type ?node disjunctprime)
«position (next-level ?node »(direction forward»)

«(position ?node)(direction backward)(type ?node disjunctprime)
«position (stepback ?node »(direction backwardh)

«(position ?node)(direction forward)(type ?node fallchoice)
«position (stepback ?node»(direction backward»)

«(position ?node)(direction forward)(type ?node final-success»
«halt»»)

Fig.S.10 Ruleset for normal Prolog search

184

As described earlier, given an initial starting point «position(l»

(direction' forward», the system begins a cycle through these rules in a

search to instantiate a left hand side of a rule with this position. When

this is successful, the right hand side of the matching rule is fired,

adding a new position to working memory. On the next cycle this new

addition to working memory is used to instantiate the left hand side of

another rule, causing its right hand side to fire, resulting in another

position being added to working memory. This search process

continues, the most recent position added to working memory being

used on each cycle, until a rule is met, the right hand side of which adds

«halt» to working memory. At this point the system returns the

execution path of the program constructed from the list of positions in

working memory. A call to the function 'beginasearch' to model the

execution path of proving the program:

p ifa.
a.
for example, would cycle through the ruleset building the following list

of positions in working memory:

«POSmON (1»
(POSmON (11»
(POSmON (111»
(POSmON (1111»
(POSmON (11111»
(POSmON (111111»
(POSmON (1111111))
(POSmON (11111111))
(POSITION (111111111»
(POSmON (1111111111)))

stopping when the position relating to 'SP-' instantiates the rule whose

action adds «halt» to working memory. These positions are related to

185

the relevant nodes of the semantic representation and the system

outputs the successful execution path:

(SP
Itt SPI-It
Itt SPIRHS-It
Itt SA-It
"t SAl-it
"t SAl"
"t SA"
"t SPIRHS"
"t SPI"
SP-)

Similarly a call to prove 'p' in the program:

pifa&b.
a.
a.

builds a list of positions, relates these to the relevant nodes and outputs

the following execution path which in this case however, reflects the

. backtracking process that has taken place in the course of the program

failing. In this and subsequent examples of output the columns are to be

read top to bottom, left to right. In the sample output below, in order to

make it easier for the reader to follow, the points at which backtracking

occurs have been marked by a double asterisk.

(SP "t SBI-" "t SB-" "t FA"
"t SPI-" Itt FBI"•• "t SBl-" "e FPIRHS"
"t SPIRHS-" "t FB" "t FBI"·· "t FPI"
"t SA-" Itt SA-" "t FB" FP-
"t SAl-" "t SA2-" "t SA-" "t SP2-"
"t SAl" "t SA2" "t SA3-" "t FP2"
"t SA" "e SA" "t FA3"** FP-)
"t SB-"

Having built our rule set for Prolog normal search, we are now in a

186

position to discuss the second advantage of using a production rule

approach. This is the modularity inherent in such an approach which

makes it a relatively easy matter to add or remove rules from the basic

set in order to model the more common misconceptions of the Prolog

interpreter. In the following section we look at how this modularity

allows us to adapt the ruleset shown in fig.5.10 in order to undertake

such modelling.

5.5. Modelling misconceptions - some examples

In this section we discuss the task of modelling novices'

misconceptions of the Prolog interpreter. Within the framework of a

production rule interpreter, this task is primarily one of expressing the

behaviour we wish to describe by adding rules, or omitting rules from

the ruleset describing normal Prolog search. Examples illustrating this

are given below.

5.5.1. Try once and pass

As discussed earlier, the faulty model of the interpreter in this

misconception is that on the failure of a subgoal the program fails

without any attempt to backtrack and resatisfy earlier goals. This model

can be generated simply by replacing the rule which applies to

behaviour at a 'failchoice' node. In the correct model of the Prolog

interpreter, when the execution path arrives at an unsuccessful

communication, Le. a 'failchoice' node, the action is to 'stepback' one

position to initiate backtracking:

«(position ?node)(direction forward)(type ?node failchoice))
«position (stepback ?node))(diredion backward)))

187

To model the 'try once and pass' behaviour, this is replaced by the rule:

«(position ?node)(direction forward)(type ?node failchoice))
«halO))

Consequently, on reaching a position which satisfies a failchoice-node,

the right hand side of the rule fires and 'halt' is added to working

memory. The normal execution path shown above in [section 5.4] for

the program:

p ifa& b.
a. .
a.
would be replaced by the following execution path, ending prematurely

without showing any backtracking, so reflecting the try once and pass

misconception.

(SP "'t SAI-" "'t SB1-" "'t FPI"
Itt SPI-" "'t SAl" "'t FBI" FP-)
"e SPIRHS-" "'t SA" "'t FB"
"'t SA-" "'t SB-" "'t FPIRHS"

5.5.2. Redo from left

Another misconception 'redo from the left' discussed earlier is one in

which the student believes that on failing a subgoal the execution path

returns to the leftmost subgoal of the clause before trying to resatisfy

previously successful subgoals. Modelling this within the production

rule framework can be achieved by replacing the two disjunctrhs rules

and simplifying the disjunct rules which are normally applicable when

the execution path is moving in a backward direction.

188

In normal backtracking when the execution path returns to a disjunct

in the course of the stepback process, any untried highe~ branches will

be followed. In this faulty model of backtracking the execution path

simply steps back through any such disjuncts between the failed subgoal

and the leftmost subgoal, so the disjunct rule for backtracking:

«(position ?node)(direction backward)(type ?node disjunct)
«up-levels (next-level ?node»»
«position (up-Ievels(next-Ievel ?node»)(direction forward»)

is omitted to reflect this, and the second disjunct rule for backtracking:

«(position ?node)(direction backward)(type ?node disjunct)
«not(up-levels (next-level ?node»»)
«position(stepback ?node»(diredion backward)))

is simplified to:

«(position ?node)(direction backward)(type ?node disjunct»
«position(stepback ?node»(direction backward)))

since there is no need to check for higher branches before stepping back.

This results in the stepping back process continuing until a disjunctrhs

is encountered. As mentioned earlier, the distinguishing feature of a

disjunctrhs node is that it marks the beginning of the right hand side of

a clause. In the redo from left model the execution path returns to this

point before beginning a search for higher branches to resatisfy the

subgoals of the clause. In effect the action then taken at this node is

based on the same criteria as those taken into account at a disjunct node

in the normal Prolog backtracking model. The disjunctrhs rule in a

backtracking situation is therefore not adequate in its original form:

«(position ?node)(direction backward)(type ?node disJunctrhs»
«position (stepback ?node))(direction backward»)

Before stepping back it must now incorporate the constraint that there

are no higher levels of previously tried branches to follow:

189

«(position ?node)(direction backward)(type ?node disjundrhs)
«notCup-levels (following ?node»»)
«position (stepback ?node»(direction backward»)

If this constraint is not met, thus indicating that there are higher levels

of previously tried branches to follow, then this rule will fail to be

instantiated, so as with the disjunct node in normal backtracking, a

second disjunctrhs rule is needed to cover this case:

«(position ?node)(direction backward)(type ?node disjundrhs)
«up-levels (following ?node»»
«position (up-levels (following ?node»)(direction forward»)

The difference between these disjunctrhs rules and those for a disjunct

in normal Prolog backtracking is that at a disjunctrhs node it is not the

(next-level ?node) which is being tested for higher levels of previously

tried branches, but the (following ?node). The latter is the equivalent of

the (next-levelmext-level ?node». An illustration will probably make it

clear why this difference exists. Ifwe take the case of backtracking in the

program:

pifa&b&c.
a.
b.
b.

at the failure of subgoal 'c', represented in the CCS tree execution path

by the node ''t FCl', then in normal backtracking, flow of execution

would stepback until the disjunct ''t SB-' was encountered. A search for

any higher levels of branches leading from this disjunct would then be

made in the process of trying to resatisfy the subgoal 'b', such as a

branch beginning with ''t SB2-', However, at the failure of subgoal'c' in

the redo from left model, the subgoal 'b' would be ignored and this is

mirrored in the CCS representation in that the execution path would

190

ignore the disjunct ''t S8-' and continue to move back to the disjunctrhs

position of node ''t SPIRH5-', shown in the diagram overleaf (fig.5.11):

Fig.S.11 Returning to isJunctrhs

At this point, the branches leading from the node ''tSPIRHS-' are

differently named. A move to follow a higher level branch would lead

to the branch ''tS8-' being followed, whereas the execution path at that

point would be expected to follow a higher level of the branch ''tSA-',

i.e. ''tSA2-' or ''tSA3-'. To model this behaviour, the function 'up-

levels' takes as input not the 'next-level' position, but the next but one

position. In this example for instance, it is the position of node ''t SAl-

'which is needed as input to the function 'up-levels' i.e. not the

position output from the function 'next-lever, but rather the position

which is output by computing the 'next-level (next-level)' node.

Having replaced the original disjunctrhs rules for backtracking cases,

omitted one of the original disjunct rules for backtracking and

simplified another, we now have a ruleset which will model the redo

from left misconception. In contrast to the execution path which would

be produced using the normal search ruleset to the CCS representation

of the program given above, i.e.

191

(SP "'t SCI-" "'t SB-" "'t FB"
"'t SPI-" "'t FCl" "'t SBl-" "'t SA-"
"'t SPIRHS-" tI't FC" "'t SBl" "'t SA3-"
"'t SA-" "'t SB-" "'t SB" "'t FA3"
"'t SAI-" "'t 582-" "'t SC-" "'t FAil
"'t SAI" "'t F82" "'t SCI-" "'t FPIRHS"
"'t SA" "'t FB" "'t FCl" "'t FPl"
"'t 58-" "'t SA-" "'t FC" FP-
"'t 581-" "'t SA2-tI "'t 58-" "'t SP2-"
"'t SBl" "'t SA2" "'t 582-" "'t FP2"
"'t 58" "'t SAil "'t FB2" FP-)

"e SC-"

a call to the function 'beglnasearch' using the 'redo from left' ruleset

produces the execution path:

(SP "'t SB-tI
"'t SPI-" "'t 581-"
lit SPIRH5-" "'t 581"
"t SA-" "'t 58"
"'t SAl-" "'t SC-"
lit SAl" "'t SCl-"
"'t SAil

"'t FCl"
"'t FC"
"'t SA-"
"'t SA2-"
"'t FA2"
"'t FA-"

"'t FPIRHS"
"'t FPl"
FP-
"'t SP2-"
"'t FP2"
FP-)

5.5.3. Facts before rules

A student having this faulty model of the Prolog interpreter, given the

program:

pifa&:b&:c.
a ifx.
x.
h
a.
would predict that in order to prove 'p' the execution path would

arrive at the fact 'a' before arriving at the rule 'a if x', since the belief is

that the interpreter distinguishes between facts and rules and chooses to

scan 'facts' before rules which have the same head. To model this with

192

the production rule interpreter, we need to add a constraint to the rule

applicable when the execution path encounters a disjunct while

moving in a forward direction. This is in order to check whether or not

the branches leading from it relate to rules (signalled by the next but

one i.e. a 'following' node being a disjunctrhs) or to facts. In the

diagram below, for example, taken from the CCS representation of the

above program (given in full in Appendix D):

Fig.S.U Identifying a rule clause

when the execution path is at the disjunct '1; SA-', in normal search the

following rule would apply:

disjunct

" 1: SA1·(§;)

1:SX·

1:SA3·

«(position ?node)(direction forward)(type ?node disjunct»
«position (next-level ?node»(direction forward»)

This would take the execution path on to the node, '1; SAl-'. This

branch however, leads to the node '1; SAlRHS-', representing a clause

which has a rule as its right hand side. In order to model the behaviour

which chooses clauses that are facts, in preference to those which are

rules, the system needs to know at the disjunct '1; SA-' whether or not

the node following '1; SAl-' is a disjunctrhs. This is done by using a

constraint in the rule for disjuncts, direction forward:

«(position ?node)(direction forward)(type ?node disjunct)
(Irule-clauseffullcwlng ?node»»
«position (up-levels ?node»(direction forward»)

193

The function 'rule-clause' takes as input the results of computing the

'following' node position, which as before, is equivalent to the 'next-

level(next-Ievel)' node position. If this position relates to a disjunctrhs,

the function 'rule-clause' succeeds and the constraint is satisfied,

indicating that the branch leading from the disjunct is the beginning of

a rule clause. In this case the action taken is to move up to a higher

branch of the disjunct in search of a fact clause. In our example above,

the execution path would move from the disjunct ''t SA-' to the node

''t SA2-'. If however the function 'ruleclause' fails, indicating that the

branch leading from the disjunct is not a rule clause, a second rule for

this situation fires:

«(position ?node)(direction forward)(type ?node disjunct)
«not(rule-clause(following ?node»»)
«position (next-level ?node»)(direction forward»)

and the execution path proceeds, as in normal search, to the next node.

Modelling this behaviour also necessitates adding a rule to those for

approaching disjuncts on backtracking, since there may be untried

branches representing rule clauses, which were not traversed as the

execution path initially moved forward. If the higher level branches

representing fact clauses had all been tried and failure had caused

backtracking, then these 'rule' branches, ignored the first time round,

would now be tried. In addition therefore to the normal rules covering

the action to be taken at disjuncts, the system must include a rule which

allows for encountering an untried 'next-level' node during

backtracking:

«(position ?node)(diredion backward)(type ?node disjunct)
«not{used(next-Ievel ?node»»)
«position (next-level ?node»)(direction forward»)

194

The constraint (not(used(next-Ievel ?node») checks the list of positions

in working memory to see if the 'next-level' node from the disjunct has

previously been recorded, if not, then the execution path now follows

this branch. In our program above, it would mean that after

backtracking through the fact 'a' because the subgoal 'c' had failed, the

rule clause 'a if x' would now be tried, Le, in fig.5.13, the branch

beginning with 't SA1-' would now be followed. Using these

replacement rules for action at a disjunct when the execution path is

moving in a forward direction and adding a rule to subsesquently catch

up on the untried rule clauses when it is moving in a backward

direction, gives us a ruleset to model the 'facts before rules'

misconception. Applied to the CCS representation of the program

above, the resulting execution path is as follows:

(beginasearch aifx rules)
(SP II lit FC1" lit SAIRHS" lit FB2"
"t SP1-" "t FC" "t SAl" "t FB"
lit SPIRHS-" "t SB-" "t SA" "t SX-"
lit SA-" lit SB2-" "t SB-" lit SX2_"
lit SA2-" lit FB2" lit SB1-" lit FX2"
lit sA2" lit FB" "t SBI II lit FX"
lit SA" "t SA-" "t SB" lit FA"
"t SB-" "t SA1-" "t SC-" "t SA3-"
lit SBl-" lit SAIRHS-" lit SCl-" "t FA3"
"t SB1" "t SX-" "t FC1" "t FA"
"t SB" "t SX1-" "t FC" "t FPIRHS"
lit SC-" lit SXl" lit SB-" lit FPl"
lit SCl-" Itt SX" lit SB2-" FP-)

5.5.4. One pointer per clause

Modelling this misconception involves replacing the rule applicable at

disjunct nodes when the execution path is moving in a forward

195

direction. The student who has this faulty model of the Prolog

interpreter imagines that if a clause has been previously used to satisfy a

subgoal, itmay not be used again, even on a fresh call. In the program:

pifa&b&c.
a.
a.
h

for instance, this would mean that on backtracking to the subgoal 'a'

and resatisfying it, a fresh call to 'b' would fail since, according to this

model of the interpreter, the fact 'b' has previously been used and is no

longer available. To model this entails reflecting the behaviour in

constructing the execution path from the CCS representation. When a

disjunct is reached in a forward direction, the normal 'next-level'

action is not always applicable. The determining factor is the previous

tra versal of a similar branch on an earlier occasion, even though this

branch was approached from a different level. Seen in relation to the

program above, the following diagram may help to illustrate this:

't S81- 't S81

't S82- 't FB2

'tSA1-'t SA1 t SA

't SA3- 't FA3
t SP1- 't SP1RHS-

't se-
Fig.S.13Once used, other instances of the branch are lopped off.

As can be seen from fig.5.l4, initially the execution path of the program

can successfully follow the branch beginning with ''t SAl-' leading to

disjunct 't SB-' and via 't SBl-' make a successful communication with

196

''t SB'. After traversing this branch, which leads to an unsuccessful

communication, denoted by ''t FC1-' and having unsuccessfully tried

the higher branch of ''t SB2-', the execution path returns to disjunct ''t

SA-' and follows the higher level branch beginning with ''t SA2-'. The

execution path again successfully reaches disjunct ''t 58-' and in normal

search should again make a successful communication with ''t SB' via

''t SBI'. However, in terms of the tree, we can think of this second

branch beginning with ''t SBI-' as having been lopped off. Since the

node ''t SBI-' has been recorded previously, even though at a different

level, the effect of the misconception being modelled is to assume that

this branch cannot be successful. The execution path returns to the

disjunct' SA-' without successfully communicating with ''t SB'. This

behaviour is reflected in the rule:

«(position ?node)(direction forward)(type ?node disjunct)
(tpreviously-usedtnext-level ?node»»
«position (up-levels ?node»(direction forward»)

The constraint of this rule, (previously-used(next-Ievel ?node» is a

check on whether or not the next node in the execution path has been

used before. If so, it cannot be used again, and communication with a

higher level node is looked for, in this case, unsuccessful

communication via 't SB2-. The function 'previously-used' checks to

find if a similarly named node, even if at a different level in the tree,

has been recorded in the list of positions in working memory. To do

this it makes use of the list of positions recorded to date and the data

from the CCS tree added at the initialisation to working memory. If it is

found that the node has been previously recorded, then the action of

the rule is to ignore that node and attempt a higher level node of that

name. If the function fails, indicating that the next node has not been

197

recorded before, even at a different level, then this rule fails and the

following one applies:

«(position ?node)(direction forward)(type ?node disjunct)
«not(previously-used(next-Ievel ?node)))))
«position (next-level ?node))(direction forward)))

Revising the disjunct rules for when the execution path is moving

forward completes the ruleset for modelling the 'onepointer per clause'

misconception. Using this ruleset, for the program given above at the

beginning of this subsection as an example, the system produces the

following execution path:

(SP "'t SB" "'t SA-" "'t SA3-"
"'t SP1-" "'t SC-" "'t SA2-" "'t FA3"
"'t SP1RH5-" "'t SC1-" "'t SA2" "'t FA-"
"'t SA-" "'t FC1" "'t SA" "e FP1RHS"
"'t SAl-" "'t FC" "'t SB-" "'t FP1"
"'t SA1" "'t SB-" "'t SB2-" FP-
"'t SAil "'t SB2-" "'t FB2" "'t SP2-"
"'t SB-" "'t FB2" "'t FB-" "'t FP2"
"'t SB1-" "'t FB-" "'t SA-" FP-)

"'t SB1"

thus mirroring the 'onepointer per clause' misconception being

modelled.

5.6. Summary

In this chapter we have described the development of a production rule

system used to produce correct and incorrect models of Prolog

backtracking in a selection of variable free Prolog programs. The system

does so by using information about possible program behaviours

generated from a semantic description of those programs. The faulty

models of the Prolog interpreter modelled here are in no way the only

198

ones formed by novices Prolog programmers. In addition to the

examples given above, it is of course possible to reproduce the

behaviour of models which reflect combinations of these

misconceptions. Combining the ruleset for the 'try once and pass' with

the relevant rules from the 'facts before rules' ruleset, or by combining

the 'one pointer per clause' ruleset with the relevant rules from the

'redo from left' ruleset models instances where a student suffers from a

combination of misconceptions. There are two principal criteria to be

used in determining which misconceptions and combined

misconceptions to model. The first, relating to the latter, is the

question of being able to separate out the misconceptions involved.

Where this is practical then it would be sensible to, consider their

inclusion. The second consideration, relating to both, is a matter of

how likely they are to occur. Misconceptions or combinations of

misconceptions which are met frequently enough to merit the

expectation that some novices in a given group will have formed these

particular models then merit their inclusion in the system both from a

diagnostic point of view and in the long term view for reasons of

efficiency. In the following chapter we discuss the use of these models

in diagnosis and report on an empirical study which was undertaken as

an evaluation of the work described in this and the preceding chapter.

199

Chapter Six
6. An evaluation.

As we have seen in chapter five, the properties of a production rule

system have meant that with relatively small changes to the basic

ruleset a range of faulty models of the Prolog interpreter can be

generated from the semantic description of the program concerned.

These properties stem from the requirements of a production rule

interpreter that the behaviour being modelled must be described clearly

in as general terms as possible and from the modularity inherent in

viewing a process as a series of steps, each independent but affecting the

final outcome by the order, type and frequency with which they are

performed. The long term goal of developing such a system would be

to use these properties to generate the individual execution models of

Prolog backtracking formed by novices, even when these do not

conform to the more common erroneous models. The construction of

these latter models is a first step in exploiting the use of formal

descriptions in diagnosing control flow errors and is one that

demonstrates the potential of this approach.

The current goal has been to generate models of documented

misconceptions from the given programs rather than pre-storing those

misconceptions for each program involved. This has been achieved by

using the semantic information generated from the given programs.

As an evaluation of the system, it was used to diagnose the results of a

second empirical study of novice Prolog programmers' models of

backtracking. In this chapter we report on that empirical work and

200

discuss the results of computer analysis of the data, juxtaposing this

with results obtained by a hand analysis of the same data.

6.1. A second empirical study

The immediate interest of the work discussed here centres on the

strengths and weaknesses of the computational models used and any

findings Significant to the development of this research into the use of

formal semantics in error diagnosis. The following sections give a brief

outline of the experiment from which the data was obtained

6.LL Subjects taking part

The subjects participating in this experiment, which took place in

summer 1988, were from a similar student background to those who

took part in the previous empirical study reported in chapter two. They

were distance learners taking an Open University degree course in

psychology, attending a summer school week at Sussex University.

They had completed a psychology project which involved

programming in Prolog and were approximately at the same stage in

their studies as third year undergraduate students. The project lasted

two and a half days. It consisted of initially designing an algorithm

which attempted to model a cognitive process, then implementing and

debugging a Prolog program based on this algorithm. During the

project they were free to ask for advice and help from the course tutors

at any time.

Prior to the summer school week all these students had studied a short

preparatory book-based introduction to Prolog [Eisenstadt 1987] as had

201

the students in the previous study,. This introductory booklet covers

basic concepts of Prolog, i.e. facts and queries, the query interpreter,

conjunctive queries, rules and database search. Students were expected

to have completed the book-based course and accompanying exercises.

Out of approximately seventy students who were available as subjects,

thirty-four participated in the experiment, on a purely voluntary basis

and analyses of the results were based upon the data obtained from

these subjects.

6.1.2. Experiment design

This experiment was closely linked to the one undertaken twelve

months previously, in that its immediate object was also to elicit from a

group of novice Prolog programmers their predictions of the control

flow in Prolog programs. Each subject was given six short programs

and asked to describe what she or he believed would be the action of the

Prolog interpreter in executing each program.

In contrast to the previous year, the experiment was designed as an on-

line questionnaire and a complete set of the screen displays, which

include the programs given, is included in Appendix Cl. In order to

restrict the area of errors which could be made, to those involving the

search and backtracking behaviour of the Prolog interpreter and in

some measure to constrain the range of interpretations of student

errors, a variable-free subset of Prolog was used. The programs chosen

were almost identical to those given to the subjects of the previous year

in the paper and pencil experiment, the exception being problem six

which in this experiment allowed for the 'rules before facts'

misconception [Fung et al 1987]. As before, they were chosen to be as

202

simple as possible, whilst being sufficiently complex to allow the

subject's answers to reflect her or his model of program execution.

The experiment was designed to run on a Macintosh, since these are the

machines on which subjects had carried out their summer school work,

so that they would feel reasonably at home using them. Preceded by an

introduction and optional explanatory screen displays, the six programs

were presented to the subjects in a series of windows, with a choice of

buttons in each indicating the possible steps of the Prolog interpreter.

Clicking on a particular button caused the words printed on it to appear

in the rectangular area below the buttons, allowing the subject to keep

track of steps they had already chosen. Subjects were able to edit their

responses during or at the end of their answers to the problems. To

make this clearer, we use the program:

a.
h
h
pifa&tb&tc.

and some reproductions of the window which would be presented to

the subject. On starting that particular problem, a subject would see the

following screen with the buttons representing the options in

predicting the steps of the Prolog interpreter.

203

(try p) (try a) (try b) (try c)

(fall p) (fall a) (fall c) (fall b)
~ucceid p) ~ucCiid a) (succeed b) (IUCCeedc)

CIk:k IICb buttoD tbat rept allep In tile path tbat you tbInk tile Prolos
IDterpreter taka 10 IIIISWeI' the query 'p', pven tile database Ibown below:

(100%accurate)a.
(almost certainly accurat.) (probably right)

(probably not accurat.) (not certain)
b.
b.
plfa&b&c. t'lgue ... d")

Plea. click whichever box sums M4TcsI to how accurate YOll/eel your prediction is:

Fig.6.1 Layout of window shown to student

Below the buttons is the rectangle in which their answers are recorded

and in the lower left hand comer is the given program.

(try p) (trya) (tryb) (tryc)
('all p) ('alia) (fall c) (fall b)

~ucce.d p) ~ucCeeda) (succeed b) (SUCCeedc)

t,ry p" t,ry a" "Iucceed a" .,ry b""lucceed b""ry c.. "fall c..

ClIck eacb bUUOn that represen1B a step In tile path tbat you tbInk the Proq
Interpreter takes 10answer the query 'p', &iven the database Ibown below:

(1000A»accurate)8.
b.
b.
P if 8 & b & c.

(almost certainly accurate)(probably right)
(probably not accurate) (not certain)

Ctlguessed")

Plea. click whichever box seems neaTest to how accuraJe YOIIfeel your prediction is.'

Fig.6.2 Window with student input

204

If the subject correctly predicts the execution of the program as far as the

failure of subgoal 'c', by clicking the appropriate buttons, the screen

would now look as above in fig.6.2. The lower right hand section of the

window, with buttons labelled, for example, "100%accurate" or "almost

certainly accurate", concerns 'confidence ratings' which will be

explained and discussed in subsection [6.1.4].

Subjects were invited to take their time over completing the

questionnaire, which was answered on an individual basis, without

help from the experimenter. It was explained to each subject that the

principal research interest served by the questionnaire was in obtaining

the subject's predictions of the Prolog interpreter's execution of the

various problems. The experimenter remained in the same room

however, available to expand verbally on the explanatory screens at the

beginning of the questionnaire and if the subject wished to do so, to

discuss the problems after the questionnaire had been completed.

6.1.3. Problem design

The problems set in the experiment were designed to allow certain

expected misconceptions to become apparent in the subjects'

predictions. The interpretation of the faulty models of program

execution which students' predictions provide, is an area which

provides ample scope for further research. In some cases the errors

which we have interpreted as symptomatic of certain underlying

misconception may well support an alternative interpretation, the

misconception 'try once and pass' being an example of this possible

ambiguity. In practice we have stayed with the interpretation of the

error types which we used in the previous empirical study and we

205

described in section [2.1.11. These error types include the

misconceptions which we have classed as 'redo from left', 'try once and

pass', 'one pointer per clause', 'facts before rules' and 'rules before

facts'. These last two misconceptions would only become apparent in

either problem five or problem six of the problems set, since these were

the only programs which included subgoals which had conditions, as

can be seen from examining the programs in Appendix Cl. The

misconception 'one pointer per clause' would not be expected to appear

in problem one since in the relevant program, on the failure subgoal

'b', it is not possible to resatisfy the first subgoal 'a', again, as can be seen

by referring to Appendix Cl. As mentioned above, the subjects were

given the opportunity at the beginning of the experiment to work

through an example problem to become familiar with the notation

before proceeding with the six set problems.

6.1.4. Confidence ratings

The 'confidence ratings' mentioned earlier, akin to those used by Payne

&: Squibb [1986] were included to satisfy two interests. The first of these

interests lay in whether or not the results of this would give a clear

indication of a stable relationship between the level of confidence

subjects felt in the accuracy of their answers and the actual accuracy of

their answers. The second interest lay in whether or not in cases of

faulty predictions it was possible to distinguish between those where

subjects were confident in their 'faulty' model and those where there

was an element of uncertainty which would indicate confusion rather

than a relatively stable control flow model. Subjects were asked to click

the confidence rating which they felt nearest to their own estimation of

206

their accuracy in each set of predictions. The ratings ranged from the

highest level of confidence, "100% accurate" to the lowest level, "I

guessed ". Their selected rating then appeared in the box to the left. As

with the program predictions, if the subjects wished to do so, they were

able to edit their selection at the time or before the end of the

experiment, although in practice very few did so.

6.1.5. Data analysis

The results of the experiment were analysed by machine and then by

hand. In both cases the basic classification of errors was made on the

same principles. The subject's prediction of the interpreter's actions in

each program was compared with the 'correct' prediction of the

interpreter's behaviour in that problem. Where a difference was found,

the subject's answer was then compared with the answer which would

have been produced if the student had based her or his prediction upon

one of the hypothesized faulty models of the interpreter described

earlier. If the subject's answer fitted the pattern produced using one of

these faulty models then it was noted as an error of that category,

otherwise, in machine-analysis it was returned as a nil match and in

hand analysis as an error of a complex sort,. This latter category will be

discussed more fully in the section reporting on the results of the

experiment. Since the main focus of this report is upon the use of

automatic analysis of the data the following section is devoted to giving

an outline of the method used and the structure of the processes

involved.

6.1.6. Machine-analysis

The object of machine-analysing the data in this experiment was to

evaluate the use of computational models constructed by the

207

production rule system described in the previous chapter. As input this

system uses the semantic description generated from the programs in

question. As we discussed in chapter four, producing this formal

description of a Prolog program gives us a fine-grained picture of its

execution, which can then be viewed as a search space of possible

execution paths. Screen dumps of the semantic representation of each

of the programs used in the experiment are included in Appendix D.

As discussed in chapter five, applying the ruleset for normal Prolog

search automatically traces the correct execution path through the

search tree. H the student's predicted path does not correspond to this,

then it is a question of determining which path has been taken.

Rulesets for the misconceptions modelled are then applied to the CCS

tree and the results used to determine if the student's prediction of the

interpreter's path matches one of those.

The predictions from each subject taking part in the experiment were

read into a datafile as she or he completed the problems. Each subject's

datafile was numbered, but was otherwise anonymous. On-line

analysis in real time was not possible due to hardware limitations and

was postponed until data collection was completed. The data was

analysed by a program based on a matching algorithm which compared

the data obtained from each student for each of the six programs, with

the output of the production rule system modelling the correct and

incorrect execution paths for each of the same programs. As noted

above this output was the result of applying the different rulesets to the

search tree produced from the semantic representation of each program.

The CCS representation of each particular execution path extracted in

208

this way from the search tree is automatically reduced to simplified

subsets before being passed to the matching algorithm to be compared

with the student data. i.e. the correct execution path derived from the

search tree for the program:

pifa.
a.

(SP("t SPl-"
(lit SPlRHS-"
(lit SA-"
(lit SAl-"
(lit SAl"
(lit SAil
(lit SPlRHS"
(lit SPl II

("SP_"»»»»»

\

would be reduced to ("try p" "try a" "succeed a" "succeed p"),

As the output from the application of the ruleset for each model is

supplied to the matching process, if a match with the student data is

found it is recorded as an error related to that particular misconception.

If no match is found, then a nil match is reported and the program

continues the analysis with the next ruleset. Among the questions that

were expected to be answered from using machine analysis were:

(a) how well do the computational models of the particular 'faulty'
execution paths correspond to those paths predicted by students
who, on hand analysis of their data, would be diagnosed as
exhibiting those particular control flow misconceptions?

(b) has machine-analysis a useful role to perform in data-analysis of this
sort, either replacing or augmenting hand-analysis?

(c) does the computational modelling of known errors appear to be an
efficient method of reducing the search space involved in a more
sophisticated automatic diagnosis of students' errors?

In the following section the results of machine and hand-analysis are
presented, prior to attempting to answer these questions.

209

6.2. Experiment results

The full results of machine-analysis of each problem for each student

can be found in Appendix C2 and the full results of hand-analysis in

Appendix C3. The number of answers analysed was 204. For machine-

analysis, as explained in the previous section, if the student's prediction

did not match the correct prediction for a problem, or any of the

common errors expected, a nil match was reported, so the answer was

counted as unanalysed, i.e it contained a complex error. In hand-

analysing the data, if it was not possible to classify the student's

prediction as correct or as one of the common errors, it was also classed

as complex, not able to be classified with any certainty.

6.2.1. Answers analysed

Out of the total number of answers to be analysed, 164 were able to be

analysed with reasonable certainty by hand, accounting for 80% of the

total, while 112 were able to be analysed by machine, accounting for 55%

of the total.

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Fig.6.3 total number of answers analysed successfully

210

The number of answers successfully analysed by machine accounted for

68% of those successfully analysed by hand. The table below, fig.6.4,

shows how this total was arrived at by comparing the number of

answers successfully analysed for each of the thirty-four subjects.

The different success rate and the factors which contributed to it will be

discussed fully in section [6.2.3]. Meanwhile it should be noted that the

answers of five subjects account for a large part of the difference

between the number of answers analysed successfully by machine and

the number analysed successfully by hand.

subject no

by hand

by machine

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
4 4 4 1 6 6 6 6 5 6 4 6 6 6 6 6 5
4 4 4 1 5 6 5 5 0 6 4 6 0 6 0 1 5

subject no

by hand

by machine

. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Is 1 S 14 S S s Is 14 Is s Is 11 S 4 12 1.1
Is 0 6 11 6 6 n Is In Is n 11 11 8 2 In 13
Fig.6.4 Subject by subject breakdown of answers

successfully analysed

6.2.2. Errors found

In the following figures, 'complex' errors indicate those cases

mentioned above, in which the students' predictions could not be

reasonably clearly accounted for and were not considered successfully

analysed. In the machine-analysis results shown below, these

'complex' errors represent the 'nil' matches.

211

complex

Rul~s first

Facts first

Try once
and pass

1

Fig.6.S Breakdown of 190 errors found by machine-analysis

The errors found were not widely spread across the classes of errors

expected. As is obvious from the above diagram (fig.6.S), the 'try once

and pass' misconception, in which the student does not appreciate that

any backtracking process takes place, was predominant.

It is also clear that in analysing the data by machine (see fig.6.S), the

number of 'complex' errors, i.e those reported as a nil match by the

computer-analysis, was considerably higher than that resulting from

hand-analysis, see fig.6.6 below. The factors which contribute to those

different results are discussed below.

o 10 20 30 40 50 60 70 80 90 100 110 120 130

Complex

Rules first

Facts first

Try once and pass

o 10 20 30 40 50 60 70 80 90 100 110 120 130
Fig.G.G breakdown of 184 errors found by hand-analysis

212

6.2.3. Differences between analyses

The principal difference between the two sets of results lay in the total

of errors classified as complex. In the case of machine analysis the only

information available was that provided by the algorithm modelling

the particular error, or combination of errors.

In cases where other factors distorted a student's prediction, even if

there was a basic pattern of a common error in that prediction, the

machine analysis could not successfully identify it.

The results of this can be seen in fig.6.7 overleaf, which compares the

total number of errors made by each student, as analysed by hand and by

machine. While machine-analysis reports a total of 92 complex errors

(diagnosed as errors but not satisfactorily analysed), hand-analysis

reports a total of only 40.

Factors accounting for the distortions which were unable to be detected

by machine analysis seem related to experiment design and/or to

information available for hand-analysis but not for machine-analysis.

In the hand-analysed results in Appendix C3, the probable contribution

of these factors to the higher number of successfully hand-analysed

errors has been acknowledged in the following ways:

213

error typ e. error typ es
Machine analysisHand analysis

3~b. ·~·~r·9.·!·!!9.~·~r.I!.!·~tr.!:'I~.ijJ.~~.~,·9.·~!!'I!.!?,;I't9j!!"iT" htY...\rJ!?·~r·~·~~·~!~~!r.~!.!~.~!!:!~..~.~.ml"~'~''1119J'~......·s·l..· ! - o -I ·..ir ..·..·· ~.-." '"'S''' "i'2'" .on·..·!· 1..._·..0 t ·o ·..· ·..·..2 · 5·..·
.........§ , .._ · ·..·0·..·..·.. · ··..0..· _ 2· s..· "i's'" , l if· ·r..· ·o· · ·..2 · 1··.. ~ ..
· 4 ..· '"'''''0''-''' .._ 0 "-1 0 _ .. '-'-'S-l"''S'" "i~'" -..~ ~ o..· ·t - ..o ·..· S · 5 ..· s·S · 'S 1' 0' ·0 6..· "i'S'" · 4· ·..r ·..' · 0 ·! , ·..I 6·s·s..· ·..· S ·..· "..;_ 0' · -0- ""6'" "s"."· S ·.. · ·..·;..· ·1' 0..-. 1 ·..·0 ·..' 6 ..
......... " 'S · 0..· · 0· _ 0 ·..· s..· "il'" · 4..·_ · ·o· Y' o ·.., ,.. I S·..···..·..s· · "S · _ ..r·_·..T• .. •.. •..O'..--r--·jr-r-,f· "i'I'" .._ ..4 ·r · 1" r ·..o· ·.1· •1"..•· ··6·..·
·..··... ·1· ·..··4· · o- ·..; ·o · r-......;--·T..·'S..· "i's'" .." (;- 1' ·',.. T.. • ··o··..·..···..·..·..·6·..·..· ··6·..···..·i·1'o·..·· S ··..;· t ·..O'· ·r ·..·..o·--r s·..·."I'H· 'S.......· 1"· ·;·..·..·..0..· ·· ·..·0·..·..···1..··6 ..
..·..s·rl · , 0 "1 '"0' 1 2......... '"'S''' '."1'1' _.!....... ..· 0 · · ·0 · 2 5 ..
•• I •••• '.~ -s ···..····0············' ··i~i····--"'0""'-' ····S···'s't"2' ··..·..1·..·· ~ ·..··..··U·········I········..o····· I·..·~·..·
....·i·l·3 ..· ·..4 1' · 0 · - 0·· ··s..· 's'rs' · 0 · 0' · 0 · ·..·..6 ·, 6..·....·.·r .. · · 'S..· ·, · O' I·..· O · .._ ..·0- ·..·s···'."14' ~ 0· · 0 ' 0 1 5 ..
·..··.·I·~·..·· ..·..··'S ·I ··o····..·.. ·· ···0·_·.. ·_··0·..· · 5··· 'i"t"S' ··.._··0· ·• ..•..···0···· 0 1 6 1 6 .
....·s·I·S · ~ · ·..r · M·..o· f·..· ·o · 6..· ·i"i".· ·..·o· l·..· o · ·..0 · · S · ~ ..
··..·s·I·7·..·· · ··4 r..·..·..o·..· ·,· o ,· ..., ..·_-, S..· ·...t·,· · 4 I··..0 ··..t·..·..·..o ··..··..· r ..· ·j..··s·..·
·..··s·1'8··..· ··S ·..·, ·o..·..·..·~·..· ·o t· o........·t s ..· 'i"i"8' S·M t········o········,····..·..o···················o····..·..)..··s·..·
.................... • 1 1 1.............................. .. 1 1 .

.....!.l! 9. I.. Q 1 !t ~ 1 ~ !..t~ Q l Q l Q .I. ~ .J ~ .

.....~.~.; ~ I ~ l·..··..··~..·· ·t ~··..· f ..··~..· ·i~..;· ~·"f· ·..~..·..···I'· ~ ·'· ·~··..· '·..·~ .· s·22 ..· ·..·..s ·..· r ·j· ·..o-"-r " ..·0 ·j"..6·.. '52'2' S·.." ..'· r 0 1 0 1 6 .

..·..s·2·'·.... .. 'S ""''''''0''''''''' · o,· t· o..·......'"'S''' 's2'3' · 'S· ' Cf· ·' ..· o· o..· r..!)..·.................... , 1'........ M....... . ~ , : : .·..··i·~·;··..· · ··;··..·..·, · l..·..·..·~··..~ ·t..· o·..-+i·..'i'~~'~ -.l· ··..~ ··..t·..·..···~·····..··!·· ··..~·..····..! ~ .
·....i·2S..·....· ·..3 ' · o ·..t··..· o· Y' 2· t"..s·.. "2'6' ·",,·"o"· ·l..·..·..')'..·..·i · o ·j·..·..··..if ..· ·j·..·ir"
~~-+ ..·..·· ·..·-' · · ~·..· - ·T- -·· · - - ,,~ - I I .

::~ ·..·..·~..·..·..I· ~-· ·i ·..~ ·T -·~· +·l..·i~-l..· ·~..· t ···..~·· ·t·..·..·..~··..··..·I·..··..··~·· ···I····~····
829 · 4.....-I -..r ·..'·_·cr·-j "1- ·j'·s..· '52'9 ",-, ·"if· ·j'·.."..·o·..,,·..·;·......·..S ·I....6....· i·'·o o..·- ..·~--o· r· ·o-·T·-..·S-·- ..i··..S..· '.,'0' -o ..-t· ·..o··..·..r ..·..·..o ··..·I·..·..···'S·· ·······5····

·····i·3··1"..·· ..·..···s··_- ··l· ··..j· · o.." t·........o·.......·j··..s..· 's,'I' ·..·S.......t..·· ·l....·..·'· ..·..···o··..·..··'··....····o·..·..···'····6·····..··i·3..2 · · ·3 ·..· · ·..1 ·t ·..o ·r-..·"2..-·· ..·s·.. '.','2' · -i..__•...· ·,..·..·..r..·..·..o..· ·+..·..·..,,·..·..·..'..··7..··
·..··i·33 · ..· ·,..· j..· ··o ·..·..r..--..o ·y-..";r-.."..fs ..· 'i'3'S' o· t..·..·..if..·..·j' O ··..'!'·........s·..·..···!·..·if··
··..·s·34·..·· · ··'3.._ ..·I ·..··o· ·...r ..·..·..o..· y........·i T..·s··· ""4' ..· ·2 y..·..···o·..·..·y·· ·..o ·..··j··········s····..···'····5····
......................·..·..·······..·i..···· _..··..!·· ··..····..··..,.········· , ..- ····..·····..····,··················1·····..·············;····..·······..····..1···· ··

: I 1 1 I;; I·..··fo·ter..·· ..·T2·9·....rTs· ..·"·r...·"·TT..·....~rtf......TT8·3 'fofir ·..·..s'S'....·r..··.."s..·..·..r....·..,...·....·T..··..'9'2"·..·..!..,'9'O·
Fig.6.7 Comparison of error totals

by hand-analysis and by machine-analysis

(a) Layout

Where the layout of the test may have influenced the form of the

student's answer in a way that was not anticipated in the experiment

design, this is noted by the letter 'L' after the problem concerned. For

214

example, the hand analysis of answers given by subject fifteen looks as

follows:

Subject 15
Problem result

1 T L
2 T L
3 T L
4 C L
5 T L
6 T L

This subject clearly followed the pattern
of the 'try once and pass' misconception
in each of the problems, so was classed as
showing this error in the results. In
addition she/he had in every problem
inserted an extra step after the initial "try
p", which in each case was "succeed p", as
shown below in fig.6.9

Fig.6.S hand-analysis results of subject 15.

In total this insertion of the step "succeed p" after the initial step to "try

p" occurred with regularity in the answers of four subjects.

<;
extra .,ep In_ned

"try p"
"succeed p"
"try a"
"succeed a"
"try b"
"succeed bot
''try cot
"fall CIf

Fig.6.9 Prediction given by subject 15 for problem one

It seems plausible that this extra step may have been a result of

constraints inferred by the subjects from the button layout. Having

tried "p" the subject could well have felt that it was logical to record the

finding of "p" in the data-base as successful, even though its conditions

were not yet satisfied. This decision would seem reasonable since there

was no button available which would equate to the state of 'holding'

while the subgoal(s) were tried.

215

@
(.aIlP)

(SUcceedP)

Fig.6.10 Layout of buttons for goal 'p'.

The probability of this reasoning process having taken place is

supported at a very informal level by comments passed by a number of

the subjects. While there had been no prior intention of collecting

protocols of the subjects' comments as they answered the problems, it

had, in the event been possible for the experimenter to observe and

listen to most of the subjects as they worked. On working through an

example problem, several mentioned the dilemma of deciding which

button to click if no immediate "fail" or "succeed" seemed appropriate.

Whatever its origin however, while the error 'try once and pass' was

still able to be recorded by hand-analysis, due to this 'extra' step, the

computer analysis was unable to record a satisfactory analysis.

(b) Meta-processing

The same difficulty for machine-analysis occurred where there appears

to have been some element of either 'meta' processing by the student or

belief that the Prolog interpreter possesses some 'meta-knowledge'

[Fung et al 1987] about the final outcome of the program. In the hand

analysis results, these cases have been noted by the letter 'M'. To

illustrate this, if we look at subject 9, for example, she/he has in every

case inserted the step "fail p" immediately after the initial step "try p",

although the interpreter would have not have taken this step until

after all ways of trying to prove 'p' had failed.

216

',ryp" ~ .
"fallp" ~
"'1 a" 'meta-dec/.lon '
"succeed a" Indicated he,.
"'1 btl
"succeed btl
"'1 cIt
"fall cIt

Fig.6.11 Prediction for problem one given by subject 9.

It cannot be ruled out that such answers may also have been influenced

by the layout of the buttons as hypothesised above. However there

seems a strong likelihood that also, or alternatively, the subject was

attributing a 'meta-knowledge' to the Prolog interpreter reminiscent of

the 'superbug' noted by Pea [1986]. It is also possible that she/he was

identifying her/his mental execution of the program with the processes

of the interpreter, the 'identity superbug' referred to by Taylor [1987].

Again, while accepting an open verdict on the origin of this false

prediction, a 'try once and pass' misconception, for instance, was

reasonably easy to see on hand-analysis of the answer. However, as the

answer was complicated by this additional 'meta' factor, it could not be

analysed successfully by machine.

(c) Abbreviations

There was yet another factor which accounted for some of the occasions

where there existed a sharp difference between the results of hand and

machine-analysis. In these cases it seemed the subject 'jumps' steps, i.e.

abbreviates the prediction path. Examples of 'abbreviated' predictions

given by subject twenty-eight are used to illustrate this, shown overleaf

in fig.6.12.

217

"ry pOI
"ry a"
"ry boo
"fall COO
''fall pOI

"ry pOI
"try a"
"ry bOO
"fall COO

"ry pOI
"ry a"
"ry boo
"fall c..

prob.1 prob.2 prob.3

Fig.6.12 'Abbreviated' answers of subject 28

Looked at during hand-analysis this can certainly be interpreted as

answers from a subject who judges that the interpreter tries to prove

each of the subgoals in order to prove the goal "p", and having tried

once, reports failure of the goal without, apparently, any attempts to

reprove the subgoals, i.e. a typical 'try once and pass' misconception.

Yet there is no record of the outcome of the attempts to prove the

subgoals, except the evidence implicit in the progression to the next

subgoal and the ending of the stepping process when subgoal 'c' fails.

This type of answer, when analysed by hand as showing evidence of

one of the more common errors, is followed by the letter 'A'. This is

intended to indicate that the analysis was made in the light of the fact

that the student was very probably using an abbreviated annotation to

describe the Prolog execution path. When analysed by machine, this

type of answer was recorded as a nil match.

(d) Stacking

A final case which contributed to the higher number of mistakes

successfully analysed by hand, was that of subject 16, whose predictions

consistently followed the pattern shown overleaf, which is her answer

to problem one.

218

"ry p"
"ry a"
"ry b"
"ry e"
"succeed a"
"succeed b"
''fall e"
"fall p"

Fig.6.13prediction given by subject 16

It is not clear exactly what is going on here. This particular subject did

indicate from initial comments when working through an example

problem that she thought the interpreter would call, i.e. 'try', all the

subgoals first and then report on their success or failure. The self-

assessment of accuracy for this subject (Appendix C4), confirms that this

did seem to be her model of the interpreter, since she showed a high

level of confidence in all her answers (level one for problems 1 to 4 and

level two for problems 5 and 6). This does not however, on hand-

analysis, hide the fact that she also showed that her model of the

interpreter did not account for any backtracking process, i.e. that there

was also a 'try once and pass' misconception. This subject's hand-

analysed results (Appendix C3) have the letter '5' added, indicating this

model of 'stacking' calls by the interpreter. In machine-analysis this

unusual pattern of prediction obscured the 'try once and pass' error,

which consequently was not recorded in the five cases in which it

happened.

In summary then, the differences between the results obtained by the

two methods of analysis appear to have their roots in the differences

between a method based on comparing expected models of control flow

generated from the formal description of the programs used, i.e. the

219

current form of machine-analysis being evaluated, and a method, hand-

analysis augmented by anecdotal evidence, where information about

the students' actual performance was able to be reasoned about. This is

significant in relation to the potential of the work reported here and

will be discussed more fully in chapter seven. In the following sub-

section we consider the results of asking the participants in the

experiment to assess their level of accuracy in predicting the execution

path of the Prolog interpreter.

6.2.4. Confidence rating results

A complete record of each subject's self-assessment of her or his

accuracy in each of the given problems is included in Appendix C4. As

noted in section three, the interest in this data centred firstly on

whether there was a reliable relationship between subjects' belief in

their accuracy and their actual accuracy and secondly on whether this

self-assessment would help to establish whether the models of the

Prolog interpreter shown by the subjects were stable, i.e. reflected a

subjects' confident belief in that model.

Work by Payne & Squibb [1986] in the domain of algebra, which

influenced the inclusion of this self-assessment in the current

experiment, did show a positive correlation between subjects' self-

judgement of their performance and their actual performance. In

contrast, the results in this experiment did not allow any clear-cut

relation to be made. In general they did not indicate that self-

220

assessment of performance was a reliable indicator of actual

performance.

In the following brief discussion of these results, we are looking at three

basic levels of confidence indicated by subjects. Those most confident in

their own accuracy, recording that they were 100% sure that their

predictions were accurate are referred to as showing 'level one'

confidence. Those recording that they were probably right or almost

certainly right are referred to as showing 'level two' confidence.

Subjects who recorded that they were uncertain or probably wrong are

referred to as showing 'level three' confidence. This has been taken as

the lowest level of confidence since none of the subjects used the option

'I guessed' to describe their predictions.

Corresponding to these 'confidence in their accuracy' levels, three

levels were used to describe the actual accuracy of the subjects' answers.

Level one accuracy is used to describe cases where the subject's

prediction was correct. Level two is used to describe predictions which

were not wholly accurate, but the pattern of which could be interpreted

as belonging to one of the more common errors. Level three is used to

describe predictions which were not accurate and not able to be

interpreted. It was on this basis that the data was checked to see

whether or not the levels of confidence expressed by the subjects tallied

with the levels of actual accuracy registered for their predictions. The

overall picture of the correlation between expected accuracy and actual

accuracy was ambiguous. Out of a total of 204 predictions of the

accuracy of the answer given (predictions for each of six problems from

221

34 subjects), 103 of those predictions coincided with the actual accuracy

of their answer. Of the remaining 101 predictions, in 77 cases the actual

accuracy was lower than predicted and in 24 cases higher than predicted.

In the table below (fig.6.14), the abbreviation NI A is used where a

particular outcome is not possible, e.g. a person predicting the highest

level of confidence could not achieve any higher level of accuracy.

level of accuracy achieved
level of accuracy one level two levels one level two levels number ofpredicted same ~ower lower higher higher predictions

1 17 53 9 N/A N/A 79

2 70 15 N/A 15 N/A 100

-3 16 N/A N/A 9 0 25

totals 103 68 9 24 0 204

Fig.6.14.Breakdown of total number of predictions

A scattergram based on the figures above shows these results more

graphically.

level of ccuracy

3 3

2 2

1 1

0 0
0 1 2 3

level of confidence in accuracy

Fig.6.15 Relationship between confidence and accuracy

222

In the light of these findings one can justifiably conclude that it did not

appear to be the case that subjects participating in this study had a

reliable 'meta-view' of the accuracy of their own performance. The

following diagram illustrates this with some individual cases. Out of

the six students (shown below) who recorded level one confidence in

their accuracy, only four actually achieved level one accuracy and in

each case that was in only one out of the six problems set.

In each ca.. the top row of numbers Indlcat .. the confidence
lev. I recorded by the .ubJect for .. ch of the .Ix problem., the
bottom row Indlcat •• the actuellevel of accuracy recorded.

812 822

I \ r21 ~ 1\ 1 ~ 1 : I 1 ~ 1121 ~ 1~ 1 ~ 1 ~ 1

524 s33

1 : 1
1
21; I: 1 : I; 1 1 : 1~ 1 ~ 1~ 1~ I~1

Fig.6.16 Some individual cases showing differences
between self-assessed confidence ratings of accuracy and actual accuracy

The second interest in the results of the 'confidence rating' was to

consider whether it would give any insight into the consistency with

which subjects held a particular model of the interpreter, i.e, if a student

records "100%" confidence in the accuracy of each of her Ihis answers

and in fact each of her Ihis answers reflects a 'try once and pass'

misconception, then it would seem to confirm that the student is being

consistent in her Ihis belief in that particular model of the interpreter.

223

However, this hypothesis could not be confirmed. In the answers of

twenty-two out of the thirty-four subjects, each of those twenty-two

subjects exhibited a consistent model of the interpreter in at least four

out of the six given programs. As we have seen above though (fig.6.16),

only six of those students expressed complete confidence in the accuracy

of each of their answers. From these results it was not possible to use

the self-assessed confidence rating as grounds for supporting the theory

that the subject consistently believes in a particular model of the

interpreter. Nevertheless, the results did reflect that there was a certain

consistency in the appearance of a particular model of the interpreter,

the 'try once and pass' model and this is considered in the following

section.

6.2.5. Discussion of results

The main area of interest in the results of this experiment is that of

evaluating the automatic analysis. This clearly and necessarily relates

to the empirical data obtained in the course of carrying out the

experiment. The range of more commonly met errors found in

students' answers and successfully detected by machine-analysis in this

experiment was determined by two factors. Firstly, the number of

models that the system was programmed to generate for any given

problem and secondly, the number of models represented by the

students' predictions. As it happened, contrary to what one might

expect, the range of models exhibited in the students' predictions in this

study was narrower than that of the models able to be generated for the

analysis.

224

This somewhat unexpected result can be regarded as the outcome of a

combination of factors. One of the main objectives of the Open

University summer school project which forms part of the psychology

course, is to give students hands-on experience of using computers in

cognitive modelling. The proportion of students who have had

previous computing experience differs from year to year. In addition to

the introductory reading and exercises in Prolog which they are

expected to complete prior to summer school, the students have an

overview lecture on Prolog from tutors at summer school. The

algorithms and programs subsequently developed by students in the

course of completing their projects vary enormously, both among the

groups in a particular year and from year to year with different sets of

students. To a large extent the models of Prolog formed by the subjects

participating in the experiment reported here are influenced by this

combination of variables, i.e. the extent to which students prepared

themselves for the programming content of the project, the differing

teaching styles of tutors and consequently differing emphases laid on

certain aspects of Prolog, the type of programs the students chose to

implement and the extent to which individuals in the groups involved

themselves in the programming task.

It is difficult to say which of these was the determinant contributory

factor, but the most striking feature of students' predictions in this

study, was the consistency with which one particular model of the

backtracking process was exhibited in students' answers. This

consistency held true not only across the answers of each subject but

also across the range of subjects. As noted in section [6.2.4]the model in

question is one described earlier as typifying the 'try once and pass'

225

misconception. A student who has formed this model of Prolog reports

failure of the program on the first failure of a subgoal of that program.

She/he appears to be unaware of the exhaustive search that is

conducted before the interpreter finally reports that a goal is

unsuccessful.

The significance of the predominance of this 'try once and pass' error

was that some computational models symptomatic of other

backtracking misconceptions were effectively unevaluated. To

compensate for this, the data from the similar experiment of the

previous year (discussed earlier in chapter two) were analysed

retrospectively by machine. The results of this analysis are discussed

below in section[6.2.6].

6.2.6. Machine-analysis of 1987 summer school experiment

The hand-analysed results of the experiment conducted with the

summer school subjects of 1987 which are essential to this discussion

can be found in Appendix A. Figure 6.17 below shows the overall

number of errors. The term 'unidentified errors' is used here to

represent complex errors which were not able to be analysed with any

degree of certainty.

un Identilled errors !1!!iilllilillllil!il~lliil::i::~~:::Illlilll!llllllillll~lllilllI111Iil!i~liilllll!

Identified errrors

o 20 ~o 60 80 100 120
Fig.6.17 Total number of errors, hand-analysis,1987 data.

226

As explained in section[6.2.5] above, the objective in re-analysing this

1987 data by machine was to widen the evaluation of the machine-

analysis program developed for use on summer school 1988 data.

o 5 10 15 20 25 30 35 40 45

meta -k nowledqe

rules-racts exclusion

redo-f-I-keeping pointers

racts before ru les

o ne po inter per e la use

try 0 nee a nd pass

redo from lett

35%

o 5 10 15 20 25 30 35 40 45
number of times each error occurred

Fig.6.18 Breakdown of identified errors, hand-analysis, 1987.

In contrast to the narrow range of errors found in the 1988 study, data

obtained by hand-analysis from the 1987 data showed that students

participating in that experiment had made a large variety of errors.

The 'try once and pass' misconception appeared in the answers of only

three subjects. The corollary to this was that the remainder of the

thirty-two subjects showed an abundance of models of the backtracking

process, the more easily identified of which are shown above in fig.6.18.

The number of unidentified errors posed the same problems for

machine-analysis as did their equivalent, the 'complex' errors of the

1988study.

227

The computational models of errors were accurate in diagnosing

particular errors where these occurred in isolation. In cases where the

subject had compounded the error with other errors, this machine-

analysis was unable to cope. The full results of subjecting the 1987data

to machine-analysis are included in Appendix CS.

number of times
error made45r----------------------~========:,--------

40 +--------iil"'~

35+-------
30+--------~~
25+---------~
20+-------w:.i
15+-------..,......,....
10+---------~r~~
5+-fI""~
oWVAlW

number of times
error made

rz by hand

1m by machine "'_--·35

try once and pass onepointer per facts first redo from left
clause

Fig.6.19 Differences, hand/machine-analysis, 1987data

The diagram above illustrates the difference in error detection between

hand and machine-analysis for the four misconceptions shown.

As would be expected in view of the restrictive effect of the 'try once

and pass' error, machine-analysis detected six out of the seven occasions

when this occurred in subjects' answers. In other cases the detection

rate was very different from that achieved by hand-analysis.

228

subject problem

29 1 2 3 4 5 6

redo-f-Ieft iii
try-once

bne pointer

lunldentlflable II
facts first

..I. ",..,"
rules-tacts-excl

Imeta-knowledg

1 2 3 4 5 6

Fig.6.20 Hand-analysis results for subject 29,1987 data

The 'redo from left' misconception was found in the work of six
subjects, occurring in a total of twenty answers, yet it was not detected by
machine-analysis on any occasion. In every case this particular error
was combined with others, as in the example shown above (fig.6.20).

subject problem subject problem

6 1 2 :) " 5 6 8 1 2 :) " 5 6

redo-f-left redo-f-left

t~nce try.cnee

pne pointer pne pointer

~nidentifiable ~ ~nidentifiable ~ ";:':«0:'

facts first I facts first I
redoofPointers I- .: .. -,.........
rules.facts -e xc:1 Irules-faets-exc:1

,,~t ...-knuw,,:dge rnete.-kr,,,,w,cuwc m I]
(o;!~

1 2 3 " 5 6 1 2 :) 4 5 6

Fig.6.21 Results of hand-analysis of subjects 6 and 8, 1987 data

229

This was also the case to a lesser extent, for other errors such as the

'facts first' misconception, two examples of which are shown in fig.6.21

of the previous page.

The one pointer per clause misconception occurred in total in forty-two

answers of the subjects who participated in the 1987 experiment. It was

detected by machine analysis in only twenty-two of these cases, again

because the error pattern was distorted by other errors.

subject problem

5 1 2 3 4 5 6

redo-t~ett

try.cnce

pne pointer

...,id"ntitiable ~

facts first

.'_0. _
,....... 'l" ..,""':r~

Il'\Iles '-., m
"'et8.~nowledgE

1 2 3 4 5 6

Fig.6.22 Results of subject 5, hand-analysis, 1987data.

The exercise of analysing the 1987 data by machine served its purpose in

that it tested the accuracy of the computational models of errors which

had been developed using the CCS formalism. No incorrect positive

diagnosis was made by the automated analyser. It also highlighted the

point that awareness of likely mistakes and the ability to spot the more

common errors quickly are important facets of diagnostic expertise, but

as the only means of diagnosis, are insufficient. Both in the main

230

experiment described in this paper and in reviewing the data of the

summer school 1987 experiment, machine-analysis using models of

common errors exposed some of the limitations involved. These will

be discussed below.

6.3. Machine-analysis comments

As explained earlier, the use of the models, generated and employed in

the diagnosis of errors in a selection of Prolog programs was to serve

two purposes. The immediate goal was to explore the use of a formal

semantics in allowing the generation of these models from the Prolog

programs in order to use them for diagnosing novices' control flow

misconceptions, rather than pre-storing them for each particular

program. The second goal was to evaluate the use of the models

generated in this way as a means of reducing the search space in any

further development of the production rule system. A future

development of this system would attempt to generate models of the

Prolog interpreter from the student input rather than matching student

input with models generated by the system. Models such as those

constructed in this work could then be usefully employed as heuristics

in such future development. The questions asked of the models used

in this evaluation are those we posed earlier. Do they produce accurate

accounts of the misconceptions they are designed to model? Are they of

practical use in augmenting or replacing hand-analysis in contexts

similar to the one in which they were used? Are these models likely to

be of use in reducing the search space in a diagnostic context?

231

The answers to these questions must be qualified ones. To the question

of whether the use of formal semantics would allow the generation of

accurate models of the misconceptions discussed, the answer seems

clear. The results of the machine-analysis (Appendix C2), show that the

models produced accurately reflected the predictions of those students

whose answers, faulty or otherwise, clearly indicated that they were

drawing on that particular model of the interpreter. The applicability of

that accuracy is, however, restricted. As we have discussed earlier, there

were cases in which the particular errors modelled were unable to be

detected in the students' answers, although they were judged to be there

in hand-analysis. This was due to additional 'distortions' of the

expected model. These distortions arose from a variety of sources, as

described in section [6.2.3], in some cases from factors perhaps

introduced by the constraints of the experiment design, in others

perhaps by the presence of additional misconceptions held by the

subjects or even by the individual's approach to the task of recording

her Ihis predictions. This restricted applicability becomes of more or

less consequence according to the context of use.

It is this consideration of context which also gives rise to a qualification

which must accompany the answer to the second question, 'Are they of

practical use?' The answer 'yes' is justified because the use of the error

models computationally generated for each of the programs represented

a considerable reduction in the number of answers which needed to be

hand-analysed. Sixty-eight percent of those answers successfully

analysed by hand were also successfully analysed using the

computational models of errors. It must, however, be noted that the

232

limits of the usefulness of such models can soon be reached. To add to

the scope of these models by incorporating the ability to generate

'distortions' learned from the experience gained in one experiment

would perhaps to some degree extend those limits, but essentially will

do nothing to remove them. The experience of Stephen Payne [Payne

& Squibb 1986] and others [Brown & Burton 1978] in the domains of

algebra and arithmetic, respectively, has shown that clearly there are

cases where students do apply 'buggy' models of procedures which

account for a percentage of their errors. As their work has also shown,

it is not so clear how far those 'buggy' models may be generalised across

any given domain and how many 'buggy' models must be incorporated

to account for all the student errors found. These limitations are not

insignificant and will be returned to in a later discussion. In sum, the

models such as those constructed and tested in this experiment are

useful in a certain context. Used as the sole method of analysis, they

lack analytical power unless a means of reasoning about the student's

work is also incorporated in the system, but they have shown

themselves to be useful in reducing the search task of analysing data in

automatic analysis, Le. the longer term context envisaged for their use.

6.4. Summary

In this chapter we have reported on a second empirical study. The data

obtained from this study were used to evaluate the computational

models of noted misconceptions of the Prolog interpreter. The hand-

analysis of this data obtained from the 1988 summer school study, in

combination with remarks informally noted while participants were

working, produced several points of interest. It was apparent how

233

quickly subjects had formed specific models of the Prolog interpreter,

which they often applied reasonably consistently to each of the

programs given. For some subjects it was this 'consistent' or

mechanistic aspect of the interpreter which had made most impression.

Several participants passed remarks to the effect that whatever

procedure was followed by the interpreter would necessarily be

followed consistently. These subjects used this as a guideline in their

predictions, even to the point of making such remarks as "well, in

problem 'x' it would have taken those steps, so it would have to do the

same here". It seems the experiment itself was playing a part in the

learning process of these subjects, a phenomenon observed by [Hook,

Taylor & du Boulay 1988].

The difference between the variety of models exhibited in the data

obtained from the 1987 summer school study and the predominance of

one particular model in the data obtained from this second empirical

study in 1988 was also noteworthy. As discussed above, this must be

seen as the result of several factors, rarely constant from year to year,

which contribute to the formation of subjects' execution models of

Prolog. This may be viewed as grounds for placing more emphasis on

co-ordination of teaching material in an attempt to stimulate formation

of the most suitable model as quickly as possible [Pain & Bundy 1987],

[Brna,Bundy, Pain & Lynch 1987]. An interesting alternative has been

put forward by [Hook, Taylor & du Boulay 1988] in the suggestion that

for some students this initial forming of erroneous and sometimes

inconsistent models of the interpreter can play an important part in the

learning process.

234

The questions asked of the machine-analysis evaluation being

undertaken were answered, albeit with qualifications. Given the extra

data from the 1987 experiment, it was possible to use and evaluate the

computational models constructed which were generated from the

semantic descriptions of the programs in the experiment. Their use has

shown that a formal semantics can successfully produce accurate

computational models of Prolog backtracking errors.

Within the limits discussed in section [6.3], these models of common

errors were able to fulfil a useful role in reducing the number of

answers which needed more individual attention.

In the domain of algebra, Payne & Squibb [1986] point out that in

Intelligent Tutoring, "using a pre-stored catalogue of mal-rules is

unlikely to be a rewarding strategy".

This is no less true in programming. To achieve a consistently high

rate of successful error diagnosis in this way entails an unacceptably

high number of stored errors and fails to provide any flexibility of

diagnosis in reaction to individual student input which does not accord

with those errors.

The generation of models of more commonly found misconceptions of

the Prolog interpreter and subsesquent use of these in diagnosis is,

however, a significant step in the path away from the prestored error

235

approach. It is an important step, demonstrating some of the potential

of applying the central ideas of Milner's CCS to error diagnosis.

In the following chapter we take an overall look at what has been

achieved in this current work. We will consider what we have learnt

in the course of applying those ideas to Prolog and what contribution it

has made to research in this area. We will outline how the work

reported here can be situated within the larger framework of a tutoring

system and how other aspects of the ideas put forward in Milner's CCS

can be exploited in future research.

236

Chapter Seven

7. Conclusions

The goal of the work reported in this thesis was to explore the potential

of a formal semantics in developing a diagnostic component of a

tutoring module for novice programmers. Research undertaken in the

course of that exploration focused upon a semantic-based diagnosis of

novices' backtracking errors in Prolog. The formal semantics chosen

was used to give a detailed description of a subset of Prolog As described

in [section 4].this subset did not encompass the 'cut' or variables. The

information generated from this description was used by a simple

production rule system to diagnose a selection of control flow errors

which we interpreted as being symptomatic of certain underlying

misconceptions of the Prolog interpreter. The current research has

focussed on investigating the viability of using a formal semantics as a

means of resolving some of the problems faced in student modelling.

In this chapter we briefly recapitulate what was achieved in the course of

that research, discuss it within the wider context of intelligent tutoring

systems and indicate some directions which future work in this area

could usefully take.

7.1. Achievements
.. An initial taxonomy of Prolog novices' control flow errors
.. A study of novices' models of the Prolog interpreter
.. Development of a machine-analysis tool
.. Development of a production rule description language
.. A computer-based empirical study

237

The programming language Prolog was chosen as the domain in which

to explore the use of formal semantics in student modelling for

intelligent tutoring systems. An essential task was to define an area

within the domain which was suitable for this exploration. As a first

step, an initial taxonomy of Prolog novices' difficulties was undertaken.

This taxonomy highlighted the difficulties which understanding control

flow in Prolog presents for those first learning the language. An

empirical experiment was then conducted which revealed in more

detail the faulty models which novices form of the Prolog interpreter.

The insight gained from this study indicated that this would be a fruitful

aspect of the domain for study. Using a formalism based on Milner's

CCS, a machine-analysis diagnostic tool was developed. This tool

utilises information obtained from a detailed semantic representation

generated from each Prolog program being used. A production rule

system, for which a description language of the domain was developed,

formed an important part of this machine-analysis system. The system

was successfully used to identify and diagnose a number of the

underlying misconceptions which novices have of the backtracking

process in Prolog. In the following subsections we will look at each of

these goals achieved and identify the key contributions each makes to

student modelling in intelligent tutoring systems.

7.1.1. An initial taxonomy of Prolog novices' control flow errors

It Indicated the links between errors and misconceptions
It Highlighted the need for more empirical research in this area
It Provided a framework for investigating control flow errors in Prolog

The compiling of an initial taxonomy of control flow errors in Prolog

[Fung et al 1987]was one of the initial steps in the research reported in

238

this thesis. The taxonomy highlighted the need for empirical work to

investigate the underlying causes of those errors more closely. It

pointed out the possible links between the errors students make and the

underlying misunderstandings from which these errors arise. By setting

out, in an orderly way, the difficulties which the procedural aspect of

Prolog presented for novices, the study provided a useful framework for

discussion and investigation of Prolog control flow errors.

7.1.2. A study of novices' models of the Prolog interpreter

.. Provided detailed information on students' models of Prolog
backtracking

.. Provided insight into the links between errors and underlying
misconceptions

.. Indicated the effects of vocabulary used in teaching programming

.. Highlighted the need to clarify the procedural nature of Prolog

As a result of studying novices' control flow errors, it was decided to

investigate in more detail the models which novices form of the Prolog

interpreter. A study was made of students' expectations of Prolog

program execution in cases where this would normally involve the

backtracking process [Fung 1987].

The results corroborated existing research results in this area [Coombs &

Stell 1975], [Taylor & du Boulay 1986]. They also produced examples of

faulty models of the interpreter which were not anticipated but which

appeared relatively consistently in the data obtained.

In a number of cases the erroneous predictions of program execution

followed a pattern which indicated that they reflect an underlying

239

misunderstanding of Prolog control flow. The study strengthened the

hypothesis that certain errors are linked to a faulty model of the

interpreter.

The data obtained pointed to the likelihood that certain of the

misconceptions noted in this study may well occur as a result of the

vocabulary used in teaching Prolog. This was particularly noticeable in

the case of references to 'rules' and 'facts'.

On many courses the procedural aspect of Prolog is not stressed in the

first stages of learning. This first empirical study confirmed that

students very quickly do begin to form some model o{ the procedural

nature of Prolog, whether correct or incorrect. Early programs however,

are often of the 'family relationship' kind, in which the solution is so

related to everyday knowledge that an understanding of the underlying

procedural behaviour of the interpreter is unnecessary.

The finding in this study that students begin at a very early stage to build

models of program execution, strengthens support for the belief that in

order to help student form correct models, this procedural aspect of

Prolog should be clarified at the outset of learning the language [Bundy

et aI1985], [Eisenstadt &: Brayshaw 1987].

7.1.3 The development of a machine-analysis tool

.. A way of formally describing procedural semantics of Prolog programs

.. Allows the generation of semantic descriptions of program behaviours

.. Offers a means of modelling novices' misconceptions

.. Facilitates the diagnosis of underlying misunderstandings

240

A central part of the research is the development of a machine-analysis

tool to be used for diagnostic purposes. To do this, the ideas of CCS are

translated into the context of formally describing Prolog programs.

Consequently these formal descriptions are used to generate the

behaviours which those programs could produce. This development

makes use of the information gleaned from the earlier empirical study

and demonstrates the possibility of using a formal semantics to

construct models of the Prolog interpreter.

Formal descriptions of the programs which had been selected for the

empirical study were produced and from these, models were generated

of the more common misconceptions which were encountered in that

study. These models were then incorporated into the machine-analysis

tool, which was subsequently successfully used to diagnose students'

misunderstandings of the Prolog interpreter, using the data obtained

from a second empirical study.

7.1.4. The development of production rule description language

It Provides a clear and precise description of the domain language
It Allows production-rule modelling of program behaviours
It Can be used to facilitate the automatic construction of diagnostic models

An important component of the machine-analysis tool is a production-

rule system. The system was developed as a means of constructing

241

correct and incorrect models of Prolog execution from the formal

semantic descriptions generated from the given programs.

For this production-rule system it was necessary to develop a description

language of the domain. The importance of the description language

lies in the need to represent as cleanly and clearly as possible the actions

taken in program execution.

The description language essentially forms the building blocks from

which models of execution are constructed and as such is of significant

importance in the present and future development of the diagnostic

module. Its development is an important element in extending the

system to incorporate machine-learning techniques.

7.1.5. Machine-analysis of a computer-based empirical study

• Showed the accuracy of models of misconceptions
• Offered successful machine-analysis of students' predictions
• Indicated fadors affecting novices' formation of execution models

A second empirical study of novices' models of the Prolog interpreter

[Fung 1988] was undertaken to evaluate the machine-analysis tool

which had been developed. The study was computer-based and the

subjects' answers were captured for automatic analysis.

Analysis of the results by machine showed that some students had

formed faulty models of the Prolog interpreter which reflected

underlying misconceptions of program execution. These were able to be

242

detected and classified as such by the machine-analysis tool since they

corresponded to models, generated from the formal descriptions of

programs, which mirrored these misconceptions.

A comparison of the machine-analysis with a hand-analysis of the same

results showed a smaller number of answers accurately diagnosed by

machine. Inspection of the data reveals however that the answers of a

relatively small number of subjects account for this difference. The

principal factor which accounted for successful hand-analysis where in

some cases machine-analysis was unsuccessful was the additional

anecdotal evidence that was available to supplement hand-analysis.

This evidence showed that for a few subjects, the actual layout of the

experiment design may have influenced their responses. For one or two

others, their interpretation of explanations of Prolog control flow, given

to them by their tutors in the course of learning the language,

determined their expectations of program behaviour.

The data obtained from the study presented interesting indicators of the

factors which contribute to the models of program execution which

novices form. These results confirmed that the different manner in

which Prolog is presented to the students and the structure of the

programs which students encounter in their early learning of the

language, play an important part in shaping their models of the

interpreter [section 6.2.5].

243

7.2. The significance of these achievements for intelligent tutoring

As we discussed in section [1.4] a successful computer tutoring system

will consist of a combination of components, which, used in

conjuriction with each other, assist the task of learning in the given

domain. The research reported here must be considered as the

development of one component within this larger framework. The

goals achieved in developing the diagnostic component described here

can be seen as contributing in three important ways to the ultimate goal

of building intelligent systems for tutoring programming languages:

in the contribution they make to the task of developing diagnosis in
tutoring systems which will operate at a level that goes beyond the
more superficial detection of errors.

in the contribution which they make to the search for a means of
student modelling that can be generalised across a range of
programming languages.

in the contribution which they make to existing empirical research
into novices' difficulties, the understanding of which is a
prerequisite to intelligent tutoring.

In the subsections below we look in turn at each of these areas of

contribution.

7.2.1. A contribution to diagnosis in tutoring systems

It A move away from reliance on pre-stored information
It A more flexible solution than existing meta-interpreters
It A step towards analysis of underlying causes of errors
It The potential of more flexible diagnostic modelling

244

A major problem to be tackled in the context of student modelling is the

difficulty of relating errors to underlying misconceptions which give

rise to those errors.

The ideas put forward and developed in the present research are a

means of moving away from the concept of 'mal-rules' and 'bug'

catalogues which need to be prestored for each program being used for

tutoring purposes. The initial exploration of the use of a formal

semantics has provided, in the area in which it has been employed, a

starting point for a new approach to the problem.

The machine-analysis described here uses the knowledge of Prolog

search and of more commonly found misconceptions to reproduce

models of these and check them against given data. The generation of

the space of possible behaviours for the individual programs without

the need for pre-wired meta-interpreters provides the possibility of

linking back errors to underlying behaviour.

The production rule description language developed is a means of

extending this process to building a model which reflects the underlying

behaviour of the individual student's model of Prolog execution. As we

pointed out earlier [section 1.3], most approaches to the student

modelling problem have been in terms of pre-stored 'mal-rules' or 'bug

catalogues'. Employing the production rule description language as a

means of constructing models gives a potential flexibility which is not

feasible in current systems.

245

7.2.2 A contribution to student modelling

.. Offers a general solution to modelling programming languages

.. Provides a richer representation of domain knowledge for use in
student modelling

The case, put forward in this thesis, for using a formal semantics has

been explored in a particular context, that of Prolog control flow. The

work in this research has shown that generating the semantic

representation of the programs being tutored has potential that is

relevant to student modelling in an intelligent tutoring system for

Prolog.

The use of a formal semantics is not however limited to this particular

application. The contribution of formal semantics to this work must be

seen in the wider context of its possible contribution to any tutoring

system for programming languages.

7.2.3. A contribution to empirical research

.. It has provided additional insight into Prolog novices' difficulties

.. It has given indicators for teaching strategies

.. It holds implications for the teaching curriculum

The empirical studies of novices' expectations of Prolog control flow

looked in detail at the erroneous models students have of program

execution. These models reflected the difficulties which students have

in understanding the procedural nature of Prolog execution. The

246

studies investigated the likely misconceptions which led to those faulty

models and the findings have implications for the building of tutoring

systems for programming languages. The studies have suggested that

the link between the way in which the language is taught and the

models of that language which the students form is a close one.

Data obtained from the empirical studies indicate that the vocabulary

used in teaching the programming language and the early programs

which are used to introduce the language must be carefully chosen. In

constructing a tutoring system these factors must be taken into account

and reflected both in the teaching curriculum and teaching strategies of

the computer tutor.

7.2.4. Summary

In this section we have outlined the importance of the work in this

thesis in relation to student modelling and its contribution to research

in the field of intelligent tutoring systems. In the following section we

discuss the immediate next steps which should be taken to extend this

work and in conclusion look at the longer term work which can be

undertaken on the basis of the concepts explored in this thesis.

7.3. Future diredions

The immediate next steps in relation to the present research should be

to extend the existing prototype of a diagnostic module for Prolog. In a

broader context future work would be to investigate the use of formal

semantics in intelligent tutoring systems for programming languages

other than Prolog. We will look first at extensions which should be

247

made to the existing system before going on to consider the direction

this work could follow on a wider scale than explored in this thesis.

7.3.1. Extensions to existing work

• Expand the model-building potential
• Adapt the system to include variables
• Consider cases of unification errors
• Develop the system to be a real-time diagnostic tool

The existing system can expand its potential for constructing models

from student input, using the production-rule description language to

do so. This extension would incorporate machine learning techniques

to infer decision rules at the relevant choice points in the semantic

descriptions. Where a faulty model of program execution constructed in

this way is encountered relatively consistently, then this knowledge

could be used to provide appropriate tutorial help for the user. This

would also begin to address the question of multiple errors, which the

current system does not tackle in a disciplined way.

In addition to this, the system should be extended to include variables.

For the present purposes a variable free subset of Prolog is used, so the

current system does not need to exploit the power of the CCS system to

incorporate variables and value passing. An extension of this work

would do so.

At an intuitive level, our miniature retailing system described in

chapter three, for instance, could be enlarged to include 'variable'

components. If we incorporate a variable component "Articlel ", this

would offer as its actions an input action which would take a value,

248

Chat' for instance), which could be retrieved from its output action. The

following paragraphs sketch a brief outline of how in CCS terms,

variables can be seen as one more kind of machine capable of

communication.

Initially we can envisage a variable simply as a machine which accepts a

value through an input channel and if contacted can return that value

through an output channel.

a

81-
Fig.7.1. A first representation of a variable

Var =

i.e Var (Z) <= a.giveVal (Z) + y-.getVal (Z).

where Z would be a variable, input to the machine Var via a, and

retrieved via y-. The two associated actions consist of offering a value to

Var at 'a' or demanding a value from Var at 'y-'. However, in treating

variables in Prolog we are modelling a more complex behaviour, since

the instantiation of variables is an integral part of the unification

process. To capture this, the Var machine will consist of three

component machines. These relate to assigning a value for the variable

(giveVal), holding the value in a register (holdVal) and outputting the

value at the appropriate time (getVal). Each must have the possibility of

the appropriate actions to communicate with each other.

Fig.7.2. Components of a Var machine

249

In essence, the machine dealing with assignment, 'giveVal' would set

the value of the variable:

[[X:= El] <= aE·giveVal E (X)

Where X is a variable, and E the expression to which it evaluates, the

action being to input the value of the variable to the machine 'giveVal'

at 'a'. So if, for example, the variable 'HI' (perhaps short for

HatShopClient no.I), is given the value of 'fred', and the variable 'H2' is

given the value of 'gertrude', then we can describe this as follows:

[[HI := fred]] <= a Ht fred. giveVal Ht (fred)

and

[[H2 := gertrude]] <= a H2 gertrude. giveVal H2 (gertrude)

The actions for holdVal, the component machine which holds the

value of the variable, would be either to store a fresh value, or report

the current value. The generic machine for this would be:

holdVal (Y) <= aX. holdVal (X) + y-. holdVal (Y).

i.e. holdVal (Y), where Y is a value, offers a choice of actions, such that a

new value can be input to it, 'a.X' in which case it then becomes

'hold Val (X)', or the value it is holding can be returned at 'y-'.holdVal

(Y)'. Note that this is a recursive machine.

250

Looking at one instance of this machine, we can take, for example,

holdVal H (Y),where the value of the variable 'H' has been set at 'fred',

then we would have the choice of two actions. A new value could be

stored through the input action a, or the current value could be

ascertained through the output action "(-:

holdVal H (fred) <= aH gertrude.holdvalq (gertrude)

+ 't:H fred.holdvalq (fred)

The getVal machine, when contacted, would output a value that it

inputs from the holdVal component. Its action can be described as

follows:

[[Xn <= ax Z:y-Z

i.e. it can input (from holdVal) a value (Z) of a variable (X)at a, then

return that value at ,,(-,after which it has no more actions. An instance

of this could be retrieving the value 'fred' stored in holdVal, of the

variable 'H'.

[[H]] <= aH fred.y-fred

Communication with the other components of a program would take

place through the top-level 'Var' machine of which the three

constituent machines, 'giveVal', 'holdVal' and 'getVal' are a part.

Work on extension of the system to include variables is a direct step

towards expanding the diagnosis of novices' errors to include faulty

251

models of unification. Since the unification process is another aspect of

control flow which causes problems for novice Prolog programmers

[Fung et a11987]the system could then usefully be extended to cope with

this.

A final immediate extension which must be mentioned concerns the

implementational efficiency of the current development. At present the

machine-analysis system operates on data after its collection. In

implementing the current system, efficiency was not given priority, the

paramount concern being to implement the concepts of the research.

After incorporating the extensions discussed above, efficiency should

merit a higher priority and the current system should be developed as a

real-time diagnostic tool.

7.3.2 Longer term research - the role of formal semantics

The research reported in this thesis has demonstrated that formal

semantics can be used to good effect in addressing the problems of

student modelling. While the results have indicated that it is a

promising approach to a difficult task, the work undertaken was

confined to a subset of Prolog. This has been in itself a worthwhile

enterprise.

The longer term goal must, however, be to demonstrate on a wider scale

the contribution which formal semantics has to make to intelligent

tutoring systems. Its use in a broader context, as a means of modelling

programming languages, offers, as we discussed in chapter one, a fresh

252

approach to solving some of the difficulties which face present systems

in terms of student modelling.

Much of the work which has been undertaken in the course of this

research could, without undue difficulty, be translated into terms of

another programming language. As Milner himself pointed out

[Milner 1980], the ideas of CCS are intended by design to be adaptable for

use in describing programs. The concepts involved are not limited in

their applicability to anyone particular language. A future extension of

this research would be to apply the ideas of CCS to modelling a subset of

a language other than Prolog. The work of Burstein [1985] gives a

detailed account of the models which students form of variables when

they begin to learn the programming language Basic. It would be

interesting to investigate the use of CCS in constructing a formal

representation of these models. The work necessary to extend the

current system to include variables, for instance, would need little

modification if applied to another language such as Basic. In that

particular case, describing the semantics of a variable would in practice

be a simplified version of the semantics of a variable in Prolog.

The essential point however is that the possibility of using formal

semantics to model programming languages is not limited to the

research area described in this thesis. The misconceptions of novice

Prolog programmers were chosen as the area in which to undertake this

initial exploration. Interesting and productive though this first

investigation has proved to be, the ideas of CCS and the concept of using

a formal semantics as a way of modelling programming languages has a

253

much wider application. The work in this thesis represents an initial

exploration of the contribution of formal semantics to the task of

student modelling in intelligent tutoring systems. The results of this

exploration have indicated its potential contribution. Ultimately the

goal of further research should be to exploit that potential in applying

the ideas put forward in this thesis to other areas in the domain of

tutoring programming languages.

254

References
Adam, A. & Laurent, J. "A System to Debug Student Programs"

in Artifidal Intelliience t5, 75-122. 1980
Adelson, B. "When Novices Surpass Experts: The

Difficulty of a Task May Increase
With Expertise" in TournaI of Experimental
PlycholoiY:Learnin~,Memory and Co~ition
Vol.10.No.3, 483 - 495. 1984

Allison, L. "An Executable Prolog Semantics" in Aliol
Bulletin no. 50, 10-18. December 1983

Allwood, C. "Novices on the Computer"
in ITMM Studies 25, 633-658. 1986

Anderson, J., Farrell, R. & Reiser, B. "Leaming to Program in Lisp" in
C~tiye Science 8, 87-129.1984

Anderson, J., & Reiser, B. "A Lisp Tutor, Greaterp (A goal restricted
environment for tutoring and educational
research on programming)" in
Byte,159-175.April 1985

Anderson, J , & Jeffries, R."Novice USP Errors: Undetected losses of
information from working memory" in
Human-Computer Interaction
voll,107-131. 1985

Apt, K., Van Emden, M. "Contributions to the Theory of Logic
Programming" in TournaI of the ACM
vol.29, 3, 841-862.July 1982

Beckman, L. "Towards a Formal Semantics for Concurrent
Logic Programming Languages"
in 225 Lecture notes in Computer Science
Springer Verlag, 1986

Beckman, L. "Towards an Operational Semantics for
Concurrent ~ic Proil'ammin~ Lan~ua&es"
Doctoral thesis, Uppsala University,.1987

Beckman, L., Gustavsson, R. & Waem, A. "An Algebraic Model of
Parallel Execution of Logic Programs" in
Proceedin~s of theSymposium on Lo~cs in
Computer Science, Cambridge, 1986

Bonar.]. & Cunningham, R. "Bridge: An intelligent tutor for thinking
about programming" in Artificial Intelli~ence
and Human Learning (Ed Self, J.) Chapman
and Hall. 1988

Bonar,}. & Soloway, E. "Pre-programming Knowledge: A major
source of misconceptions in novice
programmers" in Human-Computer
Interaction
vol i, 2, 133-161.1985

Bratko, I. "Proloi Pro~ammini for Artificial
Inte11i~ence " Addison-Wesley, 1986.

255

Bma, P., Bundy, A., Pain, H. & Lynch, L. "Programming Tools for Prolog
Environments" in Adyances in Artificial Intellliience
(Ed.Hallam & Mellish) Wiley 1987

Bma, P., Bundy, A., Dodd, T., Eisenstadt, M., Looi, C. K., Pain, H.,
Smith, B. & van Someren, M.
"Prolog Prolgramming Techniques" Research
paper no. 403., Dept. of Artificial Intelligence,
Edinburgh University 1988(submitted for
publication in the special issue of
Instructional Science on Learnin~ Prolo~:
Tools and Related Issues).

Bma, P., Brayshaw, M., Bundy, A., Elsom-Cook, M., Fung, P. & Dodd, A.
"An Overview of Prolog Debugging Tools"
Dept. Artificial Intelligence, Edinburgh
University, Research paper no.398, 1988

Brna, P. & Pain, H. "Observations of PROLOG novices"
unpublished paper, Dept of Artificial
Intelligence, Edinburgh University 1985

Brown, J. & Burton, R. "Multiple Representations of Knowledge for
Tutorial Reasoning" in Representation and
Understanding (Ed Bobrow & Collins)
Academic Press 1975

Brown, J. & Burton, R. "Diagnostic Models for Procedural Bugs in
Basic Mathematical Skills" in Cognitive
Science 2, 155-192.1978

Bundy, A. "What Stories Should We Tell ProlQi
Students?" Working Paper 156, Dept. of
Artificial Intelligence, Edinburgh, 1984

Bundy, A., Pain, H., Bma, P. & Lynch, L. "A PrQPOsedProlo~ story"
Dept of Artificial Intelligence Research Paper
No. 283. Edinburgh University, 1985

Bundy, A., Pain, H. & Someren van, M. "Prolo~ PrQ~ammin~
Techniques" (forthcoming) Edinburgh, 1988

Burton R. "Diagnosing Bugs in Simple Procedural
Skills" in Intelli~ent Tutorini Systems
D.Sleeman & J.S. Brown (Ed).
Academic Press, 1982

Burton, R. & Brown, J. "An Investigation of Computer Coaching for
Informal Leaming Activities" in Intelligent
Tutorin~ Systems (Ed Sleeman & Brown)
Academic Press, 1982

Byrd, L. "Understanding the Control Flow of Prolog
Programs" in Proceedinis of the Logie
Pro~ammin~ Workshop
(Ed Tarnlund) Hungary, 1980

Carbonell, J. "Mixed Initiative Man-computer
Instructional Dialogue"
Bolt Beranek & Newman Report, 1970

256

Cerri, S., Fabbrizzi, M. &: Marsili, G.''Trill - The Rather Intelligent Little
Lisper" in Proc. of the AISB Conference on
Artificial Intelliience and Education,
Exeter, April1983

Cerri, S., Elsom-Cook, M. &: Leoncini ''TRILL; The Bather IntelliiEmt
Uttle U§per" Centre for Information
Technology in Education Report no. 48
Open University, 1988.

Clancey, W. ''The Role of Oualitative Models in
Instruction". in Artificial Intelligence and
Human Learning. (Ed Self)
Chapman &: Hall Computing, 1988

Clocksin, W. &: Mellish, C. "PrQ&rammin&in Prolo&" Springer Verlag
Berlin 1981

Clocksin, W., &: Mellish, C. "Proil'ammini in Proloi" Springer-Verlag
Berlin (Second Edition) 1984.

Coombs, M. and Alty,J.(Ed)"ComPUtini Skills and the User Interface"
Computers and People Series,
Academic Press, London, 1981

Coombs, M., Gibson, R. &: Alty, J. "Learoini a First Computer Lanilla.:e:
strateiie§ for makini §Emse"
in IJMM Studies 16,449486.1982

Coombs, M. &: Stell, J. "A Model for Debui~n& Protoi by Symbolic
Execution:the separation of specification and
procedure" Dept. of Computer Science
Strathclyde University, 1985

Davis, R. User Error or Computer Error?"
in UMM Studies 19,359-376.1983

Dewar, A. &: Cleary, J. "Graphical Display of Complex Information
Within a Prolog Debugger in UMM Studies
2S,503-521.1986

Dichev, C. &: Du Boulay, B. "A Data Tracini System for Proloi Novices"
Cognitive Science Research Report no.113.
Sussex University, 1988.

Du Boulay, B. &: O'Shea, T. "How To Work The LOGO Machine" D.A.I
Occasional Paper No.4. Dept. of Artificial
Intelligence, Edinburgh University, 1976

Du Boulay, B. &: O'Shea, T. "Teaching Novices Programming", in
Computer Skills and the User Interface,
(Ed Coombs &: Alty) Academic Press, 1981

Du Boulay, B. &: Sothcott, C. "Computers Teaching Programming:
an introductory survey of the field" in
Artificial Intelli~nce and Education vol.l
(Ed Lawler &: Yazdani) Ablex, 1987

Du Boulay, B. O'Shea, T. &: Monk, J. "The Black Box Inside The Glass
Box: presenting computing concepts to
novices" in UMM Studies 14, 3, 237-249 1981

Du Boulay, B. &: Matthew, I. "Fatal Error in Pass Zero" in Behaviour
and Information TechnolQ~ 3, 109-118. 1984

257

Eisenstadt, M. "A Powerful PROLOG trace package" in
Proceedin~ of the Sixth European
Conference on Artificial Intelligence
ECAI-84,Pisa, Italy, 1984

Eisenstadt, M. Tracin~ and Debu~Pt~ Prolo~ ProiTams by
Retrospective Zoomin~" Human Cognition
Research Laboratory Technical Report
No. 17 Open University 1985

Eisenstadt, M. "0309 Artificial Intelli~ence Project"
Open University, 1987

Eisenstadt, M. &: Brayshaw, M. ''The Transparent ProIQ&Machine
mM): an execution model and graphical
debu~pr for IQWcWOil'ammin&" Human
Cognition Research Laboratory Technical
Report No. 21 a, Open University, 1987

Eisenstadt, M. &: Brayshaw, M. "The Transparent Prolog Machine
(TPM): an execution model and graphical
debugger for logic programming" in TournaI
of LoKicPro&rammin& 1988

Eisenstadt, M. &: Brayshaw, M."An InteiTated Textbook. Video and
Software Environment for Novice and Expert
Prolog ProiTammers" Human Cognition
Research Laboratory Technical Report No.23
Open University, 1988

Eisenstadt, M. &: Lewis, M."Errors in Interactive PrQil'ammin~
Enyironment: causes and cures" Human
Cognition Research Laboratory Technical
Report No.4 Open University, 1983

Elsom-Cook, M. "A User Interface for a Lisp Teaching System"
in Proceedings of the Ergonomics Society
Conference:the user interface, September 1983

Elsom-Cook, M. "Design Considerations of an Intelligent
Teaching System for Programming
Languages" in Shackel (Ed) Human-
computer interaction-INTERACT 84
Holland 1985

Elsom-Cook, M. "Artificial Intelligence and Computer
Assisted Instruction" Centre for Information
Technology in Education Report No.4
Open University 1986

Elsom-Cook, M. "Acquisition of computing skills" in
AcquiSition and Performance of Cognitive
Skills (Ed Colley &: Beech) 1988 forthcoming

Fitting,M. "A Deterministic Prolog Fixpoint Semantics"
in TournaI of Logic Programming
2, 111-118.1985

258

Fung, P. "NoVice Proloi Pro~ammers: a
consideration of their problems" Centre for
Information Technology in Education
Report, No.26 Open University, 1987(a)

Fung, P. "Novices' Predictions of Proloi Control Flow"
Centre for Information Technology in
Education Report No.35
Open University,1987 (b)

Fung, P. "A Formalisation of NoviceS' Errors in
ProIQi PrO£l'ams" Centre for Information
Technology in Education Report no.50
Open University, 1988

Fung, P. "Automated DiaiD0sis of Prol~ Control
Flow Errors: a first evaluation" Centre for
Information Technology in Education
Report no.8t Open University 1988.

Fung, P., Du Boulay, B. &: Elsom-Cook, M. "An Initial Taxonomy of
NoviceS' Misconceptions of the Prolog
Interpreter" Centre for Information
Technology in Education Report no.27
Open University 1987

Gilmore, D.J. "The Perceptual Cueing of the Structure of
Computer Proitams" Unpublished Doctoral
Thesis, Psychology Department,
University of Sheffield, 1986.

Gilmore,D.J. "Programming Plans and Programming
Expertise" in Quarterly TournaI of
Experimental Psycholoi)' (in press) 1988

Gilmore, D. &: Green, T. "Comprehension and Recall of Miniature
Programs" in IJMM Studies 21, 31-48. 1984

Goldstein, I. ''The Genetic Graph" in Intelligent Tutorini
Systems (Ed Sleeman &t Brown)
Academic Press 1982

Gordon, M. ''The Denotational Description of
Pro~amming LanSUAges"
Springer-Verlag 1979

Gugerty, L. &: Olson, G. "Debugging by Skilled and Novice
Programmers" in Proceedinp of the CHI '86
Human Factors in Computing Systems
ACM 1986

Hasemer, T. "An Empirically-based Pebug~ng System for
Novice Prosrammers" doctoral thesis,
Open University, 1983

Hartley, J.R. ''The Design and Evaluation of an Adaptive
Teaching System" in IIMM Studies
5,421-436. (1973)

Hennessey, S. ''The role of Conceptual Knowledge in the
Acquisition of Arithmetic Algorithms"
Ph.D. Thesis University College London 1987

259

Hennessy, M., & Milner, R. "Al&ebraic Laws for Nondeterminism and
Concurrency" Internal Report CSR-133-83
Dept. Computer Science,
Edinburgh University 1983

Hoare, C. "Communicatini Sequential Processes"
Prentice-Hall International Series
in Computer Science 1985

Hook,K., Taylor, J. & du Boulay,B. "Redo 'tty once and pass':the
influence of complexity and &1'aphical
notation on novices' understandini of
Proloi" Paper presented at PEG Third
International Conference, Copenhagen 1988

Jeffries, R. "A Comparison of the DebYi~ni Behavior of
Expert and Novice ProiTammers" presented
at AERA Annual Meeting March 1982.

Johnson, W. "Intention-based Diail'osis of Novice
ProiTammin~ Errors" Pitman 1986 London

Johnson, W. & Soloway, E."Proust: an automatic debugger for Pascal
programs" in ~ 10,4179-190. 1985

Johnson-Laird, P.& Wason, P."A Theoretical Analysis of Insight into a
Reasoning task" in Thinkini: readinis
in coiI'itiye science (Johnson-Laird &
Wason Ed) Cambridge University Press 1977

Jones, A. "How Do Novices Learn Pro&1'amming?"
Technical Report No.25 Computer Assisted
Learning Research Group.
Open University, 1981

Jones, A. "How Novices Learn to Pr~am: some
protocol data" Technical Report No. 41
Computer Assisted Learning Research Group
Open University 1984

Jones, A. "Beginners mental models of a programming
language" in The Computer Revolution in
Education Harvester Press, Sussex, 1987

Jones, A. "How Novices Learn to Program" in
Proceedings of Interact'84 1984

Jones, A., Scanlon, E. & O'Shea, T. (Ed)"The computer revolution in
education" Harvester Press, Sussex, 1987

Jones, D & Mycroft, A. "Stepwise Development of Operational and
Denotational Semantics for Prolog" in
Proceedinis of the International Symposium
on LQ&icPro&1'ammini 281-2881984

Kahney, H. "An in-depth study of the cognitive
behaviour of novice pro~ammers"
Human Cognition Research Laboratory
Report No.5. Open University 1982

Knuth.D, "The Remaining Trouble Spots in ALGOL
60" in Communications of the ACM
vol 10,no. 10. 1967

Lieberman, H.

Laurillard, D.

Looi, C.

Looi, C. & Ross, P.

Looi, C. & Ross, P.

Looi, C

Lukey, F.

Mayer,R.

Mellish, C.

Milner, R.

Milner, R.

Milner, R.

Murray,W.

North, N.

Norman, D.

260

"An Example Based Enyironment for
BeiinninK PrQifammers" Artificial
Intelligence Laboratory, MIT, 1985
"Evaluation of student learning in CAL" in
CQmputers and Education 2 259-265.1978
"Automatic Program Debugging for a Prolog
Intelliunt Teaching System" Discussion
paper 30 Dept. Artificial Intelligence,
Edinburgh University, 1986
Automatic PrQiJ'am Analysis for a ProlQi
Intelli~ent Tutorin~ System" Dept.of
Artificial Intelligence Research report No.307
Edinburgh University, 1986
"Debu~&in~ ProIQ~ Progams in an Intel1h~ent
Tutorin~ System" Dept.of Artificial
Intelligence Research paper No.308
Edinburgh University, 1987
"Automatic Program Analysis in a Prolo~ Intelligent
Tutorin~ System" PhD thesis, Edinburgh University 198
"Comprehending and Debugging Computer Programs"
in Computin~ skills and the User interface
(Ed. Coombs & Alty) Academic Press 1981
''The Psychology of How Novices Learn
Computing Programming" in Computing
Surveys 13. 1. March, 1981
"Poplog Prolog" in A Portable Interactive Software
Development Environment Cognitive Sciences
Research Report No lOO, Sussex University, 1988
"A Calculus of Communicating Systems"
92 Lecture Notes in Computer Science
Springer Verlag 1980
"A CQmplete Inference System for a Class of
Regular Behaviours" Internal Report CSR-
111-82 Dept. Computer Science
University of Edinburgh, 1982
"Lectures on Calculus for Communicating
Systems" NATO ASI series vol. F14
(Ed Broy) Control FlQwand oata flow:
Concepts of Distributed Programming,
Springer Verlag 1985
"Heuristic and Formal Methods in
Automatic Program Debugging" in
Proceedin~s of nCAI 1985
"A Formal Definition of Prolog"
MSc.Dissertation, National Physics
Laboratory Teddington 1986
"Categorization of Action Slips" in
Psychological Review, vol.88 no.1 Jan.1981

261

Ormerod, T. "Content and representation effects with
reasoning tasks in Prolog form" in
Behayiour and Information TechnoloiY 1986

O'Shea, T. "A Self-improving Quadratic Tutor" in
IntelUient Tutoring Systems (Ed Sleeman &
Brown) Academic Press, 1982

O'Shea, T. & Self, J. "Leamini and Teachini with Computers"
Harvester Press 1983

Pain, H. & Bundy, A. 'What Stories Should We Tell Novice Prolog
Programmers?" in Artificial Intelliience
Proi"ammini Environments"""
(Ed.Hawley) Ellis Horwood, 1987

Pask, G. "Styles and Strategies of Learning" in
Br.I.Educational Psycholoi)', 46 128-148.1976

Payne,S., Sime, M. & Green, T. "Perceptual Cueing in a Simple
Command Language" in
IJMM Studies 21, 19-29. 1984

Payne,S., & Squibb, H. "Understanding Algebra Errors: the
psychol~ical status of mal-rules" Centre for
Research on Computers and Learning
Technical Report no.43,
Lancaster University, 1986

Pea, R. "Language Independent Conceptual "Bugs"
in Novice Programming" in Tournal of
Educational Compu tin~ Research
vo1.2 (1) 1986

Petre, M. & Winder, R. "Issues Governing the Suitability of
PrQil'ammini LaniUages for Proiramming
Tasks" Research Note 88/7, Dept. of
Computer Science, University College,
London, 1988

Plummer, D. "CODA: An extended debugger for Prolog"
in Logic Programming vol.1. pp 496-511
Kowalski, R. & Bowen, P. (Ed) MIT Press 1988

Rajan, T. "APT: A principled desiiP\ for an animated
view of program execution for novice
proirammers" Human Cognition Research
Laboratory Report No. 19
Open University 1986

Reiser,B., Friedmann, P., Kimberg, D. & Ranney, M. "Constructing_
Explanations from Problem Solving Rules to
Guide the Planning of Programs" in
Proceedin&S of ITS Montreal 1988

Rich, C. Shrobe, H. & Waters, R. "Initial Report on Programmer's
Apprentice for Lisp" MIT, 1976

Rist ,R "Plans in Programming"in Empirical studies
of programmers (Eds. Soloway & Iyengar)
New York: Ablex 1986

262

Robinson, J. "A Machine-Oriented Logic, Based on the
Resolution Principle" in Journal of the ACM
12,23-41 January 1965 .

Ross, P. "Some Thoughts on the Design of an
Intelligent Teaching System for Prolog" in_
AISB Quarterly No.62 Summer 1987

Ross, P. ''Teaching Prolog to Undergraduates" in
AISBQuarterly 1982

Sanderson, M. "Proof Techniques for CCS" Phd Thesis
Edinburgh University, 1982

Sanderson, M. "Bisimulation Techniques for CCS" Dept.
Computer Science CSN-74
Essex University, 1985

Scanlon, E. & Hawkridge, D. "Novice Physics Problem Solving
Behaviour" in ECAI.84 Advances in Artificial
Inte11i~nce (O'Shea Ed.)
Elsevier, N.Holland, 1984

Scanlon, E. & O'Shea, T. "Educational Computini" Wiley
Open University 1987

Shapiro, E. "Algorithmic Automatic Debugging"
Research Report 237 Yale University 1982

Shneiderman, B. "Exploratory Experiments in Programmer
Behaviour" in International Journal of
Computer and Information Sciences
5123-1451976

Shiel, B. "The Psychological Study of Programming"in
Computini Surveys vo113. 1. March, 1981

Sleeman, D. & Brown, J. (Ed) "Intelliient Tutorini Systems"
Academic Press, 1982

Soloway, E., Bonar, J., & Ehrlich, K. "Cognitive Factors in
Programming: An empirical study of looping
constructs" in Communications of the ACM
vo1.26,853-861. 1983

Soloway, E., & Ehrlich, K. "Empirical Investigations of Programming
Knowledge." in IEEE Transactions of
Software En~neerini SE-I0,5 1984

Soloway, E & Iyengar, S (Eds) "Empirical Studies of Pro~ammers",
Ablex Publishing Corporation, Norwood 1986

Someren van, M. "Misconceptions of Be~nning Proloi
Proirammers" Memorandum No. 30 of the
Research Project 'The Acquisition of
Expertise' University of Amsterdam, 1984

Someren van, M. "Beiinners' Problems in Learning Prolog"
Memorandum No. 54 Dept. Experimental
Psychology University of Amsterdam 1985

263

Someren van, M. "What's Wrong? Understanding Beginners'
Problems with Prolog", in M.Eisenstadt (Ed)
An Intelli~nt Computer Assisted Instructional .
System for Teachini Artifidal Intelliience
PrQirammini. Human Cognition Research
Laboratory Rep.no.26, Open University, 1988.

Someren van, M. "Understandini students' errors with Proloi
unification" Dept.Sodal Science Informatics
VF Memo 102 Amsterdam University 1988

Spohrer, J., Soloway, E. & Pope, E. "A Goal Plan Analysis of Buggy Pascal
Programs" in Human-Computer Interaction
voll,2, 162-207.1985

Taylor, J. "Why Novices Will Find Learning Prolog Hard"
(Ed.O'Shea) in Proceedinp of ECAI
Elsevier Science 1984

Taylor,J. "PrQil'ammini in ProlQi: An in-depth study
of problems for be&inners learnini to
pr0il'am in Prolo~" D.Phil thesis, School of
Cognitive Sciences,Sussex University 1987

Taylor, J. & Du Boulay, B."Studyini Noyice PrQil'ammers:why they mu
find Prolo~ hard" Serial No.CSRP.060 Sussex
University, 1986 and in I!MM Studies 6 361-376. 1984

VanLehn, R. "Felicity Conditions For Human Skill acquisition",
Internal Technical Report, Xerox PARC, 1983.

Weiser, M. "Program Slicing" in Proceedings of the Fifth
International Conference on Software
En&ineerin~. IEEE, 439-449.1981

Wender,K., Weber, G. & Waloszek, G. "PsycholO£ical Considerations for
the Desi", of Tutorial Systems"
Psychologicsche Berichte Band 15 Heft 3
Unviersitaet Trier, West Germany, 1988

Wenger,E. "Artificial Intelli~nce and Tutorins
Systems" Morgan Kaufmann 1987

White, R. "Effects of Pascal upon the Learning of
Proloi - an initial study." Dept of Artifidal
Intelligence, University of Edinburgh, 1987.

Wirth, N. "A Generalization of ALGOL" in Communications
of the ACM vo1.6no.9 Sept., 1963

Young, R. "The Machine Inside the Machine: users'
models of pocket calculators" in
UMM Studies, 15, 51-85. 1981

Young, R. & O'Shea, T. "Errors in Children'S Subtraction" in
Co",itive Science 5 1981

Youngs, E. "Human Errors in Programming" in
IIMM Studies vol4, 361-376.1974

Zislis, P. "Semantic Decomposition of Computer
Programs: an aid to program testing" in Acta
Informatica 4, 245-269. Springer-Verlag, 1975

cpag.284>

AppendlxA1

Booklet given to subjects taking part In
summer school experiment 1987

Prolog experiment

summer school
august 1987

Appendix A

•

Appendix A

cpag826S>

Summer school August 1987

Thank you for agreeing to answer these questions. The following queries about Prolog
and learning to program are planned to help us find out where people are likely to make
mistakes and how to plan our teaching to make the Jobof learning Prolog as painless and
fast as possible.

Before you start, make sure that you have read section 4.3 In the 0309 Artificial Intelligence
Project course book SUP 151n4, and appendices A1, A2 and A3 .

Don' spend too long doing the answers, maybe half-an-hour at the most. Take your time
over looking at how the example given below Is set out, so that you understand the notation
used for the answers, then go ahead and do your best with the questions. If you find any
particularly difficult, don' hesitate to discuss them with one of us after you have attempted
the answers.

Most of the questions are set out like the one on the following page. You are given a short
program, and then asked to describe how the Prolog interpreter goes about answering the
query put to It. Each little box In the strips represents one step in the Prolog search to
answer the query. You can use as many of the boxes for each answer as you feel you need.

Appendix A

Example Question and answer

PROGRAM

(The first line of this program states that 'b' Is true. The second line says that 'a' Is true and
the third line says that 'p' Is true HIt can be proved that 'a' and 'b' and 'e' are true. The query
asks, • is 'p' true 1")*

Prolog goal search.
(the steps that Prolog takes to prove that 'p' Istrue)

p a a b b c c

try try succeed try succeed try fail

b b a a p p P
try fail try fail fail try fail

This answer predicts that the Prolog interpreter will take these steps
try:p -a rule
try : a - this succeeds because a Is a fact
try : b - this succeeds because b Is a fact
try : e - this fails because e is not In the program
try : b - this falls because there is no other b in the program
try : a - this falls because there Is no other a In the program
try : p - this falls because there Is no other p, so the query falls
If you find this notation difficult to follow. pleas. come and ask
.one of us to go over It verbally with you. We will b. happy to do
so

Now try the following questions on the next pages. Read the program and the query, then
think about how Prolog will go about answering the query (proving that 'p' is true). Write each
step that you think Prolog will take to do this, in the boxes in the empty strips given below the
program. You may not need to use all the boxes.

• see back page

Question 1.

PROOAAM

Predicted Prolog goal •• arch

Appendix A
<page267>

Question 2.

PROORAM

Predicted Prolog search

Question 3.

PROGRAM

Predicted Prolog goal .. arch

AppandlxA
cpag.268>

Question 4.

a.
PROGRAM P if a .

\.. ~

Predicted Prolog goal search

Question 5.

PROGRAM
P if a & b & c.
a if x.
b.
x.
a.

Predicted Prolog goal .. arch

Appendix A
c:pag8289>

"

Question 6.

PROGRAM
a.
a.
b.
e.
p if a & b & c.

Predicted Prolog goal search

<page270>

Question 7.

Have you previously learnt any programming languages apart from Prolog ?

yes D (If yes, which languages)

Question 8.

Have you had an opportunity to use Prolog on a machine prior to this course?

yes D no D
Question 9.

Did you have time to work through

all D someDmost D
of the Prolog exercises in the 0309 Artificial Intelligence Project course book,
SUP 151774, before you came to summer school?

Appendix A

Appendix A
cpage271>

* re notation
If, at first reading, the example program seems strange, It may help to compare It with the
following ·program,which uses some of the database from the examples In the course book
'Artificial Intelligence Project' (section 2.2).

Both programs basically 'say' the same thing, I.e. that something Is true (in one program the
something Is 'lIkes(Matthew BA137)', In the other It Is 'p') If the three subgoals can be
proved to be true (in one program the subgoals are 'orlgln(BA137 Chicago) &
departs(BA 137 1040) & arrives(BA137 1250)', in the other they are
a&b&c).

In each of these two programs, the Prolog Interpreter would take exactly the same steps to try
and prove the query 'p' and the query 'lIkes(Matthew BA137).

It would try to match the query to a logical sentence in the database, in each case finding a
match In a conditional logical sentence.
It would then query each conjunction of that matching sentence in tum, failing if it could not
match all three conditions.

r departs(BA137 1040).
orlgln(BA137 Chicago).

Iikes(Matthew BA 137) If
orlgln(BA 137 Chicago) &
departs(BA 137 1040) &
arrlves(BA 137 1250).

IIkes(Matthew BA 137).

r

PROGRAM
b.
a.
p if a & b & c.

Appendix A2

The table overleaf shows the errors which each student showed evidence of In predictions of
control flow In the six probems given. Also noted is each student's programming experience
and whether or not each had completed the exercises set In the book-based Introduction to
Prolog course.

"
Table key

Column heading

A
B
C
D
E
F
G
H

redo from left
try once and pass
one pointer per clause
unidentified
facts before rules
redo from left preserving markers
rules facts exclusion
meta-knowledge

y

indicates no programming experience prior to the
course
indicates no experience of Prolog prior to the
course
indicates that exercises set for the book-based
introductory course in Prolog were not completed.

w

z

SUBJECT y correct
A B C D E F G H W Z predictions

1 X X X X X X X 2
2 X X X X X X 1
3 X X 5
4 X X X 2
5 X X X X 2
6 X X X 0
7 X X X X X X X 0
8 X X X X X X 1
9 6

10 X X X X X 0
11 X X X X 1
12 X X X X 3
13 X X X X X X 1
14 X X X X 0
15 X X 3
16 X X 1
17 X X X X 4
18 X X X X X X X 1
19 X X X X X 1
20 X X X X 0
21 X X X 1
22 X X X X X X 1
23 X X X X X X X 1
24 X X X X X 1
25 X X 2
26 X X X X X 1
27 X X X X 1
28 X X X X 1
29 X X X X X 1
30 X X X X X 1
31 X 5
32 X X 0

A B C D E F G H W Y Z

Appendix A3 c:page274>

Appendix A3

Individuals' results

subject problem

1 1 2 3 4£redo·f·lett

try·onee

lone pointer --iunidentifiable

facts first

redc-spolnters

rules-facts-sxcl

Imeta·knowledg

1 2 3 4 5 6

subject problem

3 1 2 3 4 5 6

redo-t-lstt

try-once

~ne pointer

lunldentlflable

facts first

redc-potnters

rules-taets-excl I
Imeta·knowledg

1 2 3 4 5 6

IIerror shown

~ multiple error (not inc.in total)

subject problem

2 1 2 3 4 5 6

redo·f·left

try-once

pne pointer

unldsntlflable

facts first I
redo-spointers

rules-tacts-excl El
",. ~.... ...,...~

~
1 2 3 4 5 6

subject problem

4 1 2 3 4 5 6

rado-f-lsft

try-once

one pointer

unidentifiable

facts first

redo-pointers

rul..",,"'·CJ"...,

imeta·knowledgl

1 2 3 4 5 6

subject problem

5 1 2 3 4 5 6

redo4~eft

tty-once

pne pointer

,...I"""'Itlfl.
r-"""'''' ~
facts first

J ._fS-~ .,..

Il\Iles-l\~_~, Ri
~et8.-knowledge

1 2 :} 4 5 6

Appendix Aa <P8Qe27S>

sublect problem

6 1 2 3 4 5 6

redo4~eft

tty-once

pne pointer

r".lid~"tifi..bl ..

facts first

..........
-- 'r Inters

Il\Iles4acts~xx::1

~et_ L ..I....
-or

1 2 3 4 5 6

subjeot problem subleer problem

7
~2

3 4 5 6 8 1 2 :} 4 5 6

redo-l~eft I
~

redo4~eft

tty-once try<lnce

one pointer Hi ~ne pointer

unidentifiable I1"" .. ~- _.111:

facts first facts first

redo+1)ointers • Iredo+1)ointers

1M •. l\Iies4acts~xx::1'''',..'''.
••. I. 1. rm ~et8.-I<nowledge m1·",.. tI'"

~
1 2 3 4 5 6 1 2 3 4 S 6

sublect problem

9 1 2 3 4 5 6

redo..f~eft

try-once

one pointer

unidentifiable

facts first

redo-tpointers

rules-lacts-4xcl

meteAcnowledge

1 2 3 .:I 5 6

Appendix A3 <P8ge276>

subject problem

10 1 2 3 4 5 6

redo..f~eft

try-once m
pne pointer

.:. .:'L ... II1"" .. __ • n.' ,.....,..

facts first
~

lredo+pointers

INles-le.cts-4)(C1

,Iet ..-krowledge

1 2 3 4 5 I)

subject problem subject problem

11 1 2 3 4 5 6 12 1 2 3 4 5 6

redo-l~ett redo-l~eft

try-once try-once

one pointer Dnepointer II eee

1Jnider-tifiable :..mid~(ltitie.ble

facts first facts first

.redo+pointers _ ... L~ .: •• t.P'Cor

rules-Ia.cts-4)(C1 Irules-iacts-<e)(C1

met ..-knowledge met, n. ,v.:::~dge

1 2 3 4 5 6 1 2 3 4 5 6

subject problem

13 1 2 3 4 5 6

redo-t-lett

try-once

pne pointer 1m m
~nidentifiable III
facts first ._
....

[rutes-tacts-sxcl

~eta·knowledgj
~

1 2 3 4 5 6

subject problem

14 1 2 3 4 5 6

redo-f-left

try-onee

pne pointer

~nidentifjable m
facts first

~
Ir",,,j,,, ""'0

In .,....."..,
,reta-kncwledq, m mI

1 2 3 4 5 6

subject problem subject problem

15 1 2 3 4 5 6 16 1 2 3 4 5 6

redo-t-left rsdo-t-left

try-ones try-ones

pne pointer m ..pne pointer

lunidentifiable lunidentifiable fam~

facts first facts first

redo-spcinters redc-polnters

rules-tacts-excl rules-tacts-excl

Imeta·knowledgj meta-knowledq

1 2 3 4 5 6 1 2 3 4 5 6

Appendix A3 <:page278>

subject problem subject problem

17 1 2 3 4 5 6 18 1 2 3 4 5 6

redo-f-Ieft redo-f-Ieft .. III
try-once try-once

pne pointer , pne pointer m Iunidentifiable III unidentifiable -- I
facts first facts first D
redo-spointers redo+pointers

rules-facts-excl rules-facts-exel II§~
msta-kr -.I' rneta-knowledg,

1 2 3 4 5 6 1 2 3 4 5 6

subject problem

19 1 2 3 4 5 6

rado-f-left

try-once

pne pointer •Ii~nldentifiable m
facts first

rado-polnters

rules-facts-excl ~

rneta-knowledg.

1 2 3 4 5 6

subject problem

20 1 2 3 4 5 6

redo-f-Ieft m:
try-once

pne pointer

~nldentifiable

facts first I
redo-pointers

Irules4~~ - ._1

rnata-knowledq

1 2 3 4 5 6

subject problem

21 1 2 3 4 5 6

redo-l-left

try-once II~
pne pointer

unidentifi-.ble

facts first m
redo-tpolnters

r\lles··A :1

I. .I_.IA',.,..-"'. ,..... "'...."
1 2 3 4 5 6

sublect problem

23 1 2 3 4 5 6

redo-l-lert

try-once Bm
on. polntu

........"" "if'abl. m
facts first m
... .>--or

r\lles-iacts-e:>«:1 ID.. ...,...,..- ""....,'
1 2 3 4 5 6

Appendix /11:3 <P8ge279>

subject problem

22 1 2 3 4 5 6

-redo-l·I.

try.once

pne pointer

~nidentifi-.ble [fi
facts first §j
redo+pointers

r\lles-iacts .. :>«:1 I)
rneta4cnowledge m

1 2 3 4 5 6

subject problem

241 1 Z 3 4 5 6

redo..f-left

try.once

lone pointer em
.,,, _L

,........""..... au'o:

facts first

redo-+pointers

r\lles..facts-e:>«:1

met ..-knowledge

1 2 3 4 S 6

subject problem

25 1 2 3 4 5 6

redo-f-Ieft

try-once

pne pointer

unldentltiable

facts first

I...~"_-",,, ers

rules-facts-exel

rnsta-kno •.1.• ~~

1 2 3 4 5 6

subject problem

27 1 2 3 4 5 6

rado-f-Iaft m Ii
try-once

pne pointer

~nidentiflable •
facts first

rsdo-pointers

Irules-facts-exel

lit" .. ·n. -'"

1 2 3 4 5 6

Appendix Aa <page280>

subject problem

redo-f-Ieft

26 2 3 4 5 6

try-once

2 3 4 5 6

subject problem

28 1 2 3 4 5 6

redo-f-Ieft

try-once

pne pointer ~ m
~nidentifiable JI
facts first

iredo+pointers

Irules-facts-exel 1m
~eta-knowledgl

1 2 3 4 5 6

subject problem

29

redo-f-Ieft

try-once

5

pointer

facts first

redo-polnte rs

rulas-tacts-axcl

meta-knowledg

2 3 4

subject problem

31 1 2 3 4 5 6

redo-f-Ieft

try-once

lone pointer

Iunidentifiable

facts first II
redc-pelnters

rules-facts-exel

meta-xnowreoqe

1 2 3 4 5 6

Appendix Aa <P8ge 281>

6

subjeet problem

30 1 2 3 4 5 6

redo-f-Ieft

try-onee

lone pointer II II
unidentifiable §IIIII
facts first

rsdo-polnters

rules-facts-exel II
1m, -"1.- .__ "

1 2 3 4 5 6

subject problem

32 1 2 3 4 5 6

redo-f-Ieft

try-onee

lone pointer

[unidantltiable

facts first

redo-pclnters

rules-facts-exel

Irneta-I" 'Wltluyt

1 2 3 4 5 6

Appendix A <page282>

AppendixA4
The following tables show for each error the percentage of problems in which a student
made that particular error, I.e. in Table 1 below, subjects 8, 14 and 22 showed the'meta-
knowledge' error in sixty percent of the problems in which it was possible for this error to
appear.

There is no table provided for the errors 'facts before rules' or for 'rules-facts exclusion',
since these errors could only occur In one particular program, hence for each student such a
table would simply show a hundred percent occurrence of the error.

Table 1. Percentage of problems In which the error 'meta-knowledge' occurred In
students' predictions

80~ 80~

perce ntage of 70~ 7096

problems In 60~ 6096
which error SO~ 5096
'NaS made

409640~

30~ 30~

20~ 20~

10~ 1096

O~ O~
52 57 58 511 513 514 522 s26

suojects who displayed 'meta-knowledge' error

Table 2. Percentage of problems In which the rror 'one pointer per clause' occurred In
subjects' predictions.

100~ 10096
90~
ao~

9096
8096

percentage or 7096
prob lems in 6096
wh leh error 5096
was made 4096

3096
2096
10~
O~

70~
60~
5096
40~
30~
2096
10~
O~

s1 s4 sS 57 s12 s13 s1S 517 s18 s19 s23 524 525 s28 530

students making 'one pointer perclause' error

AppendixA <page283>

Table 3, Percentage of problems In which the error 'redo from left preserving
pointers' occurred In each subjects' predictions,

100W;
909iS
809iS
70W;
609iS
S09iS+------
40W;
309iS
20W;
10W;
OW;

100~
90~
80~
70~
609iS
S09iS
409iS
30W;
20~
lOW;
OW;

percentage
. of prob lems
in which
error was
made

51 57 518
subjects making 'redo from lertpreservlnq pointers' error

Table 4. Percentage of problems In which the error 'redo from left' occurred In
subjects' predictions.

1009iS 1oos

40W;-t---
309iS
2095
10gg
~gg

51 s7 518 520 s27 529

subjects who made 'redo from lert' error

Table 5. Percentage of problems In which the error 'try once and pass'
occurred In subjects' predictions.

100gg 1009iS
90GG 909iS
809iS 80GG

percentage of
70~ 70~

609iS 60~
problems in

509i5 SOW;
which error 409iS 409i5
was made 30W; 309i5

20~ 209i5
lOW; lOW;
09iS ow;

s10 s21 s23

subjects making 'try once and pass' error

90~
80~
70~
60~
so~
40~
30GG
20~
10~
O~

Appendix B <p1ge 2B4>

Appendix 81
LI'tlng of program converting Prolog program Into CCS machine,

;; ;converalon.lsp

;takes a description of the program and converts It Into the
;ccs machines used to produce a parallel execution of program
;and applies the expansion theorem to those machines

iNe only want to see action of communicating delta machines (bar/nobar)
;and the initial machine and final state (SP (+ (SP-)(FP-)}}

(defyar restrictions nil "paths not to be shown on treei
(defvar norestriction nil "nodes that must not be restricted")

;take list of program components converted Into ccs machines and list of restricted
machines
;pass them on to be fully-expanded
;the Initial machine Is to be unrestricted

(defun expand-machlnes(progllst)
(setf norestrictlon (keepunrestricted(car proglist)}}
;;; car proglist will be(query ·something"1}

(fully-expand (cons .. (convert proglist)}~»
;the name of the Initial machine Is the second element in Its program description,
;this must be unrestricted, and the final state of that machine
iNhich will be a successful state or a fall state

(defun keepunrestrlcted (allst) ;; (thiS list will be the Initial '(query "something" 1))
(workoutalist(cadr a1ist»)

; create the 'unrestricted' machines e.g.
;put an "s" in front of the "something",
;put an lOS" in front and a bar after
;put an "F" in front of the something.

(defun workoutallst(item) .
(list (concatenate 'string "S" Item)
(concatenate 'string "s" item "_.)
(concatenate 'string "P item "-i»

;convert list of program components into list of machines, adding
;each newly converted head to machine-list

(defun convert (progllst)
(cond«null proglist)nil)

(t (PUt-together (formalise (car proglist»
(oonvert (ar progUst»»»

Apperdix B -epege 285>

;takes the head of the program component list on each pass and
;changes it into relevant ccs machine, depending on whether it is a query
;a fact etc.

(defun formalise (progbit)
(cond«equal (car progbit) 'query) (query (name-of progbit)(clause-of progbit)))

«equal (car progbit) 1act) (fact (narne-of progbit)(clause-of progbit)))
«equal (car progbit) 'nornore) (nornore (narne-of progbit)(clause-of progbit)))
«equal (car progbIt) 1ail) (fail))
«equal progbit "CUT") (cut progbit))
«equal (car progbit) 'Ihs-If-rhs) (Ihs-If-rhs (narne-of progbit)(clause-of progbit)))
«equal (car progbit) 'rhands1)(rhands1(narne-of progbit)(clause-of progbit)

(c:ar1reverse ~))))
«equal (car progbit) 'rhands2)(rhands2(narne-of progbit)(clause-of progbit)

(cadr(reverse prog:,it))(car(reverse progbit))))
(t (rhands3(narne-of progbit)(clause-of progbit)(cadddr progbit)

(cadr(reverse progbit)) (car(reverse progbit))))))

(defun name-of(progbit)
(cadr progbit))

(defun clause-of(progbit)
(caddr progblt))

;this adds the list machines created by each program component, to the list of restrictions,
; unless one of them is a machine that we dont want restricted
; (initial machine and possible final states)

(defun update-restrictions(allst)
(sett restrictions
(rernove-duplicates (append
(checkout alist) restrictions))))

;a member of that list of newly created machines might be a member of norestrictions
;80 recurse down the list of newly created machines checking each new head

(defun checkout(alist)
(cond«ooll alist) nil)

(t (addon(checkit(car allst))
(checkout(cdr aJist))))))

;if it Is a member of the ones we dont want restricted
;Ieave it out, otherwise leave it in the list to be added to restrictions

(defun checkit(item)
(cond«member (prine-to-string Item) norestriction :test #'equalp) nil)

(t lem)))

;glue needed because of the various combinations
;which may be met in adding to restrictions list

(defun addon(a b)
(cond«null a)b)

«and(atom a)(ooll b))(ist a))
«fIJI b)a)
«atom b)(Rsta b))
(t(cons a b))))

;the various program components which may make up the program description
;the program is described in terms of queries, facts, nomore facts,
;fails, cuts, conjunctions.
;the next functions are used in changing these different components
;into the particular ccs machines

;a query
; e.g. (query "P" 2)
; (SP (+ (SP1- (+ (SP1 (SP-)) (FP1 (FP-))))

(SP2- (+ (SP2 (SP-)) (FP2 (FP-))))))

;if the program "P" is queried, the program machine 'SP' initially contacts
;the first P machine, SP1-
;if that contact is successful i.e. is recorded as SP1, then SP is successful,
;and its state is recorded as SP-
;if that contact is unsuccessful i.e. is recorded as FP1, then SP's state is
; failure and is recorded as FP-
;in the case of failure, the machine SP then contacts SP2-, which again, may be
;successful, or may not
;this continues until the machine SP does reach its successful state of SP- or
;until there are no more P machines to contact and thus SP's final state is failure i.e. FP-

(defun query(name clause)
(update-restrictions (add2args "s" name))
(append(add2args "S" name)
(list
(cons '+ (query2 name clause)))))

;each query machine will have two or more clauses (machines) to contact,
;depending on how many tirnes it occurs in the program. A machine is created for

;each query clause, starting with the highest, until clause 1 is reached

(defun query2(name clause)
(cond((equal clause 1)(update-restrictions (add4args MS"name clause "-"))

(list(append(add4args MS"name clause "-j
(Iist(sporf name clause)))))

(t (update-restrictions (acId4args "S" narne clause "-"))
(reverse(oons

(append(add4args "S" narne clause "-j
(Iist(sporf name clause)))

(reverse(query2 name (1- clause))))))))

;a fact
;means that a successful communication can take place if it is queried
;e.g. if, say, there is a fact "A" clause one, i.e.(fact "A" 1),
; then it is represented as (SA1 (SA1-»

(defun fact (name clause)
(update-restrictions

(append (add3args "S" narne clause)
(add4args MS"name claise "-j))

(append (add3args MS"narne clause)
(list(add4args "5" name clause "_H))))

Appendix B ~'lB7>

;no fact
;on the other hand, if, say, there is no fact "A" clause two, i.e. (nomore "A" 2) then there
;is not going to be a successful communication with a query to "A"
;e.g. (SA2(FA2-))

(defun nornore(name clause)
(update-restrictions
(append (add3args MS"name clause)

(add4args Hp name clause "_")))
(append (add3args "S" name clause)
(list (add4args HFnname clause "_H))))

;Ihs-If-rhs
;states that there Is a rule
;if the query involved can only reach a successful state if it can
;succeed in its contact with all the items on the right hand side of the program
;e.g. if "pH, In clause one, will only succeed if it can successfully contact "A" and "B"
;this Is represented as
; (Ihs-if-rhs "PH 1)
;and produces the machines

(SP1 (SP1 RHS- (+ (SP1 RHS (SP1-))
; (FP1RHS (FP1-)))))
; i.e. the machine SP1 contacts the right hand side of the program (SP1 RHS-)
; and this may result in success (SP1 RHS) or failure (FP1 RHS)
; which will determine the success (SP1-) or failure (FP1-) of SP1

(defun Ihs-if-rhs (name clause)
(update-restrictions

(append (add5args MS"name clause "RHS" "_H)
(add4args MS" name clause "RHS")
(add4args lip name clause "RHS")
(add4args "P name claise M_")))

(append (add3args MS"name clause)
(list (append (addSargs MS"name clause "RHS" "_H)

(1st
(1st '+

(append (add4args MS"name clause "RHS")
(list(add4args MS"name clause "-")))
(~ (add4args

"P name claise "RHS,)
(list(add4args "P name clause "-")))))))))

; rhands describes the rule, (the right hand side of the program)
; at the moment it could be single, two-way or three-way
;e.g. it could consist of one, two or three conditions.

;a rule with one condition e.g. (rhands1 "P" 1 "An)
;the condition of the right hand side of P clause one is nA"
;this would produce the machines
; (SP1 RHS (SA- (+ (SA (SP1 RHS-))
; (FA (FP1RHS-)))))
; i.e. the right hand side of P clause one (SP1 RHS) contacts machine SA-
; if this is successful, the right hand side of P clause one is successful
; (SP1 RHS-) if not, then the right hand side of P clause one fails (FP1 RHS-)

(defun rhands1 (name clause cond)
(cond«equalp cond "CUT")

(list (cut cond)
(append(add4args "5" name clause "RHS")
(11st(endsorf name clause cond)))))
(t (append(add4args "5" name clause "RHS")

(11st(endsorfname clause cond))))))

;if the cut is one of the conditions on the right hand side
;then an extra machine Is added to the list of machines
;denoting that It always succeeds e.g.(SCUT (SCUT-))

;(defun cut(progblt)
; (update-restrictions

(append (add2args "5" progblt)
(add3args- "5" progbIt "-j))

(append (add2args "5" progblt)
(list(add3args- "5" progbit "-"))))

;rhands2, a rule with two conditions e.g.(rhands2 "P" 1 "A" "B")
;produces the following ccs machines
;(SP1RHS
; (+ (SA- (+ (SA (SB- (+ (SB (SP1 RHS-))

(FB (FP1RHS-)))))
(FA (FP1 RHS-))))

(SB-
(+ (SB (SA- (+ (SA (SP1 RHS-))

(FA (FP1 RH8-)))))
; (FB (FP1 RH8-))))))
; I.e. the right hand side of P clause one (SP1 RHS)
;succeeds If A and B can be contacted successfully(SP1 RHS-)
; otherwise It fails (FP1 RHS-)

(defun rhands2(name clause cond1 cond2)
(Iet«rhandside (list name clause cond1 cond2)))

(cond«member "CUT" rhandside :test #'equalp)
(list (cut (car (member "CUT" rhandside :test #'equalp)))

(append(add4args "8" name clause "RHS")
(Iist(each-and name claJse cond1 cond2)))))

(t(append (add4args "5" name clause "RHS")
(Iist(each-and name clause cond1 cond2)))))))

;deals with combination of machines possible in rhands2,
;and success or failure
;(+ (SA- (+ (SA (SB- (+ (SB (SP1 RHS-))
; (FB (FP1 RH8-)))))

(FA (FP1 RH8-))))
(SB- (+ (SB (SA- (+ (SA (SP1 RHS-))

(FA (FP1 RHS-)))))
(FB (FP1 RHS-)))))

(defun each-and(name clause cond1 cond2)
(list '+

(orsorf name clause cond1 COnd2)
(orsorf name clause cond2 COnd1)))

Appendix B <pege 288>

Apperdix B ~289>

;rhands3, a rule with three conditions e.g.(rhands liP" 1 "A" "B" "C")
;produces machines which allow "PH to succeed only if all three
; (SA-)(SB-)(SC-) machines on the right hand side are successfully contacted

(defun rhands3 (name clause cond1 cond2 cond3)
(Iet«rhandside (list cond1 cond2 cond3)))

(cond«member "CUr rhandside :test #'equalp)
(Iist(cut(car(member "CUT" rhandside :test #'equalp)))
(append(add4args MS"name clause "RHS")

(list (lntum name clause cond1 cond200OO3)))))
(t (append(add4args MS"name clause "RHS")

(list (intum name clause cond1 cond200OO3)))))))

(defun inturn(name clause cond1 cond2 cond3)
(list '+

(append(add3args- MS"cond1 "_M)
(list(sort name clause cond1 cond2 cond3)))

(append(add3args- MS"cond2 "_")
(Iist(sort name clause cond2 cond1 coOO3)))

(append(add3args- MS"cond3 "_H)
(list(sort name clause cond3 cond1 cond2)))))

~ail e.g.("FAIL") is represented as a fail machine which will
;only communicate unsuccessfully e.g. (SFAIL(FFAIL-))

(dafun faiiO
(update-restrictions
(append (list(intern(concatenate 'string MS""FAIL" "_M)))

(list(intem(concatenate 'string MS""FAIL")))
(Iist(intem(concatenate 'string "F" "FAIL")))
(Iist(intem(concatenate 'string"F" "FAIL" "_M)))))

(append (list(intern(concatenate 'string MS""FAIL")))
(list(list(intem(concatenate 'string "F" "FAIL" "_"))))))

;the following functions do the various glueing together of machines

;sport (success of program or failure) produces the disjunction
; machines representing the
;successful or unsuccessful outcomes of contact e.g. (+(SA2(SA-)) (FA2(FA-)))
;i.e. machine SA2 makes contact successfully (SA2), so SA reaches the success state SA-
;or machine SA2 fails to make successful contact (FA2), so SA fails (FA-)

(defun sport (name clause)
(update-restrictions

(append (add3args "F" name clause)
(add3args "S" name clause)
(add3args "S" name "_j
(add3args "P name "-")))

(list '+
(append(add3args "S" name clause)

(Iist(add3args MS"narne -,")))
(append(add3args "F" narne clause)

(list(add3args "P' name "-'1))))

; endsorf (end success or failure) glues the bits to show success or fail of right hand side
; e.g. (SA- (+ (SA (SP1 RHS-»
; (FA (FP1RHS-»)))

(defun endsorf(name clause cond)
(update-restrictions(adcl3args- "S" cond "-"»
(append (add3args- "S" cond "-")

(list
(Iist'+

(success name clause oond)
(failure name clause cond)))))

;glue (SA (SP1 RHS-»

(defun success(name clause cond)
(update-restrictions (adcl2args "S" cond»

(append (add2args "S" COnd)
(1st

(addSargs "S" name clause "RHS" "-j)))

;glue (FA (FP1 RHS-»

(defun fallure(name clause concJ)
(update-restrictions

(append (add2args "P oond)
(addSargs "F" name claJse "RHS" "-")))

(append (add2args "F" concJ)
(list

(addSargs "P name clause "RHS" "-j)))

;sorf (succeed or fall) glues all the bits together for each section of rhands3

(defun sorf(name clause cond1 concJ2 cond3)
(update-restrictions (adcl2args "S" condtj)
(list '+

(append
(append (add2args "S" cond1)
(list (either name clause cond2 00003»»
(faikJre name clause oond1)))

;either (either first condition or second condition)
;glues the bits together for each section of rhands2
;hands one section at a time to orsorf(succeed or fail)

(defun either(name clause concJ2 concJ3)
(list '+

(orsorf name clause cond2 oond3)
(orsorf name clause coOO3cond2)))

AppendixB ~291>

;orsorf (succeed or fail) takes each condition of either
;and glues the possible contacts

(defun orsorf(name clause cond2 cond3)
(update-restrictions (add3args- "S" cond2 "-"))
(append(add3args- "S" cond2 "-")

(Et
(Et '+

(append(add2args "S" cond2)
(1st (endsorf name clause coOO3)))
(faiure name claise cond2)))))

;the following functions do all the gluelng at the string level,
;of turning the program names and clause numbers into machines
;e.g. "P" clause one, into SP1

;e.g. (add2args "S" "P") produces machine SP
(defun add2args (a b)
(Iist(intern(concatenate 'string ab))))

;(add3args "S" "P" 1) produces (SP1)
(defun add3args (a b c)
(list(intern(concatenate 'string a b (princ-to-string c)))))

;(add3args- "F" "P" "-") produces(FP-)
(defun add3args- (a b c)
(Iist(intern(concatenate 'string a b c))))

;(add4args "F" "P" 2 "-") produces (FP2-)
(defun add4args (a b c d)
(list(intern(concatenate 'string ab (prlne-to-string c) d))))

;(addSargs "S" "P" 3 "RHS" "-j produces (SP3RHS-)
(defun addSargs (a b c d e)
(Iist(intern(concatenate 'string a b (prlne-to-string c) de))))

(defun put-together(first second)
(cond«null first) second)

«null second) first)
«and (atom (car first))

(atom (car second))) (list first secoro))
«atom (car second)){append first (list second)))
«and (Iistp(car first))

(Iistp(cadr second)))
(put-together (cadr first) {put-together (car first) second)))

(t(cons first second))))

;(defun de-string (x)
; (mapcar #'(lambda (y) (intern V)) x))

Appendix B <page 292>

Appendix 82
Listing of program Implementing expansion theorem

;;; ;tempexpanslon.ISp

;:;fully·expand

; A behaviour-expression Is a list of atomic actions
;in sequence or with brackets.
; OR is prefix notation, all machines are bracketed
; e.g. (a b c) (a (+ (b) (c))) (a (+ (b c d) (e f g)))
; A composition Is denoted by the symbol *, used as a prefix
; e.g. (* (a b c) (d (+ (e) (f))) (g)

; complementary terms are denoted by a trailing -, e.g. freda freda-

; Keep going 'till there are no * left

(defun fully-expand (expression restrictions)
(cond ((not (findstars expression)) expression)

(t (fully-expand (expand-terms expression restrictlons)restrlctions))))

(defun loud-fully-expand (expression restrictions)
(cond ((not (findstars expression)) expression)

(t (pprlnt expression)
(loud-fully-expand (expand-terms expression restrictions) restrictions))))

(defun findstars (tree)
(cond ((null tree) nil)

((equal tree '*)t)
((atom tree) nI~
(t (or (findstars (car tree))

(findstars (cdr tree))))))

;EXPAND
; An expand consists of an extract plus a silent-transitions.
; This takes an expression apart and puts it together again,
;but each composition will
; be replaced by an expansion (one-step) of the composition
(defun expand-terms (expression restrictions)

(cond ((null expression) nil)
((atom expression) expression)
((equal (car expression) '*)

(combine-extract-and-silent (extract (cdr expression) restrictions)
(silent-transitions (cdr expression) restrictions)))

((equal (car expression) '+) (Iet((result (combine-this-expand-and-rest
(expand-tenns (cadr expression) restrictions)
(expand-tenns (cddr expression) restrictions))))

(oond((equal (length result) 1) result)
((AND(EQUAL (LENGTH RESUL 1) 2)

(ATOM (CAR RESUL 1))) RESUL 1)
(t(cons '+ resu.)))))

(t (oombine-this-expand-and-rest ;could save by checking for car =: +
(expand-tenns (car expression) restrictions)
(expand-tenns (cdr expression) restrictions)))))

Appendix B <page 293>

; EXTRACT
; This should retum a list of 0 or more terms to be further expanded.

(defun extract (machines restrictions)
(shuffle-extract nil machines restrictions))

(defun shuffle-extract (left right restrictions)
(Iet«no-nil-rlght (remove nil right)))
(cond «null no-nU-right) nil)

«nug (car no-nil-right))
(shuffle-extract left (cdr no-nil-rlght) restrictions))

«equal (caar no-nll-right) '+) (combine-or-extract-and-rest
(do-each-extract-of-or left (cdar no-nil-right)

(ext~) restrictions)
(shuffle-extract (reverse (cons(car no-nil-right)

(reverse left)))
(cdr no-nil-rgtlt) restrictbns)))

«member (caar no-nil-right) restrictions :test #'equalp)
(shuffle-extracl (cons (car no-nil-right) left)

(cdr no-rlI-rgtt)
restridbns))

«null (cdr no-nil-right))
(list (compose-append1 (caar no-nU-right)

(append left (cdar no-nil-right)
(cdr no-til-rigtt))

restridbns)))
(t (combine-this-extract-and-rest

(compose-append1 (caar no-nU-right)
(append left (cdar no-niI-right)

(cdr no-nikigtt))
restridbns)

(shuffle-extract (reverse (cons
(carno-~)
(reverse left)))

(cdrno-~)
~))))))

; This function takes a second argument which is a list of
;machines which are the body
; to the right, and to last is the restrictions.
;For each machine in the or, we want to
; produce a list of the compose, and link these with an OR. For example, (* ;(a) (+ (b)(c)) (d))
; would result in two expressions, vis:
; (b (* (a) (d))) and (c (* (a)(d)))
; so input: «a)) «b)(c)) (d) nil
; output: (+ (b (* (a) (d))) (c (* (a)(d))))
; another example (* (a) (+ (b (c)) (d)))
; input: «a)) «b (c)) (d)) nil nil
; output: (+ (b (* (a)(c)) (d (* (a) nil))
; So for each machine, if it is linear we divide It into
; head and rest, and mark a
; compose of left rest and right, linked by a compose and prefixed by head.
; IF the machine isn't linear, we produce a set of terms recursively.

(defun do-each-extract-of-or (left machines right restrictions)
(cond «null machines) nil)

(t
(combine-this-or-and-rest

(extract-one left (car machines) right restrictions)
(do-each-extract-of-or left (cdr machines) right restrictions)))))

Appendix B <page 294>

(defun extract-one (left machine right restrictions)
(cond «(null machine) nil)

(equal right '(nil))
(extract-one left machine nil restrictions»

«equal (car machine) '+) ; Hopefully never used In canonical form
(do-each-extract-of-or left machine right restrictions))

«member (car machine) restrictions :test #'equalp)
AI)

(t (cof1l)Ose-append1 (car machine)
(append left (cdr machine) right) ~his was (Iist(cdr machine))

restrIaions))))

; SILENT TRANSITIONS
; Just pick up name/coname pairs and leave everything
;else as a composition.
; This must eliminate null machines and remove the composition
;symbol if there is
; only one machine

(defun silent-transitions (machines restrictions)
(cond (or (null machines)

;This should be the stopping condition - redundant????
(equal (length machines) 1)) nil)

(t (shuffle-silent-transltions nil machines restrictions))))

; Go along the list of machines. Treat the last one differently
; since It can't generate a term with this algorithm

(defun shuffle-Silent-transitions (left right restrictions)
(cond «(null right) nil)

(< (length right) 2) nil)
«(null (car right)) (shuffle-silent-transitlons left (cdr right) restrictions))
«equal '+ (caar right))

(c:on1Jjne~r-sIeI1-and-rest
(oo-each-silent-transition-of-or left

(aiar~)
(cxtrg-t)
resII idions)

(shuffle-silent-transitions (reverse (cons
(carrg-t)
(reverse lett)))

(cxtrg-t)
l'9Sbidions)))

(t (let «match (member (caar right) (cdr right) :test #'or-conamep)))
; Must be linear

(cond «null match)
(shuffle-silent-transitions (reverse(cons

(carrg-t)
(rewrse left)))
(cdr BJI1) restridbns))

(t (combine-this-silent-transition-and-next
(COfll)OS8-append; 'dela
(concatenate 'string 'v (princ-to-string (caar right)))

(compose-of left
(mns (radar rgtt)

(cons (mnd «e<J.I~ (caar match) '+)
(radar (rnel"1"ber (caar rrj"lt)

(extar match) :test #'oonamep)))
~(ca:Iarmatch)))

Appendix B <page 295>

(rerrove (car match) (a:lr rght)))))
restmbns)

(shuffle-sUert-transiions
(reverse(mns

(carV't)
(reverse left)))
(a:Ir rigtt)restridk>ns))))))))

(detun compose-ot (a b)
(oond ((null a)b)
((null b)a)
((atom (car a)) (list a b))
(t (awend ab))))

(detun comblne-thls-sllent-transltion-and-next (a b)
(cond ((null b) a)

(t (pin-in-oroer a b))))

; Do each thing In an or
(detun do-each-expand-ot-or (machines restrictions)

(cond ((null machines) nil)
(t (combine-this-expand-or-and-rest

(expand-terms (car machines) restrictions)
(do-each-expand-ot-or (cdr machines) restrictions)))))

(detun do-each-silent-transition-ot-or (left machines right restrictions)
(cond ((null machines) nil)

(t (combine-this-expand-or-and-rest
(do-one-sllent-transltion-of-or left (cons (car machines) right) restrictions)
(do-each-silent-transltlon-of-or left (cdr machines) right

resIrGkn)))))

(detun do-one-silent-transitlon-ot-or (left right restrictions)
(cond ((null right) nil)

((< (length right) 2) nil)
((null (car right)) (do-one-silent-transltion-ot-or left (cdr right)

~))
(t (let ((match (rnermer (caar right) (cdr rigti)

:test #'or-oonarnep))) ; Must be &near
(oond ((nuUmatch) nil)

(t (mnDne-this-Sllent-transition-and-next
(mfT1)OS8-append; 'defta

(mncatenate 'string "-" (princ-to-string (caar right)))
(corrpose-of left (cons (cadar right)
(mns (mnd ((aqua" (caar match) '+)
(cadar1rnerrber1caar right) (cdar match)

:test #'cooamep)))
(t (cadar match)))

(remove (car match) (cdr right))))) restrictions)
(do-one-silent-transition-ot-or (reverse(cons (car right)

(reverse left)))
(cdr rgtl) restrictbns))))))))

; This handles or's as well
(detun or-conamep (action1 machine)
(cond ((equalp (car machine) '+)

(sub-or-conarnep action1 (cdr machine)))
(t(mnamep action1 machine))))

Appendix B <page 296>

(defun sub-or-conamep (action machines)
(cond «null machines) nil)

«conamep action (car machines))
(car rra:tines))

(t (sub-or-conarnep action (cdr machines)))))

; Expects a linear machine and an action
(defun conamep (action1 machine)

(let «a1 (prine-te-string action1)) ;;; turns atom to string
(a2 (prlne-te-string (car machine))))'

(and (equal (abs (- (length at) (length a2))) 1)
;;; checks diff length and equality

(string-equal (string-right-trim «» at)
(string-right-trim »» a2)))))

,
; This Is top level combination of extract and silent terms. e.g
; ala- -> a(a-Inll) + (a-(alnil)) + delta
; Two arguments are extract terms and silent terms. These are lists
; of machines. Possibilities are
; 1) No extract terms
; 2) No silent terms
; 3) One extract term
; 4) One silent term
; 5) OR of extract terms
; 6) OR of silent terms

(defun combine-extract-and-silent (extract silent)
(cond «equal silent nil)

(concl «equal (length (car extract)) 1) (car extract))
«> (length (car extract)) 1) (cons '+ extract))

~ ri)))
«equal extract ni~

(cond«ancl« (length silent) 3)
(atom(car silert))) silert)

«equal (car silent) '+) silent)
(t (cons '+ silert))))

«and « (length extract) 3)
(atom (car extract)))

(cond«and« (length Silent) 3)
(atom (car siIert)))
(cons '+ (append (list extract) (list Silent))))

(t (cons '+ (append (list extract) silent)))))
(t (cond«ancl« (length Silent) 3)

(atom (car silert)))
(cons '+ (append extract (list silent))))

(t(cons '+ (append extract silent)))))))

; Arguments are two results of calling expand-terms.
; Either may be nil
; Either may start with a +
; Or either may be a single expansion (i.e. a list starting without +)

(defun combine-this-expand-and-rest (first second)
(cond «and (null first)(null second)) nil)

«and (atom first) (null second)) (list first))
«null first) second)
«null second) first)
«atom first) (list first second))

Appendix B <page 297>

((or (equa~ (car first) '+)
(equa~ (car second) '+))

(append (Iose+ first) (Iose+ second)))
(t(join-in-order first second))))

(defun join-In-order(first second)
(cond((and (atom (car first))

(atom (car second))) (list first second))
((atom(car second))(append first (list second)))
(t (cons first second))))

(DEFUN COMBINE- THIS-EXPAND-OR-AND-REST(FIRST SECOND)
(cond((and(null first)

(nuUsecond)) nil)
((and (atom first)

(nunsecond)) (1stfirst))
((null first) second)
((nul second) first)
((atom first) (list first second))
((or (equalp (car first) '+)

(8CJJa~(car second) '+))
(append (1058+first) (1058+second)))

(t(join-in-order first second))))

(defun combine-or-extract-and-rest (first second)
(append (Iose+ first)(lose+ second)))

(defun comblne-this-extract-and-rest (first second)
(cond ((null second) (list first))

(t (cons first second))))

(defun comblne-thls-or-and-rest (first second)
(null-check-cons first second))

(defun combine-or-silent-and-rest (first second)
(clever-append first second))

(defun combine-this-silent-or-and-rest (first second)
(cons first second))

(defun Iose+ (x)
(cond ((equal (car x) '+) (cdr x))

(t x)))

(defun compose-append1 (head rest restrictions)
(Iet((newrest (remove nil rest)))

(cond ((> (length newrest) 1)
(list head (cons" rest)))

(t ; In here, check 'rest' for restrictions
(null-check-list head (derestrict-one-machine(car newrest)

restmbns))))))

(defun compose-append (head rest restrictions)
(Iet((newrest (remove nil rest)))

(cond ((> (length newrest) 1) (list head (cons" rest)))
(t ; In here, check 'rest' for restrictions

(null-check-list head (derestrict-one-machine
(car newrest) restrX:tions))))))

Appendix B <page 298>

; Given one machine, take It apart and eliminate any occurences of restrictions

(defun derestrict-one-machine (machine restrictions)
(let «answer (derestrict-machine machine restrictions)))

(cond«and(equal'+ (car answer))
(equal (length (cdr answer)) 1))(cadr answer))

«and(~al'+ (car answer))
(nul (cdr answer)))nll)

(t answer))))

(defun derestrict-machine
(machine restrictions)
(cond «null machine) nil)

«and (atom machine)
(member machine restrictions :test #'equalp))

rj)
«atom machine) machine)
«member (car machine) restrictions :test #'equalp) nil)

(t
(null~heck-cons (derestrict-machine (car machine) restrictions)

(derestrict-machine (cdr machine) restrictions)))))

(defun null-check-cons (first second)
(cond «null first)

seoond)«and (equal'+ first)
(nul second)) niQ

(t
(cons first second))))

(defun null-check-list (first second)
(cond «null second)

(list first))
«null first) second)

(t
(fist first second))))

(defun clever-append (first second)
(cond

«and (null first)
(nul second)) niQ

«nul first) second)
«null second) first)«and (equal (car first) '+)

(equal (car second) '+))
(append first (cdr second)))

«equal (car first) '+)
(append first second))

«equal (car second) '+)
(cons '+ (append first (cdr second))))

(t(cons '+ (join-in-orderfirst second)))))

(defun shuffle-extract-append (first second)
(cond «null second) (cons '+ first))

«and (null second) ;Only happens with restrictions
(equal (length first) 1))

(car first))
«equal (car second) '+)

(cons '+ (append first (cdr second))))
(t(cons '+ (append first second)))))

Appendix B <page 299>

(defun silent-append (first second)
(cond ;((null first) second)

((null second) first)
((and (null second)

(e<J,Ial (length first) 1))
(carfi'st))

((and (equal (car first) '+)
(EKJ,Ja1 (car second) '+))

(append first (cdr second)))
((equal (car first) '+) (append first second))
((equal (car second) '+) (cons '+ (append first (cdr second))))
(t (cons '+ (append first second)))))

(defun clever-cons (a b)
(cond ((null b) a)

(t (cons ab))))

Appendix B <page 300>

Appendix 83

Listings from production rule system

;;; program Initialising working memory

; Inltwm.lsp
;;; go through ccstree and Identify cholcepolnts
;;; type and level-number, starting at level1
;;; first version for outputting on screen in legible format

;(defun Inltwm(ccstree)
; (tidy-up (cons '«positon (1)) (direction forward))
; (categorise ccstree '(1)))))

;(defun tidy-up (allst)
; (cond«null alist)nil)

(t (terpn)(sortout (car alist))
(tidy-up (cxSralist)))))

;(defun sortout (allst)
; (cond«null alist)nil)

(t(print (car alist))
(sortout (cxSralist)))))

(defun Inltwm(CCstree)
(cons '«position (1))(direction forward)) ;head of working memory
(categorise ccstree '(1))))

;;; look at each node In tum and see If It is a choicepoint
;;; pick out the conjunctive and disjunctive +'s
;;;; and the fail nodes
(defun categorise(allst choicepolntnum)
(cond«null alist) nil)

«final (car alist))(recordchoicepolnt
(car alst) choicepoirtnum))

«equalp '+ (caadr alist)) ;'choice node is followed by '+'
Uoinon (recordchoicepoint

(car alist) ;record type ofchoice node
choicepointrum)

(categorise (cadr alist) ;carry on down ccstree,level deeper
(next-level choicepointnum))))

«~P '+ (car alst)) ;at '+'
(takeouttail (cxSralist) ;go down the choices in tail

cOOicepointnum))
«equalp "-F" (firstchar (car alist))) ;a failure means choosing

(recordchoicepoint
(car aIist)

choicepointrum))
(t UOinon (recordnode (car allst) choicepointnum) ;common or garden nodes

(categorise (cadr aUst)
(next-level choicepointnum)))))) ;record and carry on

(defun recordnode(ltem choicepointnum)
(lIst(lIst 'choicepoint cholcepointnum)

(list 'type choicepointnum 'nochoice-node) ;dont involve a choice
(list 'name choicepointnum item)))

(defun next-level(levelnum)
(reverse (cons 1

(reverse levelnum))))

;level marker
;adds 1 to existing level
;e.g. (11)to(111)

Appendix B <page 301>

;;; when dealing with a choice Inside a tall, take first element, look at it,
;;;then go on down list, at top level stay same choicepoint number

(defun takeouttail(tail choicepointnum)
(cond«null tail) nil) ;i00i< at topmost choice

(t(joinon (categorise (car tail)
choIcepointnum)
(takeouttail(cx:trtail) ~hen take the other(s)
(addit choicepoirtnum))))))

(detun addit(choicepointnum) ;each clause of disjunct
(reverse ;is sub-nul1'tlered in order
(cons ;e.g.(1 21) (1 22)(1 23) ..
(+ (car (reverse choicepointnum))1)
(cx:tr(reverse choicepointnum)))))

(defun final(ltem)
(and(equalp "S"(subseq(prlnc-to-strlng item) 0 1))

(equalp "-"(lastchar (princ-to-string item)))))

;;; label choicepoints according to sort: 'conjunctive, 'disjunctive
;;; 'conjunctive prime or a 'no choice' node
;;; probably need changing later

(defun recordcholcepoint(ltem cholcepolntnum)
(cond «and(equalp "S"(subseq(princ-to-string item) 0 1))

(equalp "-"(Iastchar (princ-to-string item))))
(record-final-success item choicepointnum))

«equalp MS"(subseq (princ-to-string item) 0 1))
(record-disjunct item cholcepointnum))

«rhside item) (record-disjunctrhs item cholcepointnum))
«equalp "-F"(firstchar item))

(record-failcholce Item cholcepolntnum))
«8CJ,Ialp"_M (lastchar Item))

(record-disjunct Item cholcepointnum))
(t (record-disjunctprime

item coolcepointnum))))

;;;putting the appropriate tags on the choicepoint

(defun record-flnal-success(ltem choicepointnum)
(list(list 'choicepoint choicepointnum)

(list 'type cholcepointnum 'final-success)
(list 'name cholcepointnum item)))

(defun record-disjunct(item choicepointnum)
(Iist(list 'choicepoint choicepointnum)

(list 'type choicepointnum 'disjunct)
(list 'name choicepointnum item)))

(defun record-disjunctrhs(item choicepointnum)
(list(list 'choicepoint choicepointnum)

(list 'type cholcepointnum 'disjunctrhs)
(list 'name choicepointnum item)))

(defun record-disjunctprime(ltem choicepointnum)
(list(list 'choicepoint choicepointnum)

(list 'type choicepointnum 'disjunctprime)
(list 'name choicepointnum item)))

(defun record-failchoice(item choicepointnum)

Appendix B <page 302>

(list(list 'choicepoint choicepointnum)
(list 'YP8 choicepointrum 'failchoice)
(list 'name choicepoirtrum lem)))

"'identifier bits
(defUn rhside(ltem)
(and(> (length item) 4)

(aqualp "RHS-"
(string-trim
(subseq item 0 (- (length item) 4» item»)))

(defun lastchar (item)
(string-trim
(subseq item 0 (- (length item) 1» item»

(defun firstchar(item)
(subseq (prine-to-string item) 0 2»

;;;glue bits

(defun jolnon(a b)
(cond((null a) b)

((rullb) a)
((and(atom (caar a»

(akm1 (caar b)))
(cons a (list b)))

((and(11stp (caar a»
(Iistp (caar b)))

(append ab»
((Iistp (caar a»(append a (list b)))
(t (oons a b»)))

;;;rule.et for normal Prolog .earch

((((position ?node)(directlon forward)(type ?node nocholce-node»
((position (next-level ?node »(direction forward)))

(((position ?node)(directlon backward)(type ?node nochoice-node»
((position (stepback ?node »(directlon backward)))

(((position ?node)(direction forward)(type ?node disjunctrhs»
((position (next-level ?node»(direction forward)))

(((position ?node)(direction backward)(type ?node disjunctrhs»
((position (stepback ?node»(direction backward)))

(((position ?node)(direction forward)(type ?node disjunct»
((position (next-level ?node»(direction forward»)

(((position (1»(direction backward)(type ?node disjunct)
((not(up-Ievels(next-Ievel ?node»)))
((halt»)

(((position ?node)(direction backward)(type ?node disjunct)
((up-levels (next-level ?node»»
((position (up-Ievels(next-Ievel ?node)))(direction forward»)

(((position ?node)(direction backward)(type ?node disjunct)
((not(up-Ievels (next-level ?node)))))
((position(stepback ?node»(direction backward)))

Appendix B <page 303>

«(position ?node)(direction forward)(type ?node dlsjunctprlme))
«position (next-level ?node))(directlon forward)))

«(position ?node)(dlrectlon backward)(type ?node disjunctprime))
«position (stepback ?node))(directlon backward)))

«(position ?node)(dlrectlon forward)(type ?node fallcholce))
«position (stepback ?node))(directlon backward)))

«(position ?node)(directlon forward)(type ?node final-success))
«halt)))))

jjsearch cycle

;;; system cycles through rules to find next node
;;; in path being followed through ccstree

(detun beglnasearch(ccstree rules)
(asearch(initwm ccstree)rules)) ;Iabel nodes of ccstree <initwm.lsp>

(detun asearch(wm rules)(prlnt 'car-of-wm-)(print (car wm))
(cond«equalp '«HAL T))(car wm))

(reverse(path (pathllst wm) ;retum the path taken
(wmchoicepoints wm))))

(t(asearch (choice wm rules)
rules))))

;;; choice uses most recent element in wmem,
;;; finds what kind of node is identified
;;; matches It to Ihs ot rule and fires matching rhs of rule

;(varvalue returns instantiated Ihs of rule)
;(findrhs retums the rhs ot that rule)

(defun choice (wm rules)
(Iet«varvalue (matches (caar rules) wm))) ;take first rule

(cond«null varvalue) ;if not a match try next rule
(choice wm (cdr rules)))

(t (exea.rte varvalue ;1there is a match
(tindrhs varvalue rules) wm))))) ;instantiate and do rhs of rule

;;; fn matches returns a Ihs of a rule that has been
;;; instantiated to match the most recent node
;;; position and type in wmem

(defun matches (Ihsrule wm)
(and(equalp (cadr Ihsrule) ;check the direction ot rule

(cadarwm)) ;match inwmem
(flndrule (subst (cadaar wm) ;substitute position-id

'?node 1ind node-id match in w-mem
Ilsrule :test #'aqua_')
wmwm)))

(detun tindrule(instantiated-Ihs wm wm1)
(cond «null wm) nil) ;matches a choicepoint if

«and (equalp (rulepos instantlated-Ihs) ;node-id rule equal to
(cadr(cadadr wm))) ;node-id choicepoint
(equalp (ruletype instantiated-Ihs) ;and type-id of rule equallo

(wniype wm)) ;type-id of choicepoint

Appendix B <page 304>

(or(null (caddclr instantiated-Ihs»
(satisfied (caddclr Instantiated-Ihs) wm1)));and constraints are met

Instantiated-Ihs)
(t (findrule
Instantiated-Ihs
(cdr wm) wm1)))) ;otherwise look in tail of w-mem

;;; fn satisfies checks constraints on Ihs of rule
;;; taking each constraint in tum

(defun satisfied(condbit wm)
(cond«null condbit) t)

(t (and(satisfy (car condbit)wm)
(satisfied (cdrcondbit) wm »))))

;satisfy first constraint
;and the rest

(defun satisfy (condcar wm)
(eval (addargs condcarwm)))

(defun addargs (condcarwm)
(cond «null condcar) nil)

«or (equal (car condcar) 'not)
(equal (car condcar) 'next-leveQ
(equal (car condcar) 'stepback)
(equal (car condcar) 'following»
(list (car condcar)

(iD:Iargs (cadr condcar) wm »)
«equal (car condcar) 'used)

(list 'used (addargs (cadr condcar) wm)
(Bst'qJOte (pathlist wm))))

«equal (car condcar) 'up-levels)
(list 'up-levels (addargs (cadrcondcar) wm)

(list 'quote (pathlist wm»
(list 'qJOte (workilg-memwm) »)

« equal(car condcar) 'previously-used-disjunct)
(list 'previously-used-disjunct

(ackiargs(cadr condcar) wm)
(list '(JJOle(pathlist wm»»

«equal(car condcar) 'rule-clause)
(Iist'rule-clause

(addargs(cadr condcar)wm)
(list 'quote (wmchoicepoints wm»»

«equal (car condcar) 'exists-lastdisjunctrhs)
(list 'exists-lastdisjunctrhs

(addargs(cadr condcar) wm) (list 'CJ.Iotewm»)
(t (list 'quote condcar»)))

;;; findrhs checks out the rhs of
;;; instantiated Ihs of rule

(defun findrhs(lhs rules)
(cond«null rules)niQ ;. position values match head

«same Ihs (caar rules» ;of rules and ~hthand side is
(cond«equalp '«halt»(cadar rules» ;'hah' return that

'«hal») ;otherwise substitute in
(t(subst (rulepos Ihs) ;vaues of pos.on to

(cadadr(car(cadar rules))) ;lefthand side and
(cadar rules))))) ;retum matching righthand side

(t (findrhs Ihs (cdr rules»») ;if no match, try rest of rules

;;; match if the direction and node type
;;; are the sameand the constraints are the same

Appendix B <page 305>

(defun same(lhs toprule)
(and(equalp (ruledirectlon Ihs) ;cofT1)8redirection

(ruledirectlon toprule))
(equalp (ruletype Ihs) ;compare node-type

(ruletype toprule))
(same-constraints (cadddr Ihs) (cadddr toprule)))) ;compare constraints

(defun same-constralnts(constraints-Ihs constralnts-toprule)
(cond«and(null constraints-Ihs)

(rull constralnts-toprule)) t) ;cofT1)8relist of constraints

«and(lookat (car constraints-Ihs)(car constraints-toprule))
(same-<X>nStralnts
(cdr constralnts-Ihs)(cdr constralnts-toprule))))))

(defun Iookat(alist alist1) ;compare each constraint
(equalp (car alist)(car alist1)))

;;; having found the matching Ihs and rhs
;;; execute fires rlghthand side of rule

(defun execute(lhs rhs wm)
(cond«equalp '«halt)) rhs)

(cons '«halt)) wm)) ;if 'halt Is rhs, output wmem
«equalp 'next-level (rhs-actlon rhs)) ;nextlevel goes along the branches

(nextlevellhs rhs wm))
«equalp 'stepback (rhs-actlon rhs)) ;step back node by node

(gobad< hs rhs wm))
« equalp 'Iast-disjunctrhs(rhs-actlon rhs))

(lastdisjunarhs rhswm))
«equalp 'up-level(rhs-actlon rhs)) ;up-Ievel(s) ;uplevel goes up branches

(upleveills rhs wm))))

;functlons used for constructing output list
;showing path taken through CCStree

;lIst1 Is list of positions from wmem
;list2 is list of choicepoints from wmem

(dafun path(list1 list2)
(cond«nulllist1) nil)

(t(joinit(tie (car list1) list2)
(path(cdr list1) 1ist2)))))

;Iist of positions
;and list of node names
;put in a list as identified

(defun joinit(a b) ;with a line break,
(append a b)) ;more legible as output

;tie in position to corresponding node-name

(defun tie (item alist)
(cond«equalp '«halt)) item) ;not a position

nI)
«rul alist) nil)
«equalp (rulepos item) (wmpos (car alist))) ;if position matches

(c:ddr(caddr (car allst)))) ~opchoicepoint, retum name,
(t (tie item (cdr allst))))) ;otherwise go on down tail

;(defun tie (item alist)
; (cond«equalp '«halt)) item) ;not a position

Appendix B <page 306>

nI)
«rull 81ist)nl)
«and (equalp (rulepos Item) (wmpos (car alist))) ;if position matches top choicepoint

(equalp (choicepointtype (car alist)) 'disjunct));and is a disjunct
(cddr(caddr (car alst))))

(t (tie Item (cdr allst)))))

;a function that only allows disjuncts In a forward direction
;and disjuncts In backwards when changed to 'f' version
;plus sp and sp- or fp-

;reduce wmem to choicepoints only,

(defun wmchoicepoints (wm) ;Iist of 'choicepoints' in working memory
(cond«null wm) nil)

«equaJp 'position (caar (car wm))) ;ignore positions
(wrnchoicepoints(cdr wm)))

(t (joinup (carwm) ;add choicepolnts to list
(wmcholoepoints(cdr wm))))))

;;;retums list of node-positions from wmem

(defun pathlist(list1)
(cond«equalp (caaar Iist1) 'choicepoint) nil) ;dont include original

(t(cons (car list1) ;choicepoints, only positions
(pathJist(cdr list1))))))

;glue for list of cholcepolnts

(defun joinup(a b)
(cond«and(null a)(null b))nl~

«ru. alb)
«ru. b)a)
«aro(atom(caar a))

(atom (caar b)))(cons a (list b)))
«atom (caar a))(cons a b))
«atom (caar b))(append a (list b)))
(t (cons a b))))

;;; functions used as constraints in Ihs of rules at disjuncts

;;; for facts before rules
;;; need a check to find if there is a fact
;;; which could be used instead of a rule

~n 'rule-clause' uses results of (following node)
;and choicepoints stored in working memory (wmchoicepoints wm)

(defun rule-clause (position alist)
(rhside (car(tie-up position allst))))

(defun tie-up (item alist)
(cond«1'1.111alist) nil)

«equalp item (wmpos (car alist)))
(cddr(caddr(car alist)))) ;if a choicepoint return it

(t (tie-up item (cdr alist))))) ;otherwise go on to tail

;;;for onepointer per clause
;;;a check to see if node has been used

Appendix B <page 307>

;fn uses 'next-level' position of node
;and the pathlist of nodes used

(defun previously-used-disjunct(posltion alist)
(oond«aqualp '(1) position) nil) ;Iook at last position

«aqualp 1 (car(reverse position))) ;if the level is'1'
(prevlously-used-disjunct(stepback position) alist));check further back,

«is-lower position aist)) ;used previously if level
(t (prevlously-used-disjunct ;is higher than '1'

(stepback position) aist)))) ;or check further back

(defun is-Iower(positlon alist) ;checks if a lower node exists
(oond(nuU alist) ni~ 'by looking one level lower

«equalp (lower-branch position) (cadaar alist))) ;yes, if lower level is head
(t (is-lower position (cdr alist))))) ;or tail of pathlist

(defun lower-branch (position)
(reverse(oons (- (car (reverse posltion))1) ;golng 'down' one level

(cdr (reverse position))))) ;e.g. (1 1 2) to (1 1 1)

;;;1or redo from left model
;;;checks on leftmost goal rather than
;;;most recent subgoal

(defun exists-Iastdisjunctrhs(posltion wm)
(cond«null wm) nil)

«and (aqualp (caddr(cadr (car wm))) ;if there Is a node type
'disj.InC:trtl;) ~ is a rhs-disj.mct

(> (length posllon) ;and it is further back
(length(cadadr(carwm))))) ;in path of nodes used

(ccmcr (carwm))) ;retum that position
(t(exists-lastdisjunctrhs position (cdr wm)))))

;;;fn.s used by 'execute' when firing righthand side
;;;of rule, to update the position of node

(defun lastdlsjunctrhs(rhs wm)
(cons(llst
(cons(caar rhs) ;"positlon"
(Iist(next-level (exists-Iastdisjunctrhs ;fInd leftmost goal

(cadadr(car rhs)) wm)))) ;add node number
(cadr rtl;)) wm)) ;add node direction

(defun nextlevel(lhs rhs wm)
(cons
(Iist(oons (caar rtl;)
(list
(next-level(cadar hs))))
(cadr rtl;)) wm))

;"positlon"

;add node number
;add node direction

(defun uplevel(lhs rhs wm)
(cons(llst
(cons(caar rhs)(11st ;adding a new position to pathlist
(up-Ievels(next-Ievel(cadar Ihs)) ;when it is one level up
(pathlist wm) ;rather than along the tree
(working-mem wm))))
(cadr rhs))
wm))

Appendix B <page 308>

;(defun goback(lhs rhs wm)
; (Iet«step (stepback-to-dlsjunct(cadar Ihs) ;when updating position

(wmchoicepointswm)))) ;isste~ng back,
(cond«null step)(cons '«halt» wm» ;and step back Is last, halt

(t (cons(list(cons(caarrhs) ;otherwiselist "position"
(1st step» ;nodenumberand direction

; (aD'rhs» wm)))))
(defun goback(lhs rhs wm)
(Iet«step (stepback(cadar Ihs»» ;removesone level going back
(cond«null step) (cons '«halt» wm» ;If result Is last step add halt

(t(cons(Jist(cons(caarrhs) ; otherwise put new pos. inwm
(list step»

(aD' rhs»)wm»»)

(defun stepback(nodeposition)
(reverse ;removesone levelgoingback
(cdr (reverse nodeposition»» ;aIongthe tree

;(dafun stepback-to-disjunct(position allst) ;find last disjunct
; (cond«null position) nil)

«disjunct-found (stepback position) allst) ;retum It If found
(st8JilaCkposition»

(t(stepback-to-dlsjunct (stepback position) allst)))) ;otherwise go back a step

;(defun disjunct-found (position allst)
; (cond«null alist) nil)

«and(equaJpposition ;if the positionnumber is the same
(wrrpos (caralist))) ;andthe type Is 'disjunct'

(equalp (Choicepointtype(car alist» ;eureka
'disjJnct)))

(t(disjunct-found position (cdr alist))))) ;otherwlse look on down list

;(defun next-level(levelnum)
; (reverse(CQns1 ;adds one level

(reverselevelnum»» ;goingalongtree

(defun following(posltion) ;finds next but one level
(next-Ievel(next-levelposition))) ;along the tree

(dafun up-levels(choicepointnumwm wm1) ;goingup a branch level
(Iet«uplevelnode (up-level choicepointnum))) ;as opposed to along
(cond «not(wm-rnem upJevelnodewm1» nil) ;returns nil if no higher node

«used uplevelnode wm)(up-Ievels uplevelnode wm wm1»;tries higher if used
(t upJevelnode»))) ;orreturnshigherbranch

(defun up-Ievel(choicepointnum)
(cond«equalp 1 (length choicepointnum» ;if down to last node of pathlist,

(reverse(cons ;a bl differert,
(+(carchoicepointnum)1) ;no list to reverse
choicepointnum»)

(t (reverse ;rormaly, CKids a level goingup
(cons ;the branches (11) to (12)
(+ (car (reverse choicepointnum»1)
(cdr (reverse choicepointnum»))))))

(defunwm-rnem(position alist) ;checkon existence of a node
(oond«null allst) nil)

«equalp position (cadaralist» t) ;exists if a member
(t (wm-rnemposition (cdr alist»») ;oforiginalworking memory

(defun wOrking-mem(wm)

Appendix B <page 309>

(cond((null wm)nl)
((aqualp (caaarwm) 'position)
(working-mem(atr wm)))

(t (cons(caarwm)
(working-mem(odrwm))))))

;original working memory
;records choicepoints
;generated for program concerned

(defun used (anode wm)
(or(null anode)
(pathlistmem

anode
wm)))

;check to see If node has beenused
;disjunct node has been used If

;1 is a mermer of pathlist
;(or It is nl- than<s a million mark)

(defun pathllstmem (anodepos wm)
(cond((null wm) nil)

((irYNmemanodepos (car wm)) t) ;If Is In the head of working memory
(t(pathllstmem anodepos (atrwm))))) ;or In the tail

(defun Inwmem(anode carwm)
(aqua" anode (cadar carwm))) ;there you go

;;; functions for pulling out certain bits of rule
;;; and for identifying node position and type etc.

(defun ruletype (rule) ;rule 0: (caar rules)
(caddr(caddr rule)))

(defun rulepos(rule)
(cadar rule))

;;;same again for identifying node position
;;;and type in wmem

(defun wmtype(wm)
(caddr(cadr(cadr wm))))

(detun wmpos(wm)
(cadadrwm))

(defun ruledirection(rule)
(cadr rule))

(defun wmdirection(wm)
(cadarwm))

(defun rhs-action(rhs)
(caadr(car rhs)))

(defun choicepointtype(alist) ;e.g. 'disjunct' or 'conjunct'
(caddar(atr aUst)))

Appendix C <page 310>

Appendix C1

Screen dumps of interface and programs used in experiment

GO....

7'htl.l}J..:r.'L7rr ,All' t.tJ.iJ}60('}'lilrf i.l} this t-xPf!·J':l.J1U'J} t. IIsprrJ]7t."bo~ is ft.7 ht-Jp OJ}d oat whiL".h
il.~'It!!t":1s rtf'P.t'LlIL'6o('ar» dil.lii.":rrit ,All' JJL7Y.1i.":t-,s,7'1JJ~.t:'.){1f"J'L'i.~ A7(.v.:::.· i.lJ llllJ'tkrriiu' il t lJL7w
}1et.7J.UI:? JJ]}il6'f'JJ}1:? tbl:? P.I't.lIL'6'f' JJ} 1t:v]'Il't?ft!#.r .frJJd~· e» ilJJSWfJJ' ft.7 il qrl't:V:r.~ th.l t J:~ wi}.l tsft!#ps
thl:? F.n.vL7J:..0('JJ} ft:oJ"l'll~ft:oJ' t.,J.'t"'s JJ}].'Il't.7Y.1JJJ:..0('il J:..o('L"Ii,l,Til.A~ ..r.t7rrJ' tJ'.!.1}eL7J¥J' the l?Jr.lJ.1}Jue
60('iJ¥J} LlI} the J}l?xt si:..reeJ} and thl?JJ 60('L7LlI} ta the rest LV the }'Il'l.'6o('J'ilJ.1}s,

All} tSj.'1C'J}d too lLlI}60('over the }'Il'l.'6o('J'iUJ}S ..r.'L7rrwilll1t!! 60('if'lf"J},.I iuu J.1}LlI~ JJ} l't:'J't!'...~~i JJ} whiL-:iJ
sl't:'ps ..r.'L7rr}'Il'l::?i.iiL":f tbe iu l't:'J]'Il?!!l't:'J' will t.lJ.~ tiuu: JJ} whl:?tbeJ' tht!!,Vil.l?!! the ".1'J:~{1}t II LlI'
"W.l'l.1I}60('II .~ft:'p~'" A~J:r.'L7rr hi'~ OJ}i.s:lJt::?t.t I '1l11t!!60('1ild ft.7 ilJJ~"'Wlf'J' il.l}..r,"q[I't!'J'Jt;._~..r.'L7rr11i'1 ~

.'117(.7[1'1 tbe J.l/'l.'6o('J'il.l.1J~'"

Off W~ II;'

Appendix C <page 311>

(try p) (try 0) (try c)
•

(fOil p) (fOil 0) (fOil c) Exam.ple
(succeed p) (succeed 0) (succeed c)

Click ea:h buttDn that represents a step in tIE path that you think tIE Prolog
interpreter 1ates to answer \be query .p., glWD. tIE datf.lbase smvn below

confused?
~ click ~ barhelotv$18!l'Tllr.Detlll"t!!lf ID .hotvifla:arale
J1fHI .I8e/.JIfNZTpndictiaD itc (100% 0c c u ro t e)

(olmost certoinly occurote) (iirobobly righ9

r-- G::::n=o=t=c=e=rt=a=i~n)~(pro bob Iy no t 0ccuro te)

I

b.
8..

pifa& b&c.

("I guessed ,,)

If,ou fiol tb! mtation a,1iUle sinmge, reM tIE folloviDg section, otlmvise go
straight on to the rest of the pragn.ms by clicking-ontle •Ut's go. butbn below.

II.aHifYA.lp hOtJ/l!D~"""/wtD ~ 1irIs.6ntt.,~ ~aI"iJH,~"""
.iDJ1r;Hu "':Arti6cMl.lD~" .lMDtIJool-A:r.I8.l9. r.lzt:yilU'l!! ~tD:: ~
~ i.e.~ iJr /rae Jl"1:hree thi"lPT 1Ihout.i1 t::Il.Il heJ'-ll"Oli'ftl /rue,.m the.6nd
.itiB lB.rr!tt!.AlcbTtMDatlLll ~ .1.,_-.iLJ fiNuIBalDI!, tlurJe.Jilclg :. 1 21" ~~

deports(DA 137 1040).
ori gi n(BA 1f37 Chi cago).

In each of Uuu:eprograms tha Prologintarpretar vould take exactly the sarna
steps, in each case finding amatcb in II.condi tiona11o gical sentence, then trying

(~) 10J.lI'Oft eech subgoal of that sentence ill turn. (Let Is go)

ulces(t1otthew BA137) if
origl n(BA 137 Chicago) &
deports(BA 137 1040) &.
arri ves(6A 137 1250).

b_

o.
P if 8 & b & c.

Appendix C <page 312>

problem one

(try 11) (try a) (try rJ) (try c)
(fail p) (fail a) (fail b) (fail c)

(succeed p) (succeed a) (sUCteed b) (sUCteed c)

Clic.k etchbutton that repl'esmls a stepin tm path tld :yw think tIEProlog
l.DI.B'prelW' taleS 10answer \lie query ." grwn b tlmabase SbOYn belov

Haute ~~ borlJeJofvaeemsDaU'7!!!lft tolzotviIHC1Zr.fl1e
J"DU.I&::l.J'D'l'l' ~ ..a. Q oOZo 9ccurate)

b. (almost certainly atcurate) ~rDbablY righ~b.
pifll& b&c. (not tert8i~ (jlrobably not accurate)

I I ("I guessed ") y
problem two

(try P) (trye) (try D) (try e)
(fail p) (fail a) (fail b) (failt)

(succeed p) (succeed a) (sUCteed b) (succeed c)
II

Cid each lmton tlmt represents 8.step intb! path 1bat10u think 1heProlog
iIIIerpte1er 1akes to amwer b qmry 'p' J gl'\en 1lE database smvn. below

.ne.se clicJ-~.harh!lotr~".IN!II.J"8It Io.bofrrac:caratea.
J1DOA!eI.J1C1fZT jN'BdIctir.m .l6:a. (100% accurat~

b. (almost certainl" accurate) ~robablU righ9pifa. &. bkc.
(not certain) cprObarJly not accurate)

I I ('I guessed") 9

Appendix C <page 313>

prob lem three

(try p) (try ..) (try b) (1ry c)
(fail p) (filii a) (fail b) (fail c)

(sLlcceed p) (succeed a) ~ucceed b) (succeed c)

Click each button that represerds a step intI:I! pdhthat ~u think tmPrclog
lDIerpreter lakeS toamver the q1B'.J 'P', gnentb:H:18IDbme Sl¥>vn te!ov

.P!Ia:iJJrIs t:Lit::r fIfI'il.it::JJe btzr /.JeIor.6fIfI/ID7If..DlJllU'aflt ID.btJfv«:ctrr:ll Ba.
}'fHr.J&HJ'fXZI" ~ ..b. (1 OO~ accurate)

a_
(almost certainly accurate) ~robably right)p ita a:.b& c.

(not certain) (probably not atcurate)

[I ("I guessed ") r:)

prob lem fo ur

(almost certainly accurate) ~robably right)

(try p J
(foil P)

(succeed p)

try 8) (try Il) (
'-~-_,

~ (fail b)
(succeed a) (succeed b)

lry c)

(fail c)
(succeed c)

C1idt BlCh truJ.t>n tbJtreprese~ a step in tJle pathtl'llt }lOO tIli.nk t:JE Prolog
iDtorprutor talmc to aD:Vgr tllo quory 'p'" gl'QUIl t:bs dalaboJ sDovn bolov

pifa.
a

~ ~ ~ bsr/JelorAft'fOJlf .Dt!III.I"I!:6ll1.1JottrillCCtcriIlte.J'DIT""J'DID"'~-- [100% accurate)

(not cortain) (probably not atcurate)

I ("I guessed ")

Appendix C <page 314>

prob lem five

(try p) (try 0) (try D) (lry c)(try H)
(foil p) (fflil a) (fail b) (fail c) (fail H)

(succeed 0) (succeed a) (iucceed b) (succeed c) (succeed ~

II

Click fB:b. button that. represeDls a step intm path thai you think tIEProlog
i:IIterpmter 1ates to answer to! qm:ry .p., gnen. tledalBbase sOOvnb!lov

pifa&b&c. .FJsaag clit::r rvilicJJefrer bsrheIorseeml.D8lJl.J'7!!lll fD .Der;vM:rlmllB
poa.h::lJ'f'lZT" prr:Jrc6bD 1.:aifx.' (100% accurate)

:x. (almost certainly accurate) ~robablY righ9
b.
8.. (not certai~ cprobobly not otcurote)

I I (" I guessed ")
~

problem six

(try p) (1rya) (try b) (try e)(try e)
(rail p) (fBil B) (fBii b) (fail t) (fail e)

(succeed p) (succeed 0) (succeea ~ ~ucceea c) (succeeo e)

f.,

C1ir:k em:h button lbzd I eJli esellts 11s"p in tbe path t1:mt J01l tbiok 1IEProlog
intErpreter takes to msver tm qmry ·P·Igll'en tIEdabt.E shown below

FfetulecJ.id- wb..it:JIeRr bsr /JeIow-6F-'etn'l.De#l..n!Sl/DlJotvliN:CaTa le
J1DlT .Ii!eI.J1fHZT pnrlicliaD Dc (100% accurate)p ira&. b Bc. c.

a.
~roboblY righ9(almost certflinly accurate)

b.
aif e. (not certain) cprobably not accurate)
e.

I I ("I sueasedll
) (

~)

Appendix C <page 315>

Thankyou for)'WI" oo-operati~ before 1Ougo,
c1ic.k en 1tE a:ti.vity that serms rmst a1tnJ:tiw at this mommt.

~ 9I'1c 't(tfJ f:<& ~ ~
- (..DJJQt.~ ,,..}wO ~

- <.ol'.t.~ ~t- ~~ ~~

- lunch "'~~hli:!r~fecJDr~
-ltt.., ch the e,,~",ro\er'

~C~316>

Appendix C2

Results of machine-
analysis
1988 data

"match-found-to-PROB1 TRYONC EH

"match-found-to-PROB2TRYONCE"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

nil

nil

Interpretation of output
"match-found-to-PROB 1TRYONCE"

indicates that on problem one (PROB1)

the student's prediction showed the typical

error associated with the ,ry once and pass'

misconception.

Hmatch-found-to-PROB5MULTIPLEF"

would indicate that on problem five the

student showed evidence of both the 1ry

once and pass' error and the 'facts before

rules' error.

subject no. 4
nil

nil

nil

"match-found-to-PROB4NORM"

nil

nil

"match-found-to-PROB4NORM"

indicates that the student on problem four

the student gave a correct prediction.

subject no. 5
nil

"match-found-to-PROB2TRYONCE"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

"match-found-to-PROB5M ULTI PLEF"

"match-found-to-PROB6TRYONCE"

subject no. 1
"match-found-to-PROB1TRYONCE"

"match-found-to-PROB2TRYONCE"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

nil
nil

subject no. 6
"match-found-to-PROB1 TRYONCE"

"match-found-to-PROB2TRYONC E"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

"match-found-to-PROB5MUL TIPLEF"

. "match-found-to-PROB6TRYONCE"

subject no. 2
"match-found-to-PROB1TRYONCE"

"match-found-to-PROB2TRYONCE"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

nil

nil

subject no. 7
"match-found-to-PROB1 TRYONC EM

"match-found-to-PROB2TRYONC EM

"match-found-to-PR OB3TRYONC EH

"match-found-to-PROB4NORM"

nil

"match-found-to-PROB6TRYONCE"

subject no. 3
subject no. 8
"match-found-to-PROB 1TRYONCE"

AfprdixC ~317>

"match-found-to-PROB2TRYONCE"
nil
"match-found-to-PROB4NORM"
"match-found-to-PROBSMULTIPLEF"
"match-found-to-PROB6TRYONCE"

nil
nil
nil
nil

subject no. 9
nil
nil
nil
nil
nil
nil

subject no. 14
"match-found-to-PROB1 TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROBSTRYONCE"
"match-found-to-PROB6TRYONCE"

subject no. 10
"match-found-to-PROB 1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROBSMUL TIPLEF"

"match-found-to-PROB6TRYONCE"

subject no. 15
nil
nil
nil
nil
nil
nil

subject no. 11
"match-found-to-PROB 1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
nil
nil

subject no. 16
nil
nil
nil

"match-found-to-PROB4NORM"

nil

nil

subject no. 12
"match-found-to-PROB 1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
Hmatch-found-to-PROB4NORMH

"match-found-to-PROBSTRYONCE"
"match-found-to-PROB6TRYONCE"

subject no. 17

"match-found-to-PROB 1TRYONCE"

"match-found-to-PROB2TRYONCE"

"match-found-to-PROB3TRYONCE"

"match-found-to-PROB4NORM"

nil

"match-found-to-PROB6TRYONCE"

subject no. 13
nil
nil

subject no. 18

"match-found-to-PROB 1TRYONCE"

"match-found-to-PROB2TRYONC E"

"match-found-to-PROB3TRYONCE"

AfpniixC ~318>

"match-found-to-PROB4NORM"
"match-found-to-PROB5TRYONCE"
"match-found-to-PROB6TRYONCE"

"match-found-to-PROB5TRYONC E"
"match-found-to-PROB6TRYONC E"

subject no. 19
nil
nil
nil
nil
nil
nil

subject no. 24
nil
nil
nil
nil
nil
nil

subject no. 20
"match-found-to-PROB 1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROB5MUL TIPLEF"
"match-found-to-PROB6TRYONCE"

subject no. 25
"match-found-to-PROB 1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROB5MUL TIPLEF"
"match-found-to-PROB6TRYONC E"

subject no. 21
nil
nil
nil
"match-found-to-PROB4NORM"
nil
nil

subject no. 26
nil
nil
nil
nil
nil

nil

subject no. 22
"match-found-to-PROB1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROB5MUL TIPLEF"
"match-found-to-PROB6TRYONCE"

subject no. 27
"match-found-to-PROB1 TRYONCE"

"match-found-to-PROB2TRYONCE"

"match-found-to-PR OB3TRYONC E"

"match-found-to-PROB4NORM"

"match-found-to-PROB5TRYONC E"

"match-found-to-PROB6MULTIPLER"

subject no. 23
"match-found-to-PROB 1TRYONC E"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"

subject no. 28

nil

nil

nil
nil

nil

AfprdixC -q:age319>

nil nil

subject no. 29
"match-found-to-PROB1 TRYONCE"
nil
nil
nil
nil
nil

subject no. 34
"match-found-to-PROB1 TRYONCE"
"match-found-to-PROB2TRYONCE"
nil
"match-found-to-PROB4NORM"
nil
nil

subject no. 30
nil
nil
nil
"match-found-to-PROB4NORM"
nil
nil

INTERPRETATION OF OUTPUT
"match-found-to-PROB1 TRYONCE"
indicates that on problem one (PROB1)
the student's prediction showed the typical
error associated with the 'try once and pass'
misconception.

subject no. 31
"match-found-to-PROB1TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
"match-found-to-PROB5MUL TIPLEF"
"match-found-to-PROB6TRYONCE"

"match-found-to-PROB5M ULTIPLEF"
would indicate that on problem five the
student showed evidence of both the 'try

once and pass' error and the 'facts before
rules' error.

subject no. 32
nil
nil
"match-found-to-PROB3TRYONCE"
nil
"match-found-to-PROB5MUL TIPLEF"
nil

"match-found-to-PROB4NORM"

indicates that the student on problem four

the student gave a correct prediction.

subject no. 33
nil
nil
nil
nil
nil

Appendix C < page 320 >

Appendix C3
HAND.ANALYSIS RESULTS 1988 DATA

KEY TO NOTES ON SUBJECTS' ANSWERS:

C CORRECTPREDICTION

F FACTS BEFORERULES ERROR

M METAPREDICTION

A SHORTENEDPREDICTION

T TRYONCE AND PASS ERROR

R RULES BEFORE FACTS ERROR

L INFLUENCEDBY LAYOUT

X UNINTERPRETED

Subject 1 Subject 6 Subject 11 Subject 1 6 Subject 21
Problem result Problem result Problem result Problem result Problem result

1 T 1 T 1 T 1 T5 1 TM
2 T 2 T 2 T 2 T5 2 TM
3 T 3 T 3 T 3 T5 3 TA
4 C 4 C 4 C 4 C 4 C
5 X 5 T F 5 X 5 TF5 5 X
6 X 6 T 6 X 6 T5 6 X

Subject 2 Subject 7 Subject 1 2 Subject 17 Subject 22
Problem result Problem result Problem result Problem result Problem result

1 T 1 T 1 T 1 T 1 T
2 T 2 T 2 T 2 T 2 T
3 T 3 T 3 T 3 T 3 T
4 C 4 C 4 C 4 C 4 C
5 X 5 TA 5 T 5 X 5 TF
6 X 6 T 6 T 6 T 6 T

Subject 3 Subject 8 Subject 13 Subject 18 Subject 23
Problem result Problem result Problem result Problem result Problem result

1 T 1 T 1 T L 1 T 1 T
2 T 2 T 2 A L 2 T 2 T
3 T 3 TA 3 T L 3 T 3 T
4 C 4 C 4 CL 4 C 4 C
5 X 5 TF 5 TFL 5 T 5 T
6 X 6 T 6 T L 6 T 6 T

Subject 4 Subject 9 Subject 1 4 Subject 19 Subject 24
Problem result Problem result Problem result Problem result Problem result

1 X 1 TM 1 T 1 X 1 T L
2 X 2 TM 2 T 2 X 2 T L
3)(3 TM 3 T 3 X 3 T L
4 C 4 CM 4 C 4 CL 4 C L
5 X 5 X 5 T 5 X 5 TFL
6 X 6 T M 6 T 6 X 6 X

Subject 5 Subject 10 Subject 15 Subject 20 Subject 25
Problem result Problem result Problem result Problem result Problem result

1 TA 1 T 1 T L 1 T 1 T
2 T 2 T 2 T L 2 T 2 T
3 T 3 T 3 T L 3 T 3 T
4 C 4 C 4 C L 4 C 4 C
5 TF 5 T F 5 T L 5 T F 5 T F
6 T 6 T 6 T L 6 T 6 T

Appendix C < page 321 >

Results of hand-analysis, 1988 data
KEY TO NOTES ON SUBJECTS' ANSWERS:

C CORRECTPREDICTION

F FACTSBEFORERULES ERROR

T TRYONCE AND PASS ERROR

R RULES BEFORE FACTS ERROR

L INFLUENCEDBY LAYOUT

X UNINTERPRETED

M METAPREDICTION

A SHORTENEDPREDICTION

Subject 26 Subject 28 Subject 30 Subject 32 Subject 34
Problem result Problem result Problem result Problem result Problem result

1 T L 1 TA 1 X 1 X 1 T
2 T L 2 TA 2 X 2 X 2 T
3 T L 3 _IA 3 X 3 T _3_ X
4 CL 4 C A 4 C 4 CA 4 C
5 X 5 X 5 X 5 TF 5 X
6 X 6 TA 6 X 6 TA 6 TA

Subject 27 Subject 29 Subject 31 Subject 33
Problem result Problem result Problem result Problem result

1 T 1 T 1 T 1 X
2 T 2 X 2 T 2 TA
3 T 3 TA 3 T 3 X
4 C 4 C A 4 C 4 CA
5 T 5 TFA 5 TF 5 X
6 TR 6 TA 6 T 6 X

Afproix C <p:tge 322>

Appendix C4

Self assessed
confidence ratings given
by each student, for
problems one to six In
order shown.

S5
probably right
100% accurate
100% accurate
almost certainly accurate
100% accurate
100% accurate

S1
almost certainly accurate
almost certainly accurate
probably right
probably right
not certain
not certain

S6
100% accurate
100% accurate
almost certainly accurate
100% accurate
100% accurate
100% accurate

S2
almost certainly accurate
almost certainly accurate
almost certainly accurate
probably right
probably right
not certain

S7
almost certainly accurate
almost certainly accurate
almost certainly accurate
almost certainly accurate
not certain
not certain

53
probably right

probably right

probably right
probably right

not certain

not certain

S8
almost certainly accurate
almost certainly accurate
almost certainly accurate
almost certainly accurate
probably not accurate
almost certainly accurate

S4
100% accurate

100% accurate

100% accurate

100% accurate
almost certainly accurate

almost certainly accurate

S9
almost certainly accurate
probably right
probably right
almost certainly accurate
probably right
probably right

AJ:l:e-dix c <p:lge 323 >

almost certainly accurate

810 815
100% accurate almost certainly accurate
probably not accurate 100% accurate
100% accurate 100% accurate
100% accurate 100% accurate
almost certainly accurate almost certainly accurate
almost certainly accurate almost certainly accurate

811 816
100% accurate 100% accurate
100% accurate 100% accurate
100% accurate 100% accurate
100% accurate 100% accurate
not certain almost certainly accurate
not certain almost certainly accurate

812 817
100% accurate almost certainly accurate
100% accurate almost certainly accurate
100% accurate 100% accurate
100% accurate probably right
100% accurate probably right

100% accurate almost certainly accurate

813 818
probably right almost certainly accurate

probably right almost certainly accurate

almost certainly accurate almost certainly accurate

almost certainly accurate almost certainly accurate

almost certainly accurate
almost certainly accurate
almost certainly accurate

almost certainly accurate

819
814 not certain
almost certainly accurate not certain
almost certainly accurate not certain
almost certainly accurate not certain
almost certainly accurate not certain
almost certainly accurate probably not accurate

App:!dix C <pJge 324>

100% accurate
100% accurate

S20 S25
100% accurate 100% accurate

100% accurate 100% accurate

100% accurate 100% accurate

100% accurate 100% accurate

100% accurate 100% accurate

100% accurate 100% accurate

S26
S21 probably right

probably right almost certainly accurate

not certain 100% accurate

probably right almost certainly accurate

probably right almost certainly accurate

not certain almost certainly accurate

not certain
S27

S22 almost certainly accurate

100% accurate almost certainly accurate

100% accurate almost certainly accurate

100% accurate 100% accurate

100% accurate 100% accurate

100% accurate almost certainly accurate

100% accurate
S28

S23 almost certainly accurate

100% accurate almost certainly accurate

100% accurate
almost certainly accurate

100% accurate
almost certainly accurate

100% accurate
almost certainly accurate

almost certainly accurate
almost certainly accurate

probably right 829
100% accurate

S24 not certain
100% accurate 100% accurate
100% accurate 100% accurate
100% accurate almost certainly accurate

100% accurate 100% accurate

.Afprdix C <p1ge 325>

probably right

S30
probably right
probably right
probably right
100% accurate
probably right
probably right

S31
probably right
probably right
not certain
probably right
probably not accurate
probably not accurate

S32
probably not accurate
probably right
probably right
100% accurate
probably right

probably right

S33
100% accurate

100% accurate

100% accurate

100% accurate

100% accurate

100% accurate

S34
almost certainly accurate

almost certainly accurate

100% accurate

100% accurate
probably right

Appendix C <page 326>

Results of machine-analysis
of 1987 summer school data

student no. 5
"match-found-to-PROB1 NORM"
NIL
NIL
"match-found-to-PROB4NORM"
NIL
NIL

Appendix CS

student no. 1
"match-found-to-PROB1 NORM"
"match-found-to-PROB20NEP"
"match-found-to-PROB30NEP"
"match-found-to-PROB4NORM"
NIL
"match-found-to-PROB60NEP"

student no. 6
NIL
NIL
NIL
NIL
NIL
NIL

student no. 2
NIL
NIL
NIL
"match-found-to-PROB4NORM"
NIL
NIL

student no. 7
NIL
NIL
NIL
NIL
NIL
NIL

student no. 8
NIL
NIL
NIL
NIL
NIL
NIL

student no. 3
"rnatch-found-to-PROB1 NORM"
"match-found-to-PROB2NORM"
"match-found-to-PROB3NORM"
"match-found-to-PROB4NORM"
NIL
"match-found-to-PROB6NORM"

student no. 4
"match-found-to-PROB1 NORM"
"match-found-to-PROB20NEP"
"match-found-to-PROB30NEP"
"rnatch-found-to-PROB4NORM"
"match-found-to-PROB50NEP"
"match-found-to- PROB60NEP"

student no. 9
"match-found-to-PROB1 NORM"
"match-found-to-PROB2NORM"
"match-found-to-PROB3NORM"
"match-found-to-PROB4NORM"
"match-found-to-PROB5NORM"
"match-found-to-PROB6NORM"

Appendix C <page 327>

student no. 10
NIL
NIL
"match-found-to-PROB3TRYONCE"
"match-found-to-PROB4NORM"
NIL
NIL

student no. 15
"match-found-to-PROB1 NORM"
"match-found-to-PROB2NORM"
"match-found-to-PROB30NEP"
"match-found-to-PROB4NORM"
"match-found-to-PROB50NEP"
"match-found-to-PROB60NEP"

student no. 11
NIL
NIL
NIL
"match-found-to-PROB4NORM"
NIL
NIL

student no. 16
NIL
NIL
NIL
NIL
NIL
NIL

student no. 12
"match-found-to-PROB1 NORM"
"match-found-to-PROB2NORM"
"match-found-to-PROB30NEP"
"match-found-to-PROB4NORM"

"match-found-to-PROB50NEP"
"match-found-to-PROB60NEP"

student no. 17
"match-found-to-PROB 1NORM"
NIL
"match-found-to-PROB3NORM"
"match-found-to-PROB4NORM"

NIL
·match-found-to-PROB6NORM"

student no. 13
NIL
"match-found-to-PROB2NORM"
NIL
NIL
NIL
NIL

student no. 18
NIL

NIL

NIL

"match-found-to-PROB4NORM"

NIL

NIL

student no. 14
NIL
NIL
NIL
NIL
NIL
NIL

student no. 19

NIL

"match-found-to-PROB20NEP"

NIL
"match-found-to-PROB4NORM"

NIL

"match-found-to-PROB60NEP"

Appendix C <page 328>

student no. 20
Nil
Nil
Nil
Nil
Nil
Nil

"match-fou nd-to-PROB30N EplO
"match-found-to-PROB4NORM"
"match-found-to-PROB50NEP"
"match-found-to-PROB60NEP"

student no. 21
"match-found-to-PROB1 TRYONCE"
"match-found-to-PROB2TRYONCE"
"match-found-to-PROB3TRYONC EH
"match-found-to-PROB4NORM"
"match-found-to-PROB5MUl TIPlEF"
"match-found-to-PROB6TRYONCE"

student no. 26
Nil
Nil
Nil
"match-found-to-PROB4NORM"
Nil
Nil

student no. 22
Nil
Nil
Nil
"match-found-to-PROB4NORM"

Nil
Nil

student no. 27
NIL
NIL
NIL

""match-found-to-PROB4NORM"
Nil
Nil

student no. 23
Nil
Nil
Nil
"match-found-to-PROB4NORM"
Nil
Nil

student no. 28
Nil
NIL
Nil
"match-found-to-PROB4NORM"

Nil

"match-fou nd-to-PROBSON EpH

student no. 24
Nil
Nil
NIL
"match-found-to-PROB4NORM"
Nil
Nil

student no. 29
Nil

NIL

NIL

"match-found-to-PROB4NORM"

NIL

NIL

student no. 25
"rnatch-found-to-PROB 1NORM"
"match-found-to-PROB20NEP"

Appendix C <page 329>

student no. 30
NIL
NIL
"match-found-to-PROB30NEP"
"match-found-to-PROB4NORM"
NIL
"match-found-to- PROB60NEP"

student no. 31
"match-found-to-PROB1 NORM"
"match-found-to-PROB2NORM"
"match-found-to-PROB3NORM"
"match-found-to-PROB4NORM"
"match-found-to-PROB5F ACTS"
"match-found-to-PROB6NORM"

student no. 32
NIL
NIL
NIL
NIL
NIL

NIL

Appendix D < page 331 >

C"C"0l""CJ n
n

..... t.rl...,
cot-Ol,
eo

s;o eo
C" ...,
o"" ,

n ""CJ,
o
(Cl,
Q)
:3

Appendix D < page 332 >

er Ol Ol -0
()
()...., en

Ol,
po CD

CD
c-,
po 0..,
(")

-0..,
0
<0..,
Ol
:3

Q) CT Q) "0 n
n
(J)..,

Q) ...,
CD

go CD

CT 0..,
go

"0
n ...,

0
cc...,
Cl
)3

Appendix D < page 334 >

ID CT X Q) ""Cl
("')...... ("')....,, CJ)

x ID M"-,
po Cl)

co
C7
po 0-,
(")

""Cl-,
0
co-,
Q)
E

Appendix D < page 335 >

CD OJ er OJ -c
........, ...,
to Q)

oo
c-
oo
(")

CENTRE FOR INFORMA nON TECHNOLOGY IN EDUCA nON

List of CITE Ph.D. Theses

Thesis No. Title and Author

1 Jenny Preece, (March 1985) Interpreting Trends in
Graphs: A Study of 14 and 15 Year Olds. (Available
from Open University library)

2 Tony Priest, (October 1986) Modelling Studetn Errors in
Physics Problem-Solving. (Available as CAL Technical
Report No. 68)

3 Alistair Edwards, (July 1987) Adapting user interfaces
for visually disabled users. (In press by Paul
Chapman's Publishers)

4 Simon Holland, (July 1989) Artificial Intelligence,
Education and Music. The use of Artificial Intelligence
to encourage and facilitate music composition by
novices. (Available as CITE Report No. 88)

5 Pat Fung, (October 1989) An Application of Formal
Semantics to Student Modelling: an investigation in
the domain of teaching Prolog.

