609,006 research outputs found

    Learning Bayesian Networks for Student Modeling

    Get PDF
    In the last decade, there has been a growing interest in using Bayesian Networks (BN) in the student modelling problem. This increased interest is probably due to the fact that BNs provide a sound methodology for this difficult task. In order to develop a Bayesian student model, it is necessary to define the structure (nodes and links) and the parameters. Usually the structure can be elicited with the help of human experts (teachers), but the difficulty of the problem of parameter specification is widely recognized in this and other domains. In the work presented here we have performed a set of experiments to compare the performance of two Bayesian Student Models, whose parameters have been specified by experts and learnt from data respectively. Results show that both models are able to provide reasonable estimations for knowledge variables in the student model, in spite of the small size of the dataset available for learning the parametersUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Understanding Student Computational Thinking with Computational Modeling

    Full text link
    Recently, the National Research Council's framework for next generation science standards highlighted "computational thinking" as one of its "fundamental practices". 9th Grade students taking a physics course that employed the Modeling Instruction curriculum were taught to construct computational models of physical systems. Student computational thinking was assessed using a proctored programming assignment, written essay, and a series of think-aloud interviews, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Roughly a third of the students in the study were successful in completing the programming assignment. Student success on this assessment was tied to how students synthesized their knowledge of physics and computation. On the essay and interview assessments, students displayed unique views of the relationship between force and motion; those who spoke of this relationship in causal (rather than observational) terms tended to have more success in the programming exercise.Comment: preprint to submit to PERC proceedings 201

    Linking engagement and performance: The social network analysis perspective

    Full text link
    Theories developed by Tinto and Nora identify academic performance, learning gains, and involvement in learning communities as significant facets of student engagement that, in turn, support student persistence. Collaborative learning environments, such as those employed in the Modeling Instruction introductory physics course, provide structure for student engagement by encouraging peer-to-peer interactions. Because of the inherently social nature of collaborative learning, we examine student interactions in the classroom using network analysis. We use centrality---a family of measures that quantify how connected or "central" a particular student is within the classroom network---to study student engagement longitudinally. Bootstrapped linear regression modeling shows that students' centrality predicts future academic performance over and above prior GPA for three out of four centrality measures tested. In particular, we find that closeness centrality explains 28 % more of the variance than prior GPA alone. These results confirm that student engagement in the classroom is critical to supporting academic performance. Furthermore, we find that this relationship for social interactions does not emerge until the second half of the semester, suggesting that classroom community develops over time in a meaningful way

    An endorsement-based approach to student modeling for planner-controlled intelligent tutoring systems

    Get PDF
    An approach is described to student modeling for intelligent tutoring systems based on an explicit representation of the tutor's beliefs about the student and the arguments for and against those beliefs (called endorsements). A lexicographic comparison of arguments, sorted according to evidence reliability, provides a principled means of determining those beliefs that are considered true, false, or uncertain. Each of these beliefs is ultimately justified by underlying assessment data. The endorsement-based approach to student modeling is particularly appropriate for tutors controlled by instructional planners. These tutors place greater demands on a student model than opportunistic tutors. Numerical calculi approaches are less well-suited because it is difficult to correctly assign numbers for evidence reliability and rule plausibility. It may also be difficult to interpret final results and provide suitable combining functions. When numeric measures of uncertainty are used, arbitrary numeric thresholds are often required for planning decisions. Such an approach is inappropriate when robust context-sensitive planning decisions must be made. A TMS-based implementation of the endorsement-based approach to student modeling is presented, this approach is compared to alternatives, and a project history is provided describing the evolution of this approach

    Supporting teachers in collaborative student modeling: a framework and an implementation

    Get PDF
    Collaborative student modeling in adaptive learning environments allows the learners to inspect and modify their own student models. It is often considered as a collaboration between students and the system to promote learners’ reflection and to collaboratively assess the course. When adaptive learning environments are used in the classroom, teachers act as a guide through the learning process. Thus, they need to monitor students’ interactions in order to understand and evaluate their activities. Although, the knowledge gained through this monitorization can be extremely useful to student modeling, collaboration between teachers and the system to achieve this goal has not been considered in the literature. In this paper we present a framework to support teachers in this task. In order to prove the usefulness of this framework we have implemented and evaluated it in an adaptive web-based educational system called PDinamet.Postprint (author's final draft
    • …
    corecore