Recently, the National Research Council's framework for next generation
science standards highlighted "computational thinking" as one of its
"fundamental practices". 9th Grade students taking a physics course that
employed the Modeling Instruction curriculum were taught to construct
computational models of physical systems. Student computational thinking was
assessed using a proctored programming assignment, written essay, and a series
of think-aloud interviews, where the students produced and discussed a
computational model of a baseball in motion via a high-level programming
environment (VPython). Roughly a third of the students in the study were
successful in completing the programming assignment. Student success on this
assessment was tied to how students synthesized their knowledge of physics and
computation. On the essay and interview assessments, students displayed unique
views of the relationship between force and motion; those who spoke of this
relationship in causal (rather than observational) terms tended to have more
success in the programming exercise.Comment: preprint to submit to PERC proceedings 201