119,351 research outputs found

    BioCloud Search EnGene: Surfing Biological Data on the Cloud

    Get PDF
    The massive production and spread of biomedical data around the web introduces new challenges related to identify computational approaches for providing quality search and browsing of web resources. This papers presents BioCloud Search EnGene (BSE), a cloud application that facilitates searching and integration of the many layers of biological information offered by public large-scale genomic repositories. Grounding on the concept of dataspace, BSE is built on top of a cloud platform that severely curtails issues associated with scalability and performance. Like popular online gene portals, BSE adopts a gene-centric approach: researchers can find their information of interest by means of a simple “Google-like” query interface that accepts standard gene identification as keywords. We present BSE architecture and functionality and discuss how our strategies contribute to successfully tackle big data problems in querying gene-based web resources. BSE is publically available at: http://biocloud-unica.appspot.com/

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics

    Identification of complex biological network classes using extended correlation analysis

    Get PDF
    Modeling and analysis of complex biological networks necessitates suitable handling of data on a parallel scale. Using the IkB-NF-kB pathway model and a basis of sensitivity analysis, analytic methods are presented, extending correlation from the network kinetic reaction rates to that of the rate reactions. Alignment of correlated processed components, vastly outperforming correlation of the data source, advanced sets of biological classes possessing similar network activities. Additional construction generated a naturally structured, cardinally based system for component-specific investigation. The computationally driven procedures are described, with results demonstrating viability as mechanisms useful for fundamental oscillatory network activity investigation

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy

    A Molecular Biology Database Digest

    Get PDF
    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration of Molecular Biology data from different sources. This paper is primarily intended for an audience of computer scientists with a limited background in Biology

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    Engineering polymer informatics: Towards the computer-aided design of polymers

    Get PDF
    The computer-aided design of polymers is one of the holy grails of modern chemical informatics and of significant interest for a number of communities in polymer science. The paper outlines a vision for the in silico design of polymers and presents an information model for polymers based on modern semantic web technologies, thus laying the foundations for achieving the vision

    Chemistry in Bioinformatics

    Get PDF
    A preprint of an invited submission to BioMedCentral Bioinformatics. This short manuscript is an overview or the current problems and opportunities in publishing chemical information. Full details of technology are given in the sibling manuscript http://www.dspace.cam.ac.uk/handle/1810/34579 The manuscript is the authors' preprint although it has been automatically transformed into this archived PDF by the submission system. The authors are not responsible for the formattingChemical information is now seen as critical for most areas of life sciences. But unlike Bioinformatics, where data is Openly available and freely re−usable, most chemical information is closed and cannot be re−distributed without permission. This has led to a failure to adopt modern informatics and software techniques and therefore paucity of chemistry in bioinformatics. New technology, however, offers the hope of making chemical data (compounds and properties) Free during the authoring process. We argue that the technology is already available; we require a collective agreement to enhance publication protocols
    corecore