1,448 research outputs found

    A Mathematical Framework for Protein Structure Comparison

    Get PDF
    Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting protein functions and predicting protein structures. Many methods have been developed in the past to align two or multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different distances used to measure the similarity between protein structures, none of them are proper distances when protein structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of protein structures can reveal the population-specific variations and be helpful in improving structure classification. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions. We show that our method performs comparably with commonly used methods in protein structure classification on a large manually annotated data set

    Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    Get PDF
    This article develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well

    Structural motifs of biomolecules

    Full text link
    Biomolecular structures are assemblies of emergent anisotropic building modules such as uniaxial helices or biaxial strands. We provide an approach to understanding a marginally compact phase of matter that is occupied by proteins and DNA. This phase, which is in some respects analogous to the liquid crystal phase for chain molecules, stabilizes a range of shapes that can be obtained by sequence-independent interactions occurring intra- and intermolecularly between polymeric molecules. We present a singularityfree self-interaction for a tube in the continuum limit and show that this results in the tube being positioned in the marginally compact phase. Our work provides a unified framework for understanding the building blocks of biomolecules.Comment: 13 pages, 5 figure

    Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes

    Get PDF
    We propose a novel stochastic global optimization algorithm with applications to the refinement stage of protein docking prediction methods. Our approach can process conformations sampled from multiple clusters, each roughly corresponding to a different binding energy funnel. These clusters are obtained using a density-based clustering method. In each cluster, we identify a smooth “permissive” subspace which avoids high-energy barriers and then underestimate the binding energy function using general convex polynomials in this subspace. We use the underestimator to bias sampling towards its global minimum. Sampling and subspace underestimation are repeated several times and the conformations sampled at the last iteration form a refined ensemble. We report computational results on a comprehensive benchmark of 224 protein complexes, establishing that our refined ensemble significantly improves the quality of the conformations of the original set given to the algorithm. We also devise a method to enhance the ensemble from which near-native models are selected.Published versio

    High-Throughput Inference of Protein-Protein Interaction Sites from Unassigned NMR Data by Analyzing Arrangements Induced By Quadratic Forms on 3-Manifolds

    Get PDF
    We cast the problem of identifying protein-protein interfaces, using only unassigned NMR spectra, into a geometric clustering problem. Identifying protein-protein interfaces is critical to understanding inter- and intra-cellular communication, and NMR allows the study of protein interaction in solution. However it is often the case that NMR studies of a protein complex are very time-consuming, mainly due to the bottleneck in assigning the chemical shifts, even if the apo structures of the constituent proteins are known. We study whether it is possible, in a high-throughput manner, to identify the interface region of a protein complex using only unassigned chemical shift and residual dipolar coupling (RDC) data. We introduce a geometric optimization problem where we must cluster the cells in an arrangement on the boundary of a 3-manifold. The arrangement is induced by a spherical quadratic form, which in turn is parameterized by SO(3)xR^2. We show that this formalism derives directly from the physics of RDCs. We present an optimal algorithm for this problem that runs in O(n^3 log n) time for an n-residue protein. We then use this clustering algorithm as a subroutine in a practical algorithm for identifying the interface region of a protein complex from unassigned NMR data. We present the results of our algorithm on NMR data for 7 proteins from 5 protein complexes and show that our approach is useful for high-throughput applications in which we seek to rapidly identify the interface region of a protein complex

    Skewed Factor Models Using Selection Mechanisms

    Get PDF
    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-t, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset

    Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

    Get PDF
    We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset

    Salient Frame Detection for Molecular Dynamics Simulations

    Get PDF
    Recent advances in sophisticated computational techniques have facilitated simulation of incrediblydetailed time-varying trajectories and in the process have generated vast quantities of simulation data. The current tools to analyze and comprehend large-scale time-varying data, however, lag far behind our ability to produce such simulation data. Saliency-based analysis can be applied to time-varying 3D datasets for the purpose of summarization, abstraction, and motion analysis. As the sizes of time-varying datasets continue to grow, it becomes more and more difficult to comprehend vast amounts of data and information in a short period of time. In this paper, we use eigenanalysis to generate orthogonal basis functions over sliding windows to characterize regions of unusual deviations and significant trends. Our results show that motion subspaces provide an effective technique for summarization of large molecular dynamics trajectories

    Implementing efficient concerted rotations using Mathematica and C code

    Get PDF
    In this article we demonstrate a general and efficient metaprogramming implementation of concerted rotations using Mathematica. Concerted rotations allow the movement of a fixed portion of a polymer backbone with fixed bending angles, like a protein, while maintaining the correct geometry of the backbone and the initial and final points of the portion fixed. Our implementation uses Mathematica to generate a C code which is then wrapped in a library by a Python script. The user can modify the Mathematica notebook to generate a set of concerted rotations suited for a particular backbone geometry, without having to write the C code himself. The resulting code is highly optimized, performing on the order of thousands of operations per second

    Encounter complexes and dimensionality reduction in protein-protein association

    Get PDF
    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition
    corecore