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Abstract
Recent advances in sophisticated computational techniques have facilitated simulation of incredibly-
detailed time-varying trajectories and in the process have generated vast quantities of simulation
data. The current tools to analyze and comprehend large-scale time-varying data, however, lag
far behind our ability to produce such simulation data. Saliency-based analysis can be applied
to time-varying 3D datasets for the purpose of summarization, abstraction, and motion analysis.
As the sizes of time-varying datasets continue to grow, it becomes more and more difficult to
comprehend vast amounts of data and information in a short period of time. In this paper, we use
eigenanalysis to generate orthogonal basis functions over sliding windows to characterize regions
of unusual deviations and significant trends. Our results show that motion subspaces provide an
effective technique for summarization of large molecular dynamics trajectories.
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1 Introduction

Recent advances in acquisition and simulation techniques have resulted in immense time-
varying datasets. These datasets are being used to study and explore a wide variety of
phenomena in a diverse set of disciplines spanning life sciences to earth and space sciences.
As the number and complexity of these datasets increases exponentially [9], it is becoming
impractical to expect a domain expert to be able to look at such datasets manually. Auto-
matic or semi-automatic tools to help humans discover scientifically interesting features are
especially important for this reason.

Many illustration-based techniques have been proposed by several researchers [3, 10, 21]
to summarize time-varying datasets such as ocean flow, volume, and human skeletons. The
basic step for these illustration techniques is automatic detection of salient frames which
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have interesting features. In the method of image saliency by Itti [8] or mesh saliency by
Lee [13], they use a center-surround operator to identify the uniqueness of a pixel or a vertex
with respect to its neighborhood. In this paper, we have decided to use a similar approach
and define saliency as the uniqueness of a single frame with respect to its neighboring frames
both forwards and backwards in time. Our collaborator, Dr. Sergei Sukharev’s group at
Biology Department at the University of Maryland, was interested in identifying the frames
in molecular dynamics simulations, where the anomalies (kinks) in the secondary structures
happen in the opening and closing simulations of thechannel [1]. We validate the effectiveness
of our salient frame detection algorithm in this molecular dynamics simulation.

The rest of this paper is organized as follows. A review of related work is provided
in Section 2. In Section 3, we formulate the relationship between one residue and the
neighboring residues in space, and present an algorithm to detect saliency in time. Results
are presented in Section 4. Performance considerations to improve the scalability of our
approach for larger simulations are given in Section 5. Section 6 concludes this paper and
discusses future work.

2 Background and Related Work

The goal of this paper is to detect salient frames in molecular dynamics simulations. This
section briefly reviews some background in protein and ion channel structure and the related
research in the area of motion analysis and visualization for time-varying 3D datasets.

2.1 Protein Structures

A protein structure is formed by a unique three-dimensional assembly of a specific poly-
peptide chain. Each polypeptide chain contains a particular sequence of serially linked
amino acids. Figure 1(a) shows an amino acid which is composed of an amino group, a
carboxyl group, and a side-chain, which are connected at the central Cα atom. When the
carboxyl group of one amino acid reacts with the amino group of another amino acid, a
peptide (i.e., amide) bond (Figure 1(b)) is formed by releasing a molecule of water (H2O).
This peptide bond is typically composed of four atoms (C, O, N, and H) which lie on a com-
mon plane due to the partial double bond characteristic at the CO-NH connection. Here,
the recurring atomic array of N-Cα-C(=O) from each amino acid of a polypeptide chain
constitutes the protein backbone. By definition, the specific amino acid sequence for each
polypeptide chain is the primary structure of the protein. Segments of polypeptides often
fold locally into stable structures such as α-helices or β-strands, each of which is called a
secondary structure. An α-helix is a right-handed coiled conformation, resembling a spring.
β-strands connected laterally by three or more hydrogen bonds, form a generally twisted,
pleated sheet.

The angle between two planes is referred as their dihedral angle. Figure 2(a) and (b)
shows how we can compute the dihedral angle when there are four atoms which are not
co-linear in 3D space. We first align the atoms B and C as shown in Figure 2(b). Then the
dihedral angle corresponds to the angle measured in clockwise direction between the atom
A and the atom D. Similarly, for a sequence on a protein’s polypeptide chain, backbone
atoms (C, N, and Cα) allow for three different dihedral angles of proteins as depicted in
Figure 2(c): φ involving the backbone atoms C-N-Cα-C, ψ involving the backbone atoms N-
Cα-C-N, and ω involving the backbone atoms Cα-C-N-Cα. The planarity of the peptide bond
usually restricts ω to be 180◦ or 0◦. Thus the Ramachandran plot [19] considers two variable
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(a)

(b)

Figure 1 Image (a) shows the structure of an amino acid. Image (b) shows a peptide bond formed
by the reaction between a carboxyl group of one amino acid and an amino group of the other amino
acid. Images are adapted from [6].

dihedral (torsion) angles (φ and ψ) and shows possible combinations of these conformational
angles of representative secondary structures in a polypeptide such as α-helices or β-sheets.

2.2 Ion Channels

Ion channels are proteins that regulate the flow of ions into and out of the cells. Ion channels
enable a very rapid flow of ions. In physiological conditions, MscS can provide for the flow
of about a billion ions per second. Ion channel transitions are very fast – some opening
for less than a millisecond before they close. This rapid and highly specific gating of ion
channels is necessary for survival of cells. The ion channel kinetics impacts the speed at
which ions flow across the cell membrane and the reaction time of a nerve or a muscle cell,
and thus dictates the response time of the animal to the possible environmental dangers.
An accurate understanding of the structural changes and functioning of ion channels is vital
for therapeutic drug design. Nearly a third of the top 100 pharmaceutical drugs target
ion-channels.

The bacterial mechanosensitive channel MscS and its eukaryotic homologs are principal
turgor regulators in many walled cells. In bacteria, both free-living and pathogenic, these
channels play critical roles of tension-driven osmolyte release valves thus allowing the or-
ganisms to avoid osmotic rupture in the event of abrupt medium dilution. MscS opening is
driven directly by tension in the surrounding lipid bilayer and is accompanied by tilting of
the pore-lining helices (TM3) which assume a kink-free conformation [2, 4]. When tension is
released, the TM3 helices may buckle at two different hinge points, which defines the progres-
sion toward the closed state, as is shown in Figure 3(a). Thus, helical flexibility appears to
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Figure 2 Images (a) and (b) show the computation of a dihedral angle between 4 atoms (A, B,
C, and D). When we align the atom B and the atom C as shown in Image (b), the dihedral angle
θ is defined as the angle between the atom A and the atom D in clockwise direction. Image (c)
shows the dihedral angles (φ between C-N-Cα-C, ψ between N-Cα-C-N, and ω between Cα-C-N-Cα)
and the normal vectors ( ~n1 and ~n2 on the planes defined using N-Cα-C in residue 1 and residue 2,
respectively. Images are adapted from [6].

define the functional cycle of E. coli MscS. The major dataset analyzed consisted of two tra-
jectories of atomic coordinates obtained from 4 ns steered simulations representing opening
of wild-type and F68S mutant of E. coli MscS. The major goal was identification of frames
in which conformations of helices deviated from the typical alpha-helical conformations.

2.3 Saliency-based Motion Analysis

Designers and artists have long used a single static image or a few images to illustrate
dynamics of scenes for motion. They have depicted dynamics to facilitate visual communic-
ation in comic books and storyboards [14]. Recently, several graphics researchers [10, 17, 18]
have proposed illustration-based techniques to depict the dynamics of time-varying data in
a compact way. They use principles of visual art such as glyphs, and generate an image (or a
few images) to summarize the time-varying data to facilitate visual communication. For in-
stance, Joshi and Rheingans [10] have used illustration-based techniques such as speedlines,
flow ribbons, and strobe silhouettes to convey change over time for a time-varying dataset.
Nienhaus and Dollner [17] have used dynamic glyphs such as directed acyclic graphs and
behavior graphs to provide further information about dynamics in the 3D scene.

A very interesting beginning in detecting salient frames for human skeleton datasets has
been made by Assa et al. [3]. They generate an action synopsis for presenting the motion
of a single skeleton-based character. They represent motion in affinity matrices, constructed
from various aspects of a pose such as joint positions, joint velocities, joint angles, and joint
angular velocities. They first define a vector xk

a which represents an aspect a of the pose at
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(a) (b)

Figure 3 The images above show the closed (left) and open (right) conformations of the hep-
tameric E. coli mechanosensitive channel MscS.

frame k. Then, they compute the dissimilarity of the aspect a between two given frames i
and j by a simple distance measure to identify key poses. Finally, they compose these key
poses into a single image by including the most significant poses.

There has been a significant increase in research activities related to the visualization
of molecular dynamics simulations. Lampe et al. explore the use of a two-level hierarchical
technique for the visualization of protein dynamics [12]. Recently, Krone et al. presen-
ted a method capable of visualizing molecular surface dynamics at interactive rates [11].
Tarini et al. [20] present a method to enhance shape perception in interactive molecular
visualizations by employing ambient occlusion and edge cueing. Bidmon et al. present an
informative and intuitive method for visualizing the motion of molecules around existing
proteins using pathlines [5]. All of these papers [12, 11, 5] discuss methods for efficiently
visualizing molecular dynamics, but do not detect key or salient frames in the simulation.
Mehta et al. have explored approaches to the detection, classification and visualization of
anomalous structures, such as defects in crystalline lattice structures [16, 15]. We are not
aware of any research into the detection of salient frames for protein dynamics simulations.

3 Salient Frame Detection

In this paper, we characterize saliency as the uniqueness of a single frame with respect to
its surrounding frames in time, and detect the salient frames for molecular dynamics simu-
lations. A molecular dynamics simulation gives discrete samples of how a protein changes
over a period of time. We are interested in identifying the time steps that highlight these
changes by using subspace analysis. We analyze a particular time step k in a molecular
dynamics simulation with the following approach:

1. Select the residues of interest, this could be a subunit of a molecule or residues corres-
ponding to an α-helix of interest.

2. Model the angular relationship along the protein backbone for each time step k as an
affinity matrix Ak.

3. Decompose the affinity matrix using SVD, Ak = UkΣkVT
k

4. Analyze the salience, sk, of the structure of the protein at time step k with respect to
the surrounding time steps.

5. Peaks of salience sk curve determine the best set of time steps.

Mechanosensitive ion channels play a critical role in transducing physical stresses at
the cell membrane into an electrochemical response. The crystal structure of E. coli MscS
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has provided a starting point for detailed descriptions of its mechanism. Figure 3 shows
the opening of the E. coli mechanosensitive ion channel that we will consider throughout
this paper. There are 7 subunits in this ion channel, and all 7 subunits are topologically
identical, but act relatively independently in the simulation. Out of 286 residues in each
subunit, 175-residue N-terminal segments were included in simulations. To understand
this mechanism, identifying the presence of kinks in α-helices is critical because they have
functional importance. Kink detection, however, is a tricky question because there are many
factors involved. These include the state (ruptured or not) of the H bonds, local geometric
information such as Ramachandran angles (torsion angles), and more global information
such as the angles among multiple atoms.

In this section, we formulate the relationship between one residue and the neighboring
residues spatially, and present an algorithm to detect saliency in time. Our framework
encompasses the global and local geometric properties of backbone residues in a molecular
dynamics simulation.

3.1 Construction of Affinity Matrices in Space
We explore the relationship between one residue and the neighboring residues to detect the
changes in α-helices. The straightening and buckling of α-helices are interesting because
they appear in many simulations of ion channels and are believed to be correlated with
conformational states of the whole channel. There are many ways to define the relation-
ship among residues, but we believe the angles in backbone atoms would be one of the
best ways since backbone atoms are much more stable in their positions than side-chains.
As a Ramachandran plot suggests, we could have measured torsion (dihedral) angles and
conjectured the changes of secondary structures for each residue. However, analysis of
Ramachandran angles only considers very local properties inside a residue, and does not
encompass the global geometric property among a sequence of residues. Instead, we use the
relative angles between one Cα (α-carbon) and other α-carbons within a cutoff distance,
rs. The cutoff distance refers to the difference in index between the Cα currently being
considered and its neighboring residues along the chain. A good choice is rs = 5, because
on average, α-helices turn once every 3.6 amino acids. Considering ±5 amino acids forwards
and backwards should cover, in total, about 3 turns in α-helices, which is a sufficient scale
for kink detection. Alternatively, instead of imposing a hard cutoff, we can use a Gaussian
cutoff.

Molecular dynamics simulations give us a trajectory file which holds all the atom positions
in 3D space for every frame k. Since three non-co-linear points in 3D space define a plane,
the positions of N-Cα-C atoms in each residue can define a plane and its normal vector ~n
as shown in Figure 2(c). We compute normal vectors (~ni) to the planes formed by these
N-Cα-C atoms in residues (Ri) for every frame k.

Specifically, we model the interactions amongst neighboring amino acids for time step k
by an affinity matrix Ak. Each entry aij , of the matrix Ak models the strength of interaction
between amino acid residues i and j. As discussed above, each amino acid residue, i, is
associated with the vector ~ni.

aij =

 〈 ~ni, ~nj〉
rs
2
√

2π e
− (j−i)2

r2
s if |j − i| < rs

0 otherwise
(1)

where 〈·, ·〉 denotes the inner product of two vectors. This allows us to generate the
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Figure 4 Visualization of affinity matrices computed from the first and the second frames for 33
residues of the subunit 1 for E. coli MscS (shown in Figure 3) when the cutoff distance, rs = 5 is
used.

affinity matrix Ak as:

Ak =


a11 a12 a13 . . . a1m
a21 a22 a23 . . . a2m
a31 a32 a33 . . . a3m
...

...
...

. . .
...

am1 am2 am3 . . . amm

 (2)

Figure 4 visualizes the affinity matrices from the first and the second frames for 33
residues (from residue 94 to residue 126) of the subunit 1 for the molecule shown in Figure 3.

3.2 Saliency Detection among Neighboring Affinity Matrices

Our affinity matrix in equation 2 represents the geometric relationship among neighbor-
ing residues. This angular relationship cannot be represented by a single vector x as in [3].
Therefore, the dissimilarity between two given frames i and j should be computed as the
difference between two affinity matrices Ai and Aj .

A naïve approach to comparing two affinity matrices Ai and Aj is to directly measure
the difference. For example, one might compute ‖Ai − Aj‖F , where ‖·‖F is the Frobenius
norm, and for a matrix M is defined as:

‖M ‖F=

√√√√ m∑
a=1

n∑
b=1
|mab|2

where mab is the entry in the ath row and bth column of M .
However, as the affinity matrices are constructed directly from the simulation data, they

encode high frequency changes in atom positions that are the result of Brownian motion. Yet,
we wish to identify large-scale conformational changes in the molecule. For our purposes,
the high frequency information in the affinity matrix which results from Brownian motion is
essentially noise. Thus, when comparing two affinity matrices, we wish to ignore such noise
and to consider only more significant changes. For this purpose, we employ the Singular
value decomposition (SVD), the computation of which can be found in the standard text by
Golub and Van Loan [7]. The SVD factorizes a given m× n matrix A into three matrices:
A = UΣV T , where U is an m×m orthogonal matrix (UUT = I and UTU = I), Σ is m× n
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diagonal matrix with non-negative numbers, and V T is the transpose of an n × n unitary
matrix V . There are three properties of the SVD of which we shall take advantage:
1. U and V are a set of orthonormal basis vectors (singular vectors).
2. The diagonal entries in Σ (called singular values), are sorted in non-increasing order and

indicate the importance of the corresponding basis vectors.
3. Â = U Σ̂V T , where Σ̂ is the same as Σ except that all but the d largest singular values

have been set to zero, is the best rank-d approximation to A in the sense that:

Â = min
{M |rank(M)=d}

‖A−M‖F

In α-helices, backbone atoms (C, O, N, and H) are much more stable than side-chains
because of the H bonds. However, there are still significant random vibrations in the posi-
tions of backbone atoms over time due to the effects of Brownian motion. By using SVD to
obtain a lower-rank approximation of our original affinity matrices, we hope the to reduce or
eliminate the effects of such vibrations by ignoring the contributions of the highest frequency
singular vectors, where we expect their contributions to reside. This is why we use SVD as
opposed to other methods for computing the uniqueness of the affinity matrix Ai relative to
the affinity matrix Aj .

Uniqueness of the affinity matrix Ai relative to the affinity matrix Aj:

We use the following procedure to compare the affinity matrices Ai and Aj for frames i and
j. We perform a singular value decomposition of Ai to obtain Ai = Ui × Σi × V Ti . This
returns the basis vectors as the column vectors in Ui. Since the basis vectors are sorted by
their importance in SVD decomposition, we can obtain a reduced (rank d) matrix Ûi by
taking the first d basis vectors in Ui. For the j-th frame Aj , we use these d basis vectors
to best approximate it. For this, we project Aj to the low-dimensional subspace spanned
by the d basis vectors as: Wi,j = ÛTi × Aj . This gives us the weight matrix Wi,j for the d
basis vectors. We use this weight matrix to approximate Aj by: Âj = Ûi×Wi,j . Finally we
compute the root mean square error (εij) between Âj and Aj : ‖ Âj −Aj ‖F .

To determine d, we use a user-specified parameter τ and choose d to be the largest
integer such that δi = ‖Âd

i−Ai‖F

‖Ai‖F
< τ ; where Âdi is the rank d approximation of Ai obtained

using the truncated singular value decomposition. Note that δ2
i can be easily computed as∑

j>d σ
2
j /

∑
j σ

2
j , where σj is the jth largest singular value.

Saliency Value si for the frame i:

To compute the uniqueness of a frame i relative to other frames j, we avoid considering all
possible pairs (i, j). Instead, we consider neighboring frames j where |i−j| ≤ rt. Throughout
this paper, we use rt = F/10, where F is the total number of frames. The final saliency
value si is the average of the errors εij in neighboring frames of i:

si =

∑
|j−i|≤rt

εij

Fi
(3)

where Fi is the number of frames whose distance from the frame i is less than or equal to
rt. Figure 5 shows the graph for these saliency values in blue.
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4 Results

We have compared our detected salient frames with the ones identified independently by our
collaborators (biology scientists) for molecular dynamics simulations. Figure 5 shows the five
most salient frames detected by our method for the subunit 4 in the E. coli mechanosensitive
ion channel in Figure 3. The frames 5, 26, 30, and 34 which have been detected by our
method are the same or very close to the frames 3, 24, 26, 30, and 35 with changes in the
kinks, which were detected manually by our collaborators. The frame 39 detected by our
algorithm is not close to any frame detected manually by our collaborators, but it had the
lowest saliency value among the five most salient frames. Generally, kinks change towards
the end of this simulation, and our method successfully detects these important frames.

Figure 6 shows the five most salient frames detected by our method for the subunit 1 in
the ion channel shown in Figure 3. This subunit is topologically identical to the subunit 4,
but acts differently in the simulation. Therefore, it results in different salient frames (frames
11, 19, 21, 35, and 39) as shown in Figure 6. Our collaborators identified frames 2, 18, 20,
23, 35, 36, and 39 as being salient. Figure 7 shows the six most salient frames detected
by our method for the subunit 4 in the symmetry annealing of MscS F68S mutant. In this
molecular dynamics simulation, residue 68 was mutated to another, serine, which has very
specific consequences for channel inactivation in real experiments. As changes in the kinks
occur more frequently than the previous simulations, we observe a larger number of salient
frames than in the previous cases. Our collaborators have manually identified frames 2, 4,
18, 34, and 38 as being salient. Among these, frames 2, 4, 18, and 38 are the same or close
to the frames 1, 5, 18, and 39 detected by our algorithm, and the remaining frame 34 also
exhibits a relatively high saliency value as shown in Figure 7.

5 Performance Considerations

Performance considerations need to be taken into account in order to make our approach
feasible for large datasets. The analysis of a particular simulation may require us to consider
thousands of amino acid residues, and thousands of frames. The running time of our al-
gorithm is dominated by the computation of the SVD for each affinity matrix. If we consider
r residues and F frames, this leads to a worst case complexity in O(r3F ). However, since our
affinity matrices are highly sparse, and since we usually require use a rank d approximation
of these matricies with d � r, our algorithm is far more efficient in practice. Below, we
detail a number of optimizations we implemented to allow our approach to scale to problems
of the size we need to consider.

5.1 Maintaining Only Local Data
For very small data sets, it is possible to first calculate the requisite information for every
time step of the simulation and then to analyze the errors considering the window centered
around each. Though this approach eases the implementation of our algorithm somewhat,
it scales poorly to even moderately sized data. We typically expect molecular dynamics
simulations to run for many time steps. Yet, we will not be able to store the necessary
information for all time steps in random access memory.

To overcome this difficulty, the implementation of our algorithm stores only local data
that is relevant to the analysis of a time step, k, about which the current window is centered.
In particular, for time step k, it is necessary to compute Ak, Ûk and for all other time steps
` in the window, it is necessary to compute A`. This information is sufficient to compute
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a saliency measure for time step k. Storing only the information necessary to analyze the
current time step implies that the memory requirements can be made independent of the
length of the simulation. Ideally, the size of a window is based on the physical timescale over
which actions of interest are expect to occur in the molecule, and it varies independently of
the number of time steps in the simulation.

5.2 Data Reuse
A second practical consideration we make in our implementation of our algorithm is the
reuse of data to avoid redundant computation. If the algorithm is implemented in a naïve
fashion (relevant analysis data for the entire simulation is computed at once) then this is
trivially achieved. However, even when we consider only the local data, in the window
Wk, relevant to the analysis of a time step k, it is possible to reuse many of the computed
quantities when considering the window Wk+1, centered around the next time step, k + 1.
When the sliding window is moved forward by a single time step, from Wk to Wk+1, all
but the leftmost of the affinity matrices from Wk remain relevant to the analysis of the
new window. Further, since all but one of the affinity matrices from the previous window
are reused, only a single new affinity matrix, corresponding to the rightmost time step in
Wk+1 need be computed. Finally, the basis vectors, Ûk, may be discarded while Ûk+1
will be computed. Thus, by reusing relevant data as the sliding window proceeds forward
along the time steps of a simulation, we can ensure that, despite the fact that we only store
window-local data, each affinity matrix and approximate basis is computed only once.

5.3 Exploiting Sparsity
Even if we only consider storing window-local data, memory requirements might still be
exorbitant if we need to consider many amino acid residues for each time step. This is due
to the fact that we will require the storage of an affinity matrix for each time step in the
current window. However, since our affinity matrix considers only local interactions (residues
within 5 units of each other along the protein backbone), the matrix itself is very sparse. In
the affinity matrix of a given time step, k, each row will have, at most, 11 non-zero entries.
Thus, by using a sparse matrix structure the memory requirements for storing an affinity
matrix can be made linear, rather than quadratic, in the number of considered amino acid
residues. This enables us to consider many residues for each time step while keeping feasible
memory requirements.

5.4 Iterative SVD Transform Using Spectral Shift
The singular value decomposition is the most computationally intensive step of our al-
gorithm. Yet, even this step of the algorithm can be optimized significantly by obtaining
singular vectors iteratively. When obtaining an approximate basis, Ûk, for the affinity mat-
rix Ak, we need enough singular vectors so that we can represent Ak with sufficient accuracy.
However, the number of basis vectors required for the desired accuracy is often significantly
less than the number of columns ( or rows ) of Ak. Thus, it is wasteful and unnecessary to
perform a full SVD of Ak. Most SVD implementations allow the user to request only the
D most significant singular vectors. Unfortunately, we do not know, a priori, the number of
vectors that will be required to reach our desired error threshold. Additionally, most sparse
SVD implementations exhibit another behavior that is undesirable. Namely, the running
time of the algorithm is super-linear in the number of requested singular values/vectors. We
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adopt the approach suggested by Vallet and Levy [22] to overcome both of these difficulties
simultaneously.

To overcome the aforementioned difficulties, we make use of the ability (available in most
SVD implementations) to request the singular values and corresponding singular vectors
that are closest to a particular spectral shift value, σ. We request a fixed number, d = 50,
of singular values for each call to the SVD procedure. When we obtain the results, we
find the largest (σu) and smallest (σl) singular values. Then, we compute a spectral shift
σs = σl +λ(σu−σl) for the next invocation of the SVD procedure. Here, λ is a small scalar
value (we use λ = 0.2), and σs is computed so that there is overlap between the spectra
returned by consecutive calls to SVD. Since we only request d singular vectors per invocation
of the SVD procedure, we avoid the super-linear runtime in number of requested singular
vectors. Furthermore, after each iteration, we obtain a more complete set of basis vectors
for the affinity matrix; driving down the residual error. Thus, we can compute the residual
error after each iteration, subsequently ensuring that the total number of singular vectors
we obtain from the SVD is never more than d−1 in excess of the amount required to satisfy
our error threshold.

6 Conclusions and Future Work

In this paper, we have detected salient frames for molecular dynamics simulations. We
have introduced the notion of saliency in time, and successfully identified most of the key
frames which have changes in the kinks (i.e. appearance or disappearance of a kink) for
E. coli channel. We believe that our method can enable researchers to focus on the important
frames for further analysis of the dataset.

We currently consider the angles between the normal vectors defined by the planes of
different residues in α-helices, and identify the anomalies (kinks) in the secondary structures
for an E. coli channel. However, it makes sense to explore other structural properties of
the molecule as well. For example, we could consider quantities like the rotational angles
between residues or the derivatives of such quantities over time. It will be interesting to see
how affinity matrices based on other quantities compare to the ones we have chosen for this
work. Also, it will be interesting to explore how the approach detailed in this work might
be generalized to other types of time-varying data. We believe this framework can be easily
extended to encompass salient features in other time-varying simulations by changing the
way we construct affinity matrices to address other needs by scientists or domain experts.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 5 Five most salient frames detected by our method for the subunit 4 in the E. coli ion
channel (MscS) in Figure 3. The changes in the kinks are detected towards the end of this simulation,
and our method successfully detects some of the most important frames.

Chapte r 12



172 Salient Frame Detection for Molecular Dynamics Simulations

(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 6 Five most salient frames detected by our method for the subunit 1 in the E. coli ion
channel (MscS) in Figure 3. This subunit is topologically identical to the subunit 1, but acts differ-
ently in the simulation.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 7 Six most salient frames detected by our method for the subunit 4 in the other molecular
dynamics simulation, showing the symmetry annealing of MscS F68S mutant – the residue 68 was
mutated to another, serine, which has very specific consequences for channel inactivation in real
experiments.
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