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Abstract. In this article we demonstrate a general and efficient metaprogramming implementation of
concerted rotations using Mathematica. Concerted rotations allow the movement of a fixed portion of a
polymer backbone with fixed bending angles, like a protein, while maintaining the correct geometry of
the backbone and the initial and final points of the portion fixed. Our implementation uses Mathematica
to generate a C code which is then wrapped in a library by a Python script. The user can modify the
Mathematica notebook to generate a set of concerted rotations suited for a particular backbone geometry,
without having to write the C code himself. The resulting code is highly optimized, performing on the
order of thousands of operations per second.

1 Introduction

Recent research demonstrates a renewed interest for the
investigation of polypeptides, particularly intrinsically dis-
ordered proteins (IDP) [1–4], with the intention of under-
standing the physical principles shaping their conforma-
tional space and to design synthetic proteins as well as
protein-like polymers. In all these cases the exploration
of the configuration space of the protein backbone poses
a serious limitation [5]. This is often tackled by using
coarse-grained models, characterized by a reduced amount
of structural details and focusing on a small number of in-
teractions between the residues [6–16].

Monte Carlo schemes would allow for a quick survey of
the configurations space for a coarse-grained protein back-
bone, but the systematic rejection of pivot moves when
the protein is compact and the backbone distortions in-
troduced by other moves such as crankshaft rotations limit
their applicability [10,17–21].

A solution to the above problem is offered by the use
of concerted rotations, first developed by Theodorou et
al. [22] to investigate melts of polymers. This and other
similar approaches were later adopted by different groups
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to move local portions of protein backbones [23–30]. In
these algorithms a set of dihedral angles is changed in a
concerted way so that a limited portion of the backbone is
moved without distorting it and without affecting the po-
sition and orientation of its ends. Unfortunately, their rela-
tively difficult implementation compared to other moves,
coupled to the computational demands of their calcula-
tion, often keep them from being adopted in the initial
developing phase of coarse-grained models.

An elegant approach to the problem of concerted ro-
tations has recently been proposed by Zamuner et al. [31]
who have generalized concerted rotations by mapping
them on a differential manifold. The manifold is identified
by the constraints imposed by the fixed positions of the
initial and final atoms of the chain portion to be moved,
and can be described using a series of Denavit-Hartenberg
bases.

In this manuscript, we show how the analytic nature
of Zamuner’s algorithm makes it possible to implement
it efficiently in a language like C, by using a metapro-
gramming approach, in which the final code is written by
another program. In particular, we use Wolfram Mathe-
matica [32] to derive all the equations and write them as
C strings. These are then wrapped together by a Python
script which builds a C library that can be easily called
from any program. While we implement concerted rota-
tions of the φ and ψ dihedrals of a protein backbone,
other backbone geometries can simply be implemented by
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changing a few lines of the Mathematica notebook. The
Mathematica notebook and the wrapper to generate the
code are available on GitHub [33].

Our implementation inherits the advantages of Za-
muner’s approach while significantly improving its compu-
tational speed. In particular, while other methods [23–30]
either result in small distortions of the backbone or mod-
ify only a selected set of angles, the implementation de-
scribed here performs a concerted rotation of seven di-
hedral angles without distorting the backbone, and can
be easily extended to work on a mixture of bending and
dihedral angles or even on angles and bond lengths to-
gether. This possibility allows for applications in the fields
of loop refinement, structure prediction under experimen-
tal data constraints [34,35], and backbone reconstruction
with structural alphabets [36–38].

The paper is organized as follows. In sect. 2 we reca-
pitulate Zamuner’s approach and demonstrate how this
can be implemented in Mathematica. We provide details
of our implementation, which is available on GitHub [33].
In sect. 3 we show that the obtained moves respect the
detailed balance and are numerically stable, and we com-
pute the concerted rotation amplitude that optimizes the
sampling efficiency.

2 Methods

2.1 Concerted rotations of protein backbones:
Zamuner’s approach

In this section, we quickly recap Zamuner’s approach to
help the reader, and show how the algorithm can be ap-
plied to a protein backbone. For a complete treatment see
Zamuner et al. [31].

A concerted rotation must keep fixed the first and last
beads of the chain portion which is moved, and therefore
satisfy 6 constraint equations. As a consequence, a series
of n ≥ 7 variables among dihedral angles, bending angles,
and bond lengths have to be varied to perform the move.
The six constraints thus identify a differential manifold
M in a space of dimension n. Both the starting configu-
ration and the final configuration pertains to M . A good
strategy to obtain a new configuration ξf on M from a
given one ξo is then to compute the tangent space to M
in ξo, Tξo

(M), propose a displacement along it to a point
ηf and project this point on M to obtain a new configura-
tion which respects all the constraints. In order to apply
this strategy one needs to i) write the constraint equa-
tions identifying M in a consistent way, ii) compute the
tangent space in any given point of M , and iii) project a
point from a tangent space of M to the manifold itself.

2.1.1 Writing the constraint equations

In order to write the constraint equations identifying M
we represent the backbone using the Denavit-Hartenberg
(DH) convention. Given a polymer PN = {r1, r2, . . . , rN}
we can assign N ′ ≤ N right-handed orthonormal bases

ex,i, ey,i, ez,i to as many bonds of the polymer. This is
done as follows: for each basis i we set ez,i = bi/‖bi‖,
where bi = rj(i)+1 − rj(i) and j(i) is the index j of the
bond of the chain corresponding to the i-th basis; ex,i =
ez,i−1 × ez,i, and ey,i = ez,i × ex,i. The orientation of
ex,0 and ey,0 for the first basis is arbitrary. The origin of
each reference frame Oi, oi, is set to the atom rj(i) if ez,i

and ez,i−1 are co-planar, otherwise it is located along ez,i

in correspondence of the point in which the line passing
through ez,i is closer to the line passing through ez,i−1

(identified by the equation rj(i−1)+αex,i−1 = rj(i)+βez,i).
Note that two successive bases need not be on consecutive
bonds along the polymer.

Having set the bases, we can express a vector ai in the
reference frame Oi in the reference Oi−1 simply as

ai−1 = Ri
i−1ai + Si

i−1, (1)

where Ri
i−1 is the transformation matrix expressing the

basis ex,i, ey,i, ez,i in ex,i−1, ey,i−1, ez,i−1 and Si
i−1 is the

displacement vector giving the position of the origin of Oi

in the reference frame Oi−1. If we now define the vector
a′

i = (ai, 1)T , and a matrix

Ti
i−1 =

(
Ri

i−1 Si
i−1

0 1

)
, (2)

any roto-translation like eq. (1) can be rewritten in a com-
pact form as

a′
i−1 = Ti

i−1a
′
i. (3)

Using this notation one can express a vector in the refer-
ence frame Oj in the frame Oi as follows:

a′
i = Ti+1

i Ti+2
i+1 · · ·T

j
j−1a

′
j ≡ Tj

ia
′
j . (4)

Equation (4) can be used to express the constraint that
the first and last bonds involved in the concerted rotation
remain fixed. This constraint is equivalent to ask that the
composed matrices Tnb+1

1,old and Tnb+1
1,new, corresponding to

the backbone configurations before and after the move,
maintain the position and orientation of a vector expressed
in the reference frame attached to the last bond when this
is expressed in the reference frame corresponding to the
first bond:

a′
1 = Tnb+1

1,old a′
nb+1 = Tnb+1

1,newa′
nb+1 ⇒ Tnb+1

1,old − Tnb+1
1,new = 0,

(5)
where 1 and nb +1 indicate the first and last bond respec-
tively.

In order to proceed, one needs to express eq. (5) in
terms of a set of scalar quantities associated with the pro-
tein backbone, and in particular as a function of the di-
hedral angles. The Denavit-Hartenberg (DH) convention
provides the instruments to do so, associating 4 param-
eters to each basis. The rotational part of each matrix
Ti

i−1, Ri
i−1, can be univocally identified by two angles.

These are the link twist, αi, defined as the angle between
ez,i and ez,i−1 measured about ex,i; and the joint angle,
θi, between the vectors ex,i and ex,i−1 measured about
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ez,i−1. The translation part of Ti
i−1 can be decomposed

into one projection along ez,i, r, called link length and one
on the ex,iey,i plane, d, called link offset. Using the DH
parameters the matrix Ri

i−1 and the vector Si
i−1 can be

written explicitly as

Ri
i−1 =

⎛
⎜⎝

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi)

0 sin(αi) cos(αi)

⎞
⎟⎠ ,

(6)

Si
i−1 =

(
di cos(θi), di sin(θi), ri

)T
. (7)

When the reference frames Oi and Oi−1 are placed on
two consecutive bonds the DH parameters assume a well-
defined physical meaning: the link twist αi is the bending
angle between the two bonds, θi their torsion, ri is a bond
length and di = 0 since the origin of frame Oi is placed
along ez,i−1. Therefore, if we build a DH base for every
bond in the backbone, the torsion angles θi will correspond
to the different dihedrals of the protein backbone: φ, ψ
and ω. The link lengths ri will correspond to the lengths
of different N–Cα, Cα–C, C–N bonds and the αi angles
to the angles given by the scalar product between these
bonds.

Plugging the DH parameters into eq. (4), one obtains
a set of 16 equations in 4N parameters, with N the num-
ber of DH basis involved in the move. In order to preserve
the position and orientation of the last bond we need only
6 equations, specifically those corresponding to the trans-
lation part of the matrix Tnb+1

1 to maintain the position
and either the upper or lower part of the rotation matrix
Rnb+1

1 for the orientation. We chose the upper part as in
Zamuner et al. The constraint equations are therefore

ΔT1(αnew, θnew, dnew, rnew)≡ [Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]12,

ΔT2(αnew, θnew, dnew, rnew)≡ [Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]13,

ΔT3(αnew, θnew, dnew, rnew)≡ [Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]23,

ΔT4(αnew, θnew, dnew, rnew)≡Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]14,

ΔT5(αnew, θnew, dnew, rnew)≡Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]24,

ΔT6(αnew, θnew, dnew, rnew)≡ [Tnb+1
1 (αold, θold,dold, rold)

−Tnb+1
1 (αnew, θnew, dnew, rnew)]34, (8)

where we indicate with α, θ, d, r the whole set of 4N
parameters. When there are n ≥ 7 free parameters the
constraint equations can be solved.

In coarse-grained protein models only the φ and ψ di-
hedrals are considered to be free, while the dihedral angle
ω of the peptidic bond as well as all bond lengths and
bending angles are fixed. Taking into account this aspect,

we build a concerted rotation which moves 3 consecutive
residues by varying 7 consecutive dihedral angles φ and ψ.
This can be achieved by attaching 7 DH reference frames
to consecutive N–Cα and Cα–C bonds, as depicted in
fig. 1, so that their joint angles θi will correspond to φi +π
and ψi respectively.

Since the other backbone quantities are always fixed,
we end up with two transformation matrices, one for φ, in
which dφ = 0 and rφ is given by the length of the bond
N–Cα, so that Sφ = {0, 0, rφ}; and the other one for ψ,
in which the translation vector Sψ = SCα

N is computed as
described above, either at run-time, to improve numerical
stability, or once and for all, to optimize for execution
speed. The link twist for the ψ matrix is simply αψ =
π − ̂NCαC, while the one for the φ matrix can be easily
computed from the peptide geometry.

Using the matrices T1(φ) and T2(ψ) we can thus im-
pose a constraint, for example by starting from a φ dihe-
dral and vary 7 consecutive dihedral angles:

Δ(T1T2T1T2T1T2T1) = 0. (9)

The matrix product as well as the other equations can eas-
ily be computed analytically with Mathematica, as shown
in sect. 2.2.

2.1.2 Identifying the tangent space and performing the
move

The tangent space to the manifold M is given by the kernel
of the application ΔT(αnew, θnew, dnew, rnew): Rn → R6.
For the constraint in eqs. (9), n = 7 and M is a one-
dimensional manifold in R7. Recalling Dini’s implicit func-
tion theorem, we can identify the tangent space by pick-
ing one dihedral angle at random as the free variable and
expressing the other six as a function of this one. If we
indicate with y the constrained variables and with x the
free one, dy

dx (ξ) can be expressed in any non-singular point
as

dy

dx
(ξ) = J−1(ξ)

∂ΔT
∂x

, (10)

where ξ is the point of the manifold, J−1 is the inverse
of the Jacobian J = ∂ΔT(ξ)

∂y and ΔT the 6-dimensional
constraint function. From this relation the tangent vec-
tor to M(ξ) in R7, ν(ξ), can be simply written with the
constrained components given by relation (10) and the
component corresponding to the free variable set to 1. Of
course, in order to apply eq. (10), the determinant of J
must be different from zero. In that case the approach of
Zamuner et al., followed here, is to simply take a different
angle as the free variable.

Numerically, it is particularly demanding to invert a
matrix. Therefore to obtain dy

dx (ξ) we prefer to solve the
corresponding linear system given by

∂ΔT
∂x

= J(ξ)
dy

dx
(ξ). (11)

The move proper consists in choosing a free variable,
computing the tangent vector η(ξo) in the original point
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Fig. 1. Peptide bonds involved in a local concerted rotation. The bonds involved in the move are marked in red. Those going
from Cα to N atoms correspond to φ dihedral angles. Those going from C to Cα to ψ angles. All the distances and angles inside
a peptide are considered fixed. The vectors S joining to successive origins oi and oi+1 are reported when they are not zero.

Fig. 2. Concerted rotations are mapped by Zamuner’s ap-
proach to a random step on the tangent space and a root-
finding step to find a new point on the constraints manifold.
The amplitude of the random step, ds, is picked from a Gaus-
sian distribution of mean zero and variance σ. As noted by
Zamuner et al. [31], when the step ds is too large the root-
finding algorithm might not converge, as the point ξo + dsη
becomes too far from the manifold.

and projecting along this direction by a random amount,
ds, that controls the amplitude of the move. The new point
ξf , identifying the proposed configuration is obtained from
the point ξo + dsη(ξo) with a root-finding scheme in the
space orthogonal to TM (ξo). This procedure is reported
schematically in fig. 2.

In our implementation, we use a simple Gram-Schmidt
algorithm to build a base for the orthogonal space and
then use the multiroot package of the GSL library [39] to
find a root of the equation ΔT(ξo + dsη(ξo) + aν) = 0,
with ν in the orthogonal space to TM (ξo).

Following Zamuner et al. [31], we take the value of
ds from a Gaussian distribution of width σ. This width
thus controls the amplitude of the move. Its effects are
discussed in detail in sect. 3.

In order to weight correctly the various configurations
we need to take into account the determinant of the Jaco-
bian in both the original point ξo and the final point ξf ,
as well as the probability of extracting the step sizes ds
and ds′ for the forward and backward move from a Gaus-
sian distribution. The new configuration has therefore to
be accepted with probability

p = min
(

1, exp
(

ds2 − ds′2

σ2

)
|J(ξf )|
|J(ξo)|

)
, (12)

where |J | indicates the determinant of the Jacobian. In
principle, the approach of Zamuner et al. can be extended
to avoid this computation, by re-weighting the variables
involved in the move so that they already appear with the
correct probability. In our case though, all constraints,
Jacobians, and derivatives, are precomputed using Math-
ematica, so the Jacobians calculation presents no compu-
tational overhead.

2.2 Metaprogramming: using Mathematica to
pre-generate the code

The mathematical steps needed to compute the constraint
equation, its partial derivatives, and its Jacobian can all be
automated with a software like Mathematica. Using Math-
ematica, we compute symbolically the function ΔT, (8),
its partial derivatives with respect to each dihedral angle,
and the seven Jacobians obtained by fixing each different
dihedral. In total, this approach gives a set of polynomial
equations in cos(φi), sin(φi), cos(ψi) and sin(ψi).

All equations are processed using Mathematica
HornerForm function to optimize their expression for nu-
merical evaluation. After this simplification sines and
cosines are substituted with generic variables and the re-
sulting equations are printed as C strings in separate text
files.

Each text file is then read by a pre-processor, a Python
script, which wraps a function around each equation.
These functions take in input the sines and cosines of the
angles as well as the other DH parameters and substitute
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Fig. 3. A schematic representation of our metaprogramming
methodology. First, the Mathematica notebook is used to pro-
duce a set of equations representing the constraints manifold.
In the second step, the Python wrapper encapsulates each
equation in a function and create a C library. Finally, the GSL
layer calls these equations to implement Zamuner’s algorithm,
providing an effective Markov chain on the constraints mani-
fold, see fig. 2.

them in the equation, whose value is returned. The pre-
processor also creates the interface for the whole concerted
rotation move.

These equations, put together by the Python script,
immediately give us all the building blocks we need to
write eqs. (9) and (11). In order to solve eq. (11) we then
use the linear solver algorithms from GSL. The procedure
is schematized in fig. 3. The implementation can be down-
loaded from GitHub [33].

We note here that while our approach is dedicated
to concerted rotations of protein backbone dihedrals, this
methodology can easily be applied to other cases. In par-
ticular, the user can simply change the free variables in
the Mathematica notebook provided on the repository [33]
to implement a move based on bending angles or a mix-
ture of bending and dihedral angles. The generality of the
implementation also makes it possible to modify 3 non-
consecutive peptides, as described by Zamuner et al. [31].
In order to do so, it is sufficient to substitute the func-
tions that convert the protein backbone to DH parameter
and viceversa to deal with the more general case. On the

other hand, the approach can be specialized. Instead of us-
ing the general matrix T and insert the DH parameters at
runtime, one can already fix all constant parameters from
the beginning in Mathematica, thus saving numerical op-
erations. For example for a protein one could input T1(φ)
and T2(ψ) in Mathematica instead of using the general
matrix as we do here.

3 Results

We tested the robustness and speed of our implementation
by simulating a phantom 20 amino-acid long protein back-
bone. To sample its configurations we used a combination
of concerted rotations and pivot moves to equilibrate the
termini of the chain. Pivot moves were performed only
on the first and last 3 amino-acids. As can be seen from
fig. 4(a), this combination of moves samples uniformly the
dihedrals, as expected. Using a reconstruction algorithm
based on the dihedral angles to move the affected portion
of the backbone, local concerted rotations remain numer-
ically accurate for at least 106 iterations, at which point
there is usually a variation of some bond lengths of the
order 10−9 nm.

As described in the methods, the amplitude of the
move depends on the length of the step along the tangent
space, ds, which is chosen from a Gaussian distribution of
width σ. Larger values of σ thus correspond intuitively to
larger variations between the original set of dihedrals and
the new one. At the same time, a larger σ causes the pre-
rotated point to be further from the constraints manifold.
This increases the number of iterations required to find a
solution as well as the probability of rejecting the move,
either because of the detailed balance or due to a lack of
convergence of the root-finding algorithm.

It is particularly interesting to characterize the impact
of σ on the efficiency of concerted rotations. To do so,
we first measured its effect on the move speed and on its
rejection rate. To have a clean measure of the algorithm’s
execution time, we worked directly in dihedral space. The
results, reported in fig. 4(b), show that both quantities
grow quickly for σ between 0.05 and 2, while for σ > 2
the growth slows down. In this interval the time required
to perform the move on an Intel Xeon 2.3GhZ processor
goes from 0.37ms for σ = 0.05 to 2.5ms for σ = 2.15,
while the rejection rate goes from 27% to 43%. We can
combine these data to obtain the number of successful
concerted moves per second. This is reported in fig. 4(c),
and shows that the move is particularly efficient for values
of σ lower than 0.5, with more than a thousand successful
rotations per seconds.

We then proceeded to assess the impact of σ on the
ability of the move to sample the dihedral space. To do
so, we considered again a phantom chain of 20 amino
acids and measured its cumulative Ramachandran plot,
excluding the first and last residue. As observed before,
at equilibrium all dihedrals are equiprobable and thus the
Ramachandran plot must correspond to a uniform distri-
bution; one can thus estimate the sampling efficiency of



Page 6 of 9 Eur. Phys. J. E (2018) 41: 87

Fig. 4. (a) Cumulative histograms for the dihedrals of a 20 a.a. long peptide without steric hindrance, moved using concerted
rotations and pivot moves for the ends, for 5 million steps with σ = 0.1. (b) Average execution time and rejection rate
for concerted rotations as a function of σ, the parameter controlling the amplitude of concerted rotations, derived from five
independent simulations. (c) Number of successful concerted rotations per second as a function of σ. (d) Time needed to reach
a given value of the Bhattacharyya coefficient as a function of σ.

concerted rotations by measuring the number of iterations
required to reach a uniform φ, ψ distribution.

To quantify the convergence of our Ramachandran plot
we used the Bhattacharyya coefficient [40], which mea-
sures the discrepancy between two normalized histograms.
It is defined as

B =
N∑

i=1

√
qipi, (13)

where the sum runs over all the N bins and qi, pi are the
values of bin i in the two histograms. If the two histograms
are identical, B = 1. The reason for this can be under-
stood intuitively through geometry, as originally noted by
Bhattacharyya. Since the two histograms are normalized,

N∑
i=1

pi = 1

for both of them. The square roots of the terms in the
sum,

√
pi, can thus be considered as the components of

a normalized vector on an orthonormal basis of size N .
The coefficient B is therefore equal to the scalar product
between two N -dimensional unit vectors, and is equal to
one when they are collinear [40].

In our case, we calculated B between our Ramachan-
dran plot and a uniform distribution, for which pi = M/N

with M the number of measures performed. For all the
values of σ we tested B converges to unity, although with
different times (see appendix A). We can thus use B to
identify an optimal value of σ to use in simulations, by
fixing a threshold for B and measuring the time needed
to reach it as a function of σ. The results are reported in
fig. 4(d) for three different thresholds, B = 0.9, 0.95, 0.99.
All three curves display a minimum between σ = 0.1 and
σ = 0.3. Increasing σ beyond this value causes a signifi-
cant growth in the simulation time required to explore the
configurational space of a phantom backbone.

Finally, we investigated whether the optimal value of σ
changes when taking into account a more realistic peptide
backbone with excluded-volume interactions. To do so, we
implemented a simple self-avoiding peptide chain, 20 a.a.
long, with excluded-volume interactions between oxygen
and amide hydrogen. Both oxygen and hydrogen were rep-
resented as hard spheres with a radius derived from their
Van der Waals radii. To ensure the peptide chain impene-
trability we introduced an additional excluded-volume in-
teraction between α carbons with their diameter scaled
up to 0.4 nm, omitting next-neighbor interactions1.

1 Due to the backbone reconstruction algorithm imple-
mented in our test code, the NCαC angle can be susceptible to
the cumulation of numerical errors which can amount, in the
presence of steric hindrance, to a maximum of ∼ 0.1 degrees
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Fig. 5. (a) Optimal σ for a polypeptide chain, taking into
account the excluded volume. The convergence of the coeffi-
cient B is further discussed in appendix A. (b) Histogram of
Ramachandran plot for a 20 a.a. long poly-peptide with the
steric hindrance of oxygen, hydrogen and Cα atoms after 108

iterations for σ = 0.3.

To calculate the optimal σ in this case, we built a refer-
ence probability distribution against which we could com-
pute the Bhattacharyya coefficient using eq. (13). We did
so by running a long simulation (108 steps) using only
pivot moves and saving the Ramachandran plot for all di-
hedrals in the chain in a 180 × 180 bins histogram. We
considered a bin to be accessible if it is visited at least
5 times (to account for possible numerical uncertainties).
From this histogram, we produced an ideal normalized
distribution by assigning to each accessible bin the prob-
ability 1

number of accessible bins and 0 to all unaccessible
bins.

Despite a notable change in the peptide model, the
optimal value for σ remains approximately in the same
range from 0.1 to 0.3, although slightly shifted toward 0.3
(see fig. 5(a)). On the other hand, the overall performance
of the move in constrained space has decreased both due

after 106 moves. While this deviation is well within the sta-
tistical uncertainty over these bending angles, to compute the
Ramachandran plot we enforced their value to be 111◦ through
a harmonic potential.

to a rejection of configurations in excluded areas as well
as to the time required to compute the excluded-volume
constraints. The Ramachandran plot obtained for B =
0.98 is reported in fig. 5(b).

4 Conclusions

In this manuscript, we showed how the code for concerted
rotations can be written using a metaprogramming ap-
proach, in which a symbolic calculation package like Wol-
fram Mathematica precomputes the analytic part of the
move. The resulting equations are printed in C format and
then arranged in a set of usable C files by a Python script.

To guide the adoption of our move for Monte Carlo
simulations of polypeptide chains, we estimated the op-
timal value of the concerted rotations step, σ, which we
found to be between 0.1 and 0.3 irrespective of steric in-
teractions. We note that other applications, such as loop
refinement, might however benefit from different, or adap-
tive, choices of σ, based on the distance between the ends
of the loop to be refined or the amount of distortions to
be corrected.

Our implementation is very efficient as most of the cal-
culation have already been performed symbolically. Fur-
thermore, the speed of the move can be increased by
adding known backbone constraint into the equations in
Mathematica, thus saving operations at the price of a
lower flexibility of the produced code. For example, the
angles and bond lengths for the protein backbone can
be fixed already in the symbolic equations. An example
Mathematica notebook for concerted rotations of protein
backbones together with the generated code and series of
small test programs is available on GitHub [33].
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Fig. 6. (a) Convergence of B for different values of σ for phan-
tom polypeptide chains. (b) Difference between the Ramachan-
dran histogram and the corresponding reference histogram for
a 20 a.a. long polypeptide with steric hindrance of oxygen, hy-
drogen and Cα atoms, after 108 iterations for σ = 0.3.

Appendix A. Convergence of Bhattacharyya
coefficients

In this appendix, we quickly discuss the convergence of
the Bhattacharyya coefficients in the two cases discussed
in the main text. For phantom polypeptide chains, the
coefficient B always converges to 1, for all values of σ. The
time needed to reach convergence is reported in fig. 6(a).

When taking into account a more realistic polypeptide
chain, including steric interactions between alpha carbons,
hydrogens, and oxygens, we noticed that B = 0.98 after
108 MC steps. The inability to reach B = 1 is due to the
fact that our reference distribution is only approximated.
Being a finite histogram, it is, in fact, a rasterization of the
true Ramachandran plot. We report in fig. 6 the difference
between the reference distribution and the distribution ob-
tained at B = 0.98 using concerted rotations and pivot
moves of the chain ends. We notice that the great major-
ity of the discrepancies are distributed along the border
between accessible and unaccessible regions, since the cor-
responding bins are difficult to assign to either of them.
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