23 research outputs found

    On the development of a cybernetic prosthetic hand

    Get PDF
    The human hand is the end organ of the upper limb, which in humans serves the important function of prehension, as well as being an important organ for sensation and communication. It is a marvellous example of how a complex mechanism can be implemented, capable of realizing very complex and useful tasks using a very effective combination of mechanisms, sensing, actuation and control functions. In this thesis, the road towards the realization of a cybernetic hand has been presented. After a detailed analysis of the model, the human hand, a deep review of the state of the art of artificial hands has been carried out. In particular, the performance of prosthetic hands used in clinical practice has been compared with the research prototypes, both for prosthetic and for robotic applications. By following a biomechatronic approach, i.e. by comparing the characteristics of these hands with the natural model, the human hand, the limitations of current artificial devices will be put in evidence, thus outlining the design goals for a new cybernetic device. Three hand prototypes with a high number of degrees of freedom have been realized and tested: the first one uses microactuators embedded inside the structure of the fingers, and the second and third prototypes exploit the concept of microactuation in order to increase the dexterity of the hand while maintaining the simplicity for the control. In particular, a framework for the definition and realization of the closed-loop electromyographic control of these devices has been presented and implemented. The results were quite promising, putting in evidence that, in the future, there could be two different approaches for the realization of artificial devices. On one side there could be the EMG-controlled hands, with compliant fingers but only one active degree of freedom. On the other side, more performing artificial hands could be directly interfaced with the peripheral nervous system, thus establishing a bi-directional communication with the human brain

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Improving Upper Extremity Myoelectric Prosthesis Functionality Through the Use of Intramuscular EMG Signals

    Get PDF
    The prevalence of upper extremity amputation is increasing in the United States. To meet the demand of decreased functionality associated with upper extremity loss, prosthetic design has become increasingly complex, allowing for an high number of operable degrees-of-freedom (DOFs). Unfortunately, the ability to control this in- creased mechanical capability is limited. Pattern recognition using EMG signals obtained from surface electrodes is the state-of-the-art for myoelectric prosthetic con- trol; however, it is limited in its ability allow for natural, simultaneous control of multiple DOFs. Recognizing this limitation, some researchers have focused efforts on creating control algorithms based on intramuscular signals. Despite initial reports that demonstrated no improvements in the classification accuracy, more recent liter- ature presents intramuscular EMG signals as potentially useful drivers of classifying multiple, simultaneous DOFs. As opposed to surface-based signals, intramuscular signals are generated from a much smaller conduction volume, dependent on the type of electrode used. A novel combined control strategy incorporating both intramus- cular and surface EMG signals may have the potential to leverage advantages from both strategies. The research presented herein represents the first examination of complement- ing the more global signal obtained from surface electrodes with the muscle-specific information from intramuscular electrodes. When compared to control with either intramuscular or surface signals alone, a strategy involving combining information from both signal sources results in the highest degree of classification accuracy for controlling wrist rotation, flexion and hand grasps simultaneously using a 3-DOF LDA classifier. A single classifier, in which 3 DOFs are included, outperformed a par- allel classifier, in which each DOF was independently classified and all classifications combined for a single 3 DOF output. However, high classification accuracies for each individual DOF highlight the potential for using combined signals for accurate control of a prosthetic limb. The impacts of these findings are also discussed, including the implication for future prosthetic and electrode design. Additionally, a novel method for quantitatively measuring the functionality of a prosthetic user is included

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location
    corecore