22,543 research outputs found

    New integrable systems related to the relativistic Toda lattice

    Full text link
    New integrable lattice systems are introduced, their different integrable discretization are obtained. B\"acklund transformations between these new systems and the relativistic Toda lattice (in the both continuous and discrete time formulations) are established.Comment: LaTeX, 22 pp. Substantially extended version: several new systems added

    Parametrization of global attractors experimental observations and turbulence

    Get PDF
    This paper is concerned with rigorous results in the theory of turbulence and fluid flow. While derived from the abstract theory of attractors in infinite-dimensional dynamical systems, they shed some light on the conventional heuristic theories of turbulence, and can be used to justify a well-known experimental method. Two results are discussed here in detail, both based on parametrization of the attractor. The first shows that any two fluid flows can be distinguished by a sufficient number of point observations of the velocity. This allows one to connect rigorously the dimension of the attractor with the Landau–Lifschitz ‘number of degrees of freedom’, and hence to obtain estimates on the ‘minimum length scale of the flow’ using bounds on this dimension. While for two-dimensional flows the rigorous estimate agrees with the heuristic approach, there is still a gap between rigorous results in the three-dimensional case and the Kolmogorov theory. Secondly, the problem of using experiments to reconstruct the dynamics of a flow is considered. The standard way of doing this is to take a number of repeated observations, and appeal to the Takens time-delay embedding theorem to guarantee that one can indeed follow the dynamics ‘faithfully’. However, this result relies on restrictive conditions that do not hold for spatially extended systems: an extension is given here that validates this important experimental technique for use in the study of turbulence. Although the abstract results underlying this paper have been presented elsewhere, making them specific to the Navier–Stokes equations provides answers to problems particular to fluid dynamics, and motivates further questions that would not arise from within the abstract theory itself

    Space-modulated Stability and Averaged Dynamics

    Full text link
    In this brief note we give a brief overview of the comprehensive theory, recently obtained by the author jointly with Johnson, Noble and Zumbrun, that describes the nonlinear dynamics about spectrally stable periodic waves of parabolic systems and announce parallel results for the linearized dynamics near cnoidal waves of the Korteweg-de Vries equation. The latter are expected to contribute to the development of a dispersive theory, still to come.Comment: Proceedings of the "Journ\'ees \'Equations aux d\'eriv\'ees partielles", Roscoff 201

    Uncontrolled spacecraft formations on two-dimensional invariant tori

    Get PDF
    Within the class of natural motions near libration point regions quasi-periodic trajectories evolving on invariant tori are studied. Those orbits prove beneficial for relative spacecraft configurations with large distances among satellites. In this study properties of invariant tori are outlined, and non-resonant and resonant tori around the Sun/Earth libration point L1 are computed. A numerical approach to obtain the frequency base and to parametrize a torus in angular phase space is introduced. Initial states for spacecraft formations on the torus’ surface are defined. The formation naturally evolve along its surface such that the relative positions within a formation are unaltered and the relative distances and the orientation are closely bounded. An in-plane coordinate frame together with a modified torus motion is introduced and the inner and outer behaviour of the formation’s geometry is investigated

    Dynamic and Static Excitations of a Classical Discrete Anisotropic Heisenberg Ferromagnetic Spin Chain

    Full text link
    Using Jacobi elliptic function addition formulas and summation identities we obtain several static and moving periodic soliton solutions of a classical anisotropic, discrete Heisenberg spin chain with and without an external magnetic field. We predict the dispersion relations of these nonlinear excitations and contrast them with that of magnons and relate these findings to the materials realized by a discrete spin chain. As limiting cases, we discuss different forms of domain wall structures and their properties.Comment: Accepted for publication in Physica

    Nonlinear Dynamics of Accelerator via Wavelet Approach

    Get PDF
    In this paper we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In the general case we have the solution as a multiresolution expansion in the base of compactly supported wavelet basis. The solution is parametrized by the solutions of two reduced algebraical problems, one is nonlinear and the second is some linear problem, which is obtained from one of the next wavelet constructions: Fast Wavelet Transform, Stationary Subdivision Schemes, the method of Connection Coefficients. According to the orbit method and by using construction from the geometric quantization theory we construct the symplectic and Poisson structures associated with generalized wavelets by using metaplectic structure. We consider wavelet approach to the calculations of Melnikov functions in the theory of homoclinic chaos in perturbed Hamiltonian systems and for parametrization of Arnold-Weinstein curves in Floer variational approach.Comment: 16 pages, no figures, LaTeX2e, aipproc.sty, aipproc.cl

    Homoclinic points of 2-D and 4-D maps via the Parametrization Method

    Get PDF
    An interesting problem in solid state physics is to compute discrete breather solutions in N\mathcal{N} coupled 1--dimensional Hamiltonian particle chains and investigate the richness of their interactions. One way to do this is to compute the homoclinic intersections of invariant manifolds of a saddle point located at the origin of a class of 2N2\mathcal{N}--dimensional invertible maps. In this paper we apply the parametrization method to express these manifolds analytically as series expansions and compute their intersections numerically to high precision. We first carry out this procedure for a 2--dimensional (2--D) family of generalized Henon maps (N\mathcal{N}=1), prove the existence of a hyperbolic set in the non-dissipative case and show that it is directly connected to the existence of a homoclinic orbit at the origin. Introducing dissipation we demonstrate that a homoclinic tangency occurs beyond which the homoclinic intersection disappears. Proceeding to N=2\mathcal{N}=2, we use the same approach to determine the homoclinic intersections of the invariant manifolds of a saddle point at the origin of a 4--D map consisting of two coupled 2--D cubic H\'enon maps. In dependence of the coupling the homoclinic intersection is determined, which ceases to exist once a certain amount of dissipation is present. We discuss an application of our results to the study of discrete breathers in two linearly coupled 1--dimensional particle chains with nearest--neighbor interactions and a Klein--Gordon on site potential.Comment: 24 pages, 10 figures, videos can be found at https://comp-phys.tu-dresden.de/supp
    corecore