21,485 research outputs found

    Structure and colour in triangle-free graphs

    Full text link
    Motivated by a recent conjecture of the first author, we prove that every properly coloured triangle-free graph of chromatic number χ\chi contains a rainbow independent set of size 12χ\lceil\frac12\chi\rceil. This is sharp up to a factor 22. This result and its short proof have implications for the related notion of chromatic discrepancy. Drawing inspiration from both structural and extremal graph theory, we conjecture that every triangle-free graph of chromatic number χ\chi contains an induced cycle of length Ω(χlogχ)\Omega(\chi\log\chi) as χ\chi\to\infty. Even if one only demands an induced path of length Ω(χlogχ)\Omega(\chi\log\chi), the conclusion would be sharp up to a constant multiple. We prove it for regular girth 55 graphs and for girth 2121 graphs. As a common strengthening of the induced paths form of this conjecture and of Johansson's theorem (1996), we posit the existence of some c>0c >0 such that for every forest HH on DD vertices, every triangle-free and induced HH-free graph has chromatic number at most cD/logDc D/\log D. We prove this assertion with `triangle-free' replaced by `regular girth 55'.Comment: 12 pages; in v2 one section was removed due to a subtle erro

    Topics in graph colouring and extremal graph theory

    Get PDF
    In this thesis we consider three problems related to colourings of graphs and one problem in extremal graph theory. Let GG be a connected graph with nn vertices and maximum degree Δ(G)\Delta(G). Let Rk(G)R_k(G) denote the graph with vertex set all proper kk-colourings of GG and two kk-colourings are joined by an edge if they differ on the colour of exactly one vertex. Our first main result states that RΔ(G)+1(G)R_{\Delta(G)+1}(G) has a unique non-trivial component with diameter O(n2)O(n^2). This result can be viewed as a reconfigurations analogue of Brooks' Theorem and completes the study of reconfigurations of colourings of graphs with bounded maximum degree. A Kempe change is the operation of swapping some colours aa, bb of a component of the subgraph induced by vertices with colour aa or bb. Two colourings are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. Our second main result states that all Δ(G)\Delta(G)-colourings of a graph GG are Kempe equivalent unless GG is the complete graph or the triangular prism. This settles a conjecture of Mohar (2007). Motivated by finding an algorithmic version of a structure theorem for bull-free graphs due to Chudnovsky (2012), we consider the computational complexity of deciding if the vertices of a graph can be partitioned into two parts such that one part is triangle-free and the other part is a collection of complete graphs. We show that this problem is NP-complete when restricted to five classes of graphs (including bull-free graphs) while polynomial-time solvable for the class of cographs. Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and Talbot (2007) of the famous Erd\H{o}s-Ko-Rado Theorem in extremal combinatorics and obtain some results for the class of trees

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    A note on 2--bisections of claw--free cubic graphs

    Full text link
    A \emph{kk--bisection} of a bridgeless cubic graph GG is a 22--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most kk. Ban and Linial conjectured that {\em every bridgeless cubic graph admits a 22--bisection except for the Petersen graph}. In this note, we prove Ban--Linial's conjecture for claw--free cubic graphs
    corecore