1,128 research outputs found

    TT2NE: A novel algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present TT2NE, a new algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. TT2NE guarantees to find the minimum free energy structure irrespectively of pseudoknot topology. This unique proficiency is obtained at the expense of the maximum length of sequence that can be treated but comparison with state-of-the-art algorithms shows that TT2NE is a very powerful tool within its limits. Analysis of TT2NE's wrong predictions sheds light on the need to study how sterical constraints limit the range of pseudoknotted structures that can be formed from a given sequence. An implementation of TT2NE on a public server can be found at http://ipht.cea.fr/rna/tt2ne.php

    McGenus: A Monte Carlo algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifically, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php .Comment: 6 pages, 1 figur

    Improved RNA pseudoknots prediction and classification using a new topological invariant

    Get PDF
    We propose a new topological characterization of RNA secondary structures with pseudoknots based on two topological invariants. Starting from the classic arc-representation of RNA secondary structures, we consider a model that couples both I) the topological genus of the graph and II) the number of crossing arcs of the corresponding primitive graph. We add a term proportional to these topological invariants to the standard free energy of the RNA molecule, thus obtaining a novel free energy parametrization which takes into account the abundance of topologies of RNA pseudoknots observed in RNA databases.Comment: 9 pages, 6 figure

    Prediction of RNA pseudoknots by Monte Carlo simulations

    Full text link
    In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.Comment: 22 pages, 14 figure

    An O(n^5) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids

    Get PDF
    Efficient methods for prediction of minimum free energy (MFE) nucleic secondary structures are widely used, both to better understand structure and function of biological RNAs and to design novel nano-structures. Here, we present a new algorithm for MFE secondary structure prediction, which significantly expands the class of structures that can be handled in O(n^5) time. Our algorithm can handle H-type pseudoknotted structures, kissing hairpins, and chains of four overlapping stems, as well as nested substructures of these types
    corecore