5 research outputs found

    Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel–serial (hybrid) manipulator:

    Get PDF
    The proposed study provides a solution of the inverse and forward kinematic problems and workspace analysis for a five-degree-of-freedom parallel–serial manipulator, in which the parallel kinematic chain is made in the form of a tripod and the serial kinematic chain is made in the form of two carriages displaced in perpendicular directions. The proposed manipulator allows to realize five independent movements—three translations and two rotations motion pattern (3T2R). Analytical relationships between the coordinates of the end-effector and five controlled movements provided by manipulator's drives (generalized coordinates) were determined. The approach of reachable workspace calculation was defined with respect to available design constraints of the manipulator based on the obtained algorithms of the inverse and forward kinematics. Case studies are considered based on the obtained algorithms of inverse and forward kinematics. For the inverse kinematic problem, the solution is obtained in accordance with the given laws of position and orientation change of the end-effector, corresponding to the motion along a spiral-helical trajectory. For the forward kinematic problem, various assemblies of the manipulator are obtained at the same given values of the generalized coordinates. An example of reachable workspace designing finalizes the proposed study. Dimensions and extreme values of the end-effector orientation angles are calculated

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Novel Design and Analysis of Parallel Robotic Mechanisms

    Get PDF
    A parallel manipulator has several limbs that connect and actuate an end effector from the base. The design of parallel manipulators usually follows the process of prescribed task, design evaluation, and optimization. This dissertation focuses on interference-free designs of dynamically balanced manipulators and deployable manipulators of various degrees of freedom (DOFs). 1) Dynamic balancing is an approach to reduce shaking loads in motion by including balancing components. The shaking loads could cause noise and vibration. The balancing components may cause link interference and take more actuation energy. The 2-DOF (2-RR)R or 3-DOF (2-RR)R planar manipulator, and 3-DOF 3-RRS spatial manipulator are designed interference-free and with structural adaptive features. The structural adaptions and motion planning are discussed for energy minimization. A balanced 3-DOF (2-RR)R and a balanced 3-DOF 3-RRS could be combined for balanced 6-DOF motion. 2) Deployable feature in design allows a structure to be folded. The research in deployable parallel structures of non-configurable platform is rare. This feature is demanded, for example the outdoor solar tracking stand has non-configurable platform and may need to lie-flat on floor at stormy weathers to protect the structure. The 3-DOF 3-PRS and 3-DOF 3-RPS are re-designed to have deployable feature. The 6-DOF 3-[(2-RR)UU] and 5-DOF PRPU/2-[(2-RR)UU] are designed for deployable feature in higher DOFs. Several novel methods are developed for rapid workspace evaluation, link interference detection and stiffness evaluation. The above robotic manipulators could be grouped as a robotic system that operates in a green way and works harmoniously with nature

    Type Synthesis and Performance Optimization of Parallel Manipulators

    Get PDF
    Parallel robots have been widely employed in industrial applications. There are still some challenging topics in the fundamental research, e.g., the primary problem mobility analysis has not been solved for about 150 years. A universal mobility equation for all kinds of parallel architectures has not been found. Another issue lies on the performance measurements for parallel manipulators. There are plenty of kinematic and dynamic performance indices. However, the various ranges and scales of these indicators make the optimal design considering multiple indices complicated. It is essential to search for a unified approach to normalize performance indicators. More dynamic performance measurement indicators should be raised to explore the dynamic features and complete the theory for parallel mechanisms. In this research, an improved mobility equation is designed to reveal the degrees of freedom for a special class of parallel robots. A novel methodology called the kinematic joint matrix is proposed. It possesses the mapping relations with parallel manipulators. A series of 2-6 degrees of freedom parallel architectures is denoted by the kinematic joint matrix. The theory of screw is employed to check the feasibility from several kinds of parallel structures. A special block diagram is introduced to distinguish various kinematic joint matrices. Since this family of parallel robots contains various motion characteristics, four parallel robots with distinct features are selected. Based on the kinematic models, three categories of singularities are explored. The operational and reachable workspaces of the pure-translational parallel robots are searched and the parametric analyses are reported. The linkage’s impacts for the reachable workspace of the mixed-motion parallel architectures are investigated. The novel performance level index is designed to unify the positive performance index and demonstrated the performance rank for any pose (position and orientation). The dexterity index is utilized as an example to verify the characteristics of the level index. The distributions and parametric analyses of two novel mass-related performances are studied. The dimension synthesis of a selected planar parallel robot is presented based on the non-dominated genetic algorithm II. The experiment results testify the correctness of the mobility and kinematic mathematical models of this mechanism
    corecore