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Abstract 

 

Over the last two decades, reconfigurable mechanisms have become one of the most 

important research topics in robotics due to their multiple functionalities on a sole 

machine that can fulfil a variety of tasks. They are more effective in many aspects than 

traditional sole-function mechanisms. There are different types of reconfigurable 

mechanisms such as kinematotropic mechanisms, metamorphic mechanisms, 

discontinuously moveable mechanisms, mechanisms with multi-furcation, and 

multi-mode reconfigurable mechanisms (MMRMs).  

    This dissertation focuses on MMRMs that include single-loop multi-mode 

reconfigurable mechanisms (SLMMRMs) and multi-loop multi-mode reconfigurable 

mechanisms (MLMMRMs), and mainly deals with the design and kinematic analysis of 

new SLMMRMs. Fruitful results have been achieved on SLMMRMs that have single 

DOF (degree of freedom) or variable DOFs with two operation modes in the literature. 

However, it is still an open issue to design new type of SLMMRMs with more operation 

modes and to conduct effective kinematic analysis of these mechanisms.  

    Apart from investigations of various reconfigurable mechanisms, the kinematic 

analysis methods for serial and parallel mechanisms are also revisited. The 

multidimensional geometry in conjunction with advanced algebra is found to be very 

effective in dealing with the kinematic analysis of MMRMs. The synthesis of constraint 

equations of typical serial kinematic chains, as compositional units of 

closed-loop/parallel mechanisms, is undertaken using both explicitation and 

implicitization approaches based on the kinematic mapping method. A linear algebraic 

method is applied to select the proper number of constraint equations for a serial 

kinematic chain, which is an important step in the kinematic analysis of a mechanism 

using the implicitization approach. Moreover, the transformations in the base and 

moving platform of a parallel mechanism are defined and unified into serial kinematic 

chains (legs) to generate the parallel mechanism’s constraint equations.  

    Based on the investigation of single-loop overconstrained mechanisms (SLOMs) 

and the research on existing type synthesis methods, this dissertation presents three 

methods for constructing 7J (J: joint) SLMMRMs that have three or more operation 

modes. Nineteen classes including three new classes of 7J SLMMRMs are presented 

using the first method. 7J SLMMRMs can be classified according to their numbers of 

active joints in different operation modes: 7J SLMMRMs with two types of operation 

modes and 7J SLMMRMs with three types of operation modes. The procedures of the 
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second method to produce a 7J SLMMRM that has three operation modes but two kinds 

of operation modes are illustrated. Two 7R SLMMRMs are generated by combining two 

same Bennett linkages in different R-joint orders to form 6R (R: revolute) SLMMRMs 

followed by inserting one new R joint. They are verified by CAD modes that they have 

two Bennett linkage modes and one 7R mode.  

Two novel 7R SLMMRMs are also designed according to the third method where 

each configuration is obtained by inserting an R joint into a 6R SLOM with one or two 

operation modes. The first 7R SLMMRM produced by inserting an R joint to the 

well-known Sarrus linkage has three operation modes but two types: one 6R mode and 

two 7R modes. The second 7R SLMMRM constructed by inserting a new R joint to a 

line and plane symmetrical Bricard linkage with two operation modes has four 

operation modes but three types: one 4R mode, two 6R modes and one 7R mode. The 

kinematic analysis of the two 7R SLMMRMs have been completed using both the 

explicitation approach and algebraic method, which produces the plotting of their 

operation mode curves. The transition configurations are also identified. These results 

are further verified by CAD models and 3D printed prototypes.  

   Many configurations of 7J SLMMRMs that have three or more operation modes 

satisfying multiple target requirements can be generated and analyzed according to the 

theoretical foundation in this dissertation. 
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Chapter 1 – Introduction 

 

Mechanisms include serial and parallel types as well as their combined hybrid type. 

Open-loop serial mechanisms are commonly used in industry. They are usually 

composed of a number of rigid links which are connected one by one through kinematic 

joints with an end-effector (EE) at the end of the last link. A typical serial robot in 

industry is the pick-and-place robot called the SCARA robot as shown in Fig. 1.1.  

 

  

Figure 1.1 A SCARA robot [1] 

     Parallel mechanisms/manipulators manipulate objects using two or more arms 

forming a single closed-loop or multiple closed-loops in order to fulfil a task. Compared 

to serial mechanisms, although having smaller workspace, parallel mechanisms have 

several advantages such as faster dynamic performance, higher rigidity and higher 

accuracy, therefore they have attracted increasing interest in both industry and academia 

[2-7].  

 

Figure 1.2 Gough-Stewart robot [8] 
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    A successful application of parallel mechanisms can be found in training simulators. 

The best known parallel manipulator constructed by six serial chains is used to support 

a movable base for flight or automobile simulators (Fig. 1.2). This mechanism is called 

the Gough-Stewart platform in recognition of the engineers who first designed and used 

them. Additionally, parallel mechanisms have wide applications in variable 

environments, such as  assembly devices of printed circuit boards, micro manipulators 

mounted on the EE of larger but slower serial manipulators, and high speed/high-

precision milling machines. 

     However, most of the multi-DOF (degree of freedom) parallel mechanisms proposed 

before have a unique configuration meaning that a mechanism has only one motion 

pattern as shown in Fig. 1.3.  

 

 

Figure 1.3 Parallel mechanisms with one motion pattern 

 

     With the development of science and technology applications in this field and the 

challenges of work requirements, it would be beneficial if parallel mechanisms could 

generate different operation modes to fulfil variable tasks based on a single mechanism, 

i.e., “Reconfigurable Parallel Mechanism (RPM)”. In 1978, a RPM had been revealed 

which was applied in a constant-velocity coupling (CVC) [9]. This parallel mechanism 

can be used as a CVC connecting intersecting axes; while on the other hand, it can be 

used as a CVC connecting parallel axes after changing its configuration. This has made 

people realize that mechanisms can be designed in such a way that they can be 

reconfigured to complete different tasks. This mechanism can be considered to be the 

first reconfigurable mechanism in use. Since the RPMs have the potential to implement 

multiple functions which helps lower the cost and save time during the work process, 

then from the middle of 1990s, the study of RPMs has been gradually increased due to 

(a) 3-DOF RPS (R: revolute, P: prismatic, 

S: spherical) with 2R1T (R: rotation, T: 

translation) motion pattern  

(b) 4-DOF UPU (U: universal, P: 

prismatic) with 3T1R (T: translation, 

R: rotation) motion pattern 

 

http://en.wikipedia.org/wiki/Serial_manipulator
http://en.wikipedia.org/wiki/Milling_machine
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their high effectiveness. The research on RPMs has been identified to be a significant 

and vital direction in robotics in the new century [10-45, 49-58].  

     According to the Grubler-Kutzbach mobility criterion [9] and modified mobility 

criterion, the mobility of a mechanism is determined by the number of links and joints 

and the constraints of the joints. If one or more of these criterions are modified, the 

mobility of the mechanism is also changed. There are some obvious ideas that people 

can easily recognize to configure a mechanism having several operation modes, such as 

changing the effective number of links or joints or changing the kinematic types of 

certain joints. In addition, there are other methods to construct reconfigurable 

mechanisms. 

     There are several distinguished classes of RPMs according to different concepts 

including modular reconfigurable mechanisms [10-13], kinematotropic mechanisms 

[14-24], mechanisms with variable topologies [25-31], metamorphic mechanisms [32-

38], discontinuously moveable mechanisms [39-43] and multi-mode reconfigurable 

mechanisms [44-45, 55-58]. These RPMs will be introduced in detail in the following 

section. 

 

1.1 Classes of RPMs 

 

In this section, several classes of RPMs will be investigated from their concept and 

construction with their advantages and disadvantages identified. 

 

1.1.1 Modular Reconfigurable Mechanisms 

 

A modular parallel robotic system is defined as: “A modular parallel robotic system 

consists of a collection of individual standard units that can be assembled into various 

robot configurations for a diversity of task requirements.” [10] The standard units of 

this class of Modular Reconfigurable Mechanisms could be actuator modules, passive-

joints modules, custom-designed links and mobile platform as shown in Fig. 1.4. Due to 

its modularity, a modular parallel mechanism may have unlimited configurations. They 

can be disassembled and reassembled to form morphologies that are suited for a variety 

of given tasks. Their shapes and structures can be changed by rearranging the 

connectivity of their parts to adapt to new circumstances and perform new tasks, or 

recover from damage [11-13]. Since the system is composed of many repeated parts, a 
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faulty part can be discarded and replaced with an identical one. However, all these 

operations need manual completion and more time. 

 

 

(a) Actuator modules and passive-joint modules 

 

(b) Two assembled 3-legged modular parallel robots 

Figure 1.4 Reconfigurable modular parallel mechanisms and their modules [11] 

 

Some researchers focus on modular self-reconfigurable robots which have an ability 

to change robot configuration without external help as shown in [12, 13]. These robots 

can repair themselves by replacing a faulty part using a spare part, which is useful in 

realizing flexible and reliable robotic systems; however, there is complexity associated 

with organising the control of such modular structures.  

 

1.1.2 Metamorphic Mechanisms 

 

A Metamorphic Mechanism (MM) is a variable topology mechanism [14] which 

implements a number of transitions among its basic mechanical linkages to realize its 

multiphase functions due to complex working conditions. The study of MMs started in 

1998 when Dai and Rees Jones proposed MMs [15] with changeable topologies. Since 

then, many researchers have been pursuing the research of MMs. In 2000, Parise et al. 

developed orthogonal-planar MM [16]. In 2004, Liu and Yang [17] investigated the 

characteristics of the MMs and explored three approaches to construct the topologies of 
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them. Carroll, working with Magleby and Howell [18], made a step change by 

introducing the concept of the metamorphic process in manufacturing three dimensional 

structures. Then Wang and Dai proposed metamorphic characteristics and set up a 

metamorphic equation to represent configuration changes [19, 20]. The methods for the 

synthesis and configuration design of MMs were developed in [21] based on biological 

modelling and genetic evolution with biological building blocks. A famous example of 

MMs is a novel robotic hand with a metamorphic palm (Fig. 1.5) which has challenged 

the traditional structure of a robotic hand [22]. 

     The basic principles and strategies for producing MMs are to change the topology or 

configuration of a mechanism by [23, 24]: (a) changing the effective numbers of links 

or joints, (b) changing the kinematic types of certain joints, (c) changing the adjacency 

and incidence of links and joints and (d) changing the relative arrangement between 

joints.  

 

    (a) CAD model                        (b) Schematic diagram 

Figure 1.5 A metamorphic robotic hand [22] 

 

Figure 1.5(a) shows a metamorphic robotic hand that is developed based on the 

principle mentioned above. It is essentially a spatial five-bar linkage as shown in Fig. 

1.5(b). This metamorphic-palm is a spherical linkage attached with fingers. The base 

link is the link where finger 1 is mounted. There are two cranks on both sides of the 

base. The palm is foldable meaning that its operation changes the configurations that eto 

complete different pinching and twisting tasks.  An advanced KCL metamorphic robot 

hand was developed which can fold complex origami carton box [134,135], this 

articulated mechanism greatly enhances the dexterity of the hand allowing it to perform 

tasks that require dexterous manipulation of objects. 
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1.1.3 Mechanisms with Variable Topologies  

 

With topologies being changeable during the operation of a mechanism when dealing 

with some complicated tasks, such a mechanism is called a Mechanism with Variable 

Topologies (MVT) [25-27]. They can be seen as a kind of RPM due to their 

continuously changing motion patterns. Examples of MVTs include legged walking 

machines and button stopper locks which are functional based on their variable 

kinematic joints. A variable kinematic joint is one that can change its topologies during 

the operation of the mechanism. Generally, the fundamental concept of a variable 

kinematic joint includes: (a) changing the kinematic pair type as shown in Fig. 1.6; (b) 

changing the kinematic joint orientation as illustrated in Fig. 1.7.   Therefore, the basic 

concept of the MVTs and part of the concept of MMs are coincident.  

 

Figure 1.6 Variable types of kinematics pairs [28] 

 

      

Figure 1.7 Change of representative motion direction of joint [28] 

 

     In [28], Yan and Kuo undertook a systematic investigation of the representation of 

topologies and characteristics of variable kinematic joints. They proposed a logical 

foundation for the synthesis of variable kinematic joints and MVTs. The topologies 

characteristics appear to have the ability of reversibility, continuity, variability of DOFs, 

expansibility and so on. New mechanisms can be created based on the theory, for an 

example, a new key chain had been created according to the expansibility of variable 

topologies as demonstrated in Figs. 1.8 and 1.9 [28]. In additional, Yan and Kuo studied 

(a) Cam pair (b) Revolute pair 
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the structure and motion state representations and identifications of MVTs [29]. The 

variable mobility depending on their configuration singularity was then investigated 

based on screw theory [30]. In 2009, Yan et al [31] presented a systematic method of 

synthesizing all possible configurations of MVTs in terms of topological constraints, 

coordinate sequence of motion characteristics and the mobility criterion at each stage. 

 

Figure 1.8 A two-member key chain [28] 

 

Figure 1.9 A newly created two-member key chain according to expansibility of 

variable topologies [28] 

 

1.1.4 Kinematotropic Mechanisms 

 

The study of Kinematotropic Mechanisms (KMs) started in 1996 when Wohlhart 

investigated the kinematotropic linkage together with the position parameter variation 

[32]. The definition of KMs can be described as follows: “The chains in which changes 

(a) Key holding (b) Key rotatable (c) Key collectable 

(a) 

Ste

p 1 

(a) Step 1 (b) Step 2 (c) Step 3 

(d) Step 4 (e) Step 5 

(a) 

St
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in certain position variables can lead to changes in the permanent finite motilities of the 

chains”, this property is called “kinematotropy”. [32]  

     The design of KMs began with the considerations of two couples of links: a1 and b1, 

as well as a2 and b2, which are connected by Kinematic Constraints (KCs), KC1 and 

KC2, generating their Displacement Groups (DGs), DG1 and DG2, respectively. Links a1 

and a2, as well as b1 and b2 can be connected by kinematic pairs or chains to form a 

closed chain a1-KC1-b1-b2-KC2-a2-a1 as shown in Fig. 1.10. The in-parallel constraint 

between a1-a2 and b1-b2 can be obtained from the intersection of KC1 and KC2, 

generating the DG from the intersection of DG1 and DG2. The type and properties of the 

intersection DG depend on DG1 and DG2, there is a possibility that DG1 and DG2 may 

have more than one distinct intersection group. Therefore, by changing the connection 

types between links a1 and a2, b1 and b2, one can change the relationship between the 

two kinematic chains to obtain different intersections of DG which means that a 

mechanism can complete different operation modes according to the connection 

Kinematic Pairs (KPs).  

 

Figure 1.10 Structure schematic diagram of KMs 

 

     More generally, a KM can move in a branch of continuous positions and then change 

into another branch of continuous position by passing through a singular configuration 

of the mechanism, which are similar to Kong’s work on the single-loop mechanism with 

variable-DOFs [126]. Note that different numbers and different locations of drivers for a 

KM may be used in different branches. An example belonging to this type of KM has 

been presented at the Fifth International Symposium on Advanced in Robot Kinematics 

(Fig. 1.11); this can vary from two to three DOFs through a change of its configuration 

by driving its joints in a suitable sequence. This mechanism is composed of eight 

revolute joints with the following arrangement: the axes of revolute Joints A, B and C 

are parallel; the axes of revolute Joints D, E and F are parallel; the axes of revolute 

Joints G and H are coincident and perpendicular to the two pair of axes mentioned 

previously, as illustrated in Fig. 1.11(a). The mechanism can achieve a configuration as 

KPa 

KPb 

KC1 KC2 

a1 a2 

b1 b2 
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shown in Fig. 1.11(b) where the axes of A, B, C and D, E, F are parallel to each other. 

By rotating C and D, the axis of G can be changed to another orientation not coinciding 

with H (Fig. 1.11(c)). Then another branch of motion can be obtained. Note that the 

DOFs for the two branches of motion are two and three, respectively.  

 

Figure 1.11 Single-loop kinematotropic mechanism [33] 

 

     In [34], another definition for the KMs is presented, i.e., chains in different closures 

represent different numbers of DOFs. According to this definition, the number of DOFs 

of a KM can be predictably changed after disassembling and reconnecting. A more 

general definition may contain more chains: the DGs of at least one of their links or 

their invariant properties are changed in different branches even through the permanent 

mobility of the sub branches do not change [35]. 

     Traditional research into KMs was mainly to consider their theoretical aspects, with 

the synthesis and analysis of KMs implemented in [33, 35-37]. In [33], a systematic 

approach was proposed based on the theory of DGs to form single-loop KMs. Four 

basic single-loop kinematotropic chains can be obtained, one of which can have one or 

two DOFs while the other three can have two or three DOFs. This [33] also showed 

how chains could be modified to obtain various KMs. Starting from single-loop KMs, a 

method for the synthesis of single-loop KMs was extended to assemble multi-loop KMs. 

Reference [37] reported a method to construct multi-loop KMs with different numbers 

of DOFs, with several examples being presented.  

     A spatial single-loop KM was proposed [38] to be used for a biped/wheeled 

switchable robot with two modes. It is used as a biped robot within one of its branches, 

and the switch process between two modes realized in the other branch.   

1.1.5 Discontinuously Moveable Mechanisms 

In 2000, Lee and Herve [39-43] proposed the concept of Discontinuously Moveable 

Mechanisms (DMMs) where some properties of discontinuous mobility can be 
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considered as those of the generalised kinematotropy. Generally, the discontinuously 

movable configuration of single-loop spatial mechanism occurs as two or more 

independent manifolds or subgroups are involved in the same kinematic loop. In [40], 

three discontinuously moveable 6R mechanisms were provided including the famous 

Sarrus 6R mechanism, a hybrid 6R mechanism formed by the combination of one 

planar and one spherical 4R chain, and generalised Double-Hooke-joint mechanism. 

The discontinuously mobility of a mechanism was illustrated based on group theory and 

group algebraic structure of the displacement set. References [41, 42] presented several 

discontinuously movable seven-link mechanisms via the group-algebraic approach, such 

as hybrid planar-spherical 7R, hybrid spherical-spherical 7R, and hybrid planar-planar 

6R1P DMMs combined by planar and spherical 4R chains. Discontinuously movable 

8R mechanisms were also proposed in [43]. Overall, these DMMs are mostly referred to 

single-loop mechanisms.  

     No systematic method has been proposed for the type synthesis of DMMs. However, 

the development of these DMMs can inspire researchers to carry out an in-depth 

research on multi-mode reconfigurable mechanisms (MMRMs). 

 

1.1.6 Multi-Mode Reconfigurable Mechanisms 

 

A Multi-Mode Reconfigurable Mechanism (MMRM) can generate different motion 

patterns and switch to a different mode without disassembly or reconnection by just 

passing through a transition configuration. As mentioned above, the reconfigurable 

mechanism first used in 1978 is one such mechanism. However, it was not until 2001 

that the second MMRM was proposed (Fig. 1.12) in [44, 45], a 3-URU double-Y multi-

operation parallel mechanism.  

 

Figure 1.12 Prototype of the 3-URU double -Y multi-operation parallel mechanism [44] 
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                              (a) Translation mode                (b) Orientation mode 

              

                             (c) Planar mode                            (d) Mixed mode 

 

(e) Lock-up mode 

Figure 1.13 Different operation modes for the 3-URU double-Y mechanism [45] 

 

      In [45], it is shown that a parallel mechanism with three legs of five R joints could 

generate a translation mode. In Fig. 1.13(a), the base and the platform have the same 

orientation and the five R joints in each leg are linearly independent. Then the 

constraints imposed by each leg on the platform are perpendicular to all five of the R 

joints. Apart from the platform centre being right above the base centre or the platform 

being lower than the base, this kind of configuration was originally designed as a 

positioning mechanism with translation mode. Translation mechanisms of this type 

(with two U-joints in each leg) were proposed by Tsai [46] and studied by Di Gregorio 

and Parenti-Castelli [47]. A parallel wrist with three UPU legs was proposed by Karouia 



12 

and Herve [48] with a geometry condition that the base R joints intersect at a common 

point as do the platform R joints. This condition is also satisfied by the double-Y 

parallel mechanism which turns out to have a rotational mode, as shown in Fig. 1.13(b). 

When the platform is lowered into the base, all the axes of the R joints in the middle are 

vertical, i.e., all legs lie in the base (Fig. 1.13(c)). Therefore, the parallel mechanism is 

recognised to be a 3-RRR planar parallel manipulator. In Fig. 1.13(d), the mechanism 

enters a new mode of operation where the platform is neither parallel to the base nor 

with a fixed point. This produces a fourth type of operation mode with three mixed 

DOFs which is different from the translation, orientation and planar modes. There is 

still a case in which the base and platform centres coincide: the platform orientation is 

either zero (Fig. 1.13(e)) or with a turn of 180 degrees and is horizontal and face up, 

when all the legs can spin independently without the platform moving. This is viewed as 

a lock-up mode. The operation modes can be observed from the website: 

http://www.parallemic.org/Reviews/Review008.html. 

   The 3-URU double-Y parallel manipulator allows five fundamentally different types 

of motion including translational, rotational, mixed, planar, and zero motion modes. The 

transition between any two modes is possible without disassembly, just needing to 

encounter a configuration singularity. Consider a case in which both a 3-DOF 

translational motion and a 3-DOF spherical motion are needed, in order to meet the 

motion requirements, the following mechanisms can be chosen: (a) a 6-DOF parallel 

manipulator which can generate translational motion and spherical motion, (b) a 3-DOF 

translational parallel mechanism generating the translational motion and a 3-DOF 

spherical parallel mechanism generating the spherical motion and (c) the 3-URU 

double-Y parallel mechanism or any other parallel mechanism generating both the 

translational and spherical motion patterns. Choice (c) is obviously better than the other 

two options. 

Kong [132] also presented a parallel mechanism with 15 operation modes including 

four translational modes, six planar modes, four zero-torsion-rate motion modes and one 

spherical mode.   

    MMRMs are also called Parallel Mechanisms with Multi-Furcation of Motions [49-

53] or Parallel Mechanisms that Change their Group of Motions [54]. They can generate 

multiple operation modes to adapt to variable tasks and environment which need fewer 

actuators and less time to changeover. Therefore, in the last decade, the MMRMs have 

attracted significant research interest on the design, synthesis and kinematics analysis.  

http://www.parallemic.org/Reviews/Review008.html
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Generally speaking, MMRMs can be classified into two categories: single-loop multi-

mode reconfigurable mechanisms and multi-loop multi-mode reconfigurable 

mechanisms. 

 

1) Single-Loop Multi-Mode Reconfigurable Mechanisms 

    A single-loop multi-mode reconfigurable mechanism (SLMMRM) is a single-loop 

mechanism which works as a different single-loop mechanism in each one of its 

operation modes. It can be regarded as both an extension and development of DMMs, 

by involving two or more operation modes in one single-loop mechanism. There are 

limited DMMs being built based on the idea of combing two-less-joint overconstrained 

mechanisms, but more SLMMRMs are being proposed. 18 classes of single-loop single-

DOF reconfigurable mechanisms with two operation modes have been presented using 

Kong’s intuitive method [55] based on screw theory including two classes proposed as 

DMMs and 16 totally new classes.  

   

(a) Two Bennett mechanisms                     (b) Transition configuration

 

(c) Bennett I mode                 (d) Bennett II mode    

Figure 1.14 A 7R SLMMRM with at least two 4R Bennett modes [55] 

 

    Figure 1.14 shows a 7R multi-mode single-loop mechanism with at least two 

operation modes which was constructed based on two Bennett linkages with one 

common revolute joint. In one operation mode it acts as the Bennett linkage I (Fig. 

1.14(c)), and in the other mode it works as the Bennett linkage II (Fig. 1.14(d)). Figure 
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1.14(b) displays the transition configuration where the 7R SLMMRM transits from one 

mode to the other mode. It has been revealed in [110,127] that the mechanism also has a 

7R mode. 

In [126], variable-DOF single-loop 7R and 8R reconfigurable mechanisms are 

proposed by inserting two joints to planar 5R and 6R mechanisms respectively. Take 

the variable-DOF single-loop 7R reconfigurable mechanism as an example, two R joints 

(A and B) are located on a plane that is parallel to the axes of R joints of the planar 5R 

mechanism as shown in Fig. 1.15. The new 7R mechanism has two operation modes: in 

one mode it acts as a two-DOF planar 5R mechanism where the two added joints are 

inactive; while in the other mode it acts as a single-DOF spatial single-loop 7R 

mechanism. 

 

 

Figure 1.15 A multi-mode 7R mechanism with 1 and 2 DOFs [126] 

 

(a) Planar 5R mechanism 
(b) Multi-mode 7R mechanism 

at transition configuration 

(c) Multi-mode 7R mechanism 

in planar 5R mode 

(d) Multi-mode 7R mechanism 

in spatial 7R mode 
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Through detailed understanding of the above SLMMRMs, a more in-depth study of 

multiple modes multiple-loop reconfigurable mechanisms is possible.    

   

2) Multi-mode Multiple-Loop Reconfigurable Mechanisms 

A multi-loop multi-mode reconfigurable mechanism (MLMMRM) is a multi-mode 

mechanism with more than two legs (multi-loop) which works as a different mechanism 

in each of its operation modes.  Kong has proposed a systematic method for the type 

synthesis of MLMMRMs based on screw theory [56]; according to the definition, a 

MLMMRM is a parallel mechanism that can generate different motion patterns with 

multi-DOFs. There are several motion patterns having the same number of DOFs. For 

instance, planar motion, spatial translation and spherical motion are the motion patterns 

with 3-DOFs. Being aware of this point, many MLMMRMs with the same number of 

DOFs in different operation modes have been proposed. Three steps can be used to 

obtain a MLMMRM. Firstly, for each of the motion patterns to be generated, one can 

perform the type synthesis of legs of the parallel mechanism with a single operation 

mode. Secondly, synthesis of legs for parallel mechanisms with other operation modes 

at its transition configuration is performed. Finally, MLMMRMs can be obtained by 

assembling the legs for parallel mechanisms with multiple operation modes. In [57], 

type synthesis of 3-DOF parallel mechanisms with both a planar operation mode and a 

spatial translational operation mode were completed. Type synthesis of variable DOF 

parallel mechanisms with both planar and 3T1R operation modes were undertaken in 

[58].  

 

1.1.7 Remarks 

 

By analysis and comparison of the above reconfigurable mechanisms, it can be found 

that common basic concepts exist but with certain differences. The MMs and MVTs 

both focus on variable mechanism topologies or the variable kinematic joints topologies. 

The common properties of KMs, DMMs and MMRMs are mechanisms that can change 

their motion patterns through singular/transition configurations. However, KMs, DMMs 

and MMRMs have specific distinctions as follows: (a) KMs derived from the theory of 

DGs and MMRMs are mainly obtained through screw theory. There is a lack of 

systematic type synthesis method for DMMs that can be considered as KMs or 

SLMMRMs. (b) There is a wider research scope for KMs according to their definitions, 

and most of those are mechanisms with changeable numbers of DOFs in different 
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modes; while MMRMs may have the same or different number of DOFs in different 

operation modes. The novel research into MMRMs contained in this thesis concentrates 

on SLMMRMs with the same number of DOFs in different modes.   

    In addition, there are more obvious advantages for the application of MMRMs apart 

from the avoidance of disassembly and reconnecting, which are emphasized as follows: 

a) There is no need to add more actuators or change the location of actuators for 

MMRMs, which is more energy efficient. 

    b) MMRMs can satisfy the requirements of specific functions, which is design 

effective. For example, if a 4R motion pattern and a 6R motion pattern are both needed 

in the same work environment; then it will be possible to determine quickly how to 

combine these two kinds of mechanisms in a proper way in order to develop a single-

loop reconfigurable mechanism for the task requirement. 

 

1.2 Review of Single-Loop Overconstrained Mechanisms 

 

Planar mechanisms and spatial Single-Loop Overconstrained Mechanisms (SLOMs) are 

closely related to the synthesis of parallel mechanisms. In [3] the synthesis of parallel 

mechanisms is reduced to the synthesis of multi-DOF single-loop mechanisms by 

quoting the concept of a virtual chain to represent the motion patterns. The synthesis of 

single-loop reconfigurable mechanisms in paper [55] is based on the combination of 

planar mechanisms and spatial SLOMs. This thesis focuses on the design and analysis 

of SLMMRMs. Therefore SLOMs are initially reviewed in this section. 

A spatial overconstrained mechanism is a linkage that has more DOFs than is 

predicted by the DOF mobility formula, Kutzbach (or Grübler) mobility criterion [59]. 

If a single-loop mechanism moves in a three-dimensional space, then the mobility 

formula is 

1

6 ( 1 )
j

i

i

M N j f


                                                   (1.1) 

where N is the number of links of the mechanism, j is the number of the joints and fi is 

the DOF of the i-th  joint. 

     A general spatial 6J (J: joint, note that in this thesis only R and P joints are 

considered) mechanism composed of six links and six joints has the mobility: 

1

6 ( 1 ) 6 (6 1 6) 6 0
j

i

i

M N j f


                                           (1.2) 

     The mobility of 5J single-loop mechanisms according to the mobility formula is 

http://en.wikipedia.org/wiki/Chebychev%E2%80%93Gr%C3%BCbler%E2%80%93Kutzbach_criterion
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1

6 ( 1 ) 6 (5 1 5) 5 1
j

i

i

M N j f


                                            (1.3) 

     The mobility of 4J single-loop mechanisms according to the mobility formula is 

1

6 ( 1 ) 6 (4 1 4) 4 2
j

i

i

M N j f


                                      (1.4) 

     Therefore, it can be found that the mobile spatial 4J, 5J and 6J single-loop 

mechanisms are all SLOMs according to Eq. (1.2-1.4). Great advances in the research 

on spatial SLOMs have been made [60-96]. These mechanisms are now surveyed and 

compared in the following sections. 

 

1.2.1 Planar 4J Mechanisms and Spatial 4J SLOMs  

 

Four-Joint (4J) linkages are composed of four links connected by four one DOF joints 

forming a loop. The joint may be either a revolute (R) joint, or a Prismatic (P) joint. 4J 

closed-loop linkages are the simplest moveable linkages, which can be classified into 

planar 4J, spatial 4J and spherical 4R linkages. There are three basic types of planar 4J 

linkages depending on the number of R or P joints: planar 4R, planar RRRP and planar 

PRRP [60] linkages. Most spatial 4J linkage has been identified by Delassus [61]: 

spatial 4P, spatial RPRP and Bennett linkages (that is spatial 4R linkage).  

 

1) Planar 3R1P mechanism 

   The planar 3R1P linkage is also called a slider-crank linkage and constructed from 

four links connected by three revolute and one prismatic joint (Fig.1.16). 

 

Figure 1.16 Sketch for spherical 3R1P linkage [63] 

 

2) Planar PRRP mechanism 

    The planar PRRP mechanism is also called a double slider linkage [64] and is 

constructed by connecting two sliders with a coupler link, as shown in Fig. 1.17. 

http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
http://en.wikipedia.org/wiki/Prismatic_joint
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Figure 1.17 Sketch for spherical PRRP linkage [64] 

 

3) Planar 4R mechanisms 

A planar 4R mechanism is also called the planar quadrilateral linkage.  There are 27 

cases of planar 4R linkages according to their parameter combinations, examples of 

some cases are shown in the Fig. 1.18 below:  

 

 

Figure 1.18 Types of four-bar linkages [62] 

 

4) RPRP linkage 

    Generally, the RPRP linkage (Fig. 1.19) can only move in one situation: where the 

axes of the two R joints are parallel and the two P joints are symmetrical about the plane 
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through the two R axes [67]. Also there are two types of RPRP linkage: foldable and 

unfolded, which can be differentiated from the twist angles. The conditions for these 

linkages are shown below: 

1 4a a , 2 3a a  

1 3 0d d  , 2 4                                                (1.5) 

1 2  , 1 3 2 4         

 

Figure 1.19 General arrangement of RPRP linkage [67] 

 

5) Spherical 4R mechanisms 

    If the linkage is assembled with the four joint axes angled to intersect at a single point 

and the links move on concentric spheres, then the assembly is called a spherical 4R 

linkage as shown in Fig. 1.20.  In [68], a spherical 4R linkage is described as a 

combination of two spherical RR dyads: a driving dyad and a driven dyad. The driving 

dyad is composed of the fixed joint axis O and the moving axis A, whereas the driven 

dyad is constituted by the fixed joint axis C and the moving axis B.  The link lengths of 

the mechanism are α, β, η and γ, respectively.  
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Figure 1.20 Sketch for spherical 4R linkage [68] 

 

6) Bennett Mechanisms 

    The Bennett linkage is an overconstrained spatial four-bar linkage with joints that 

have their axes angled in such a particular way that it makes the system movable. The 

Bennett linkage was first proposed in 1903 [65], and in 1914 [66] Bennett issued the 

conditions for it as a single-loop moveable linkage to have one-DOF mobility: 

    a) All the offsets are equal to zero, i.e.  

0,  ( 1,2,3,4)id i                                               (1.6) 

    b) Kinematic constraints of the remaining design parameters should satisfy the 

conditions below: 

1 3a a , 2 4a a  

1 3  , 2 4                                                   (1.7) 

1 2

1 2

sin sin

a a

 
  

    c) Besides the above conditions, there are some other implicit relationships that 

comply with a Bennett linkage, that are always 

1 3 2     

2 4 2                                                         (1.8) 

as well as                                                 

2 1
1 2

2 1

1
sin ( )

2tan tan
12 2

sin ( )
2

 
 

 







                                      (1.9) 

where θ1, θ 2, θ 3, θ 4 are the angles between the links, as shown in Fig.1.21. 
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Figure 1.21 Sketch for Bennett linkage 

 

     It is one of the most famous SLOMs and a spatial 4J overconstrained mechanism 

with pure R joints, therefore, it has attracted significant attention from researchers to 

undertake its analysis and extension. It also forms the foundation to construct most 5J 

and 6J SLOMs. 

 

1.2.2 5J SLOMs  

 

Most spatial 5J SLOMs are well-known as 5R SLOMs, and are almost always 

constructed based on 4R Bennett mechanisms such as the Goldberg 5R linkage and 

Myard 5R linkage.  

 

1) Myard linkage 

    The Myard linkage was found to be the first reported 5R SLOMs and was proposed 

in 1931 [69, 70]. Two Bennett linkages with one pair of twist angle of 90 degrees were 

arranged symmetrically before combining them; therefore the Myard linkage is plane-

symmetric as shown in Fig. 1.22. It was re-examined by Baker in 1979 who classified it 

as a special kind of Goldberg linkage. The design parameters for the Myard linkages are  

1 5a a , 2 4a a , 3 0a    

2 4 / 2    , 5 1    , 3 12                           (1.10) 

3 4 0d d   
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Figure 1.22 Sketch of Myard linkage 

 

2) Extended Myard linkage 

   Chen [71] reported a new 5R linkage according to a method similar to that used to 

construct a Myard linkage, which is called the extended Myard linkage. This is different 

from the Myard linkage that the twist angle of the base Bennett linkages does not have 

to be π/2. Fig. 1.23 illustrates merging two Bennett linkages together. The parameters 

conditions for the extended Myard linkage are as follows: 

1 5a a , 2 4a a , 3 0a   

2 4  , 5 1    , 3 5 1                                   (1.11) 

0 ( 1,2,...,5)id i   

and                                                           

5 2

5 2

sin sin

a a

 
                                                 (1.12) 
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Figure 1.23 The extended Myard linkage by combining two Bennett linkages 

 

3) Goldberg linkage 

    In 1934 Goldberg proposed another 5R SLOMs also based on Bennett linkages [72]. 

Two kinds of Goldberg linkages were derived as shown in Fig. 1.24. The primary one is 

constructed from combining two Bennett linkages with a same pair of revolute joints 

connected by a same length link. The common components are placed coincident with 

one pair of adjacent links of two Bennett linkages on a straight line. Then the common 

link and the pair of joints on the straight line can be removed while the other pair of 

joints are reduced to one single joint (Fig. 1.24 (a)). This method is called “summation”. 

Thereafter, Goldberg proposed another syncopated 5R linkage based on the summed 5R 

linkage (Fig. 1.24 (b)), a circumscribing Bennett is joined to the summed 5R linkage 

which is partly removed to form a new syncopated 5R linkage.  
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  Figure 1.24 Goldberg 5R linkage  

 

4) Subtractive Goldberg linkage 

    An extension of the Goldberg linkage was then proposed using the method called 

“subtraction” as shown in Fig. 1.25. This is called the subtractive Goldberg linkage [73].   
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  Figure 1.25 Subtractive Goldberg 5R linkage  

 

1.2.3 Common 6J SLOMs 

 

A great number of 6J SLOMs have been developed by various researchers, such as 6R, 

5R1P and 4R2P SLOMs. The first section will list some examples of 5R1P and 4R2P 

SLOMs with their associated design parameters [74], followed by a description of the 

most well-known 6R SLOMs. 

 

1) 5R1P SLOMs 

     a) 5R1P based on planar and Bennett mechanisms: 

5 6

2 4 5 6

1 5 4 3 6 2

90 ,  

,  - ,  0,  0

a a

d d d d d

    





    

   

                                  (1.13) 

     b) 5R1P based on planar and Bennett mechanisms: 

1 6a a  

2 4 90    , 5 6 0                                          (1.14) 

1 5d d , 4 3d d  , 6 0d  , 2 0   

      c) 5R1P based on planar and Bennett mechanisms: 

2 1 4 5 6 3

2

,  0,  

0

     



     


                                    (1.15) 

      d) 5R1P based on spherical mechanisms and equal length links: 
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1 2 5 6 3 4

1 2 3 4 5 6

,  ,  0

0

a a a a a a

d d d d d d

   

     
                                      (1.16)    

 

2) 4R2P SLOMs 

      a) 4R2P based on two pairs of parallel revolute joints: 

2 1 5 4 6 3

2 5

,  ,  

0

     

 

     

 
                                        (1.17) 

      b) 4R2P based on two pairs of parallel revolute joints: 

1 3 5 4 6 2

5

0,  ,  

0

     



     


                                      (1.18) 

                                                  

3) 6R SLOMs 

    Most 6J SLOMs are 6R linkages. The first overconstrained mechanism was proposed 

by Sarrus in 1853 [75, 76], which is a 6R SLOM. In 1927, Bricard linkages, a type of 

6R mechanisms proposed in 1897, began to be well recognised [77]. In addition, since 

the birth of Bennett linkage in 1903 a great number of 6R linkages were developed by 

different researchers using a combination construction method on it. In 1968, Waldron 

proposed a method to construct Waldron’s hybrid 6R linkages [78]. Besides, Wohlhart 

not only generalized the Goldberg 5R linkages, he also designed Wohlhart Double-

Goldberg linkages based on this [79, 80]. More recently, Baker [81] and Chen [82] 

reported new classes of 6R linkages, and Song and Chen reported a family of mixed 

Double-Goldberg 6R linkages [83]. More information on overconstrained 6R linkages 

can be reviewed. 

     To better understand overconstrained 6R linkages, they can be classified into four 

categories: (a) symmetric 6R SLOMs; (b) 6R SLOMs based on Bennett linkages; (c) 6R 

SLOMs derived or combined by other overconstrained mechanisms; (d) 6R SLOMs 

with special geometry. Examples of these categories are listed below. 

    a) Symmetric 6R SLOMs 

    i) Sarrus linkage 

    The Sarrus linkage is the first reported spatial SLOM as shown in Fig. 1.26. In the 

mechanism, the base and platform can be mounted by two legs connected by parallel 

revolute joints R1-R2-R3 and R4-R5-R6 while the direction of two set axes intersected, 

which allows the platform to move up and down vertically. The two legs can be also 

arranged to be asymmetric. 
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Figure 1.26 Sarrus linkage  

     ii) Bricard linkages 

    There are six distinct types of Bricard linkages [84] which can be summarized as 

follows: 

    (1) General line-symmetric Bricard linkage 

    The joints and links of the Bricard linkage are symmetrical about the centre line, the 

so called general line-symmetric Bricard linkage as shown in Fig. 1.27. Its parameters 

are listed below: 

1 4a a , 2 5a a , 3 6a a  

1 4  , 2 5  , 3 6                                          (1.19) 

1 4d d , 2 5d d , 3 6d d  

 

 

Figure 1.27 Schematic diagram of line-symmetric Bricard linkage 

     

 

(a)  Sarrus Linkage [71] (b)  Schematic diagram 
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(2) General planar-symmetric Bricard linkage 

    The general plane-symmetric Bricard linkage is shown in Fig. 1.28 where the 

structure of it is symmetrical about the plane. The parameters are listed below: 

1 6a a , 2 5a a , 3 4a a  

1 4 2    , 2 5 2    , 3 6 2                             (1.20) 

1 4 0d d  , 2 6d d  , 3 5d d   

 

Figure 1.28 Schematic diagram of planar-symmetric Bricard linkage 

 

    (3) The trihedral Bricard linkage 

    A trihedral Bricard linkage’s joints are placed on the corners of a cube as shown in 

Fig. 1.29, its parameters satisfy: 

2 2 2 2 2 2

1 3 5 2 4 6a a a a a a       

1 3 5 / 2      , 2 4 6 3 / 2                                 (1.21) 

 0id  , (1,2,...,6)i   

 

Figure 1.29 Schematic diagram of planar-symmetric Bricard linkage 
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    (4) The line-symmetric octahedral Bricard linkage 

    The parameters for the line-symmetric octahedral Bricard linkage are: 

1 2 3 4 5 6

1 4 2 5 3 6

0

0

a a a a a a

d d d d d d

     

     
                                   (1.22) 

    (5) The Planar-symmetric octahedral Bricard linkage: 

    The line-symmetric octahedral Bricard linkage has the parameters: 

1 2 3 4 5 6 0a a a a a a       

1 4d d  , 3
2 1

1 3

sin( )

sin( )
d d



 
 


, 6

5 1

4 6

sin( )

sin( )
d d



 



                (1.23) 

1
3 1

1 3

sin( )

sin( )
d d



 



, 6

6 1

4 6

sin( )

sin( )
d d



 
 


 

    (6) The doubly collapsible octahedral Bricard linkage 

    The parameters for the line-symmetric octahedral Bricard linkage are listed as below: 

1 2 3 4 5 6

1 3 5 2 4 6

0

0

a a a a a a

d d d d d d

     

 
                                   (1.24) 

    In addition to the 6R Bricard linkages listed above, Wohlhart’s isomerization method 

was used to construct three variants of Bricard line-symmetric 6R linkage [85], which 

have special geometry conditions where a pair of adjacent links have the same Bennett 

ratio.  

    iii) Altman linkage 

In 1954, Altman [86] reported a 6R linkage, and the structure sketch is shown in Fig. 

1.30. In this mechanism, the axes of R2, R3, R5 and R6 are in the same plane and 

intersect, R2 is perpendicular to R3 and R5 is perpendicular to R6; the axes of R1 and R4 

are parallel and their parallel axes are perpendicular to the intersecting axes. That means 

the mechanism is symmetrical about the centre line and is in fact a special case of the 

line-symmetric Bricard linkage. 

 

Figure 1.30 Schematic diagram of Altman linkage 
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    b) 6R SLOMs based on Bennett linkages:  

    Many 6R SLOMs have been constructed by combining or merging two or more 

Bennett linkages including Goldberg 6R linkages, Double-Goldberg 6R linkages [79, 83, 

87], the 6R linkage based on extended Myard linkage [71], the 6R linkage derived from 

two subtracted Goldberg linkages [83] and so on. Also, Baker conducted a comparative 

survey of the Bennett linkage based 6R kinematic loops in [88]. An introduction of 

these mechanisms is shown as follows:  

    i) Goldberg 6R linkages 

    Similar to the Goldberg 5R linkage, four kinds of Goldberg 6R linkage have been 

produced by combining three or more Bennett linkages [82] in distinct arrangements. 

Figure 1.31 schematically illustrates how they are constructed. In Fig. 1.31(a), the three 

Bennett linkages are arranged in series, two of them have common links which are 

ignored to form a primary Goldberg 6R linkage. The second Goldberg 6R linkage (Fig. 

1.31(b)) is the subtraction of the Goldberg 6R linkage (a) with another Bennett linkage 

and is called a syncopated linkage. Fig. 1.31(c) shows the Goldberg 6R linkage that is 

built from L-shape arranged Bennett linkages. The fourth Goldberg 6R linkage (Fig. 

1.31(d)) is the subtraction of the Goldberg 6R linkage (c) with another Bennett linkage. 

 

Figure 1.31 Schematic diagram of Goldberg 6R linkage [82] (continued on next page) 

 

(a) (b) 
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Figure 1.31 Schematic diagram of Goldberg 6R linkage [82] 

 

    ii) 6R linkage based on extended Myard linkage  

    With an extended Myard linkage having been proposed, a new 6R linkage formed by 

combining two of those was also developed by Chen [71] using a similar method to 

Wholhart’s building Double-Goldberg 6R linkages. This is called a Double-Extended-

Myard linkage and is illustrated in Fig. 1.32. 

 

Figure 1.32 6R linkage based on extended Myard linkage 
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    iii) Double-Goldberg 6R linkage  

    (1) Wohlhart Double-Goldberg linkage 

    Wohlhart generalized the method for Goldberg 5R linkages; furthermore, in 1991 he 

developed a new 6R linkage through the combination of two Goldberg 5R linkages [79]. 

The two Goldberg 5R linkages are arranged in a “face-to-face” configuration, removing 

the common links and joints to form a Double-Goldberg 6R moveable linkage as shown 

in Fig. 1.33(a). This Double-Goldberg 6R linkage was further combined with another 

Bennett linkage [80] using the technique called “isomerization” by removing the 

common links and joints to form another 6R linkage (Fig. 1.33(b)).  

 

 

Figure 1.33 Double-Goldberg 6R linkage 

 

    (2) Double-Goldberg 6R linkage by Chen and You 

    Chen and You (2007) also produced a Double-Goldberg 6R linkage through the 

combination of two Goldberg 5R linkages in a “back-to-back” configuration [87]. The 

(a) Double-Goldberg linkage 

(b) Double-Goldberg linkage-isomerization method 
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6R linkage can also be combined with a Bennett linkage to form a line-symmetric 6R 

linkage which actually forms a special case of the line-symmetric Bricard linkage. 

    (3) Spatial 6R linkage constructed by two subtractive Goldberg linkage 

    A spatial 6R linkage was constructed by two subtractive Goldberg linkages using a 

subtraction method [73]. 

    (4) Mixed Double-Goldberg 6R linkage 

    A family of mixed Double-Goldberg 6R linkages have also been presented in [83]. 

Six possibly compositional 5R Goldberg linkages including three general ones and three 

subtractive ones are combined further using the common link-pair method and common 

Bennett-linkage method, leading to six kinds of mixed Double-Goldberg linkages as 

illustrated in Fig. 1.34. The method showed in Fig. 1.34(a) is called a common link-pair 

method. If a common pairs and non-common pairs from two Goldberg 5R linkages are 

constructed into a Bennett linkage then a new 6R linkage can be obtained by removing 

this Bennett linkage as shown in Fig.1.34 (b); this method is called a common Bennett-

linkage method [73].  

 

Figure 1.34 Construction of mixed Double-Goldberg 6R linkage (continued on next 

page) 
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Figure 1.34 Construction of mixed Double-Goldberg 6R linkage 

 

    c) 6R SLOMs derived or combined by other overconstrained mechanisms 

    i) Double-Hooke’s-joint linkage 

A Double-Hooke’s-joint linkage [89] is obtained by two spherical 4R linkages with 

one axis of each coinciding as shown in Fig. 1.35. Joints 1, 2, and 3 belong to one 

spherical 4R linkage and joints 4, 5, and 6 belong to another. The axis of R2 is 

perpendicular to R1 and R3, and the axis of R4 is perpendicular to R5 and R6. The 

common axis is perpendicular to R1 and R6, and links 3 and 5 are connected. The angles 

between R5 and R6 are equal to the angle between R1 and R3 during the operation mode.  

 

 

Figure 1.35 Double-Hooke’s-joint 6R linkage 
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    ii) Bennett 6R hybrid linkage  

    Bennett proposed the 6R hybrid linkage in 1905 [90], comprising two spherical 4R 

linkages as a Double-Hooke’s-joint linkage. Actually, the Double-Hooke’s-joint linkage 

is a special case of Bennett 6R hybrid linkages. The two spherical 4R linkages are 

placed such that the insertion points of the revolute joint axes are not at a same point. 

They have a common revolute joint and are constructed by removing the common joint 

and reconnecting the adjacent joint as illustrated in Fig. 1.36. In this mechanism, Link 1, 

relative to Link 2, has a pure rotation about the common axis. 

 

Figure 1.36 Bennett 6R hybrid linkage 

 

    iii) Waldron’s hybrid linkages 

The concept of Waldron’s hybrid linkage is that any two single-loop linkages with a 

single-DOF can be arranged such that they have a common joint, removing the common 

joint and reconnecting the two linkages leading to a new linkage which would certainly 

retain mobility [78], such as illustrated in Fig. 1.37: a 6R linkages which is originally 

from two Bennett linkages.  

 

 

Figure 1.37 Waldron’s hybird linkage from two Bennett linkages [82] 
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    d) 6R SLOMs with special geometry 

    i) Schatz linkage 

Schatz linkage is a linkage with special geometry which was developed by Schatz [91] 

from a special trihedral Bricard linkage. By arranging the trihedral Bricard linkage at a 

configuration where all the twist angles are π/2 and changing the placement of joints R1 

and R6 in order to make the two axes parallel, then the axes of R1 and R2 as well as R5 

and R6 intersect as illustrated in Fig. 1.38.  

 

 

Figure 1.38 Schatz linkage 

 

    ii) Wohlhart 6R linkage 

Apart from the Glodberg related linkages, Wohlhart derived a new 6R linkage with 

special geometry in which all the axes of six revolute joints intersected at a line [92] as 

shown in Fig. 1.39. It is easy to state that the linkage is combined by two half-plane-

symmetric Bricard linkages or it can be seen as a generalised trihedral Bricard linkage. 

The linkage should satisfy the conditions below: 

1 2a a , 3 4a a , 5 6a a  

1 22    , 3 42    , 5 62                              (1.25) 

6 2 4d d d   , 1 3 5 0d d d    
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Figure 1.39 Wohlhart 6R Hybrid linkage 

 

    iii) Dietmaier 6R linkage: 

    In 1995, with the help of numerical method, Dietmaier developed a new family of 6R 

linkages with special geometry [93]. The Bennett-joint linkage can be seen as a special 

case. The conditions for the type of linkages should satisfy those listed below. Baker 

also tried to find the variants of Dietmaier’s 6R linkage using the isomerization method 

[94]. 

1 4a a  

1 4   

1 3d d , 4 6d d , 2 5 0d d                                         (1.26) 

3 2

3 2

sin( ) sin( )

a a

 
 , 6 5

6 5

sin( ) sin( )

a a

 
  

2 2 3 5 5 6

2 6

(cos cos ) (cos cos )

sin( ) sin( )a a

      
  

    iv) Bennett-joint 6R linkages 

    The Bennett-joint 6R linkage is a by-product in Mavroidis and Roth’ research [95] to 

develop a method to systematically deal with overconstrained mechanisms. The 

definition of a Bennett-joint is that three adjacent revolute joints whose D-H parameters 

satisfy the following relationship that is the same as a Bennett linkage: 

0, (1,2,3)id i                                                   (1.27) 

and                                                             

1

1

sin( ) sin( )i i

i ia a

  



                                               (1.28) 
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A Bennett-joint 6R linkage contains at least one Bennett-joint. Figure 1.40 shows a 

Bennett-joint 6R linkage with two Bennett-joint. Its parameters satisfy the following 

conditions: 

1 5 2 4 3 6

1 5 2 4 3 6

2 5 6 3 1 4

, ,

, ,

0, ,

sin( )
 ( 1,2,...6)i

B

i

a a a a a a

d d d d d d

k i
a

     



  

  

   

 

                                      (1.29) 

 

 

Figure 1.40 Bennett joints linkage 

 

    iv) 6R spatial linkages for circular translation 

A group of 6R spatial mechanisms for circular translation are presented in paper [96]. 

Kong extended his function-targeted research point of view to help develop the SLOMs. 

Six special kinds of 6R spatial mechanisms for circular translation can be derived by 

imposing certain conditions on four kinds of hybrid 6R linkages and Bricard line and 

plane symmetrical linkages. These 6R linkages may have a planar 3R sub chain or two 

pairs of adjacent two R joints with their axes parallel and one pair of nonadjacent R 

joints with parallel axes [136]. Then six general cases of 6R spatial mechanisms for 

circular translation can be obtained by combining planar parallelograms with the special 

cases, as shown in Fig. 1.41. In addition, 4R2H, 2R4H and 6H linkages are obtained by 

replacing 6R spatial Mechanisms for Circular Translation or more pairs of R joints with 

parallel axes. 
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Figure 1.41 6R spatial linkages with circular translation [96] 

 

 

(a) Special 6R spatial mechanisms for circular translation 

(b) Combining special 6R spatial mechanisms for circular 

translation with a plane parallelogram 

(c) General 6R spatial mechanisms for circular translation 
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1.2.4 Summary 

 

This section has reviewed these most well-known SLOMs which produce a significant 

foundation for the subsequent work in the following chapters for conducting the 

synthesis and analysis of SLMMRMs. 

 

1.3 Objectives and Layout of the Thesis 

 

In the previous sections, a comprehensive and comparative investigation of 

reconfigurable mechanisms has been implemented informing that MMRMs have 

apparent advantages over others. Meanwhile, the review of the most existing SLOMs 

has formed an important foundation for the further design of MMRMs.  Even though a 

great deal of research works on MMRMs has been previously undertaken in the past 

two decades, researchers are still inspired to continuously develop a new generation of 

MMRMs. It is still an open issue to present novel MMRMs based on the investigation 

of SLOMs using creative type synthesis methods, and to complete the associated 

kinematic analysis using effective mathematical tools.  

 

    This thesis concentrates on and is devoted to the synthesis and analysis of 

SLMMRMs with the specific research objectives listed as follows:   

    1) Systematically analyse the constraint equations for typical compositional serial 

chains for parallel mechanisms.  

    2) Complete the type synthesis method for SLMMRMs and develop new novel 

SLMMRMs.    

3) Implement the kinematic analysis of SLMMRMs employing effective algebraic 

geometry method.   

 

The remainder of this thesis is organised as follows: 

The basic mathematic tools will be recalled and effective algebraic geometry methods 

will be summarized firstly in Chapter 2.  

In Chapter 3, the constraint equations for serial chains which constitute MMRMs as 

compositional units will be systematically analysed and selected.  

Chapter 4 will present new type synthesis methods for 7R single-loop reconfigurable 

mechanisms with three or more operation modes.  
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Then in Chapters 5 and 6, 7R single-loop reconfigurable mechanisms with three or 

more operation modes obtained using these methods can be built and validated with the 

aid of CAD software and 3D printed prototypes. The kinematic analysis of these 7R 

single-loop reconfigurable mechanisms with three or more operation modes will then be 

completed applying effective algebraic geometry methods based on kinematic mapping 

theory.  

Finally in Chapter 7, some conclusions and future works will be provided.  
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 Chapter 2 – Theoretical Tools 

 

With the development of mathematical tools, even more complex forward and inverse 

kinematic problems of mechanisms can be solved. Many effective methods and 

algorithms have been developed based on advanced algebraic geometry which are 

capable of dealing with more complicated kinematic problems. In this chapter, several 

theoretical tools to be used in the thesis including the main method for dealing with the 

forward kinematics of multi-modes reconfigurable mechanisms are reviewed.  

 

2.1 Mathematical Basis 

 

2.1.1 Tangent Half-Angle Formula 

 

Dealing with constraint equations is an important step in the process of the kinematic 

analysis of a mechanism. Since there are angle parameters for a mechanism, there are 

always trigonometric functions within the constraint equations. It is thus extremely 

difficult to solve these with trigonometry. It is essential to simplify these constraint 

equations by introducing the tangent half of angles [97] so that these can be converted 

into the form of polynomials.  

    One of the trigonometric identities is   

2 2sin cos 1                                                 (2.1) 

    For an arbitrary angle φ, we have 

2

2 tan( / 2)
sin

1 tan( / 2)










,  

2

2

1 tan( / 2)
cos

1 tan( / 2)










    ( (2 1) , )k k                (2.2) 

    Representing the tangent half angle ( tan( / 2) ) by a new variable p yields  

tan( / 2)p                                                         (2.3) 

    Equation (2.2) can be re-written as  

2

2
sin

1

p

p






, 

2

2

1
cos

1

p

p






                                        (2.4) 

     By replacing all the trigonometric functions using different representations in tangent 

half angles, the polynomial equations can be obtained. This will greatly reduce the 

complexity of the constraint equations, leading to high computationally effectiveness. 

After obtaining the solutions for p at the end of the computation, the angle parameters 

can be obtained by 
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  2 tanarc p                                                       (2.5) 

    In addition, the angle π˗φ has the corresponding variable q that has the following 

relationship with p 

1/q p                                                               (2.6) 

 

2.1.2 Distance between Two Skew Lines 

 

When a new mechanism is constructed by combining two or more original mechanisms 

based on common joint(s), the links between non-common joints are disconnected and 

new links need to be designed. Devavit-Hartenbergh (D-H) parameters of the new links 

then have to be calculated accurately according to known conditions.  

    Generally, the parameters of the distance and angle for skew lines between two axes 

of adjacent joints need to be calculated so that the approach for estimating the distance 

between two skew lines is investigated to obtain the D-H parameters for a new 

mechanism. In geometry, two lines are said to be skew lines if they are neither 

intersecting nor parallel. The distance between skew lines can be solved using the vector 

method. The vector method [98] is found to be very effective in this thesis to help 

calculate the new parameters according to known conditions, with the difficult problem 

about the distance of the skew lines in solid geometry transformed into a relatively 

simple one.  

 

Figure 2.1 The distance between skew lines 

 

    The procedure to calculate the distance between the two skew lines a and b (Fig. 2.1) 

using a vector method is as follows: 

    a)  Obtain the direction vectors, 𝑎⃗ and 𝑏⃗⃗, of skew lines; 

𝑏⃗⃗ 

𝑎⃗ 
𝑛⃗⃗ 
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    b) Assume the common normal of  𝑎⃗ and 𝑏⃗⃗ to be 𝑛⃗⃗: [x, y, z], and then calculate 𝑛⃗⃗ 

using the dot product principle (𝑎⃗·𝑛⃗⃗=0 and 𝑏⃗⃗·𝑛⃗⃗=0); 

    c) Select two points, A and B, on the two skew lines and connect A and B to obtain 

the vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ; 

    d) Obtain d, the projection of 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  on 𝑛⃗⃗, which is also the distance between the two 

skew lines as below: 

AB n
d

n


                                                        (2.7) 

    Due to the fact that the parameters 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  and 𝑛⃗⃗  can be easily obtained during the 

combination of two SLOMs, then the vector method is the proper way to calculate the 

distance between two adjacent axes. This will be used in Chapter 4 in the process to 

obtain the parameters of 6R mechanisms from combining two Bennett linkages. 

 

2.1.3 Basic Linear Algebra 

 

In this subsection, some basic knowledge of linear algebra is reviewed which will be 

used in Chapter 3 to help select independent constraint equations for a serial chain. 

 

1)  Inverse matrix and adjoint matrix 

    If a matrix A, with its entry aij in the i-th row and j-th column, is an n × n matrix, we 

define A(i|j) to be an (n˗1) × (n˗1) matrix obtained from A by deleting the i-th row and 

j-th column which is called the ij-th maximal submatrix of A. An example of A is shown 

as 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 


 
 
 

                                                    (2.8) 

    Its inverse matrix can be represented by 

11 12 13

1

21 22 23

31 32 33

a a a

A a a a

a a a



 
 


 
 
 

                                                    (2.9) 

where                                              

 
 det( )

( 1)
det( )

|
i j

ji

A i j
a

A

                                                 (2.10)           

for example,  
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12 13

2 1 32 33

12 ( 1)
det( )

a a

a a
a

A

    (if det( ) 0A  )                              (2.11) 

    The adjoint matrix for A can be written as 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a



 
 


 
 
 

                                               (2.12) 

where                                                

 ( 1) det( | )i j

jia A i j                                             (2.13)            

    Using the adjoint matrix the following description of the inverse of an invertible 

matrix is obtained [99]:  

1

det( )

A
A

A


  (if det( ) 0A  )                                       (2.14)  

i.e.  

det( )A A A I                                                  (2.15) 

 

2) Linearly independence  

    Generally, a set of equations can be represented by a matrix equation such as a set of 

equations (Eq. (2.16)) with its matrix representation Ax=b (Eq. (2.17)): 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2 3

n n

n n

m m mn n

a x a x a x b

a x a x a x b

a x a x a x b

   


   


    

                                           (2.16) 

11 12 1 1 1

21 22 2 2 2

1 2 3 3

n

n

m m mn

a a a x b

a a a x b

a a a x b

     
     
      
     
     
     

                                       (2.17) 

    Given a set of vectors A=[A1, A2, …, An], the equation Ax=b can be re-written in terms 

of the column of A as 

 
1 1 2 2 n nA x A x A x b                                               (2.18) 

    If b can be written as a sum of multiples of columns vectors of A, then  

1 1 2 2 n nA x A x A x   is a linear combination of the vectors A1, A2, …, An , then Ax=b is 

consistent in this situation. There must be a system of equations Ax=0: 
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11 12 1 1

21 22 2 2

1 2 3

0

0

0

n

n

m m mn

a a a x

a a a x

a a a x

     
     
      
     
     

    

                                   (2.19) 

which may be written as 

1 1 2 2 0n nA x A x A x                                        (2.20) 

    Although the system equations always have trivial solutions, there may also be 

nontrivial solutions. A set of m-dimensional vectors [A1, A2, …, An] is said to be linearly 

dependent if there exists a non-zero xi such that 
1 1 2 2 0n nA x A x A x    . A set of m-

dimensional vectors [A1, A2, …, An] are said to be linearly independent if they are not 

linearly dependent [100, 101]. It can be understood that a system of equations being 

linearly dependent means that there are combinations between the rows or columns of 

its coefficient matrix and the linearly dependence can be related to the determinate of 

the coefficient matrix. According to the properties of determinate of a matrix, if the 

entries in one row or one column are all zero, then the determinate of the matrix is zero. 

On the contrary, if the determinate of a coefficient matrix is equal to zero, there are zero 

row(s) or column(s), meaning that there are rows (columns) linearly combined by other 

rows (columns). Therefore, the system of equations is linearly dependent.  

 

2.1.4 Notations of D-H Coordinate Frames 

 

Coordinate transformation is the first step for the kinematic analysis of mechanisms. 

The D-H coordinate system was introduced by Devavit and Hartenberg [102, 103] in 

1955 to standardize the coordinate frames for spatial linkages in the kinematics analysis 

of mechanisms. Richard Paul [104] demonstrated its value for the kinematic analysis of 

robotic systems in 1981.  Even though many conventions for attaching references 

frames have been developed, the D-H convention remains the most commonly used 

approach. Basically, there are three popular D-H parameter notations including the 

original notation, the distal and proximal variant notation [105].  

    In the original notation of a D-H coordinate frame (Fig. 2.2), the zi-axis is defined 

along the axis of joint i and the origin of this frame is on the axis of joint i and at the 

point of its common perpendicular with the axis of joint i-1. The xi-axis is coincident 

with the common perpendicular of the axes of zi-1 and zi. The yi axis is placed such that 

it completes a right-handed coordinate system.  
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Figure 2.2 Original notation of D-H coordinate frame 

  

    The D-H parameters are defined as below: 

    αi - the twist angle between the zi and zi+1 about xi+1; 

    ai - the distance between the zi and zi+1 measured along xi+1; 

    di -the distance from xi to xi+1 measured along zi; 

    θi -the angle between xi to xi+1 measured about zi. 

    The coordinate transformation from the previous coordinate system to the next 

coordinate system can be obtained by moving about zi axis by the distance di  and angle 

θi, then moving about xi+1 by the distance ai  and angle αi, which can be represented by  

1 11 ( ) ( ) ( ) ( )
i i i i

i

i z i z i x i x iT Trans d Rot Trans a Rot 
                                 (2.21) 

where 

      

1 0 0 0

0 1 0 0
( )

0 0 1 0

0 0 1

iz i

i

Trans d

d

 
 
 
 
 
 

                                           (2.22) 

       

1 0 0 0

0 cos( ) sin( ) 0
( )

0 sin( ) cos( ) 0

0 0 0 1

i

i i

z i

i i

Rot
 


 

 
 


 
 
 
 

                                    (2.23) 

           
1

1 0 0 0

1 0 0
( )

0 0 1 0

0 0 0 1

i

i

x i

a
Trans a



 
 
 
 
 
 

                                         (2.24) 
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1

1 0 0 0

0 1 0 0
( )

0 0 cos( ) sin( )

0 0 sin( ) cos( )

ix i

i i

i i

Rot 
 

 



 
 
 
 
 
 

                                 (2.25) 

This gives: 

1

1 0 0 0

cos( ) cos( ) sin( ) cos( ) sin( )sin( )

sin( ) sin( ) cos( ) cos( ) cos( )sin( )

0 sin( ) cos( )

i i i i i i ii

i

i i i i i i i

i i i

a
T

a

d

     

     

 



 
 


 
 
 
 

                    (2.26) 

which can be simplified as below: 

1

1 0 0 0

i

iT
T A



 
 
 
 
 
 

                                                 (2.27) 

where A is a 3×3 sub-matrix describing rotation and  T is a 3×1 sub-matrix describing 

translation. 

 

2.2 Methods for the Kinematic Analysis of Mechanisms 

 

Three main topics in the theoretical kinematics of manipulators are the direct (forward) 

and the inverse kinematics problems as well as the singularity problems. The forward 

kinematics problem involves determining all possible poses of the end-effector (EE) 

frame when the actuated joints have specific input values. The inverse kinematics 

problem can be stated to be that a discrete pose of the EE is given and one has to 

compute the joint parameters such that the given manipulator can move the EE to this 

pose. 

There are many methods to deal with the kinematic and singularity analysis of serial 

and parallel mechanisms. Reference [106] introduces the double quaternion and Dixon 

resultant to solve the inverse kinematics analysis of a general 6R robot. The 

homogeneous transform matrix in terms of double quaternions was firstly shown to lead 

to kinematics equations; secondly, a resultant procedure was constructed via linear 

algebraic and Dixon resultant formulation yielding a 16 degree univariate polynomial 

from the resultant matrix. Other approaches for the inverse kinematic analysis of 

general 6R mechanisms have also been studied. For example, [107] and [108] presented 

numerical continuation methods for 6R inverse problems; a symbolic computation 
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method called the Raghavan and Roth method [109] was used to solve the inverse 

kinematic problems of six-DOF general and special manipulators. Many of the methods 

of inverse problems of general 6R manipulators have been extended to deal with the 

forward kinematic problems of 7R single-loop mechanisms [110-112] and parallel 

mechanisms [113].  In addition, [114] presented a different evaluation algorithm which 

was used to solve forward kinematics problems of parallel manipulators; this is efficient, 

especially for problems containing continuous variables. The results of singularity 

analysis of 3-DOF planar parallel mechanisms via a screw theory algorithm are 

presented in [115] providing geometrical insight into the problem and allowing the 

precise and complete description of singularity types. Algebraic methods in connection 

with classical multidimensional geometry have been proved to be very efficient for both 

direct and inverse kinematics analysis of mechanisms. Husty et al [116-124] have made 

significant contributions in this field. In 2006, Husty et al [116] introduced a new and 

effective algorithm for the inverse kinematics of a general serial 6R manipulator using 

the algebraic geometric method based on the kinematic mapping space which had been 

introduced by Blaschke and Study, thereafter they developed and systematized the 

method [117, 118], the so-called explicitation algorithm compared with the later 

produced implicitization algorithm [119-120]. Both the algorithms are based on 

geometric pre-processing in a multi-dimensional space which is called kinematic 

mapping method. The method cannot only be used to deal with general serial and 

parallel mechanisms, but also kinematic analysis of MMRMs. It will be effective in 

identifying different motion patterns and transitional configurations for MMRMs. 

Therefore, in the next section, the kinematic mapping method will be summarized to 

support the kinematic analysis of MMRMs. 

 

2.2.1 Kinematic Mapping Method 

 

Using the kinematic mapping based method [116], a Euclidean displacement can be 

mapped into a point on the Study quadric (S6
2) in a seven dimensional space, the so-

called kinematic mapping space P7, where the point is displayed by eight study 

parameters.  

    In the Euclidean space the displacement can be described by [116]: 

                  x Ax T                                                           (2.28) 
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where x represents a point in the fixed frame and x′ represents the corresponding point 

in the moving frame, A is a 3×3 proper orthogonal matrix describing rotation and T is a 

vector describing translation. The transformation matrix (original notation) can be 

represented as below: 

  

1 0 0 0

M
T A

 
 
 
 
 
 

                                                   (2.29) 

    Expanding the dual quaternion representation using the operator approach, the matrix 

M (Eq. (2.29)) corresponding to the normalized dual quaternion 

0 1 2 3 0 1 2 3( ) ( )T Tq x x x x y y y y         is given by:  

2 2 2 2

1 0 1 3 2 0 3 2 1 3 1 0 2

2 2 2 2

2 2 1 0 3 0 2 1 3 0 1 3 2

2 2 2 2

3 0 2 3 1 3 2 0 1 0 3 2 1

0 0 0

2 2 2 21

2 2 2 2

2 2 2 2

t x x x x x x x x x x x x
M

t x x x x x x x x x x x x

t x x x x x x x x x x x x

 
 

     
 
      
 

      

         (2.30) 

where 2 2 2 2

0 1 2 3x x x x     . 

    The Study parameters of a transformation can be obtained by using one of the 

following formulas [116, 118]:  

   

0 1 2 3

11 22 33 32 23 13 31 21 12

32 23 11 22 33 12 21 31 13

13 31 12 21 11 22 33 23 32

21 12 31 13 23 32 11 22 33

: : :

1 : : :

:1 : :

: :1 :

: : :1

x x x x

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

      

      

      

      

                          (2.31) 

where aij is the element from the rotation matrix A. 

    yi mentioned above is given by: 

0 3 3 2 2 1 1

1 3 2 2 3 1 0

2 3 1 1 3 2 0

3 3 0 2 1 1 2

1
( )

2

1
( )

2

1
( )

2

1
( )

2

y t x t x t x

y t x t x t x

y t x t x t x

y t x t x t x

   

   

    

    

                                           (2.32)   

    Equations (2.31) and (2.32) are already proposed by Study in [124 and 125]. Note 

that if A is not symmetric then the first formula of Eq. (2.31) can be used. If A is 

symmetric then it describes a rotation about an angle of π so that the computed study 

parameters are zero and the first formula in Eq. (2.31) fails. In this case, one of the 



51 

remaining three formulas can be used to make sure at least one study parameter is non-

zero.  

    The entries [xi, yi] in the transformation matrix M have to fulfil: 

033221100  yxyxyxyx                                             (2.33) 

    Equation (2.33) is an expression of S6
2 in the seven dimensional projective space P7 

(Fig. 2.3). The Study quadric S6
2 serves as a point model for Euclidean displacement 

where M[𝑥𝑖, 𝑦𝑖] → [𝑥0: 𝑥1: 𝑥2: 𝑥3: 𝑦0: 𝑦1: 𝑦2: 𝑦3]
𝑇 ≠ [0: 0: 0: 0: 0: 0: 0: 0]𝑇mapping each 

Euclidean displacement to a point 𝑃 on S6
2. 

 

Figure 2.3 Symbolic sketch of S6
2 [118]       

  

    The representation of serial chains in the kinematic mapping space is the main tool 

used in the algorithms to obtain the constraint equations. The most important theory 

described using the kinematic mapping method is the variety of all the EE poses of a 

kinematic chain in the kinematic mapping space; also called the constraint manifold or 

constraint variety of a serial chain. The constraint manifold of a 2R chain is the 

intersection of a 3-space with S6
2 and the constraint manifold of a 3R chain derived from 

a 2R chain is the intersection of a set of 3-spaces with S6
2.  

     The generic equations of a kinematic chain are first obtained by the approaches 

which will be summarized in the following subsections. Transformations in the base or 

moving frame are then brought into the generic equations in the kinematic mapping 

space. 
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    A coordinate transformation in the base and moving frame in a Cartesian space has 

its corresponding projective transformation in the kinematic image space consisting of 

its study parameters. The projective transformation in the base can be represented by Tb, 

and the projective transformation in the moving frame can be expressed by Tm [117, 

118]. According to Eqs. (2.31) and (2.32), the study parameters [b0, b1, b2, b3, b4, b5, b6, 

b7] for the transformation matrix in the base and the study parameters [m0, m1, m2, m3, 

m4, m5, m6, m7] for the transformation matrix in the moving frame can be obtained. 

Therefore, the corresponding transformation matrix in the kinematic mapping space can 

be written as: 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
b

b b b b

b b b b

b b b b

b b b b
T

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

   
 
 

 
 

 
    
 
    
    
 
    

                           (2.34) 
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 
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 

 
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 
    
    
 
    

                    (2.35) 

     Note that the projective transformations Tm and Tb in the kinematic space are 

commutative [117] which is an important property and very useful to facilitate the 

computation of constraint equations. 

     This section presents the basic idea of kinematic mapping space and the 

transformation within it. Two algorithms, the explicitation algorithm and implicitization 

algorithm, which are both based on the kinematic mapping method in order to derive 

constraint equations for serial kinematic chains will now be described.  
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2.2.2 Explicitation Algorithm   

 

The main idea of the explicitation algorithm is to obtain a simple set of algebraic 

equations for a 3R chain with each set in one variable [117,118]. As mentioned above 

the manifold of a 3R chain is the intersection of a set of one-parameter 3-spaces with S6
2, 

where the set of 3-spaces with one parameter in multi-dimensional geometry are called 

Segre Manifolds (SMs). There are three 3-spaces for a 3R chain depend on one of its 

three R joints, i.e., a 3R chain has three SMs (SMi, i=(1, 2, 3)). The SMs can also be 

described as the intersection of four pencils of hyper-planes which can be written into 

four polynomials. Then the constraint equations of a 3R chain can be composed of the 

four polynomials and the equation of S6
2 (Eq. (2.33)). 

     Briefly recalling the process to derive four polynomials for a SM of a 3R chain, the 

kinematics of a 3R chain can be represented by: 

1 1 2 2 3 3T M G M G M G                                                (2.36) 

    If one R joint was fixed, such as the first one, then a 2R chain remains. Neglecting 

M1·G1 in the base and G3 in the moving frame and setting d2 in matrix G2 as zero, then 

the representation of the SM of the 2R chain becomes 

2 2 3T M G M                                                         (2.37) 

Dealing with the study parameters, it is possible to obtain four simple independent 

linear equations as the constraint equations for the SM of this 2R chain: 

 

2 2 0 0

2 1 2 1

2 2 2 2

2 2 3 3

2 4 0

2 4 0

2 4 0

2 4 0

a w x y

a x w y

a x w y

a w x y

 

 

 

 

                                                   (2.38) 

where wi=tan(αi/2). 

    In the next step, the transformations M1·G1 in the base and G3 in the moving frame 

which were omitted are added back into the 2R chain in the kinematic mapping space to 

obtain the constraint equations for a general 3R chain. The projective transformation in 

the base is 
T 1 T 1 T 1

1 1 2( ( ) ) ( ( ) ) ( ( ) )b b bT M T G T G    (G2 has the same definition as above but 

with a2=0, α2=0) and the projective transformation in the moving frame is
T 1

3( ( ) )mT G 
, 

therefore, a set of four constraint equations for SM1 in v1 (vi=tan(θi/2)) can be obtained 

by adding all of the transformations in the base and moving frames into the constraint 

equations of  the 2R chain.  
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     A set of constraint equations of SM in v3 can also be obtained using the same 

procedures. The process of obtaining a set of constraint equations of SM2 in v2 is 

slightly different [118]. 

 

2.2.3 Implicitization Algorithm      

 

    The implicitization algorithm aims to construct the smallest variety within the 

kinematic mapping space containing all the corresponding points of the EE poses of a 

general kinematic chain [119]. It can be used to obtain the constraint equations for 

general kinematic chains including 3J, 4J and 5J kinematics chains. The set of equations 

for the variety must consist of the equations of S6
2. The necessary number of constraint 

equations of a kinematic chain is dependent on its number of DOFs. Therefore, if a 

kinematic chain has m-DOFs then 6˗m constraint equations are needed for the kinematic 

chain. 

    The following summarizes how the constraint equations for the corresponding 

smallest variety will be obtained. For a general kinematic chain, the EE poses with 

respect to the base are given by:  

1 1 iF M G M                                                     (2.39) 

    Calculating eight study parameters [x0, x1, x2, x3, y0, y1, y2, y3] for F using Eqs. (2.31) 

and (2.32) in tangent half revolute angles, homogeneous equations (in degree 1, 2, 3, 

4…n, called Ansatz equations) with general coefficients can be constructed. For 

example, homogeneous equations in degree one can be written as: 

1 3 2 3 3 2 4 2 5 1 6 1 7 0 8 0Ansatz C y C x C y C x C y C x C y C x                       (2.40) 

Then the study parameters are substituted into the algebraic expression Eq. (2.40). The 

expression obtained has to vanish for all the values of tangent half angles, meaning that 

all the coefficients also must vanish identically. Therefore, coefficients expressions of 

the Ansatz equation can be obtained, then the system can be solved to obtain the general 

coefficients (C1, C2, …, C8). If there are solutions then the linear constraint equations 

will be obtained for the kinematic chain by substituting Ci back to Ansatz. Note that the 

number of unknown is 
T( 7, )n n  for Ansatz in degree n. If there is no equation for a 

serial chain in degree one, then homogeneous equations in degree two have to be 

considered where a general quadratic polynomial has 36 unknowns. Undertaking the 

same procedures above, the constraint equations for most kinematic chains can be 

derived in this step. Otherwise one needs to continue with degrees 3, 4 and even more. 
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All the equations produced in a new degree step need to be reduced from equations 

produced one step before with the Grobner basis to see if there are newly obtained 

equations until the necessary number of constraint equations is obtained.  

 

2.3 Constraints Equations of a General 4R Chain Based on Kinematic Mapping 

Method 

 

Based on the thoughts of obtaining the constraint equations for a general 3R chain, it is 

possible to derive the constraint equations for a general 4R chain depending on its two 

angles. The kinematics of a general 4R chain can be represented by: 

1 1 2 2 3 3 4 4T M G M G M G M G                                            (2.41) 

If two R joints are fixed, such as the first and fourth, then a 2R chain remains. 

Neglecting M1· G1 in the base and G3·M4·G4 in the moving frame and setting d2 as zero, 

then the representation of the 2R chain becomes Eq. (2.37). The four same simple 

independent linear equations as Eq. (2.38) can be derived as the constraint equations of 

this 2R chain. Then the transformations which were omitted are added back to the 2R 

chain in the kinematic image space. The projective transformations in the base are

1 1 1

1 1 2( ( ) ) ( ( ) ) ( ( ) )T T T

b b bT M T G T G    (a2=0, α2=0 in G2), and the projective 

transformation in the moving frame becomes
1 1 1

3 4 4( ( ) ) ( ( ) ) ( ( ) )T T T

m m mT G T M T G    . 

Therefore, a set of four equations in v1 and v4 can be obtained. These equations and the 

equation of S6
2 compose the constraint equations for a general 4R chain.  

    Using this method, five sets of constraint equations for a general 4R chain in any two 

of its four vi (except constraint equations in v2 and v3) can be obtained. 

 

2.4 Summary 

 

This chapter recalled the relevant mathematical knowledge on simplifying trigonometric 

using tangent half angle and the vector method to calculate the distance of two skew 

lines, as well as the linear algebra method of determining the dependence or 

independence between a set of constraint equations. Also, it reviewed the kinematic 

mapping method and summarizes two corresponding algorithms: the explicitation 

algorithm for constructing constraint equations for general 3R chains and the 

implicitization algorithm for deriving general kinematic chains with 3, 4 and 5 joints. 

Moreover, the explicitation algorithm is developed to obtain the constraint equations for 
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general 4R kinematic chains. These algorithms will be applied for the kinematic 

analysis of MMRMs in the later chapters.  In summary, this chapter provides the 

mathematical foundation for both the design and kinematic analysis of MMRMs. 
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Chapter 3 – Constraint Equations of Typical Serial 

Kinematic Chains 

 

The kinematic analysis of mechanisms using the kinematic mapping method, including 

single-loop mechanisms and multi-loop mechanisms, can be simplified by analysing 

and solving constraint equations of their compositional serial kinematic chains. The 

algorithms for generating the constraint equations for serial kinematic chains have been 

summarized and presented in Chapter 2. Using these methods, the synthesis for 

constraint equations of a variety of serial kinematic chains will be carried out in this 

chapter, and relationships between constraint equations among the similarly constructed 

kinematic chains will be identified. In addition, essential linear algebra knowledge is 

applied to select proper constraint equations from the implicitization method for a 

kinematic chain.  

    

3.1 Typical Serial 3J, 4J and 5J Kinematic Chains 

 

Firstly, serial kinematic chains are classified into several categories according to: (a) the 

number of the joints (J), including revolute (R) or prismatic (P) joints, of a serial 

kinematic chain; (b) the specific placement between the joint groups, in which the 

symbols have their meanings as follows:  

    i) 𝑅́:  axes of the R joints  are parallel 

    ii) 𝑅̀:  axes of the R joints are parallel along another direction 

    iii) Ṙ:  axes of the R joints intersect at one point 

Therefore, the fundamental kinematic chains are listed in the following [3]. 

 

1) 3J serial kinematic chains 

(1) PPP (2) PPR (3) RPP 

(4) PRP (5) PRR (6) RPR 

(7) RRP (8) ŔŔR (9) RŔŔ 

(10) ŔRŔ (11) ṘṘR  (12) RṘṘ 

(13) ṘRṘ (14) ṘṘṘ  
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2) 4J serial kinematic chains 

(1)PPPR (2)PPRP (3)PRPP 

(4)PPRR (5)PRRP (6)RRPP 

(7)PRPR (8)RPRP (9) PRRR 

(10) RPRR (11) RRPR (12) RRRP 

(13) ŔŔŔR (14) RŔŔŔ (15) ŔŔRŔ 

(16) ŔRŔŔ (17) ŔR̀ŔR̀ (18) ŔŔR̀R ̀  

(19) R̀ŔŔR̀ (20) RṘṘṘ (21) ṘṘṘR 

 

3) 5J serial kinematic chains 

(1)PPPPP (2)PPPPR (3)PPPRP 

(4)PPRRP (5)PPPRR (6)PRPRP 

(7)PRRRP (8)RPRPR (9)PRRPR 

(10)RRRPR (11)RRRRP (12)RRRPR 

(13)RRPRR (14)RPRRR (15)PRRRR 

(16) ŔŔŔR̀R̀ (17) ŔŔR̀R̀R ̀  (18) ŔR̀R̀R̀Ŕ 

(19) ŔR̀R̀ŔŔ (20) R̀R̀ŔŔR̀ (21) ṘṘŔŔŔ 

(22) ŔŔŔṘṘ (23) ŔŔṘṘṘ (24) ṘṘṘŔŔ 

     (25) (RRR)sṘṘ      (26) ṘṘ(RRR)s  

 

3.2 Constraint Equations of Typical Serial Kinematic Chains 

 

In this section, the kinematic mapping based methods including the explicitation 

algorithm and the implicitization algorithm will be used to obtain the constrained 

equations for the typical serial kinematic chains listed in the section above.  

 

3.2.1 Constraint Equations for 3R and 4R Serial Kinematic Chains Using the 

Explicitation Algorithm 

 

The explicitation algorithm can be only used for 3R and 4R serial kinematic chains to 

produce equations for their constraint manifold (the equation for the Study quadric, Eq. 

(2.33), must be included for further analysis of a mechanism). In [118], the constrained 

equations for three SMs of 3R chains have been obtained, however, in this section these 

constraint equations are displayed in their simplest forms (Tables 3.1). Moreover, the 

constrained equations for 4R serial kinematic chains obtained from the developed 
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explicitation algorithm are first illustrated (Table 3.2). Note that in some cases not all 

the three sets of equations of SMs can be selected [118]. If a set of equations of one SM 

depending on one R joint is selected with the joint axes of the remaining two parallel or 

intersected, in which case the SM lies on the S6
2, then the intersection of the SM with the 

S6
2 fails. 

 

Table 3.1 Constraint equations for 3R serial kinematic chains using the explicitation 

algorithm ( tan( / 2)i iw  , tan( / 2)i iv  , here i=1,2,3) 

 

 

T(v1) 

 

2 1 1 2 2 1 1 1 3 2 1 2 3 2 1 2 1 2 1 1 1 1 1 2 1 1 0

2 2 0 2 1 0 2 1 2 1 1 2 1 1 2 3 1 3 1 1 0

(1)

2 2 2 2

a v w w x a v w x a v w x a w w x d v w x a v x a w x

a w x d v x d w x v w y a x d x v y w y y

     

        
 

2 1 1 2 1 1 1 1 0 2 1 2 0 2 1 2 2 2 1 1 2 1 1 1 1 1 3

2 2 3 2 1 3 2 1 1 1 1 1 1 2 2 0 1 0 1 2 3

(2)

2 2 2 2

a v w w x a v w x a v w x a w w x d v w x a v x a w x

a w x d v x d w x v w y a x d x v y w y y

     

        
 

1 1 1 2 1 2 1 1 2 3 1 1 2 0 1 1 2 2 2 1 1 0 2 1 2 2 2 1 2 0

1 1 2 0 1 2 3 2 1 1 2 1 3 2 2 1 1 2 1 1 2 3 2 2 2 2

(3)

2 2 2 2

a v w w x d v w w x a v w x a w w x a v w x d v w x d w w x

v w w y a w x a v x a w x d w x v w y w w y a x w y

      

        
 

1 1 1 2 2 2 1 1 2 0 1 1 2 3 1 1 2 1 2 1 1 3 2 1 2 1 2 1 2 3

1 1 2 3 1 2 0 2 1 2 2 1 0 2 2 2 1 2 2 1 2 0 2 1 2 1

(4)

2 2 2 2

a v w w x d v w w x a v w x a w w x a v w x d v w x d w w x

v w w y a w x a v x a w x d w x v w y w w y a x w y

     

        
 

 

 

T(v2) 

 

1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1 2

1 2 2 2 1 22 2 1 2 2 2 1 1 2 2

(1) ( ()

) (( )2 2) ( 2)

a w w v a w w v a v a v w d w d x a w w a w w

w d v w d v a a x v y w w yw w

      

      

1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1 2

1 2 2 2 1 22 2 1 2 2 2 1 1 2 2

(2) ( ()

) (( )2 2) ( 2)

a w w v a w w v a v a v w d w d x a w w a w w

w d v w d v a a x v y w w yw w

      

      

1 1 2 2 1 2 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2

1 2 2 2 1 2 2 2 2 1 2 1 21 2 2

(3) ( (

( 2 2 2

)

) ) (( ) )

a w w a w w w d v w d v a a x a w w v a w w v

a v a v w d w d x w w y v yw w

       

        

1 1 2 1 2 2 2 1 2 2 2 2 1 2 2 2 3 2 3

0 1 2 1 2 2 2 1 1 1 2 2 1 2 2 2 2 0

1 2

0

(4) ( 2

2 (

) (( 1) )

2)

a w v a w v a w v a w v w w d d x v y

y w w w w d v a w a w a w

w

w v x y

w

a d

     

       



 

 

 

T(v3) 

1 3 1 2 2 1 3 1 3 1 1 2 1 2 3 2 3 2 3 2 1 1 1 0 2 3 2

2 2 0 2 3 0 2 2 2 3 2 2 2 1 2 3 3 3 2 1 0

(1) 2 2 2 2 2 2 2

2 2 2 4 2 2 4 4 4

a v w w x a v w x a w w x a v w x d v w x a w x a v x

a w x d v x d w x v w y a x d x v y w y y

      

        

2 3 1 2 2 2 3 1 2 0 1 3 2 3 2 3 1 3 2 1 2 1 2 3 1 1

2 1 2 3 3 1 2 3 1 3 2 1 2 0 2 1 0 2 1 2 3 1 2

1 2 0 1 1 1 1

(2) 2 2 2 2 2 2

2 4 2 2 2 2 4

4 2 4

a v w w x d v w w x a v w x a v w x a w w x d v w x

d w w x v w w y a v x a w x a w x d w x v w y

w w y a x w y

     

      

  

2 3 1 2 1 2 3 1 2 3 1 3 2 0 2 3 1 0 2 1 2 2 2 3 1 2

2 1 2 0 3 1 2 0 1 3 1 1 2 3 2 1 3 2 1 1 3 1 1

1 2 3 1 2 1 2

(3) 2 2 2 2 2 2

2 4 2 2 2 2 4

4 2 4

a v w w x d v w w x a v w x a v w x a w w x d v w x

d w w x v w w y a v x a w x a w x d w x v w y

w w y a x w y

    

      

  

1 3 1 2 1 1 3 1 0 1 1 2 2 2 3 2 0 2 3 2 2 1 1 3 2 3 1

2 2 3 2 3 3 2 2 1 3 2 1 2 2 2 0 3 0 2 2 3

(4) 2 2 2 2 2 2 2

2 2 2 4 2 2 4 4 4

a v w w x a v w x a w w x a v w x d v w x a w x a v x

a w x d v x d w x v w y a x d x v y w y y

     

        
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Table 3.2 Constraint equations for 4R serial kinematic chains using the explicitation 

algorithm (For constraint equations in other tangent half angles, see Table A.I.1 in 

Appendix A I) 

 

 

T(v1v2) 

 

 

 

3 1 2 1 2 3 0 1 1 2 1 2 1 2 1 2 1 2 1 3 1 2 1 3 1 3 1 2 2 3 1

3 1 1 2 3 3 3 2 1 2 3 3 3 1 2 1 2 3 1 1 2 1 0 1 1 2 2 0

1 1 1 2 2 1 2 1 2 2 2 1 2 1 0 2 1 2 2 0 2 1 1 2

(1) 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a v v w w w x a v v w w x a v v w w x a v v w w x a v v w w x

a v w w w x a v w w w x d v v w w x a v v w x a v v w x

a v w w x a v w w x a v v w x a v v w x a v w w x

    

    

     2 2 2 1 2 2

3 1 2 3 0 3 1 1 3 2 3 1 2 3 2 3 2 1 3 2 3 2 2 3 2 3 1 2 3 0

3 1 2 1 2 3 1 2 2 2 3 1 1 2 0 3 2 1 2 0 1 2 1 2 0 1 1 2 1

1 1 1 3 1 1 2 3 1 2 1 3 1 2 2 3 1

2

2 2 2 2 2 2

2 2 2 2 4 2

2 2 2 2 2

a v w w x

a v v w x a v w w x a v w w x a v w w x a v w w x a w w w x

d v v w x d v v w x d v w w x d v w w x v v w w y a v v x

a v w x a v w x a v w x a v w x a w



     

     

     1 2 1 2 1 2 1 2 1 1 3

2 1 2 3 2 2 1 3 2 2 2 3 2 1 2 1 3 1 3 3 3 2 3 3 3 1 3 1

3 2 3 1 3 1 2 3 3 1 1 1 3 1 2 1 3 2 1 1 3 2 2 1 3 1 2 3

1 2 1 1 1 2 2 1 1 1 2 3 2

2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

4 4 4 4

w x a v v x a v w x

a v w x a v w x a v w x a w w x a v w x a v w x a w w x

a w w x d v v x d v w x d v w x d v w x d v w x d w w x

v v w y v v w y v w w y v w

 

      

      

    1 2 3 1 1 2 1 2 2 1 1 0 1 2 0

2 1 2 2 2 2 2 1 0 2 2 0 3 3 0 3 1 0 3 2 0 3 1 2

3 2 2 1 2 0 1 1 2 1 2 2 2 1 2 2 2 2 1 2 0 1 1 2 1

3 3 1 3 2 3 1 1 2 1

2 2 2 2

2 2 2 2 2 2 2 2

2 4 4 4 4 4 4 2 2

2 4 4 4 4

w y a v x a v x a w x a w x

a v x a v x a w x a w x a w x d v x d v x d w x

d w x v v y v w y v w y v w y v w y w w y a x a x

d x v y v y w y w y

   

       

        

      04y

 

1 1 2 1 2 3 0 2 1 2 1 2 3 0 3 1 2 1 2 3 2 1 1 2 1 3 1

1 1 2 2 3 1 1 1 1 2 3 3 1 2 1 2 3 3 2 1 2 1 3 1 2 1 2 2 3 1

2 1 1 2 3 3 2 2 1 2 3 3 3 1 2 1 2 1 3 1 2 1 3 3 3 1 2 2

(2) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a v v w w w x a v v w w w x d v v w w w x a v v w w x

a v v w w x a v w w w x a v w w w x a v v w w x a v v w w x

a v w w w x a v w w w x a v v w w x d v v w w x d v v w

  

    

     3 3

3 1 1 2 3 1 3 2 1 2 3 1 1 2 1 2 3 1 1 1 2 3 0 1 1 1 3 2

1 1 2 3 2 1 2 1 3 2 1 2 2 3 2 1 1 2 3 0 2 1 2 3 0

2 1 1 3 2 2 1 2 3 2 2 2 1 3 2 2 2 2 3 2 2 1 2 3 0 3 1 2 1

2 2 4 2 2

2 2 2 2 2

2 2 2 2 2 2

w x

d v w w w x d v w w w x v v w w w y a v v w x a v w w x

a v w w x a v w w x a v w w x a w w w x a v v w x

a v w w x a v w w x a v w w x a v w w x a w w w x a v v w

    

    

      0

3 1 2 2 0 3 1 1 2 2 3 2 1 2 2 3 1 2 3 2 3 1 1 3 0 3 1 2 3 0

3 2 1 3 0 3 2 2 3 0 3 1 2 3 2 1 2 1 3 0 1 2 2 3 0 1 1 2 3 2

2 1 2 3 2 1 1 3 3 1 2 3 3 1 1 3 1 1 2 3 1

2 2 2 2 2 2

2 2 2 4 4 4

4 2 2 2 2 2

x

a v v w x a v w w x a v w w x d v v w x d v w w x d v w w x

d v w w x d v w w x d w w w x v v w w y v v w w y v w w w y

v w w w y a v w x a v w x a w w x a w w x

     

     

      2 1 3 3 2 2 3 3

2 1 3 1 2 2 3 1 3 1 2 1 3 1 1 3 3 1 2 3 3 2 1 3 3 2 2 3

3 1 2 1 3 1 3 1 3 2 3 1 3 1 3 3 3 2 3 3 1 2 3 1 1 1 3 3

1 2 3 3 2 1 3 3 2 2 3 3 1 2 3 1

2

2 2 2 2 2 2 2

2 2 2 2 2 4 4

4 4 4 4 2

a v w x a v w x

a w w x a w w x a v v x a v w x a v w x a v w x a v w x

a w w x d v w x d v w x d w w x d w w x v v w y v w w y

v w w y v w w y v w w y w w w y



      

      

     1 3 0 2 3 0 3 1 2

3 2 2 3 1 0 3 2 0 3 3 2 1 3 2 2 3 2 1 3 0 2 3 0

3 1 3 1

2 2

2 2 2 2 4 4 4 4

2 4

a w x a w x a v x

a v x a w x a w x d w x v w y v w y w w y w w y

a x w y

 

       

 
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1 1 2 1 2 3 3 2 1 2 1 2 3 3 3 1 2 1 2 3 1 1 1 2 1 3 2

1 1 2 2 3 2 1 1 1 2 3 0 1 2 1 2 3 0 2 1 2 1 3 2 2 1 2 2 3 2

2 1 1 2 3 0 2 2 1 2 3 0 3 1 2 1 2 2 3 1 2 1 3 0 3 1 2

(3) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a v v w w w x a v v w w w x d v v w w w x a v v w w x

a v v w w x a v w w w x a v w w w x a v v w w x a v v w w x

a v w w w x a v w w w x a v v w w x d v v w w x d v v w

   

    

     2 3 0

3 1 1 2 3 2 3 2 1 2 3 2 1 2 1 2 3 2 1 1 2 3 3 1 1 1 3 1

1 1 2 3 1 1 2 1 3 1 1 2 2 3 1 1 1 2 3 3 2 1 2 3 3

2 1 1 3 1 2 1 2 3 1 2 2 1 3 1 2 2 2 3 1 2 1 2 3 3

3 1 2

2 2 4 2 2

2 2 2 2 2

2 2 2 2 2

2

w x

d v w w w x d v w w w x v v w w w y a v v w x a v w w x

a v w w x a v w w x a v w w x a w w w x a v v w x

a v w w x a v w w x a v w w x a v w w x a w w w x

a v v w

    

    

    

 1 3 3 1 2 2 3 3 1 1 2 1 3 2 1 2 1 3 1 2 3 1 3 1 1 3 3

3 1 2 3 3 3 2 1 3 3 3 2 2 3 3 3 1 2 3 1 1 2 1 3 3

1 2 2 3 3 1 1 2 3 1 2 1 2 3 1 1 1 3 0 1 2 3 0 1 1 3 2

1 2 3 2

2 2 2 2 2

2 2 2 2 4

4 4 4 2 2 2

2

x a v v w x a v w w x a v w w x d v v w x d v w w x

d v w w x d v w w x d v w w x d w w w x v v w w y

v v w w y v w w w y v w w w y a v w x a v w x a w w x

a w w x

    

    

     

  2 1 3 0 2 2 3 0 2 1 3 2 2 2 3 2 3 1 2 2 3 1 1 0

3 1 2 0 3 2 1 0 3 2 2 0 3 1 2 2 3 1 3 2 3 2 3 2 3 1 3 0

3 2 3 0 1 2 3 2 1 1 3 0 1 2 3 0 2 1 3 0 2 2 3 0

1 2 3 2

2 2 2 2 2 2

2 2 2 2 2 2 2

2 4 4 4 4 4

4

a v w x a v w x a w w x a w w x a v v x a v w x

a v w x a v w x a v w x a w w x d v w x d v w x d w w x

d w w x v v w y v w w y v w w y v w w y v w w y

w w w y

    

      

     

  1 3 3 2 3 3 3 1 1 3 2 1 3 1 3 3 2 3 3 3 1

1 3 1 2 3 1 1 3 3 2 3 3 3 2 3 2

2 2 2 2 2 2 2

4 4 4 4 2 4

a w x a w x a v x a v x a w x a w x d w x

v w y v w y w w y w w y a x w y

     

     

 

 

3 1 2 1 2 3 3 1 1 2 1 2 2 2 1 2 1 2 2 3 1 2 1 3 2

3 1 2 2 3 2 3 1 1 2 3 0 3 2 1 2 3 0 3 1 2 1 2 0 1 1 2 1 3

1 1 2 2 3 1 1 1 2 1 1 2 1 2 1 2 1 2 1 3 2 1 2 2 3

2 1 1 2

(4) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

a v v w w w x a v v w w x a v v w w x a v v w w x

a v v w w x a v w w w x a v w w w x d v v w w x a v v w x

a v v w x a v w w x a v w w x a v v w x a v v w x

a v w w x

   

    

    

 1 2 2 1 2 1 3 1 2 3 3 3 1 1 3 1 3 1 2 3 1

3 2 1 3 1 3 2 2 3 1 3 1 2 3 3 3 1 2 1 1 3 1 2 2 1

3 1 1 2 3 3 2 1 2 3 1 2 1 2 3 1 1 2 2 1 1 1 0 1 1 2 0

1 2 1 0 1 2 2 0 1

2 2 2 2

2 2 2 2 2

2 2 4 2 2 2

2 2 2

a v w w x a v v w x a v w w x a v w w x

a v w w x a v w w x a w w w x d v v w x d v v w x

d v w w x d v w w x v v w w y a v v x a v w x a v w x

a v w x a v w x a w

   

    

     

   1 2 2 2 1 2 2 2 1 1 0 2 1 2 0

2 2 1 0 2 2 2 0 2 1 2 2 3 1 3 0 3 2 3 0 3 1 3 2

3 2 3 2 3 1 2 0 3 1 1 2 3 1 2 2 3 2 1 2 3 2 2 2

3 1 2 0 1 2 1 2 1 2 2 2 1 1 2 0 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 4 4 4 4

w x a v v x a v w x a v w x

a v w x a v w x a w w x a v w x a v w x a w w x

a w w x d v v x d v w x d v w x d v w x d v w x

d w w x v v w y v v w y v w w y v w

  

     

     

     1 2 0 1 1 1 1 2 1

1 1 3 1 2 3 2 1 1 2 2 1 2 1 3 2 2 3 3 3 3 3 1 3

3 2 3 3 1 1 3 2 1 1 2 3 1 1 1 1 2 1 2 1 1 2 2 1

1 2 3 1 2 2 2 3 0 1 0 2 0 1 2 2 2

2 2

2 2 2 2 2 2 2 2

2 2 2 4 4 4 4 4

4 2 2 2 4 4 4 4

w y a v x a v x

a w x a w x a v x a v x a w x a w x a w x d v x

d v x d w x d w x v v y v w y v w y v w y v w y

w w y a x a x d x v y v y w y w y

 

       

       

         34 y
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T(v3v4) 

1 3 3 4 1 2 0 1 3 4 1 2 1 1 3 3 4 1 1 1 3 3 1 2 3 1 3 4 1 2 3

2 3 3 4 2 1 3 3 3 4 2 1 3 2 3 4 2 3 3 3 3 4 2 3 1 3 4 1 0

1 3 1 2 2 1 3 3 1 2 1 4 1 2 2 1 3 4 1 2 1 3 1 2

(1) 4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

a w v v w w x a v v w w x a w v v w x a w v w w x a w v w w x

a w v v w x a w v v w x w d v v w x w d v v w x a v v w x

a v w w x a w v w x a v w w x a w v w x a w w w

   

    

     0 2 3 4 2 0

2 3 3 4 0 2 3 3 2 2 2 3 4 2 2 3 3 4 2 0 3 3 3 4 0 3 3 3 2 2

3 3 4 2 2 2 3 4 2 2 3 2 3 4 2 3 2 3 2 0 3 2 4 2 0 3 3 4 2 2

3 3 3 4 2 3 3 3 2 0 3 3 4 2 0 3 3

4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4

x a v v w x

a w v v x a w v w x a w v w x a v v w x a w v v x a w v w x

a w v w x d v v w x w d v v x w d v w x w d v w x d v v w x

w d v v x w d v w x w d v w x a w



     

     

    4 2 2 2 3 4 2 2 3 2 3 4 2

3 2 3 2 0 3 2 4 2 0 3 3 4 2 2 3 3 3 4 2 3 3 3 2 0 3 3 4 2 0

2 3 4 3 2 3 2 1 3 3 4 1 3 3 2 3 3 3 3 3 3 4 2 3 3 3 4 3

3 3 2 1 2 3 4 3 2 3 2

4 4

4 4 4 4 4 4

4 4 4 4 4 4 4

4 4 4

v w x d v v w x w d v v x

w d v w x w d v w x d v v w x w d v v x w d v w x w d v w x

a w v x a w w x a v v x a v w x a w v x a v w x a w v x

a w w x d v v x d v w

 

     

      

   1 3 2 3 1 2 4 2 1 3 2 4 1 3 2 2 3

3 3 4 3 3 3 2 1 3 3 3 1 3 4 2 1 3 3 4 1 3 3 2 3 3 4 2 1

3 3 4 1 3 3 2 3 3 4 2 3 1 1 0 2 3 2 2 4 2 2 2 0 2 3 0

3 3 2 3 4 2

4 4 4 4

4 4 4 4 4 4 8

8 8 8 4 4 4 4 4

4 4 4

x w d v x d v w x w d v x w d w x

d v v x d v w x w d v x d v w x w d v x w d w x v v w y

w v v y w v w y w v w y a w x a v x a v x a w x a w x

a v x a v x

   

      

       

   3 2 0 3 3 0 2 3 0 2 4 0 2 2 2 3 2 2

3 3 0 3 4 0 3 2 2 3 3 2 3 4 0 3 2 2 3 3 2 4 2 2 0

3 4 2 3 2 0 2 1 3 1 2 3 3 3 3 3 4 3 2 1 3 1

4 4 4 4 4

4 4 4 4 8 8 8 8 8

8 8 4 4 4 4 8 8 8 8

a w x a w x d v x d v x d w x w d x

d v x d v x d w x w d x v v y v w y w v y v w y y

w v y w w y a x a x d x d x v y v y w y w y

    

        

         

 

2 3 3 4 1 2 0 3 3 3 4 1 2 0 3 2 3 4 1 2 2 3 3 3 4 1 2 2

1 3 3 4 2 1 2 3 4 1 2 1 2 3 3 4 1 1 2 3 3 1 2 3 2 3 4 1 2 3

3 3 4 1 2 1 3 3 3 4 1 1 3 3 3 1 2 3 3 3 4 1 2 3 2 3

(2) 4 4 4 4

4 4 4 4 4

4 4 4 4 4

a w v v w w x a w v v w w x w d v v w w x w d v v w w x

a w v v w x a v v w w x a w v v w x a w v w w x a w v w w x

a v v w w x a w v v w x a w v w w x a w v w w x d v v

   

    

     4 1 2 3

3 2 3 4 1 3 3 2 3 1 2 1 3 2 4 1 2 1 3 3 4 1 2 3 3 3 3 4 1 3

3 3 3 1 2 1 3 3 4 1 2 1 3 3 4 1 2 1 1 3 4 2 0 1 3 3 4 0

1 3 3 2 2 1 3 4 2 2 2 3 4 1 0 2 3 1 2 2 2 3 3

4 4 4 4 4

4 4 8 4 4

4 4 4 4 4

w w x

w d v v w x w d v w w x w d v w w x d v v w w x w d v v w x

w d v w w x w d v w w x w v v w w y a v v w x a w v v x

a w v w x a w v w x a v v w x a v w w x a w v w

    

    

     1 2

2 4 1 2 2 2 3 4 1 2 2 3 1 2 0 3 3 4 1 0 3 3 1 2 2

3 3 3 1 2 3 4 1 2 2 3 3 4 1 2 3 3 1 2 0 2 3 4 1 2

3 2 4 1 0 3 2 1 2 2 3 3 4 1 2 3 3 1 2 0 3 3 3 1 0

3 4 1 2 0 2

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4

x

a v w w x a w v w x a w w w x a v v w x a v w w x

a w v w x a v w w x a w v w x a w w w x d v v w x

w d v w x w d w w x d v v w x d v w w x w d v w x

d v w w x d v

    

    

    

  3 1 2 0 3 2 3 1 0 2 4 1 2 0 3 3 4 1 0

3 3 1 2 2 3 4 1 2 0 3 3 4 1 0 3 3 1 2 2 3 4 1 2 2

1 3 4 1 1 3 2 3 1 3 3 3 1 4 2 3 1 3 4 3 1 3 2 1 2 3 1 3

2 4 1 3 2 1 2 1 2 3

4 4 4

4 8 8 8 8

4 4 4 4 4 4 4

4 4 4

w w x w d v w x d v w w x w d v w x

w d w w x v v w w y w v v w y w v w w y w v w w y

a v v x a v w x a w v x a v w x a w v x a w w x a v w x

a v w x a w w x a w w

  

    

      

   1 1 3 3 1 3 3 4 1 3 3 1 2 1

3 3 1 1 2 3 1 1 2 4 1 1 2 1 2 3 3 2 1 3 3 3 1 1

3 4 1 1 3 1 2 3 3 3 1 3 3 4 1 1 3 1 2 3 3 3 1 3

4 1 2 3 3 4 1 3 3 1 2 1 1 3 2 1 4 2

4 4 4

4 4 4 4 4 4

4 4 4 8 8 8

8 8 8 4 4

x a v w x a v w x a w w x

a w w x d v w x d v w x d w w x w d w x d v w x

d v w x d w w x w d w x v v w y v w w y w v w y

v w w y w v w y w w w y a v x a v x

  

     

     

      1 2 0 1 3 0

2 1 0 3 1 0 2 1 2 3 1 2 3 1 2 4 1 2 1 2 0 3 1 0

1 1 1 1

4 4

4 4 4 4 8 8 8 8

4 8

a w x a w x

a w x a w x d w x d w x v w y v w y w w y w w y

a x w y



       

 
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2 3 3 4 1 2 3 3 3 3 4 1 2 3 3 2 3 4 1 2 1 3 3 3 4 1 2 1

1 3 3 4 2 2 2 3 4 1 2 2 2 3 3 4 1 2 2 3 3 1 2 0

2 3 4 1 2 0 3 3 4 1 2 2 3 3 3 4 1 2 3 3 3 1 2 0

3 3 4 1 2 0 2 3

(3) 4 4 4 4

4 4 4 4

4 4 4 4

4 4

a w v v w w x a w v v w w x w d v v w w x w d v v w w x

a w v v w x a v v w w x a w v v w x a w v w w x

a w v w w x a v v w w x a w v v w x a w v w w x

a w v w w x d v v

   

   

   

  4 1 2 0 3 3 4 1 2 2 3 3 3 4 1 2

3 3 3 1 2 0 3 3 4 1 2 0 2 3 4 1 2 0 3 3 3 1 2 2

3 3 4 1 2 2 3 3 4 1 2 2 1 3 4 2 3 1 3 3 4 3 1 3 3 2 1

1 3 4 2 1 2 3 4 1 3 2 3 1 2 1 2 3 3

4 4

4 4 4 4

4 8 4 4 4

4 4 4 4

w w x a v v w w x a w v v w x

a w v w w x a w v w w x d v v w w x w d v w w x

w d v w w x w v v w w y a v v w x a w v v x a w v w x

a w v w x a v v w x a v w w x a w v w

 

   

    

    1 1 2 4 1 2 1

2 3 4 1 1 2 3 1 2 3 3 3 4 1 3 3 3 1 2 1 3 3 3 1 1

3 4 1 2 1 3 3 4 1 1 3 3 1 2 3 2 3 4 1 1 2 3 1 2 3

3 2 3 1 3 2 4 1 2 3 3 2 4 1 3 3 2 1 2 1 3 3 4 1 1

3

4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4

x a v w w x

a w v w x a w w w x a v v w x a v w w x a w v w x

a v w w x a w v w x a w w w x d v v w x d v w w x

w d v w x d v w w x w d v w x w d w w x d v v w x

d v



    

    

    

 3 1 2 3 3 3 3 1 3 3 4 1 2 3 3 3 4 1 3 3 3 1 2 1

3 4 1 2 3 3 3 4 1 3 3 3 1 2 1 3 4 1 2 1 1 3 4 2

1 3 2 0 1 3 3 0 1 4 2 0 1 3 4 0 1 3 2 2 2 3 1 0

2 4 1 0 2 1 2 2 2 3

4 4 4 4

8 8 8 8 4

4 4 4 4 4 4

4 4 4

w w x w d v w x d v w w x w d v w x w d w w x

v v w w y w v v w y w v w w y w v w w y a v v x

a v w x a w v x a v w x a w v x a w w x a v w x

a v w x a w w x a w w

   

    

     

   1 2 3 3 1 0 3 4 1 0 3 1 2 2

3 3 1 2 2 3 1 2 2 4 1 2 2 1 2 0 3 2 1 0 3 3 1 2

3 4 1 2 3 1 2 0 3 3 1 0 3 4 1 2 2 1 2 0 3 2 1 0

3 3 1 2 3 4 1 2 3 1 2 0 3 3 1 0 3 4

4 4 4

4 4 4 4 4 4

4 4 4 8 4 4

4 4 4 4 8

x a v w x a v w x a w w x

a w w x d v w x d v w x d w w x w d w x d v w x

d v w x d w w x w d w x v v w y d w w x w d w x

d v w x d v w x d w w x w d w x v v w

  

     

     

     1 2 3 1 2 2

1 3 1 1 4 1 1 2 3 1 3 3 2 1 3 3 1 3 2 1 1 3 1 1

3 1 1 4 1 1 1 2 3 3 1 3 1 2 1 2

8

4 4 4 4 4 4 4 4

8 8 8 8 4 8

y w w w y

a v x a v x a w x a w x a w x a w x d w x d w x

v w y v w y w w y w w y a x w y



       

     

 

1 3 3 4 1 2 3 1 3 4 1 2 2 1 3 3 4 1 2 1 3 3 1 2 0

1 3 4 1 2 0 2 3 3 4 2 2 3 3 3 4 2 2 3 2 3 4 2 0

3 3 3 4 2 0 1 3 4 1 3 1 3 1 2 1 1 3 3 1 1 1 4 1 2 1

1 3 4 1 1 1 3 1 2

(4) 4 4 4 4

4 4 4 4

4 4 4 4 4

4 4

a w v v w w x a v v w w x a w v v w x a w v w w x

a w v w w x a w v v w x a w v v w x w d v v w x

w d v v w x a v v w x a v w w x a w v w x a v w w x

a w v w x a w w w

  

   

    

  3 2 3 4 2 3 2 3 3 4 3 2 3 3 2 1

2 3 4 2 1 3 3 4 2 3 3 3 3 4 3 3 3 3 2 1 3 3 4 2 1

2 3 4 2 1 3 2 3 4 1 3 2 3 2 3 3 2 4 2 3 3 3 4 2 1

3 3 3 4 1 3 3 3 2 3 3 3 4 2 3 3 3

4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 8

x a v v w x a w v v x a w v w x

a w v w x a v v w x a w v v x a w v w x a w v w x

d v v w x w d v v x w d v w x w d v w x d v v w x

w d v v x w d v w x w d v w x w v

  

    

    

    4 2 3 1 3 1 0

1 4 1 0 1 1 2 2 1 3 1 2 2 3 4 2 2 3 2 0 2 3 3 0

2 4 2 0 2 3 4 0 2 3 2 2 3 3 4 2 3 3 2 0 3 3 3 0

3 4 2 0 3 3 4 0 3 3 2 2 2 3 4 0 2 3 2 2 3 2 3 2

2

4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4

v w y a v w x

a v w x a w w x a w w x a v v x a v w x a w v x

a v w x a w v x a w w x a v v x a v w x a w v x

a v w x a w v x a w w x d v v x d v w x w d v x

d



     

     

     

 4 2 2 3 2 4 2 3 2 2 0 3 3 4 0 3 3 2 2 3 3 3 2

3 4 2 2 3 3 4 2 3 3 2 0 3 4 2 2 3 3 4 2 3 3 2 0

3 4 2 0 1 1 3 2 3 1 2 4 1 2 2 3 2 3 3 3 3 1

3 4 1 3 2 3 3 3 3

4 4 4 4 4

4 4 4 8 8 8

8 4 4 4 4 4 4

4 4 4 4

v w x w d v x w d w x d v v x d v w x w d v x

d v w x w d v x w d w x v v w y w v v y w v w y

w v w y a w x a v x a v x a w x a w x a v x

a v x a w x a w x

    

     

      

    2 3 3 2 4 3 2 2 1 3 2 1

3 3 3 3 4 3 3 2 1 3 3 1 3 4 3 3 2 1 3 3 1

4 2 1 3 4 1 3 2 3 2 2 3 2 2 0 3 0 3 0

4 0 2 2 3 2 3

4 4 4

4 4 4 4 8 8 8

8 8 8 4 4 4 4 8

8 8 8 8

d v x d v x d w x w d x

d v x d v x d w x w d x v v y v w y w v y

v w y w v y w w y a x a x d x d x v y

v y w y w y y

  

      

       

   
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3.2.2 Constraint Equations for 3J, 4J and 5J Serial Kinematics Chains Using the 

Implicitization Algorithm 

 

All the constraint equations for 3J, 4J, and 5J serial kinematic chains can be obtained 

using the implicitization algorithm, where the equation for the Study quadric (Eq. (2.33)) 

must be contained and the number of equations for each 3J, 4J and 5J serial kinematic 

chain is usually greater than the number of constraints of the serial kinematic chain. In 

[119-121] constraint equations for some serial kinematic chains have been obtained, but 

in this dissertation, Tables 3.3-3.5 and Table A.I.2-4 in Appendix I list these equations 

for the typical serial kinematic chains. Note that coordinate frames for the serial 

kinematic chains are built according to Fig. 2.2 where the z axes are aligned with the R 

joint axes using solid arrows and the dotted arrows are x axes, as shown in the first 

figure in Table 3.3-1 a).   

 

Table 3.3 The constraint equations for 3J serial kinematic chains using implicitization 

algorithm ( tan( / 2)i iw  , tan( / 2)i iv  , i=1,2,…) (For the constraint equations of 

other 3J serial kinematic chains, see  Table A.I.2 in Appendix A.I) 

1 
ŔŔR a): The axes of 

the first two R joints 

are parallel. The axes 

of the last two R joints 

are perpendicular but 

not in the same plane. 

  

α1=0, d1=0, 

α2=π/2, d2=0. 

(1) 0 0 1 1 2 2 3 3 x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x     

(3) 0 1 1 0 2 3 3 2x y x y x y x y    

(4) 0 3 1 2 2 1 3 0x y x y x y x y    

(5) 0 2 1 3 2 0 3 1x y x y x y x y    

(6)
2 2 2 2 2 2

1 2 2 2 2 2 1 1 3 0 1 2

1

4
( )( )y y a x y a x y x x a a     

(7)
2 2 2 2 2 2

3 0 3 0 1 2 2 1 1 2 2 2( )( )
1

4
y y x x a a a x y a x y     

(8)
2 3 1 2 2 0 1 3 0 2 0 2 1 3

2 2
1 2

(
1

4
)

( )

a x y a x y y y y y x x x x

a a

 



  
 

(9)
2 2

2 3 0 1 1 2 2 3 0 1 2 3 2 2 1 0

1
( )( )

4
x x x x a a y y y y a x y a x y      

ŔŔR b): The axes of 

the first two R joints 

are parallel. The axes 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x     

 z3 

 z1 

 z2 

 x1 

 x2 

 x3 
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of the last two R joints 

are perpendicular and 

intersect with each 

other 

 

α1=0, d1=0,  

α2=π/2, a2=0. 

(3) 2 0 2 2 1 3 0 1 1 0 2 3 3 2d x x d x x x y x y x y x y       

(4)
2 2

2 0 2 3 0 3 1 2 2 1 3 0d x d x x y x y x y x y      

(5) 2 0 1 2 2 3 0 2 1 3 2 0 3 1d x x d x x x y x y x y x y      

(6)
2

2 3 1 2 2 0 0 1 2 3 2 3 2

2 2 2
2 3 1 0 1 1 0 1 2

3 / 4

1/ 4 1/ 4 1/ 4

d x y d x y y y y y x x d

x x a x x a x x d

    

  
 

(7)
2 2 2 2 2 2

1 2 2 1 2 2 2 1 0 1 0 2

2 2 2 2
3 1 3 2

1/ 4 1/ 4

1/ 4 1/ 4

y y d x y d x y x a x d

x a x d

   

 


 

(8)
2 2 2 2 2 2

0 3 2 2 1 2 1 2 0 1 0 2

2 2 2 2
3 1 3 2

1/ 4 3 / 4

1/ 4 3 / 4

y y d x y d x y x a x d

x a x d

    

 
 

(9)
2 2

1 3 0 2 2 1 0 2 3 2 0 2 1 0 2 2

2 2
1 3 2 1 3 1

1/ 4 1/ 4

3 / 4 1/ 4

y y y y d x y d x y x x a x x d

x x d x x a

   

 


 

ŔŔR c): The axes of 

the first two R joints 

are parallel. The axes 

of the last two R joints 

intersect with each 

other. 

 

α1=0, d1=0,  

a2=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

2 0 2 3 1 2w x w x x x      

(3)
2 2 2 2 2 2 2 2 2 2

0 2 2 0 1 3 2 2 3 1

2 2
2 1 2 1 2 2 2 1

1/ 4 1/ 4 1/ 4 1/ 4x d w x a x d w x a

y y d x y d x y

  

   
 

(4)

2 2
0 2 2 2 0 2 2 1 3 2 2

2 2
1 3 2 2 3 2 1 0 2 0 1 2 3

1/ 2 1/ 2 1/ 2

1/ 2

x x w d x x d x x w d

x x d w x y x y w x y x y

 

    
 

(5)

2 2 2
3 0 0 3 2 1 1 2 3 2 2 3 2

2 2 2
0 2 2 0 2

1/ 2 1/ 2

1/ 2 1/ 2

x y x y x y x y x w d x d

x w d x d

     

 
 

(6)

2 2
2 3 1 0 1 2 2 0 1 2 2 0 1 3

2 2
2 0 2 2 3 2 2 3 2 2

1/ 2 1/ 2

1/ 2 1/ 2

w x y x x w d x x d x y x y

w x y x x d x x w d

   

  
 

(7)

2 2 2 2
0 1 2 1 3 0 1 2 2 0 1 1 0 1 2

2 2
3 1 2 2 3 1 2 2 3 0 2 2 2

2 2 2
0 2 2 2 3 1 2 3 2 2

1/ 4 1/ 4 1/ 2

1/ 2 1/ 2 1/ 2

1/ 2 1/ 4 1/ 4

y y d x y x x d w x x a x x d

x y w d x y d y y x y w d

x y d x x a x x d w

   

   

  

 

(8)

2 2 2 2
0 2 2 2 0 2 1 0 1 2 2 0 1 2

2
2 1 0 3 2 2 2 3 2 2 0 2 1 3

2 2 2 2
1 3 2 2 1 3 1 1 3 2

1/ 4 1/ 4 1/ 2 1/ 2

1/ 2 1/ 2

1/ 4 1/ 4 1/ 2

x x d w x x a x y w d x y d

d x y x y w d x y d y y y y

x x d w x x a x x d

  

    

  

 

(9)

2 2 2 2 2
2 1 2 3 0 2 2 1 0 2 2

2 2 2 2 2 2 2
0 1 2 3 2 0 2

2 2 2 2 2 2
3 2 2 3 1 2

1/ 2

1/ 4 1/ 4 1/ 4

1/ 2 1/ 4

d x y y y d x y x d w

x a w x d x d

x d w x a w

    

  

 
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2 
PRR: The axes of the 

first P-R joint are 

perpendicular and 

intersect. The axes of 

the last two R joints 

are perpendicular and 

intersect with each 

other. 

 

 α1= π/2, a1=0,  

α2= 0, d2=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x     

(3) 0 2 1 3 2 0 3 1x y x y x y x y    

(4) 0 3 1 2 2 1 3 0x y x y x y x y    

(5) 0 1 1 0 2 3 3 2x y x y x y x y    

(6)
2 2

1 1 3 1 3 1 0 1 2 3 2 3 1 2 3 2

2 2
0 1 2 0 1 1

1/ 4 1/ 4

1/ 4 1/ 4

d x y d x y y y y y x x d x x a

x x a x x d

    

 
 

(7)
2 2

1 3 2 0 2 1 3 1 2 3 1 3 1 1 3 2

2 2
0 2 1 0 2 2

1/ 4 1/ 4

1/ 4 1/ 4

d x y y y y y d x y x x d x x a

x x d x x a

     

 
 

(8)

2 2 2 2 2 2
1 1 2 1 2 1 3 0 3 2 3 1

2 2 2 2
0 2 0 1

1/ 4 1/ 4

1/ 4 1/ 4

d x y d x y y y x a x d

x a x d

    

 
 

 

 

Table 3.4 The constraint equations for 4J serial kinematic chains using the 

implicitization algorithm (For the constraint equations of other 4J serial kinematic 

chains, see Table A.I.3 in Appendix A.I) 

1 
R̀R̀R̀R a): 

 

The axes of the first three R joints are parallel, the axes of the 

fourth and third R joints are perpendicular but not in the 

same plane. 

α1=0, d1=0,    α2=0, d2=0, 

α3=π/2, d3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x     

(3) 0 1 1 0 2 3 3 2x y x y x y x y    

(4) 0 3 1 2 2 1 3 0x y x y x y x y    

(5) 0 2 1 3 2 0 3 1x y x y x y x y    

(6)
2 2 2 2

0 1 2 3y y y y    
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R̀R̀R̀R b): 

 

The axes of the first three R joints are parallel, the axes of the 

fourth and third R joints are perpendicular and intersect with 

each other. 

α1=0, d1=0,    α2=0, d2=0, 

α3=π/2, a3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x     

(3) 3 0 1 3 2 3 0 2 1 3 2 0 3 1d x x d x x x y x y x y x y      

(4) 3 0 2 3 1 3 0 1 1 0 2 3 3 2d x x d x x x y x y x y x y       

(5)
2 2

3 0 3 3 0 3 1 2 2 1 3 0d x d x x y x y x y x y      

(6)

2 2 2 2 2 2
3 0 3 3 3 1 2 3 2 1 0 1

2 2
2 3

2 2d x d x d x y d x y y y

y y

     

 
 

R̀R̀R̀R c): 

 

The axes of the first three R joints are parallel, the axes of the 

fourth and third R joints intersect with each other. 

α1=0, d1=0,    α2=0,   a3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

3 0 3 3 1 2w x w x x x     

(3)

2 2 2
2 3 3 1 2 3 3 2 2 3 3 3 2 3 1

2 2
2 3 2 2 3 3 1 3 2 0 3 0 2 3 3 1

2 2 2
1 3 0 1 2 3 0 1 3 3 0 1 1 0 1

2 0 1 3 0 1

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

x x w d x x w d x x w d x x d

x x d x x d x y x y w x y w x y

d w x x d w x x d w x x d x x

d x x d x x

   

     

   

 

(4)

2
2 3 0 2 1 0 2 2 0 2 3 0 2 3 1

2 2 2
0 2 3 2 0 2 3 3 3 0 1 1 3 1

2 2
1 3 2 1 3 3 1 3 3 1 1 3 3 2

2 2
1 3 3 3 1 0 3 3 2

1/ 2 1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2 1 / 2

1 / 2

x y x x d x x d x x d x x w d

x x w d x x w d w x y x x d

x x d x x d x x w d x x w d

x x w d x y w x y

   

   

   

  

(5)

2 2 2 2 2
2 1 0 1 0 2 0 3 0 3 1

2 2 2 2 2 2
0 3 2 0 3 3 0 3 3 1 3 2

2 2 2 2 2 2 2
3 3 3 3 1 3 3 2 3 3 3

3 0 1 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

x y x d x d x d x w d

x w d x w d x y x d x d

x d x w d x w d x w d

x y x y

    

    

   

 
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(6)

2 2 2 2 2 2 2 2 2 2
3 1 3 2 0 3 3 1 3 3 3 1 2 3

2 2 2 4 2 4 2 4
3 2 3 3 3 1 3 3 3 2 3 3 3 1 2 3

2 2 2 4 2 4 2 2
0 1 3 3 0 1 3 3 0 2 3 3 0 1 2 3

2 2 2 4 2 2
0 2 3 3 0 1 2 3 1 3 1 2 2 3 1 2

2
3 3 1

1/ 2 1 / 2 1 / 2

1 / 2 1 / 2

1 / 2

w y w y y y x d d w x d d w

x d d w x d d w x d d w x d d w

x d d w x d d w x d d w x d d w

x d d w x d d w d w x y d w x y

d w x

     

   

   

   

 2 2 2 2 2 4
2 1 3 2 1 2 3 2 1 3 3 2 1 3 2 3

2 2 4 2 2 2 2 2 4 2
3 3 3 3 3 3 3 1 3 3 1 2

2 2 2 2 2 2 2 2
3 1 3 3 1 3 3 2 3 3 2 3

2 2 4 2 2 4 2 2 2 2 2 4
0 2 3 0 3 3 0 3 3 0 1 3

1/ 4

1 / 4 1 / 2 1 / 4 1 / 2

1 / 2 1 / 2 1 / 2 1 / 2

1 / 4 1 / 4 1 / 2 1 / 4

1 / 2

y d w x y d w x y d w x y x d w

x d w x d w x d w x d d

x d d x d w x d w x d d

x d w x d w x d w x d w

x

   

   

   

   

 2 2 2 2 2 2 2 2
0 1 2 0 1 3 0 1 3 0 2 3

2
0 2 3 1 1 2 2 1 2 3 1 2 1 2 1 2 2 1

2 2 2 2 2 2 2 2
3 2 1 3 1 3 2 3 3 0 1

2 2 2 2
0 2 0 3

1/ 2 1 / 2 1 / 2

1 / 2

1 / 4 1 / 4 1 / 4 1 / 4

1 / 4 1 / 4

d d x d d x d w x d w

x d d d x y d x y d x y d x y d x y

d x y x d x d x d x d

x d x d

  

     

    

 

 

R̀R̀R̀R d): 

 

The axes of the first three R joints are parallel, the axes of the 

fourth and third R joints intersect with each other. 

 α1=0, d1=0,    α2=0, d2=0,  

 a3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

3 0 3 3 1 2w x w x x x     

(3)

2 2
3 3 0 1 3 0 1 2 3 3 3

2 2
2 3 3 2 0 3 0 2 3 3 1 1 3

1/ 2 1/ 2 1/ 2

1/ 2

d w x x d x x x x w d

x x d x y w x y w x y x y

 

    
 

(4)

2 2 2
3 0 1 0 2 3 3 0 2 3 3 3 2

2
1 3 3 3 1 3 3 1 0 2 3

1/ 2 1/ 2

1/ 2 1/ 2

w x y x x w d x x d w x y

x x w d x x d x y x y

   

   
 

(5)

2 2 2
0 3 2 1 3 0 1 2 3 3 3 3 3

2 2 2
0 3 3 0 3

1/ 2 1/ 2

1/ 2 1/ 2

x y x y x y x y x w d x d

x w d x d

    

 
 

(6)

2 2 2 2 2 2 2 2 2
0 3 1 3 2 3 3 3 1 2 0 3

2 2 4 2 2 2 2 2 2 2 4
0 3 3 0 3 3 3 3 3 3 3

2 2 2 2
3 3 3 3 3 2 1 3 2 1 3 1 2

1/ 4

1/ 4 1/ 2 1/ 4 1/ 4

1/ 2

y w y w y y d w x y x d

x d w x d w x d x d w

x d w d w x y d x y d x y

    

   

   

 

R̀R̀R̀R e): The axes of the first three R joints are parallel, the axes of the 

fourth and third R joints intersect with each other. 

α1=0, d1=0,    α2=0, and a3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

3 0 3 3 1 2w x w x x x     



69 

 

(3)

2 2 2
3 0 2 2 0 3 3 1 1 3 2 3 0 1

2 2
2 0 1 3 0 1 2 3 3 2 2 3 3 3

2
2 3 2 2 3 3 3 3 0 1

1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2

w x y x y w x y x y d w x x

d x x d x x x x w d x x w d

x x d x x d d w x x

   

   

  

(4)

2 2
1 0 2 3 3 3 2 3 0 1 1 3 2 1 3 3

2 2
1 3 3 2 1 3 3 3 0 2 2 0 2 3

2 2
0 2 3 2 0 2 3 3

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

x y x y w x y w x y x x d x x d

x x w d x x w d x x d x x d

x x w d x x w d

     

   

 

(5)

2 2
3 0 0 3 2 1 1 2 0 2 0 3

2 2 2 2 2 2
0 3 2 0 3 3 3 2 3 3

2 2 2 2
3 3 2 3 3 3

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

x y x y x y x y x d x d

x w d x w d x d x d

x w d x w d

     

   

 

 

(6)

2 2 2 2 2 2 2 2 2
0 3 0 2 3 0 2 3 0 3 3

2 2 4 2 2 4 2 2 2 2
0 2 3 0 3 3 3 2 3 3 2 3

2 2 2 2 2 4 2 2 4
3 3 3 3 2 3 3 3 3 2 2 1

2 2 2 2 2 2
3 2 1 2 1 2 3 1 2 3 2 3 1 0 3

2 2
0 2

1/ 2 1 / 2 1 / 2

1 / 4 1 / 4 1 / 2 1 / 2

1 / 2 1 / 4 1 / 4

1 / 4

1 / 4 1 / 4

y y x d d x d w x d w

x d w x d w x d d x d w

x d w x d w x d w d x y

d x y d x y d x y w y w y x d

x d x

   

   

   

     

  2 2 2 2 2 2
3 3 3 2 0 2 3 3

2 4 2 2 2 4 2
0 2 3 3 3 2 3 3 3 2 3 3 2 3 2 1

2 2 2
3 3 2 1 2 3 1 2 3 3 1 2

1/ 4

1 / 2 1 / 2

d x d x d d w

x d d w x d d w x d d w d w x y

d w x y d w x y d w x y

 

   

  

 

2 
PRRR: 

 

The axes of the last three R joints are parallel. 

α1= π/2, a1=0,     α2= 0, d2=0, 

α3= 0, d3=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

1 10 3 1 2w x w x x x     

(3)
2 2 2

1 1 1

2 2 2
1 1 1

0 3 1 2 3 0 2 1 1/ 2 0 1/ 2 0

1/ 2 3 1/ 2 3

x y x y x y x y x d x w d

x d x w d

    

 
 

(4)
2 2

1 1 1

2 2
1 1 1 1 1

3 1 0 2 1 3 2 0 1/ 2 2 3

1/ 2 2 3 1/ 2 0 1 1/ 2 0 1

w x y w x y x y x y x x d

x x w d x x d w d x x

   

  
 

(5)
2 2

1 1 1 1

2 2
1 1 1 1

2 3 3 2 1/ 2 1 3 1/ 2 1 3

0 1 1 0 1/ 2 0 2 1/ 2 0 2

x y w x y x x w d x x d

w x y x y x x d x x w d

  

   
 

(6)

2 2 4 2 2 2 2 2
1 1 1 1 1

2 2 4 2 2 2 2 2
1 1 1 1 1

2 2
1 1 1 1 1

2 2 2 2 2 2
1 1 1

1/ 4 3 1/ 2 3 1/ 4 3

1/ 4 0 1/ 2 0 1/ 4 0

2 1 2 1 1 2

1 2 0 3 1 2

x d w x d w x d

x d w x d w x d

x y d w x y d x y d w

x y d y y w y w y

  

  

  

    
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Table 3.5 The constraint equations for 5J serial kinematic chains using the 

implicitization algorithm (For the constraint equations of other 5J serial kinematic 

chains, see Table A.I.4 in Appendix A.I) 

1 
R̀R̀R̀ŔŔ a): 

 

The axes of the first three R joints are parallel, the axes of the 

last two R joints are parallel. The axes of the third and fourth 

R joints are perpendicular but not in the same plane. 

α1=0, d1=0,         α2=0, a2=0,  

α3= π/2, d3=0,     α4=0, d4=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x    

R̀R̀R̀ŔŔ b): 

 

The axes of the first three R joints are parallel, the axes of the 

last two R joints are parallel. The axes of the third and fourth 

R joints are perpendicular and intersect with each other  

α1=0,                   α2=0,  

α3= π/2, a3=0,     α4=0, d4=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x    

R̀R̀R̀ŔŔ c): The axes of the first three R joints are parallel, the axes of the 

last two R joints are parallel. The axes of the third and fourth 

R joints intersect with each other 

α1=0,         α2=0,  

α3= π/3, a3=0,     α4=0, d4=0. 
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(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

3 0 1 2 3 3w x x x w x    

 

R̀R̀R̀ŔŔ d): 

 

The axes of the first three R joints are parallel, the axes of the 

last two R joints are parallel. The axes of the third and fourth 

R joints intersect with each other.  

α1=0, d1=0,         α2=0, d2=0, 

a3=0, α4=0.  

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2 2 2

3 0 1 2 3 3w x x x w x    

 

R̀R̀R̀ŔŔ e): 

 

The axes of the first three R joints are parallel, and the axes 

of the last two R joints are parallel. The axes of the third and 

fourth R joints are perpendicular and intersect with each 

other α1=0, d1=0,             α2=0, d2=0, 

α3=π/2, a3=0,          α4=0.  

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)
2 2 2 2

0 1 2 3x x x x    
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2 
PRRRR:  

 

The axes of the second and fifth R joints are parallel. The 

axes of the third and fourth R joints are parallel 

a1=0,                       α2= π/2, a2=0, d2=0, 

α3= 0, d3=0,             α4= −π/2, a4=0, d4=0. 

(1) 0 0 1 1 2 2 3 3x y x y x y x y    

(2)

2 2 2 2 2 2 2 2
3 1 1

2 2 2 2
1 1 1 3 1

2 2 2 2 2 2 2 2
3 1 3 1

3 2 1 0 1/ 4 2 1/ 4 2 0 3

3 0 1 2 2 1 1/ 4 3 1/ 4 3

1/ 4 1 1/ 4 1 1/ 4 0 1/ 4 0

y y y y x a x d d x y

d x y d x y d x y x a x d

x a x d x a x d

     

    

   

 

 

    Costraint equations for some kinematic chains using the implicitization algorithm are 

listed in above tables and it is observed that there are some relationships between the 

kinematic chains with similarly constructions: their constraint equations are the same or 

similar. In the next subsection the relationships of the chains and  equations will be 

analyzed using the linear algebraic method.  

 

3.2.3 Constraint Equations of a 5R Chain and Its Sub-Chains 

 

We take a comparison for a set of chains as shown in Fig. 3.1. It can be seen that the 3R 

chain is the subchain of the 4R chain, and the 4R chain is the subchain of the 5R chain. 

Similar situations exist among other chains.  
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Figure 3.1 A 5R chain and subchains 

 

    

There are two constraint equations for the 5R chain (Fig. 3.1(a)) represented by Eqs. 

(3.1) and (3.2) (see Table 3.5-1 a)):

 0 0 1 1 2 2 3 3 0x y x y x y x y                                         (3.1) 

 2 2 2 2

0 1 2 3 0x x x x                                            (3.2) 

    There are six constraint equations for the 4R chain (Fig. 3.1(b)) including Eqs. (3.1) 

and (3.2) and the four equations below (see Table 3.4-1 a)): 

0 1 1 0 2 3 3 2 0x y x y x y x y                                          (3.3) 

0 2 1 3 2 0 3 1 0x y x y x y x y                                          (3.4) 

0 3 1 2 2 1 3 0 0x y x y x y x y                                           (3.5) 

2 2 2 2

0 1 2 3 0y y y y                                           (3.6) 

    There are nine constraint equations for the 3R chain (Fig. 3.1(c)) including Eqs. (3.1)-

(3.5) and the four other equations shown below (see Table 3.3-1 a)): 

2 2 2 2 2

2 1

2

1 2 1 2 12 2 21

1
( )(

4
) ( ) 0aa a x x yx y x yy                            (3.7) 

   2 2 2 2 2

2 1

2

1 2 1 2 02 2 31

1
( )(

4
) ( ) 0aa a x x yx y x yy                           (3.8) 

2 3 0 1 2 1 0 3 2 0 1

2 2

1 2 32

1
( 0)

4
)( ( )x x x x a x y x y y y y ya a                          (3.9)

 

1 3 0 2 2 2 0 3 1 0 2

2 2

1 1 32

1
( 0)

4
)( ( )x x x x a x y x y y y y ya a                        (3.10)    

(a) R̀R̀R̀ŔŔ chain (b) R̀R̀R̀R chain (c) R̀R̀R chain 
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Note that the subtraction of Eq. (3.7) from Eq. (3.8) yields   

    2 2 2 2

0 1 2 3Eq 3.. Eq.8 3.7 0y y y y                             (3.11) 

which is actually Eq. (3.6), and therefore, Eq. (3.7) can be replaced by Eq. (3.6). 

 

Remarks: 

    a) Eq. (3.1) is the representation of the Study quadric, which is contained in all the 

kinematic chains.  

    b) The constraint equations of the sub 4R chain of the 5R chain are constituted by the 

constraint equations of the 5R chain and additional constraint equations.  

    c) The constraint equations of the sub 3R chain of the 4R chain are constituted by the 

constraint equations of the 4R chain and additional constraint equations. 

   d) It can be understood that the constrained manifold for the 3R chain is part of that 

for the 4R chain and the constrained manifold for the 4R chain is part of that for the 5R 

chain. 

 

3.3 Selection of Necessary Equations for Serial Kinematic Chains 

   

An n-link serial kinematic chain implies (6−n) constraint equations between the base 

and the terminal link. Therefore, one constraint equation needs to be selected for a 5J 

chain, two constraint equations for a 4J chain and three constraint equations for a 3J 

chain. Eq. (3.2) can only be chosen for the 5J chain; however, the number of constraint 

equations derived for 3J and 4J chains in Section 3.1 is larger than the number of 

constraint equations needed. The problem is how to choose the constraint equations for 

the 4J and 3J chains, it is not possible that any two equations can be selected for the 4J 

aerial kinematic chain or any three equations can be selected for the 3J serial kinematic 

chain as stated in [119]. This is still an open issue deserving further investigation using 

an appropriate analytical method. In the following subsection, the analysis of the 

equations of the 3R and 4R chains (Figs. 3.1 (a) and (b)) will be undertaken as examples 

to show how to select appropriate equations for serial kinematic chains. 

 

3.3.1 Choosing Equations for the 4R Chain 

 

There are six equations of the 4R chain which are not relevant to its design parameters, 

the following analysis to determine the relationship among its equations is completed 

and two equations will be chosen with which to carry out further computation. 
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1) Relationship I among the constraint equations  

    Equations (3.1)-(3.6) are represented as f0, f1, f2, f3, g, h as follows: 

0 0 0 1 1 2 2 3 3f x y x y x y x y     

1 0 1 1 0 2 3 3 2f x y x y x y x y      

2 0 2 1 3 2 0 3 1f x y x y x y x y     

3 0 3 1 2 2 1 3 0f x y x y x y x y                                          (3.12) 

2 2 2 2

0 1 2 3g x x x x     

2 2 2 2

0 1 2 3h y y y y     

    Let 

0 1 2

1 0 3

2 3 0

y y y

M y y y

y y y

 
 

   
 
 

, 

Rewrite f0, f1, f2 in Eq. (3.12) as  

0 3 0

1 3 2 1

2 1 2

x y f

M x x y f

x y f

     
     
   
     
     
     

                                        (3.13 a) 

also 

2 2 2 2

0 0 1 2 3 0det( ) ( )M y y hy yy y                             (3.13 b) 

    Because det( )M M M I   , then multiplying M* in both sides of Eq. (3.13a) gives 

0 3 0

0 1 3 2 1

2 1 2

x y f

y h x x M y M f

x y f

 

     
     

        
     
     
     

                            (3.14) 

where 

2 2

0 3 1 0 2 3 1 3 0 2

2 2

1 0 2 3 0 2 0 3 1 2

2 2

1 3 0 2 0 3 1 2 0 1

y y y y y y y y y y

M y y y y y y y y y y

y y y y y y y y y y



     
 

     
       

                      (3.15) 
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2 2

0 3 1 0 2 3 1 3 0 2

2 2

1 0 2 3 0 2 0 3 1 2

2 2

3 3

2 2

1 1

2 2 2 3 2 2 2 2 3

0 1 0 2 0 3 1 1 2 1 3 1 2 1 3 2

2 2 3

2 3 2 3 3

1 3 0 2 0 3 1 2 0 1

2

0(

y y

M y y

y y y y y y y y y y

y y y y y y y y y y

y yy y

y y y y y y y y y y y y y y y y

y

y y y

y y y y

y

y

y

y

y y



   
   
     
   
   

   

     
 

    
      

    

  







3 3

2 2 2

1 2 3 2 2

1 1

)

y y

y y y y h y

y y

    
   

        
       

           (3.16) 

    Therefore,  

0 0 3 3 0

1 0 3 2 1

2 0 3 1 2

x y x y f

h x y x y M f

x y x y f



    
   
    
   
       

                                (3.17) 

Let p be a point of coordinate (x0, x1, x2, x3, y0, y1, y2, y3). If p is a solution of

0 1 2 0f f f   , then there are two possible results: (a) h = 0 or (b) 0 0 3 3 0x y x y   , 

1 0 3 2 0x y x y    and 2 0 3 1 0x y x y   . 

Considering the latter result, under the condition: 3 0x   yields 

0 1 2
3 0 2 0 1 0

3 3 3

, ,
x x x

y y y y y y
x x x

                              (3.18) 

    Then the substitution of these into f3 and h produces 

0 1 2
3 0 0 1 0 2 0 3 0

3 3 3

2 2 2 2 0 0
0 1 2 3

3 3

( ) ( )

( )

x x x
f x y x y x y x y

x x x

y y
x x x x g

x x

     

       

                    (3.19)           

2 2 2 202 1
0 0 0 0

3 3 3

2 2 2 2

0 1 2 32 2

3 3

2 2

0 0

( ) ( ) ( )

( )

xx x
h y y y y

x x x

x x x
x

y
g

x

y
x 

     

  

                          (3.20) 

    If either g=0 or y0=0, then f3=0 and h=0 in Eqs. (3.19) and (3.20), but when y0=0, then 

y1=y2=y3=0. All the yi values are equal to zero meaning all the study parameters are also 

equal to zero, which is impossible. If f3=0, then g=0, which leads to h=0. 

    If x3=0 then either y0=0 or x0=x1=x2=0, the second situation results in

2 2 2 2

0 1 2 3 0x x x x   , which is again impossible.  There exists one special case that is 
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x3=0 and y0=0, under this special case a system of equations in variables x0, x1, x2, y1 is 

obtained: 

0 1 1 2 2f x y x y   

1 0 1 2 3f x y x y    

2 0 2 1 3f x y x y   

3 0 3 1 2 2 1f x y x y x y                                             (3.21) 

2 2 2

0 1 2g x x x    

2 2 2

1 2 3h y y y     

    If 2 0x  , y2 and y3 can be calculated in terms of y1 from f0 and f1, i.e. 2 1 1 2/y x y x   

and 3 0 1 2/y x y x . Substituting these into Eq. (3.21) and checking for solutions: 

           01
2 0 1 1 1

2 2

0
xx

f x y x y
x x

                                                  (3.22) 

2 2 20 1
3 0 1 1 1 2 1 0 1 2 1 1

2 2

( )
x x

f x y x y x y x x x y g y
x x

                        (3.23) 

22 2 2
2 2 2 2 2 201 1 1

1 1 1 0 1 22 2 2 2

2 2 2 2

)(
xx y y

h y y y x x x g
x x x x

                        (3.24) 

    If either g=0 or y1=0, then f3=0 and h=0 in Eqs. (3.23) and (3.24), y1 cannot be zero. 

This is because if y1=0, it will be y0=y1= y2= y3=0, which is impossible. If f3=0, then g=0, 

then h=0.  

   There are two conclusions that can be obtained from the derivations mentioned above: 

    Case1: If 0 1 2 0f f f   , then  h=0; 

    Case 2: If 0 1 2 0f f f   , and if f3=0, then g=0, which leads to h=0. 

 

2) Relationship II among the constraint equations  

Since the system of equations is symmetric in xi and yi, it is possible to obtain a new 

relationship between g and f0, f1, f2 by swapping the yi and xi in Eq. (3.18). Let N be the 

coefficient matrix of y0, y1, y2 in f0, f1, f2, along with its adjoint matrix N*, gives

 
0 0 3 3 0

0 1 2 3 1

0 2 1 3 2

x y x y f

g x y x y N f

x y x y f



    
   
    
   
       

                                    (3.25) 
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    When 0 1 2 0f f f   , then there are also two possible results: (a) g=0; or (b) 

0 0 3 3 0x y x y   , 0 1 2 3 0x y x y    and 0 2 1 3 0x y x y   .  

    Similarly, two other conclusions can be obtained: 

    Case 3: If 0 1 2 0f f f   , then  g=0; 

Case 4: If 0 1 2 0f f f   , and if f3=0, then h=0, which leads to g=0. 

According to the previous analysis above, if 0 1 2 0f f f    then f3=0, h=0 and g=0 

in cases 1&3; If 0 1 2 3 0f f f f     then h=0 and g=0 in cases 1&4, 2&3 and 2&4. 

The conclusion obtained from these cases is: 

    If 0 1 2 3 0f f f f    , then h=0 and g=0. 

 

3) Further analysis of the equations to find the relationship between f1, f2 and f3. 

In this subsection, determinant knowledge will be used to judge the linear dependence 

of f1, f2, f3. The coefficients of x0, x1, x2 and x1, x2, x3 and x0, x2, x3 and x0, x1, x3 in f1, f2, 

f3 are defined as A, B, C, and D.  

1 0 3

2 3 0

3 2 1

y y y

A y y y

y y y

  
 


 
  

 

0 3 2

3 0 1

2 1 0

y y y

B y y y

y y y

 
 


 
   

 

1 3 2

2 0 1

3 1 0

y y y

C y y y

y y y

 
 


 
   

                                          (3.26) 

1 0 2

2 3 1

3 2 0

y y y

D y y y

y y y

  
 


 
  

 

2 2 2 2

3 0 1 2 3 3det( ) )( 0y y y y y y hA        

2 2 2 2

0 0 1 2 3 0det( ) ) 0(y y y y y y hB       

2 2 2 2

1 0 1 2 3 1det( ) ) 0(y y y y y y hC                               (3.27) 

2 2 2 2

2 0 1 2 3 2det( ) )( 0y y y y y y hD        

The equations in (3.27) mean that f1, f2 and f3 are linearly dependent and there are 

some linear combinations between the three equations. Up to this step, the necessary 
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equations for the 4R chain can be determined, i.e. f1, f2 (Eqs. (3.2) and (3.3)) are 

recommended for further computation. 

 

Remarks:  

The equations, f1 and f2, in addition to f0, are the recommended constraint equations 

for the 4R kinematic chain according to the linear analysis of the set of equations about 

their relationship in this subsection. 

 

3.3.2 Choosing Equations for the 3R Chain 

 

The first six equations for the 3R chain (the full equations for the 4R chain) have been 

analysed in the previous subsection, which are not related to the D-H parameters of the 

kinematic chain. Three remaining equations which are relevant to the D-H parameters 

are investigated below.  

    In the following, Eqs. (3.8)-(3.10) are represented as l1, l2, l3 and regarded as a set of 

equations in 2 2
21a a  and a2 respectively, giving:  

  

2 2

2 1 2 2 1 1

3 2 1 0 3 2 1 0

2 3 2 2 2 2

1 2 3 1 0 2 3 2 1 2 0 3 2 2 1 3 2 1 0 1 1 0 1 2 2

2 2

1 2 3 1 0 1 2 2 0 3 1 0 1 1 0 1 2 2( ) ( )

x x x y x y

x x x x x y x y

x y x x y x x y x x y x x y x x x y x x y x x x y

x y x x y x x x y x y x x y x x x y

 

  

        

      

    (3.28) 

    If f1=f2=0, then 2 3 1 0y x x y = 0 1 2 3x y x y and 2 0 3 1x y x y = 0 2 1 3( )x y x y  . Substituting 

them to the above equation gives: 

2 2

1 0 1 2 3 1 2 0 2 1 3 0 1 1 0 1 2 2

2 2 2

1 0 1 1 2 3 1 2 0 2 1 2 1 3 0 1 1 0 1 2 2

( ) ( )

0

x x y x y x x x y x y x x y x x x y

x x y x x y x x x y x x x y x x y x x x y

     

      



         (3.29) 

    The determinant of the coefficients of a2 and the constant term are  

2 2

2 2 1 1 1 2

3 2 1 0 2 3 0 1

2 2 2 2 2 2

2 2 3 1 1 2 3 2 0 1 2 1 0 1 3 1 2 3 2 0 1 0 1 1 0 2

2

2 3 2 2 1 1 1 2 2 0 3 1 2 3 2 1 0( ) ( ) ( )

x y x y y y

x y x y y y y y

x y y x y y y x y y y x y y x y y x y y x y y x y y

y y x y x y y y x y x y y x y x y

 

  

       

     

  (3.30) 

    If f1= f2=0, then 2 0 3 1 0 2 1 3( )x y x y x y x y    and 3 2 1 0 0 1 2 3x y x y x y x y   . Substituting 

these into the Eq. (30) to obtain: 
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2

2 3 2 2 1 1 1 2 0 2 1 3 2 0 1 2 3

2 2 2

2 2 3 1 1 2 3 1 2 0 2 1 2 1 3 2 0 1 2 2 3

( ) ( ) ( )

0

y y x y x y y y x y x y y x y x y

x y y x y y y y y x y y y x y y x y y x y

    

     



             (3.31) 

    Therefore, it can be concluded that equations l1 and l2 are linearly dependent. 

Similarly, l1 and l3 are also linearly dependent. Therefore, only one of the three 

equations can be chosen as the last constraint equation for the 3R chain apart from the 

two constraint equations chosen for the 4R chain. 

    It should be noted that not any three of the eight equations (apart from the equation of 

the Study quadric) can be arbitrarily selected as the constraint equations for a 3R chain 

because some equations are linearly dependent and fail on further computation. The best 

choices of the constraint equations for the 3R chain are the same two recommended 

constraint equations selected for the 4R chain and one equation from the remaining 

three equations, i.e., Eqs. (3.2), (3.3) and (3.9). 

 

3.4 Summary 

 

This chapter first investigated basic serial kinematic chains as compositional units of 

parallel mechanisms. Serial kinematic chains were classified into several types 

according to their joint numbers and joints arrangements. Then the constraint equations 

for these chains were obtained using the explicitation algorithm and implicitization 

algorithm based on the kinematic mapping method described in Chapter 2. More than 

the necessary number of constraint equations were obtained for 3J and 4J serial 

kinematic chains from the implicitizaion algerithm, therefore, the relationship among 

them were conducted by an analytical linear algebraic method and the appropriate 

constraint equations were selected accordingly. Overall, the outcomes from this chapter 

not only give an overview regarding serial kinematic chains but also lay the foundation 

for the kinematic analysis of MMRMs in the following chapters. 
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Chapter 4 – Type Synthesis of 7-Joint Single-Loop 

Reconfigurable Mechanisms with Three or More Specified 

Operation Modes 

 

Single-Loop Multi-Mode Reconfigurable Mechanisms (SLMMRMs) can have the same 

DOFs in different operation modes or have variable DOFs in different operation modes. 

Therefore they can be classified into two categories: variable-DOF SLMMRMs and 

invariable-DOF SLMMRMs. There are different concepts and methods with which to 

construct reconfigurable mechanisms. Approaches have been proposed for the synthesis 

of variable-DOF single-loop reconfigurable mechanisms [35,126] and single-DOF 

single-loop mechanisms with two specified operation modes [55]. This chapter focuses 

on the type synthesis of single-loop reconfigurable mechanisms with three or more 

specified operation modes. 

 

4.1 Methods to Construct SLMMRMs 

 

Reference [35] presented a systematic approach for the type synthesis of variable-DOF 

single-loop KMs based on displacement group theory. A new approach based on screw 

theory was proposed for the type synthesis of variable-DOF SLMMRMs [126]. 

Meanwhile, an intuitive approach also based on screw theory has been proposed [55] for 

the type synthesis of single-loop single-DOF mechanisms with two operation modes 

and several 7R multifunction linkages that in general have one DOF were generated by 

insertion of SLOMs with 4R, 5R and 6R joints [129]. Basically, the main ideas to 

construct SLMMRMs are to combine two or more SLOMs, or to insert new joint(s) into 

SLOMs. It can benefit from these methods to construct single-loop reconfigurable 

mechanisms with three or more operation modes. These methods are briefly reviewed as 

follows.  

 

4.1.1 SLMMRMs from Combining Two or More SLOMs 

 

A common method for constructing a new SLMMRM is to combine two or more 

SLOMs. The description of the method to construct single-loop mechanisms with two 

specified operation modes can be summarized into four steps [55]:  

    a) Take two original mechanisms, 1 and 2. 
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    b) Place the two mechanisms in such a way that they have nc common joints.  

    c) Disconnect the links belonging to the two original mechanisms without changing 

the location of joints and build new links to reassemble the linkage.  

    d) Select an actuated joint.  

    Using this method four classes of 6R mechanisms and fourteen classes of 7R 

mechanisms with two specified operation modes can be obtained, where it has been 

found that such mechanisms usually has three operation modes. 

 

4.1.2 SLMMRMs by Inserting Joint(s) into SLOMs   

 

New joint(s) can be added into an SLOM to form a new mechanism with mobility. 

Using the screw theory based approach, variable-DOF single-loop 7R and 8R 

SLMMRMs are proposed in [126] by inserting two joints into planar 5R and 6R 

mechanisms, respectively, as described in chapter 1. 

 

4.2 Type Synthesis of 7J Single-Loop Reconfigurable Mechanisms with Three or 

More Operation Modes 

 

Inspired by the type synthesis of variable-DOF SLMMRMs and single-DOF single-loop 

reconfigurable mechanisms with two specified operation modes, the type synthesis of 

single-loop reconfigurable mechanisms with three or more operation modes is 

undertaken in this chapter. Except for some special cases single-loop mechanisms with 

three operation modes have six joints, others have 7 joints, so called 7J single-loop 

reconfigurable mechanisms with three or more operation modes. The methods to 

construct these mechanisms are detailed below. 

 

4.2.1 7J Single-Loop Reconfigurable Mechanisms with Three or More Operation 

Modes from Combining Two SLOMs 

 

As has been shown in [110,127], the single-loop 7J mechanisms with two specified m-J 

operation modes (m<7) constructed in [55] have in fact three operation modes including 

the two specified m-J modes and the 7J mode. Therefore, the method of combining two 

SLOMs together turns out to be simple and effective for constructing 7J single-loop 

reconfigurable mechanisms with three or more operation modes. For example, in [110] 

a multi-mode 5R2P closed-loop linkage is built by combining two SLOMs: a Bennett 
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linkage and a RPRP linkage, which has been revealed to have three operation modes. 

Combining Bennett linkages and RPRP linkages, Ref. [127] also presented 7-link chains: 

7R linkage and 4R3P linkage, both of which have three operation modes. More single-

loop mechanisms with three operation modes can be constructed according to this 

method using other SLOMs, i.e. 7J single-loop reconfigurable mechanisms with three or 

more operation modes may be obtained from the following nineteen combinations, 

some of them have been identified in [55,110,127]: 

    (1) Bennett 4R – Planar 4R (with one common joint) [55] 

(2) Bennett 4R – Spherical 4R (with one common joint) [55] 

(3) Bennett 4R – Bennett 4R (with one common joint) [55] 

(4) Bennett 4R – Spatial RPRP (with one common joint) [110] 

(5) Spatial RPRP – Spatial RPRP (with one common joint) [127] 

    (6) Planar 4R – Spherical 4R (with one common joint) [55] 

    (7) Planar 4R – Spatial RPRP (with one common joint) 

    (8) Spherical 4R – Spherical 4R (with one common joint) [55] 

    (9) Paradoxic 5R – Bennett 4R (with two common joints) [55] 

    (10) Paradoxic 5R – Planar 4R (with two common joints) [55] 

    (11) Paradoxic 5R – Spherical 4R (with two common joints) [55] 

    (12) Paradoxic 5R – Spatial RPRP (with two common joints) 

    (13)  Paradoxic 5R – Paradoxic 5R (with three common joints) [55] 

    (14) Paradoxic 6R – Bennett 4R (with three common joints) [55] 

    (15) Paradoxic 6R – Planar 4R (with three common joints) [55] 

    (16) Paradoxic 6R – Spherical 4R (with three common joints) [55] 

    (17) Paradoxic 6R – Spatial RPRP (with three common joints) 

    (18)  Paradoxic 6R – Paradoxic 5R (with four common joints) [55] 

(19)  Paradoxic 6R – Paradoxic 6R (with five common joints) [55] 

The procedures for constructing 7J single-loop reconfigurable mechanisms with three 

or more operation modes are similar to those in [55]: 

    a) Take two original mechanisms, 1 and 2, and place the two mechanisms in such a 

way that they have nc common joints and n1+n2−nc =7. Here, n1 (n2) is the number of 

joints of mechanism 1 (2).  

b) Disconnect the links belonging to the two original mechanisms without changing 

the location of the joints.  
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c) Choose the connection sequence of joints and calculate the parameters for all 

adjacent joints and build new links to reconnect all the joints to construct a 7J 

mechanism. 

    d) Use CAD models and the kinematic analysis of motion curves to validate that the 

new 7J mechanism has three operation modes.  

 

4.2.2 7J Single-Loop Reconfigurable Mechanisms with Three or More Operation 

Modes by Inserting a Joint into a 6J SLOM 

 

There are two ways to select a 6J mechanism as the original SLOM to construct a 7J 

single-loop reconfigurable mechanisms with three or more operation modes: one is to 

build a 6J mechanism from combining two SLOMs so that the 6J mechanism can have 

two operation modes; another is to directly choose a 6J SLOM with one or two 

operation mode(s). Then a new joint can be inserted into this 6J mechanisms to build a 

7J mechanism. Whether these 7J mechanisms have three or more operation modes 

needs to be verified by their CAD models and kinematic analysis.  

 

1) Firstly construct a 6J mechanism with two operation modes and then insert a 

joint into the 6J mechanism to obtain a 7J single-loop reconfigurable mechanism 

with three or more operation modes 

The 6J mechanisms with two specified operation modes can be constructed according 

to the procedures described in Section 4.1.1 with seven classes of combinations： 

    1)  Bennett 4R and Planar 4R based 6R mechanism [55] 

    2)  Bennett 4R and Bennett 4R based 6R mechanism [55] 

    3) Bennett 4R and Spatial RPRP based 6R mechanism 

    4) Spatial RPRP and Planar 4R based 6R mechanism 

    5)  Paradoxic 5R and Bennett 4R based 6R mechanism [55] 

    6)  Paradoxic 5R and Spatial RPRP based 6R mechanism 

    7)  Paradoxic 5R and paradoxic 5R based 6R mechanism [55] 

    Then 7J single-loop reconfigurable mechanisms with three or more operation modes 

can be constructed by inserting one joint into the 6J mechanisms with two operation 

modes obtained above. The procedures incudes: 

    a) Place the 6J mechanism with two operation modes at the transition configuration 

where the two operation modes switch to each other and disconnect it while keeping the 

joints location unchanged.  
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    b) Add one joint between two joints trying to make the new D-H parameters as 

simple as possible. 

    c) Calculate the parameters for the new links and build them to reconnect all joints to 

construct a 7J mechanism. 

d) Use a CAD model and kinematics analysis of motion curves to verify that the 7J 

mechanism has three or more operation modes.  

 

2)  Directly insert a joint into a 6J mechanism with one or two operation mode(s) 

to obtain a 7J single-loop reconfigurable mechanism with three or more operation 

modes 

    Apart from the method mentioned above, it is possible to produce a 7J single-loop 

reconfigurable mechanisms with three or more operation modes by inserting a joint 

directly into an existing 6J SLOM. It is feasible to produce a 7J single-loop 

reconfigurable mechanism with three or more operation modes by inserting a joint into 

a 6R SLOM with one operation mode. For example, a 7J mechanism from inserting a 

joint into a Sarrus linkage will be identified having three operation modes in Chapter 5. 

In addition, considering some 6J mechanisms such as the line (plane) symmetrical 

Bricard linkages, according to [50], some of the Bricard linkages have two or even three 

operation modes due to their special parameters. Take a line and plane symmetrical 

Bricard linkage as an example (Fig. 4.2), the associated parameters satisfy the following 

conditions: 

1 3 4 6a a a a a    ,
2 5 0a a                                        (4.1) 

1 4
2


   ,

3 6
2


    ,

2 5                                   (4.2) 

1 4 0d d  ,
2 3 5 6d d d d d                                         (4.3) 

    There are four cases of operation mode for the Bricard linkage depending on its 

parameters: 

    Case I:  cot( )(0 )
2 2

d

a

 
    and tan( )( )

2 2

d

a

 
    : 

where there are two operation modes in this case: line and plane symmetrical Bricard 

linkage mode and spherical 4R mode; 

    Case 2: tan( )(0 )
2 2

d

a

 
    and cot( )( )

2 2

d

a

 
    : 
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where two operation modes exist in this case: line and plane symmetrical Bricard 

linkage mode and plane symmetrical Bricard linkage mode; 

    Case 3:  tan( ) cot( )(0 )
2 2 2

d

a

  
      

where the Bricard linkage has three operation modes in this case: line and plane 

symmetrical Bricard linkage mode, plane symmetrical Bricard linkage mode and 

spherical 4R mode; 

    Case 4: cot( ) tan( )( )
2 2 2

d

a

  
       

where the Bricard linkage has only one operation mode: line and plane symmetrical 

Bricard linkage mode. 

In above cases 1 and 2 this Bricard linkage has two operation modes and in case 3 it 

has three. Therefore, it is possible to add one R joint into it in case 1, 2, and 3 to form a 

7J single-loop reconfigurable mechanism with three or more operation modes.  

Other 6J SLOMs can also be considered as the foundation from which to construct 7J 

single-loop reconfigurable mechanisms with three or more operation modes. However, 

how to and where to place the added R joint on a 6J mechanisms to form a new non-

overconstrained 7J single-loop reconfigurable mechanisms with three or more operation 

modes is still an open issue. Their operation modes need to be verified by their CAD 

models and kinematic analysis.  

 

Figure 4.2 Line and plane symmetrical Bricard linkage 
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Three methods are proposed here for the type synthesis of 7J single-loop 

reconfigurable mechanisms with three or more operation modes. The first method have 

been illustrated in papers [110, 127]. The third method will demonstrated in detail in the 

following two chapters. In the next subsection, examples of 7J single-loop 

reconfigurable mechanisms with three or more operation modes from the second 

method will be shown.  

 

4.3 Examples of 7J Single-Loop Reconfigurable Mechanisms with Three or More 

Operation Modes 

 

In this subsection, 6R mechanisms with two operation modes will be first constructed, 

followed by inserting an R joint into them to obtain 7R single-loop reconfigurable 

mechanisms with three or more operation modes, illustrating the effectiveness of the 

second method presented. According to [55], several mechanisms based on two 

compositional mechanisms can be constructed due to different connection order of their 

joints. An attempt will be made to construct two 6R mechanisms based on two Bennett 

linkages as well as their corresponding 7R single-loop reconfigurable mechanisms with 

three or more operation modes and to identify the difference between them. 

 

4.3.1 The 6R Mechanism I and 7R Mechanism I Based on Two Bennett Linkages  

 

A 6R mechanism is initially constructed using two Bennett linkages with the same 

Bennett ratio (Eqs. (4.6) and (4.9)) as shown in Fig. 4.3. The parameters relating to the 

two original Bennett linkages are listed as below: 

    Bennett linkage I: 

11 13 200a a  , 
12 14 400a a                                                  (4.4) 

11 13 30    , 
12 14 90                                                    (4.5) 

11 12

11 12

sin sin 1

400a a

 
                                                      (4.6) 

    Bennett linkage II: 

21 23 200a a  , 
22 24 320a a                                                  (4.7) 

21 23 30    , 
22 24 53.1301                                             (4.8) 

21 22

21 22

sin sin 1

400a a

 
                                                    (4.9) 
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Figure 4.3 Two original Bennett linkages 

 

1) The 6R mechanism I combined using the two Bennett linkages 

    In order to build a 6R mechanism, two common R joints have to be put together with 

a common link. Here, the two Bennett linkages are arranged as follows (Fig.4.4): 

    a) Common joints are R1
1 and R2

1 as well as R1
2 and R2

2 which means the links 1 of 

both Bennett linkages are totally coincident. 

    b) The angle between link 1 and link 4 of both Bennett linkages is 90 degrees. 

    c) The reconnected sequence is: R1
1 (R

2
1) - R

1
2 (R

2
2) - R

2
3 - R

1
3 - R

1
4 - R

2
4.  

 

Figure 4.4 Two original Bennett linkages combined with two common R joints 
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    Therefore, there will be two new links needing to be rebuilt, i.e. the link between R3 

and R4 and the link between R5 and R6. The parameters for the new links of the 6R 

mechanism I need to be calculated initially based on known conditions.  

Figure 4.5 Calculating the D-H parameters for the 6R mechanism I 

 

    The given conditions (Fig. 4.5) are:  

AO = 320, CO =400                                                         (4.10) 

θ11= θ21 =90°, β = 90°−53.1301° = 26.8699°
                                 (4.11) 

    Firstly, we calculate the parameters for the new link between R3 and R4. 

    a) Calculate the angle α3 between the skew lines (axes of R3 and R4). 

    In a Bennett linkage,  

2 1
1 2

2 1

1
sin ( )

2tan tan
12 2

sin ( )
2

 
 

 







                                      (4.12) 

where, θ11=θ21=90°, such that 11 21tan tan 1
2 2

 
  , then 

12 11
12

12 11

1 1
sin ( ) sin (90 30 )

2 2tan
1 12

sin ( ) sin (90 30 )
2 2

 


 

  

 

  

                             (4.13) 

and 

22 21
22

22 21

1 1
sin ( ) sin (53.1301 30 )

2 2tan
1 12

sin ( ) sin (53.1301 30 )
2 2

 


 

  

 

  

                           (4.14) 
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leading to 

12 120   , 
22 146.3736                                            (4.15) 

therefore 

 
22 12 26.3736                                         (4.16) 

   Since 

sinAB AO   , sinBF AB   , cosAF AB                      (4.17) 

tanIF AF   , 
cos

AF
AI


                                           (4.18) 

2 2 2BI BF IF                                                        (4.19) 

2 2 2

3cos
2

AB AI BI

AB AI


 


 
                                              (4.20)  

2 2 2

3 arccos( ) 44.2146
2

AB AI BI

AB AI


 
  

 
                                   (4.21) 

    b) Calculate the length of the common perpendicular (GH) between the skew lines, 

which is the distance between two axes of R3 and R4, a3. 

tanCD CO                                                            (4.22) 

cos

CO
AD AO


                                                          (4.23) 

sinAE AD                                                             (4.24) 

0CD i CD j                                                             (4.25) 

tanAB AB i AB j                                                      (4.26) 

tan tan
cos

AB
AM AB i AB j k 


                                (4.27) 

    Assuming n [x, y, z] is the common normal of lines AM and CD, therefore 

0

0

n AM

n CD

  



 


                                                          (4.28) 

    The expressions in Eq. (4.18) can be exploded as 

tan tan 0
cos

0

AB
AB x AB y z

CD y

 



        

  

                            (4.29) 

    Therefore, vector n can be obtained as 

tan
[ ,0,1]
sin

n



                                                      (4.30) 
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    The distance of two skew lines can be further obtained as 

3

AD n
a

n


                                                              (4.31 a) 

where ( )AD AE i CD AB j     . 

   Equation (4.31 a) can be re-written as 

3

2

tan

sin 97.4894
tan

( ) 1
sin

AE

a











 



                                        (4.31 b) 

    c) Calculate the length of AG, d3, which is the offset of x3 to x4. 

    There is a condition 

KH AE                                                                   (4.32) 

so 

2 2KG KH GH                                                          (4.33) 

    Then 

 3 82.8032
sin

KG
d AG


                                               (4.34) 

    d) The length of CH, d4, which is the offset of x4 with regard to x5, can be obtained by 

3cosAK AG                                                          (4.35) 

then 

4 82.8032d CH BK AB AK                                          (4.36) 

    We can calculate the parameters for the new link between R5 and R6.  Link 4 is 

formed by the two coincident Bennett linkages according to the conditions for building 

the new 6R mechanism. Therefore, the associated parameters can be produced by 

5 14 24 90 53.1301 26.8699                                      (4.37) 

6 24 53.1301                                                          (4.38) 

5 14 24 80a a a                                                          (4.39) 

5 0d                                                                  (4.40) 

Finally, the new links connecting R3 and R4, R5 and R6 are able to be built according 

to the parameters obtained above, so that all the R joints are reconnected to form the 6R 

mechanism I as shown in Fig. 4.6 with its parameters in Table 4.1. The re-built 

coordinate frames for it are shown in Fig. 4.7.  
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Figure 4.6 Construction of the 6R mechanism I using new links 

 

 

Figure 4.7 Building coordinate frames for 6R mechanism I 

 

Table 4.1 Parameters for 6R mechanism I  

 ai di 𝛼i (deg) 

1 200.00 0.00 30.00 

2 320.00 0.00 53.13 

3 97.49 −82.80 44.21 

4 200.00 −82.80 30.00 

5 80.00 0.00 26.87 

6 320.00 0.00 53.13 

 

    The 6R mechanism I will be operated with two operation modes: the Bennett linkage 

mode I (Fig. 4.8(a)) and the Bennett linkage mode II (Fig. 4.8(b)) which are verified by 

CAD models. In the Bennett linkage mode I, joints R1, R2, R4, and R5 are active and 

joints R3 and R6 are locked automatically. In the Bennett linkage mode II, joints R1, R2, 

R3, and R6 are active and joints R4 and R5 are locked automatically. The two operation 

modes can be transformed into each other at the configuration where the new 6R 

mechanism I was first reconnected.   
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Figure 4.8 Two operation modes of the 6R mechanism I 

 

2) The 7R mechanism I constructed by inserting one joint into 6R mechanism I 

    Since the newly built 6R mechanism I is still an overconstrained mechanism it is 

possible to add one more R joint into it to turn the mechanism into a non-

overconstrained mechanism. Keeping the 6R mechanism at the configuration when it 

was first built, one R joint can be added between R2 and R3 such that the new links 2 

and 3 stay on the straight line where the original link 2 stays and the axis of R3 is 

parallel to the axis of R2 as shown in Fig. 4.9. The parameters for the non-

overconstrained 7R mechanism I are shown in Table 4.2. 
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Figure 4.9 Building 7R mechanism I based on 6R mechanism I 

 

Table 4.2 Parameters for the novel 7R mechanism I 

 ai di 𝛼i (deg) 

1 200.00 0.00 30.00 

2 150.00 0.00 0.00 

3 170.00 0.00 53.13 

4 97.49 −82.80 44.21 

5 200.00 −82.80 30.00 

6 80.00 0.00 26.87 

7 320.00 0.00 53.13 

 

    The novel 7R mechanism I is not an overconstrained mechanism anymore. It will 

keep the two operation modes belonging to the 6R mechanism I, and it can have another 

operation mode with all the seven R joints being active, i.e. the 7R mode which can be 

verified by the CAD model as shown in Fig. 4.10. 
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Figure 4.10 Three operation modes of 7R mechanism I 

 

4.3.2 The 6R Mechanism II and 7R Mechanism II Based on the Two Same Bennett 

Linkages  

 

1) 6R mechanism II combined by the two same Bennett linkages 

    The two same Bennett linkages are placed with the same common link and joints 

being together but in different configurations (Fig. 4.11(a)). Also, they will be 

reconnected in a different R joint subsequence: R1
1 (R

2
1) - R

1
2 (R

2
2) - R

1
3 - R

1
4 - R

2
3 - 

R2
4 as shown in Fig. 4.11(b). In this subsequence, only one link between R1

4 and R2
3 
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needs to be built to form the 6R mechanism (Fig. 4.12) called 6R mechanism II. The 

parameters for 6R mechanism II are calculated and shown in Table 4.3. 

 

Figure 4.11 Reconnection of the two Bennett linkages in another way 

 

Figure 4.12 Building coordinate frames for the 6R mechanism II 

 

Table 4.3 Parameters for the novel 6R mechanism II 

 ai di 𝛼i (deg) 

1 200.00 0.00 30.00 

2 400.00 0.00 90.00 

3 200.00 0.00 30.00 

4 157.74 −159.34 42.22 

5 200.00 128.49 30.00 

6 320.00 0.00 53.13 

    

    As anticipated the 6R mechanism II has two operation modes: Bennett linkage mode 

I and Bennett linkage mode II as shown in Fig. 4.13. In Bennett linkage mode I (Fig. 

4.13(a)), joints R1, R2, R5 and R6 are active and joints R3 and R4 are locked 

automatically. In the Bennett linkage mode II (Fig. 4.13(b)) joints R1, R2, R3, R4 are 
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active and joints R5 and R6 are locked automatically. The two operation modes can be 

transformed into each other at the configuration where the new 6R mechanism II was 

first reconnected.   

 

Figure 4.13 Two operation modes for the 6R mechanism II 

 

2) The 7R mechanism II constructed by inserting one joint into 6R mechanism II 

    On the basis of 6R mechanism II, one R joint can be inserted into it to form the 7R 

mechanism II as shown in Fig. 4.14 using the parameters in Table 4.4. There will be 

three operation modes for 7R mechanism II as illustrated in Fig. 4.15.  
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Figure 4.14 Building 7R mechanism based on 6R mechanism II 

 

Table 4.4 Parameters for the novel 7R mechanism II 

 ai di 𝛼i (deg) 

1 200.00 0.00 30.00 

2 200.00 0.00 45.00 

3 200.00 0.00 45.00 

4 200.00 0.00 30.00 

5 157.74 −159.34 42.22 

6 200.00 128.49 30.00 

7 320.00 0.00 53.13 

 

Based on the methods mentioned above, two 6R mechanisms I and II, are built in 

different R joint reconnection sequence where the R joint sequences is unchanged in its 

original Bennett linkage, and then two corresponding 7R mechanisms I and II are 

generated based on the 6R mechanisms. The two 6R mechanisms have the two same 

Bennett linkage modes even though their D-H parameters are different. The two novel 

7R mechanisms keep the two Bennett linkage operation modes but have a third 7R 

operation mode. However, the two new 7R operation modes belonging to the two 7R 

mechanisms are different because all seven R joints are active in the 7R modes whilst 

their D-H parameters are different. 
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Figure 4.15 Three operation modes of the new 7R mechanism II 

 

 Remarks:  

    6J mechanisms can be constructed by combining two SLOMs in different joint 

sequences, and the group of 6J mechanisms constructed by the same two SLOMs in any 

sequences of the joints or in any of initially combining configurations have the same 

two operation modes as the original SLOMs. The 7J mechanisms constructed by adding 

a joint to the group of 6J mechanisms have a different third 7J operation mode. 

Moreover, different 7J single-loop reconfigurable mechanisms with three or more 
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operation modes can also be generated by adding the joint into different places of the 6J 

mechanisms. 

 

4.4 Summary 

 

The aim of this chapter was to find methods to construct 7J single-loop reconfigurable 

mechanisms with three or more operation modes. Firstly, various approaches for the 

type synthesis of SLMMRMs including variable-DOF SLMMRMs and same-DOF 

SLMMRMs were briefly reviewed. These methods were developed in Section 4.2 to 

construct novel 7J single-loop reconfigurable mechanisms with three or more operation 

modes: new classes of these mechanisms can be constructed based on the first method; 

the second method is to construct 7J mechanisms by adding one joint into 6J 

reconfigurable mechanisms from a combination of two SLOMs and the third is to 

construct 7J mechanisms by inserting a new joint into a 6J SLOM which has one or 

more operation modes. The procedures to construct new 7R mechanisms applying the 

second method were illustrated, including the arrangement of the joints, the calculation 

of the new parameters, reconnection of the joints and operation modes verification using 

CAD models. The results have shown that the method is effective for generating 7J 

single-loop reconfigurable mechanisms with three or more operation modes and a large 

number of novel 7J mechanisms of this type can be obtained according to this method. 

Examples of 7J single-loop reconfigurable mechanisms with three or more operation 

modes constructed using the third method will be presented and analysed in Chapters 5 

and 6. 
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Chapter 5 ‒ Design and Kinematic Analysis of a New 7R 

Single-Loop Mechanism with Three Specified Operation 

Modes Based on Sarrus Linkage 

 

Based on the method to construct 7J single-loop reconfigurable mechanisms with three 

or more operation modes proposed in Chapter 4, this chapter presents a novel 7R   

composed of seven R joints, by adding a revolute joint to the overconstrained Sarrus 

linkage. The SLMMRM can switch from one operation mode to another without 

disconnection and reassembly and is a non-overconstrained mechanism. The kinematic 

mapping based explicitation algorithm and both numerical and algebraic methods are 

adopted to deal with the kinematic analysis of the 7R SLMMRM. The results show that 

the 7R SLMMRM has three operation modes: a translational mode and two 1-DOF 

planar modes. The transition configurations among the three modes are also identified. 

 

5.1 Description of a 1-DOF 7R SLMMRM 

 

The Sarrus linkage (Fig. 5.1(a)), which is composed of two groups of three R joints with 

parallel joint axes (rotational axes), is used to control the 1-DOF translation of the 

moving platform along a straight line with respect to the base. Since the Sarrus linkage 

is an overconstrained mechanism, one additional R joint can be inserted between the 

two joints of a link to obtain a new 1-DOF 7R single-loop mechanism (Fig. 5.1(b)). The 

advantages of adding one R joint to the Sarrus linkage are as follows: (a) it allows a 

non-overconstrained mechanism to be obtained from an overconstrained mechanism; (b) 

the Sarrus linkage has only one operation mode to complete one kind of task, but the 

new 7R single-loop mechanism has at least two operation modes with the possibility of 

fulfilling different kind of tasks on a sole mechanism; (c) the new 7R single-loop 

mechanism can switch from one mode to another without disassembly and without 

adding another actuator. In the translational operation mode (Sarrus mode), it works as a 

Sarrus linkage in which the moving platform translates along a straight line (Fig. 5.1(b)). 

In the 1-DOF planar operation mode, the moving platform undergoes a 1-DOF general 

planar motion (Fig. 5.1(c)). Therefore, the above 7R mechanism is a 7R SLMMRM 

which can switch from one operation mode to another one by using a break in the 

transition configuration. 
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In this 7R SLMMRM (Fig. 5.1(c)), link 7 is the base and link 4 is the moving 

platform. Links 4 and 7 are identical，and the link lengths and the axes of the R joints 

of the 7R SLMMRM satisfy the following conditions: 

R1//R3//R4┴R2                         (5.1) 

R5//R6//R7                            (5.2) 

a1+a2=a3=a5=a6                        (5.3) 

where Ri (i=1,2, …,7) is the unit vector along the axis of joint Ri and ai is the link length 

as indicated in Fig. 5.1(c). 

 

Figure 5.1 Construction of the 7R SLMMRM 

  Whether the 7R SLMMRM has additional operational modes, except the two 

operation modes already known, is unclear from only the mechanism. In the next 

section, the kinematic analysis of the 7R SLMMRM will be discussed in order to 

identify all of its operation modes as well as its transition configurations that enable it to 

switch from one operation mode to another.  

 

5.2 Kinematic Analysis and Numerical Example for the 7R SLMMRM 

 

Using the explicitation approach for the inverse kinematics for the general 6R 

mechanism, a kinematic analysis of the 7R SLMMRM can be performed such that the 

operation modes and transition configurations of the mechanism can be identified.  

R5 

a5 

R6 

a6 

a7 R1 

a1 

R2 

a2 

R3 

a3 

R4 

R7 

(a) Sarrus linkage  (b)  7R SLMMRM in 

translation mode (equivalent 

to the Sarrus linkage) 

(c)  7R SLMMRM in    

1-DOF planar mode 

R1 
R1 

R2 

R2 R3 

R3 R4 R4 R5 

R5 R6 

R6 
R7 

Moving platform 
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5.2.1 D-H Parameters for the Mechanism 

 

The 7R SLMMRM can be regarded as a 6R serial mechanism with link 6 as the end-

effector (EE), the coordinate frame on which is set as Fig. 5.2 (a). Its z-axis (zEE) 

coincides with the axis of joint R7 and its x-axis aligns with the common perpendicular 

to the z6-axis and the zEE-axis. The angle (θ) between the xEE-axis and the vertical line is 

defined as the input angle of the 7R SLMMRM (Fig. 5.2 (b)). The D-H parameters of 

the 7R SLMMRM are shown in Table 5.1. 

Table 5.1 D-H parameters for the 7R SLMMRM  

i ai di αi θi 

1 0.80 0 90
°
 θ1 

2 3.00 0 −90
°
 θ2 

3 3.80 0 0
°
 θ3 

4 0 1.47 −120
°
 θ4 

5 3.80 1.47 0
°
 θ5 

6 3.80 −1.47 0
°
 θ6 

7 0 −1.47 120
°
 θ7 

 

    

Figure 5.2 Coordinate frame system for the 7R SLMMRM 

 

(b) The frame representation 

for Σ1 and ΣEE 

 

ΣEE 
Σ1 

xEE 

yEE 
y1 

θ 

z1 

x1 

Σ1 

ΣEE 

60ᶱ 
z1 

y1 

zEE yEE 

60ᶱ 
60ᶱ 

Top view: 

Side view: 

zEE 

ΣEE 

Σ6 

Σ5 

Σ4 

Σ3 

Σ2 

Σ1 

x3 

z3 
y3 

(a) Coordinate frame system 

for the 7RSLMMRM 

Σ7 
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  In addition, the angle between the axes of joints R1 and R7 is 60
°
, θ is specified as −45

°
 

and a7 is −1.47 (note: throughout this chapter, all rotational angles are defined to be 

positive if the rotation is in a clockwise direction about the z-axis). Therefore, the pose 

of end-effector ΣEE with respect to Σ1 (A) can be obtained (Fig. 5.2(b)), which is: 

𝐴 = [
             

1       0
0                 0.7071067810

 0                  0
0.7071067810                           0

− 1.273057344    0.3535533905
0.7350000000  −0.6123724358

 −0.3535533905 −0.8660254040
0.6123724358 −0.50000000000

]    

(5.4)

 

5.2.2 Solutions for the Kinematic Analysis 

 

The explicitation algorithm for the inverse kinematics analysis of a general 6R serial 

manipulator presented in [116-118]
 
is mainly used to undertake the analysis of the 7R 

SLMMRM. The 6R serial mechanism associated with the 1-DOF 7R SLMMRM is 

further decomposed into two 3R chains, the left 3R one (1-2-3) with end-effector frame 

ΣL and the right 3R one (6-5-4) with end effector frame ΣR (Fig. 5.3). The pose of the 

frame ΣL with respect to Σ1 (TL) and the pose of the frame ΣR with respect to Σ1 (TR) can 

be obtained based on Eqs. (2.36) and (2.41) as follows: 

         1 1 2 2 3 3LT M G M G M G                            (5.5) 

1 1 1 1 1 1

6 6 5 5 4 4RT A G M G M G M                             (5.6) 

  In the mechanism, the frames ΣL and ΣR have to coincide which means that there is 

intersection among its SML, SMR and S6
2
. The equations for the SMs can be derived 

from Eqs. (5.5) and (5.6). Three sets of four equations can be obtained for the left or the 

right 3R chain while each set can be represented by a set of four bilinear equations in 

the eight homogenous study parameters, which is denoted by z0, z1, …, z7, and one 

additional parameter corresponding to the tangent half of one out of the three joint 

angles.  
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Figure 5.3 Decomposition of the 6R serial mechanism into two 3R chains 

 

   One of the three sets of four equations for the left 3R chain and one of the three sets 

of four equations for the right 3R chain is selected according to the situations before 

performing further calculations. Here, SM3 is selected which refers to four equations 

T(v3) (tangent half of θ3) for the left 3R chain since the axes of joints R1 and R3 are 

parallel in the translational mode. For the right 3R chain, SM5 is selected with four 

equations in T(𝑣̅5) (𝑣̅5 is minus the tangent half of θ5) because the axes of joints R4 and 

R5 intersect and the axes of joints R5 and R6 are parallel. Then the parameters of the 

assistant 6R chain (Table 5.1) can be substituted into the set of equations in T(v3) shown 

in Table 3.1. The set of equations T(𝑣̅5) can be obtained from T(v2) by making some 

changes to the parameters for the right 3R chain. Eight equations for the 6R serial 

mechanism Eq. (5.7-5.14) are obtained as follows: 

3 0 1 2 3 4 5 6 3 7 3   1 :  30.4 24.0 6.4 8.0 8.0 8.0 8.0 0vh z z z v z z z v z v             (5.7)   

        (5.8)         

3 1 3 2 3 4 3 5 3 6 73 :  6.4 24.0 30.4 8.0 8.0 8.0 8.0 0vh z v z z z v z v z z              (5.9)       

    (5.10) 

ΣEE 

Σ6 

Σ5 

ΣR 
ΣL 

Σ3 

Σ2 

Σ1 
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 

 

 

 
 

5 0 5

1 5

2 5

9 9

3 5

4 5

5 : 2.72626795828513 6.58179306856969

4.12012622455083 4.85463523903963

8.65463523574647 5.69413776088330

1.37687417023358 4.47457271235407

1.24264068742686 3.00000000128678

vh z v

z v

z v

z v

z v

 



 

 

  

  

 

 

 

5 5

6 5

7 5

0.717438935080522 1.73205080649897

1.73205080649897 0.717438935080522

3.00000000128678 1.24264068742628 0

z v

z v

z v

 

 

  

             (5.11)                                                                                                

 

 

 

 

5 0 5

1 5

2 5

9 9

3 5

4

6 : 2.7262679415240 6.58179306736930

0.972103152392334 2.74536476831045

8.65463523588648 5.69413776432743

3.07322256531961 1.01209529645985

0.414213562192757 0.99999999133379

vh z v

z v

z v

z v

z v

 

 

 

 

 

   

 

 

 

5

5 5

6 5

7 5

0.717438935213303 1.73205080788068

1.73205080788068 0.717438935213303

0.99999999133379 0.414213562192757 0

z v

z v

z v

  

 

   

           (5.12) 

 
 

 

 

5

9 9

0 5

1 5

2 5

3 5

4

7 : 1.37687550250121 4.47457315644328

8.65463523574647 5.69413776088330

4.12012622455083 4.85463523903963

2.72626795828513 6.58179306856969

3.00000000128678 1.24264068742628

vh z v

z v

z v

z v

z v

 

  

  

 

   

 

 

 

5

5 5

6 5

7 5

1.73205080649897 0.717438935080522

0.717438935080522 1.73205080649897

1.24264068742686 3.00000000128678 0

z v

z v

z v

 

  

   

           (5.13) 

 
 

 

 

5

9 9

0 5

1 5

2 5

3 5

4

8 : 3.07322167714119 1.01209551850445

8.65463523588648 5.69413776432743

0.972103152392334 2.74536476831045

2.7262679415240 6.58179306736930

0.99999999133379 0.414213562192757

vh z v

z v

z v

z v

z

  

 

  

  

  

 

 

 

5

5 5

6 5

7 5

1.73205080788068 0.717438935213303

0.717438935213303 1.73205080788068

0.414213562192757 0.99999999133379 0

v

z v

z v

z v

 

 

   

         (5.14) 

      h9: z0z4+ z1z5+ z2z6+ z3z7=0                         (5.15) 
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  Including the equation for the S6
2
 shown in Eq. (5.15), nine bilinear equations in ten 

unknowns (Eqs. (5.7)­(5.15)) are obtained. Since z0, z1, … and z7 are homogeneous, one 

of them can be normalized to 1. Solving seven of the nine equations to obtain the eight 

study parameters for z0, z1, …, z7 in v3 and 𝑣̅5 and substituting the solutions into the 

remaining two equations, two equations in v3 and 𝑣̅5 named E1 and E2 are obtained  

4 4 4 3 3 4 4 2

1 3 5 3 5 3 5 3 5

3 3 2 4 4 2 3

3 5 3 5 3 5 3 5

4 4 3 2

3 5 3 3 5 3

: 3.640783761 3.788653411 7.000053530

10.71593007 41.87086614 3.640783761 19.64341956

3.788653411 0.5952224873 10.71593007 79.84271214

E v v v v v v v v

v v v v v v v v

v v v v v v v

  

   

    2

5

3 4 3 2

3 5 5 3 3 5

3 2 2

5 3 3 5 5

3 5

10.71593007 11.40205846 3.788653411 19.64341956

23.28420332 53.83503480 10.71593007 131.7802740

3.788653411 23.28420332 24.96144960 0

v v v v v v

v v v v v

v v

   

   

   

 

 (5.16) 

8 6 8 5 7 6 8 4

2 3 5 3 5 3 5 3 5

7 6 6 8 3 7 4

3 3 5 3 5 3 5

6 5 5 6 8 2

3 5 3 5 3 5

: 3.975059020 9.917459999 4.782767392

10.89653630 7.905713714 2.187051780 10.76914366

11.58607438 1.756500002 0.1775892990 6.718456391

E v v v v v v v v

v v v v v v v

v v v v v v v

  

   

    8

3

6 4 5 5 4 6 8

3 5 3 5 3 5 3 5

7 2 6 3 5 4 4 5

3 5 3 5 3 5 3 5

3 6 8 7

3 5 3 3 5

19.63855979 3.599595703 5.541460022 0.1309074494

10.68103759 29.42980884 88.38390043 14.52156887

11.11952017 0.02663720154 8.366957525 1

v v v v v v v v

v v v v v v v v

v v v v v

   

   

    6 2

3 5

5 3 4 4 3 5 2 6

3 5 3 5 3 5 3 5

7 6 5 2 4 3

3 3 5 3 5 3 5

3 4 2 5

3 5 3 5

.744100557

11.42375341 47.03555747 27.82871185 23.16294757

1.555454321 14.97543807 65.86121591 22.54006617

85.76873039 19.01000389 19.2804

v v

v v v v v v v v

v v v v v v v

v v v v

   

   

   6 6

3 5 3

5 4 2 3 3 2 4

3 5 3 5 3 5 3 5

5 6 5 4

3 5 5 3 3 5

3 2 2 3

3 5 3 5

8017 4.289038591

39.78294461 55.12245682 45.28245200 12.06466530

42.32484385 8.715773829 4.399164900 61.91885268

206.5453764 104.7180132 8.15

v v v

v v v v v v v v

v v v v v v

v v v v



   

   

   4 5

3 5 5

4 3 2 2 3

3 3 3 3 5 3 5

4 3 2 2

5 3 3 5 3 5

3 3

5 3

3973623 17.97043737

7.841437590 127.7979408 166.3482520 40.57715498

59.39221935 2.488637296 46.57694731 151.3651980

95.64121876 8.367254171 79.64803864

v v v

v v v v v v v

v v v v v v

v v



   

   

   2

3 5 5

3 5

109.6592839

0.3550732836 0.2355598536 4.481492373 0

v v v

v v



   

 

  (5.17) 

  Using the “resultant” command in Maple to eliminate 𝑣̅5 from Eqs. (5.16) and (5.17), 

one polynomial equation of degree 56 in v3 named E can be derived as follows:
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2 4 2

3 3 3

4 2

3 3

9 10 20 9 21 8

3 3 3

22 7

6

22 6

3 3

: 1 (3.033362327 12.05533640 10.67784416)

(1.87522003 64.00268390 387.9596900)

(5.157957061 10 1.823061353 10 7.297142808 10

1.634647033 10 5.885504960 10

( )

3.15
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    
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3
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2

3

0969451 10

2.671416502 10 5.157957061 10 1.823061353 10
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3.150969451 10 2.671416502 10 6.60154501 10)
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(

9

v

v v v

v v v

v v v


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47 12 49 11 50 10
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3

8070325 10 3.778024642 10 8.52528086 10

6.145569255 10 4.007107158 10 2.109260812 10

3.306274920 10 5.471487282 10 1.795904346 10

1.709576046 10

v v v

v v v

v v v

v

    

     

     
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2.604353812 10 8.358864852 10
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v v
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   

    

  



     (5.18) 

  The solutions to (𝑣3
2 + 1)6 = 0 are v3= ± I where I is the unit imaginary number. 

The corresponding points in P
7
 lie on the exceptional generator and have to be cut out 

of the S6
2
. The solutions of the polynomial of degree10 squared are points with 

coordinate (0, 0, 0, 0, 0, 0, 0, 0) which do not lie on the S6
2
 and the solutions of 

polynomials of degree 4 are points which lie on the exceptional 3-space of the S6
2
. Then 

the polynomial of degree 16 gives the following 16 solutions: 

 

v3=[0.08366283786, 0.3610109062, 1.000000000, 6.521970015, 59.40599134, 

4.132441204×10
9
, 5.081725257×10

9
, 0.4234204659+2.169839731 I, 

−0.07511185210+1.019253419 I, −6.650597562×10
9
+3.156689159×10

8
I, 

−0.3581658035, −1.000000001, −1.507896627, −6.650597562×10
9
−3.156689159×10

8
I, 

−0.07511185210−1.019253419 I, 0.4234204659−2.169839731 I] 

(5.19)

  Substituting the solutions for v3 (Eq. (5.19)) back into E1 and E2. The common 

solutions for 𝑣̅5 with their corresponding v3 are the solutions desired. Please note only 

12 sets of solutions could be obtained whereas the remaining four solutions for v3 tend 

to be infinity, such as 5.081725257×10
9
 as θ3 approaches 180

°
. The remaining four joint 

angles for the normal 12 sets of solutions can be solved by the other sets of four 

equations for SM1, SM2, SM4 and SM6.  

  As for the above four particular configurations in which v3 tends to infinite, there is 

one set of real solutions: any value of θ1, θ2=0
°
, θ3=180

°
, θ4=θ1+180

°
 or θ4=θ1 −180

°
, 

θ5=θ=−45
°
, and θ6=180

°
. This set of solutions can be easily verified by observation as 
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shown in Fig. 5.4(i). This configuration is singular since the joint axes on the platform 

and the base coincide and the mechanism has 2-DOF. For any given θ, θ4= θ1 +180
°
 or 

θ4= θ1−180
°
 can take any value. The complex solutions associated with the remaining 

three particular configurations are omitted in this chapter. 

  Finally, 13 sets of solutions for the kinematic analysis of the single loop are obtained 

as listed in Table 5.2. 

Table 5.2 Solutions for the 7R SLMMRM (Case θ=−45
°
)

 

Solutions θ1(deg) θ2(deg) θ3(deg) θ4(deg) θ5(deg) θ6(deg) 

Solution 1 −173.94 20.73 9.57 −3.50 −155.43 −45.60 

Solution 2 135.00 0.00 90.00 −45.00 −135.00 −90.00 

Solution 3 −135.00 0.00 −90.00 45.00 −135.00 −90.00 

Solution 4 −4.58 15.74 178.07 −2.65 −70.34 −172.85 

Solution 5 −78.35 118.96 −112.90 −145.46 86.69 −119.92 

Solution 6 −154.65 73.12 39.70 −14.35 131.21 90.70 

Solution 7 −25.16 72.74 −39.41 −165.750 −41.90 90.47 

Solution 8 141.39 −94.46 162.57 158.82 156.63 −137.54 

Solution 9 
−54.49− 

109.37I 

163.88+ 

10.80I 

−106.51− 

186.81I 

−127.99+ 

77.44I 

58.79+ 

82.63I 

−100.69− 

144.39I 

Solution 10 
−54.49+ 

109.37I 

163.88− 

10.80I 

−106.51+ 

186.81I 

−127.99− 

77.44I 

58.79− 

82.63I 

−100.69+ 

144.39I 

Solution 11 
93.40+ 

63.96I 

−142.30+ 

1.68I 

167.71+ 

54.09I 

105.69+ 

9.87I 

112.78+ 

77.66I 

−156.36− 

28.62I 

Solution 12 
93.40− 

63.96I 

−142.30− 

1.68I 

167.71− 

54.10I 

105.69− 

9.87I 

112.78− 

77.66I 

−156.36+ 

28.62I 

Solution 13 Any value 0.00 180.00 

θ1 +180.00  

(or θ1 

−180.00) 

 −45.00 180.00 

Note: I is the imaginary unit 

 

5.3 CAD Model and Prototype Verification 

 

The above real solutions for the kinematic analysis of the 1-DOF 7R SLMMRM can be 

verified using its CAD model and prototype.  
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5.3.1 CAD Model Configurations for the Real Solutions 

 

The CAD configurations associated with these real solutions (Table 5.2) are shown in 

Fig. 5.4. 

 

Figure 5.4 CAD configurations corresponding to the real solutions for the 7R 

SLMMRM (Case θ=−45
°
) (continued on next page)

 

 

(a) Solution 1: θ3=9.57
° (b) Solution 2: θ3=90.00

° 

θ3 

(d) Solution 4: θ3=178.07
° 

 

(c) Solution 3: θ3=−90.00
° 
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Figure 5.4 CAD configurations corresponding to the real solutions for the 7R 

SLMMRM (Case θ=−45
°
) 

 

 

 

 

(e) Solution 5: θ3=−112.90
° (f) Solution 6: θ3=39.70

°
 

Solution 6: θ3=39.700
° 

(g) Solution 7: θ3=−39.41
° 

      (h) Solution 8: θ3=162.57
° 

(i) Solution 13: θ3=180.00
° 
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5.3.2 Building Prototype to Verify Real Solutions 

 

A physical prototype has been built to verify the real solutions obtained previously. 

Figure 5.5 illustrates the achievement of configurations of the prototype corresponding 

to the real solutions. It is noted that some configuration cannot be continuously 

generated in practice because of interference between the links, such as configurations 

(e) and (g) (Figs. 5.5(e) and 5.5(g)).  

 

 

 

Figure 5.5 Prototype configurations corresponding to the real solutions for the 7R 

SLMMRM (Case θ=−45
°
) (continued on next page)

 

 

(a) Solution 1: θ3=9.57
° (b) Solution 2: θ3=90.00

°
 

(d) Solution 4: θ3=178.07
° 

(c) Solution 3: θ3=−90.00
° 
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Figure 5.5 Prototype configurations corresponding to the real solutions for the 7R 

SLMMRM (Case θ=−45
°
)
 

 

 

(e) Solution 5: θ3=−112.90
° (f) Solution 6: θ3=39.70

°
 

Solution 6: θ3=39.700
° 

(g) Solution 7: θ3=−39.41
° 

      (h) Solution 8: θ3=162.57
°
 

(i) Solution 13: θ3=180.00
° 



114 

5.4 Operation Modes and Transition configurations 

 

As the input angle θ changes a series of solutions corresponding to different input 

angles can be obtained using the numerical method. Then by plotting 200 sets of joint 

angles against the input angles, the operation modes and transition configurations of the 

1-DOF 7R SLMMRM (Fig. 5.6) are illustrated. All the operation modes and transition 

configurations of the mechanism can be observed from the plotting of angles θ1 and θ3 

against the input angle θ. Please note that the singular configuration in which the 

moving platform and base coincide (see Figs. 5.4(i) and 5.5(i)) is discarded in this 

section.  

  Figure 5.6 shows that there are two straight lines A and B and two closed curves C 

(C0-C1-C2-C0 in Fig. 5.6(a) or C0-C1-C2-C3-C4-C0 in Fig. 5.6(b)) and D (D0-D1-D2-D3-

D4-D0) designating the operations modes. Lines A and B are associated with translation 

operation mode while the closed curves C and D are associated with two separate1-DOF 

planar operation modes: planar mode I and planar mode II. Therefore, the mechanism 

has three operation modes, not just two operation modes. This can be easily verified by 

comparing the straight lines and closed curves to their corresponding operation mode in 

Fig. 5.4. Line A corresponds to Fig. 5.4(b), Line B corresponds to Fig. 5.4(c), closed 

curve C corresponds to Fig. 5.4(a), and closed curve D corresponds to Fig. 5.4(g). The 

eight real solutions (solutions Nos.1-8 in Table 5.2) for θ3 (or θ1) under θ=−45
°
 are also 

indicated by the corresponding solution numbers, 1, 2, …, 8 with shaded background in 

Fig. 5.6. Among these eight solutions, solution No. 2, solution No. 3, solutions Nos. 1, 4 

and 6, and solutions Nos. 5, 7 and 8 fall on line A, line B, curve C and curve D, 

respectively.  

  The transition configurations between three operation modes can be analysed. By 

comparing the two plotting figures, Fig. 5.6(a) and Fig. 5.6(b), two intersecting points 

TA and TB through which these operation modes pass in both figures are observed, 

which represent the two transition configurations (Fig. 5.7). The input angles 

corresponding to the transition configurations are shown in Table 5.3. 
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Figure 5.6 Motion curves of the 7R SLMMRM 
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(a) Plot of two rotational angles: θ1 against input angle θ
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(b) Plot of two rotational angles: θ3 against input angle θ
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Table 5.3 Transition configurations 

Transition 

Configurations 

Input angle θ 

(deg) 
Modes 

TA 0
°
 

Translational mode & 1-DOF planar mode I 

(curve C) 

TB −180
°
 

Translational mode & 1-DOF planar mode II 

(curve D) 

 

 

   (a) TA: θ=0
°
         (b) TB: θ=−180

° 

Figure 5.7 Transition configurations of the 7R SLMMRM 

 

5.5 Algebraic Approach 

 

In this section, the algebraic approach proposed in [127] is applied to determine the 

operation modes and transition configurations. Apparently, compared to the numerical 

method, the algebraic approach enables the operation modes to be represented 

algebraically. 
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(a) v3 versus v     

                             

   

               (b) 1/v5 versus v   

Figure 5.8 Plots of the input-output equations using the algebraic approach (continued 

on next page) 
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(c) v3 versus 1/v 

                                     

  

 (d) v5 versus 1/v 

Figure 5.8 Plots of the input-output equations using the algebraic approach 

 

  Without specifying the input angle, the end-effector pose A and the equations for SMi 

is presented directly in θ. Therefore nine equations in v3 (tangent half of θ3), 𝑣̅5, (minus 

tangent half of θ5), v (tangent half of θ) and eight study parameters (Eqs. (5.7)­(5.15)) 

can be obtained. Two equations in v3, 𝑣̅5 and v instead of two equations in v3 and 

𝑣̅5 will be obtained after solving seven of the nine equations and substituting the study 
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parameter solutions into the remaining two equations. Using the “resultant” function in 

Maple to eliminate 𝑣̅5 (or v3), then the bivariate polynomial in v and the remaining joint 

parameter v3 (or 𝑣̅5) can be obtained. Besides some spurious factors there are three 

factors corresponding to three operation modes. For example, the input-output equation 

in v3 and v is: 

1 2 3 0Q S S S                         (5.20) 

where Q is a spurious factor. S1 is the input-output relation corresponding to the 

translational mode while S2 and S3 represent the two general planar modes, respectively 

(see the Appendix II for the detailed expressions).  

  Then the input-output relation in v3 and v (Fig. 5.8(a)) can be plotted which shows 

three operation modes along with one transition configuration. The solid curve 

corresponds to the translational mode, the dotted curve corresponds to the planar mode I 

and the dashed curve corresponds to planar mode II.  

  The numerical method is still involved in this chapter even though it is not as simple 

or effective as the algebraic approach since it indicates all of the results directly and 

clearly. The plots for the input-output angles in Fig. 5.6 show that there are two 

transition configurations: (a) the input angle 𝜃=0
°
, the revolute angles θ3=0

°
 and 

θ5=180
°
; (b) the input angle 𝜃=−180

°
, the revolute angles θ3=0

°
 and θ5=0

°
. When the 

input angle 𝜃 =−180
°
, v tends to be infinity. Therefore the second transition 

configuration cannot be seen directly from the plot of the input-output relationship in v 

and v3 (or v5, tangent half of θ5) in Fig. 5.8(a) using the algebraic approach. Then the 

reciprocal of variables to plot the relations in v and 1/v5, 1/v and v3 as well as the 

relation 1/v and v5 (Fig. 5.8) have to be used so that all transition configurations can be 

observed. In Fig. 5.8, the transition configuration between the translation mode and 

planar mode I is TA and the translation mode and planar mode II are transited at TB. It 

has been shown that the algebraic analysis results are the same as the numerical ones 

shown in Section 4. 

 

5.6 Summary 

 

This chapter has presented a novel 1-DOF 7R SLMMRM based on the Sarrus linkage. 

The kinematics analysis of the novel 7R SLMMRM has been implemented. Firstly, 

applying the explicitation algorithm to obtain its constraint equations, then using 

numerical method to produce a set of solutions for the 1-DOF 7R SLMMRM with a 
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given example and the real solutions were verified through both a CAD model and a 

prototype of the mechanism. In addition, both the numerical method and algebraic 

approach have been applied to obtain the operation modes and transition configurations 

which produce the same results. It turns out that this mechanism has three operation 

modes: translational mode and two 1-DOF planar modes and two transition 

configurations where the mechanism can switch from one operation mode to another. 

  On one hand, the 7R SLMMRM is a non-overconstrained system, and on the other 

hand, it can switch from one mode to another without disassembly and without using 

additional actuator which can help develop energy-efficient reconfigurable mechanisms. 

The work presented in this chapter verify that the type synthesis method of 7J single-

loop reconfigurable mechanisms with three or more operation modes proposed in 

Chapter 4 is effective. Meanwhile, the kinematic mapping method is functional to 

complete the kinematic analysis of SLMMRMs. It encourages the design and analysis 

of new mechanical systems with multiple operation modes.  
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Chapter 6 – Design and Analysis of a New 7R Single-Loop 

Mechanism with 4R, 6R and 7R Operation Modes Based on 

Line and Plane Symmetrical Bricard Linkage 

 

The single-loop multi-mode reconfigurable mechanisms (SLMMRMs) that have been 

proposed and analysed may have many operation modes, which can be classified into 

the following classes:  

    a) Mechanisms which have the same number of effective joints in all the operation 

modes, such as those with two 4-joint modes and those with two 5-joint modes [55].    

    b) Mechanisms which have two different numbers of effective joints in all the 

operation modes, such as mechanisms with 7-joint mode(s) and 4-joint mode(s) 

[127,128], or 7-joint mode(s) and 5-joint mode(s) [110,129] or 6-joint mode(s) and 4-

joint mode(s) [49,50]. 

    This chapter presents a new 7R SLMMRM using the third method proposed in 

Chapter 4 by appropriately inserting an R joint into an overconstrained Bricard 6R 

linkage which aims to achieve a single-loop reconfigurable mechanism with three 

operation modes and also leads to a mechanism with more different numbers of 

effective joints in all operation modes. The structure of this chapter is as follows: the 

first section shows how to construct the 7R SLMMRM, then its kinematic analysis is 

implemented to find all the operation modes of the new 7R SLMMRM with the 

transition configurations among the motion patterns also being identified. Finally, the 

CAD model and physical prototype configurations for verifying the results of the 

kinematic analysis are given and conclusions are drawn.  

 

6.1 Design of a Novel 7R SLMMRM 

 

A typical Bricard 6R linkage is first reviewed [50]. A new 7R SLMMRM is then 

obtained by inserting an R joint into the overconstrained Bricard 6R linkage.  

 

6.1.1 Bricard 6R Linkage 

 

A lot of works has focused on the application of overconstrained Bricard 6R linkages as 

deployable structures. Many such deployable structures have multi-furcations which 

offer the possibility of designing reconfigurable mechanisms. In Chapter 1 several 
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classes of Bricard 6R linkages are investigated and in Chapter 4 the conditions and 

corresponding operation modes of line and planar symmetrical 6R linkages were 

presented. Four cases can be classified depending on their design parameters leading to 

the fact that in some cases the 6R mechanisms have two or three operation modes. 

According to the Bricard linkage case I mentioned in Chapter 4, a CAD model of the 

Bricard 6R linkage with Bricard mode and 4R spherical mode was developed as shown 

in the Fig. 6.1(a) with its parameters given in Table 6.1. This is used to construct the 

new 7R SLMMRM in the next section. 

 

Table 6.1 Parameters for the Bricard 6R linkage 

 ai di 𝛼i (deg) 

1 122.47 0.00 90.00 

2 0.00 324.04 − 75.52 

3 122.47 − 324.04 − 90.00 

4 122.47 0.00 90.00 

5 0.00 324.04 − 75.52 

6 122.47 − 324.04 − 90.00 

 

 The spherical 4R and Bricard 6R operation modes of this overconstrained Bricard 6R 

linkage are as shown in Figs. 6.1(b) and 6.1(c). Since it is still an overconstrained 

mechanism, one R joint can be inserted into the Bricard 6R linkage to construct a non-

overconstrained mechanism. 

 

Figure 6.1 Bricard 6R linkage  
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6.1.2 A New 7R SLMMRM 

 

In order to obtain a new 7R SLMMRM, the extra R joint cannot be added arbitrarily. It 

is added between the second and the third R joints in the original Bricard 6R linkage at 

its transition configuration. In this configuration, the second and third R joints are 

disconnected and the new R joint is placed between them such that the axis of the new 

R joint is on the symmetrical plane of the second and third R joints, therefore the 

parameters for the new 7R mechanism satisfy: 

1 4 5 7a a a a   ,
2 3a a , 

6 0a                                        (6.1) 

1 5 / 2    ,
4 7 / 2     ,

2 3                                    (6.2) 

1 3 5 0d d d   ,
2 4d d  ,

6 7d d                                     (6.3) 

The 7R SLMMRM are then reconnected as shown in Fig. 6.2(a). Note that the axis of 

the new added R joint does not intersect at the same point with the other four inserted 

axes. The coordinate frames for the 7R SLMMRM are built in the sequence as shown in 

Fig. 6.2(b). 

 

Table 6.2 Parameters for the 7R SLMMRM 

 ai  di 𝛼i (deg) 

1 122.47 0.00 90.00 

2 259.81 111.91 − 45.00 

3 259.81 0.00 45.00 

4 122.47 − 111.91 −  90.00 

5 122.47 0.00 90.00 

6 0.00 324.04 − 75.52 

7 122.47 − 324.04 −  90.00 
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Figure 6.2 A new 7R SLMMRM 

 

    The parameters for the new 7R SLMMRM are listed in Table 6.2. It is apparent that 

the 7R SLMMRM will keep the two operation modes belonging to the original Bricard 

6R linkage.  Further kinematic analysis for the 7R SLMMRM needs to be carried out to 

verify the other operation modes and investigate their transition configurations among 

these operation modes. 

 

6.2 Kinematic Analysis of the 7R SLMMRM 

 

For the convenience of this analysis, the 7R SLMMRM is decomposed into a 3R chain 

and a 4R chain at the origin of Σ4. Their equations can be obtained from Tables 3.1 and 

3.2. In order to avoid the failure of the analysis, two sets of four equations T(v1) and 

T(v2) for the 3R chain and one set of four equations T(v6v7) for the 4R chain are selected 

where T(v6v7) can be derived from T(v3v4) by making some changes to the 

corresponding parameters. These equations in v1 and v6 and v7 together with the equation 

for Study quadric (Eq. (2.33)) are computed. Firstly seven of the nine equations are 

solved to give the eight study parameters in v6, v7 and v1, which are substituted into the 

remaining two equations, thus two equations in v6, v7 and v1 are obtained. Using the 

“resultant” function in Maple to eliminate v6, then a bivariate polynomial in v7 and v1 is 

generated. There are three factors corresponding to three operation modes along with a 

spurious factor (Q1): 

R1 
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1 11 12 13 0Q S S S                                                    (6.4) 

where S11 is the equation corresponding to the 4R mode, and S12 and S13 represent the 

6R mode and 7R mode, respectively.   

 

Figure 6.3 Decomposition of the 7R SLMMRM into a 3R chain and a 4R chain        

                              

    Similarly, the bivariate polynomial in v7 and v2 can be obtained: 

2 21 22 23 0Q S S S                                                  (6.5) 

where Q2 is also a spurious factor. S21 is the equation corresponding to the 4R mode and 

S22 and S23 represent the 6R mode and 7R mode, respectively. Further research has been 

undertaken on the mode equations since the existence of independent motion-loops can 

be checked from the CAD model; for example, there are two 6R modes for the 7R 

mechanism.  

∑1 

∑2 

∑3 

∑L ∑R 

∑5 ∑6 

∑7 
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Figure 6.4 Motion curves of v7 against v1 for the 7R SLMMRM  
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Figure 6.5 Motion curves of v7 against v2 for the 7R SLMMRM 

 

   The motion curves in v7 against v1 and v7 against v2 are plotted as shown in Figs. 6.4 

and 6.5 which highlight the operation modes. The dashed curve corresponds to the 4R 

mode; the dashed and dotted curve corresponds to the 6R mode I and the dotted curve 

corresponds to the 6R mode II; the solid curve corresponds to the 7R mode. 
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6.3 Configuration Verification 

 

In order to verify the motion curves, several CAD model configurations in different 

modes have been created. Furthermore, the prototype for the 7R mechanism is also built 

to verify the configurations and the operation modes. 

 

6.3.1 CAD Model Configurations for Verification 

 

The angles of θ7, θ2 and θ1 are listed in Table 6.3 along with their half tangents v7, v2 

and v1 which correspond to the CAD configurations shown in Fig. 6.6. It turns out that 

all of these are on the corresponding motion curves (16 points) as shown in Figs. 6.4 

and 6.5, where the configurations in the 4R mode are marked by circles, the 

configurations in the 6R mode I are marked by solid circles, the configurations in the 

6R mode II are marked by squares and the configurations in the 7R mode are marked by 

solid squares. 

           

              (a) Configuration 1: 4R mode             (b) Configuration 2: 4R mode 

 

(c) Configuration 3: 4R mode    (d) Configuration 4: 4R mode 

Figure 6.6 CAD configurations corresponding to different operation modes (continued 

on next page) 
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                   (e)  Configuration 5: 6R mode I           (f) Configuration 6: 6R mode I 

 

                  (g)  Configuration 7: 6R mode I          (h) Configuration 8: 6R mode I 

 

     (i)  Configuration 9: 6R mode II          (j) Configuration 10: 6R mode  II   

Figure 6.6 CAD configurations corresponding to different operation modes (continued 

on next page) 
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(k)  Configuration 11: 6R mode II               (l) Configuration 12: 6R mode II 

 

(m)  Configuration 13: 6R mode II           (n) Configuration 14: 7R mode 

 

  (o) Configuration 15: 7R mode             (p) Configuration 16: 7R mode 

 

Figure 6.6 CAD configurations corresponding to different operation modes 
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Table 6.3 Examples of configurations in different operation modes 

 No. 7 (deg) 2 (deg) 1 (deg) 7v  2v  1v  

4R mode 

a −154.46 −31.13 −41.41 −4.41 −0.28 −0.38 

b −113.28 −121.13 −41.41 −1.52 −1.77 −0.38 

c 126.34 −36.51 −41.41 1.98 −0.33 −0.38 

d 152.04 14.35 −41.41 3.94 0.13 −0.38 

 

6R mode I 

e −109.83 30.94 −101.06 −1.42 0.28 −1.21 

f 117.57 −101.66 97.71 1.65 −1.2 1.144 

g −54.58 86.14 −141.96 −0.52 0.93 −2.90 

h 13.87 154.64 −81.30 0.12 4.44 −0.86 

 

6R mode II 

i 34.85 72.29 −119.20 0.31 0.73 −1.70 

j 59.94 50.38 −81.34 0.58 0.47 −0.86 

k 103.56 −50.86 −68.33 1.27 −0.48 −0.68 

l −89.83 163.61 41.83 −0.99 6.94 0.38 

m 135.56 67.70 123.93 2.45 0.11 1.88 

7R mode 

n 113.50 78.64 6.93 1.53 0.82 0.06 

o 151.53 0.53 16.20 3.94 0.0046 0.14 

p 151.61 −67.62 63.07 3.95 −0.67 0.61 

 

6.3.2 Prototype for the New 7R SLMMRM 

The prototype configurations corresponding to CAD models in Fig. 6.6 and Table 6.3 

are shown in Fig. 6.7 in the same order. Figure 6.7(n) cannot reach the configuration 

corresponding to the exact solution because of the practical interference among the links. 

The prototype can also be used to verify the operation modes.  

  

(a) Configuration 1: 4R mode                  (b) Configuration 2: 4R mode 

Figure 6.7 CAD configurations corresponding to different operation modes (continued) 
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(c) Configuration 3: 4R mode          (d) Configuration 4: 4R mode 

 

 

(e)  Configuration 5: 6R mode I           (f) Configuration 6: 6R mode I 

 

(g)  Configuration 7: 6R mode I            (h) Configuration 8: 6R mode I 

Figure 6.7 Prototype configurations corresponding to different operation modes 

(continued on next page) 
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(i)  Configuration 9: 6R mode II                (j) Configuration 10: 6R mode II 

  

(k)  Configuration 11: 6R mode II              (l) Configuration 12: 6R mode II 

  

(m)  Configuration 13: 6R mode II      (n) Configuration 14: 7R mode 

Figure 6.7 Prototype configurations corresponding to different operation modes 

(continued on next page) 
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(o) Configuration 15: 7R mode           (p) Configuration 16: 7R mode 

Figure 6.7 Prototype configurations corresponding to different operation modes 

 

6.4 Transition Configurations 

 

With the help of these motion equations Sij (i(j)=1, 2, 3), the configurations where the 

several modes transit can be identified. Solving the equations S11=0, S12=0 (equations 

for the 4R mode and 6R modes), a list of solutions for [v7, v1] can be produced. 

Calculating the equations S21=0, S22=0 (equations for the 4R mode and 6R modes), a list 

of solutions for [v7, v2] can be also generated. Therefore the common solutions for v7 

and its corresponding v1 and v2 are the transition configurations between the 4R mode 

and 6R modes. Using the same process the transition configurations between the 4R 

mode and 7R mode as well as the transition configurations between the 6R modes and 

7R mode can be obtained. These transition configurations are shown in Table 6.4 and 

they are plotted onto the motion curves as highlighted in Fig. 6.8 where the figures on v1 

and v2 against 1/v7 are also displayed to show one transition point with a large v7. The 

corresponding CAD models of the transition configurations are shown in Fig. 6.9. 
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Table 6.4 Transition configurations  

Transition 

configurations 

7 (deg) 2 (deg) 1 (deg) Associated modes 

T1 −162.87      −22.21 −41.41 4R mode & 6R mode I 

& 7R mode T2 −17.02 123.75 −41.41 

T3 29.21 169.97 −41.41 4R Mode & 6R mode 

I T4 150.79 −68.43 −41.41 

T5 −1.82 138.96 66.58 6R mode II & 7R 

mode T6 −178.18 −92.35 66.58 

 

 

Figure 6.8 Transition configurations among different operation modes 
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(a) T1: transition configuration one       (b) T2: transition configuration two 

 

(c) T3: transition configuration three    (d) T4: transition configuration four 

 

(e) T5: transition configuration five        (f) T6: transition configuration six 

 

Figure 6.9 Transition configurations among different operation modes 
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6.5 A New 6R Overconstrained Mechanism as a By-Product  

 

From the results in Figs. 6.6(e)-6.6(m), it can be observed that there are two constant 

values for θ3 in the 6R modes. In addition to the constant θ3=−120
°
 (as shown in Figs. 

6.6(e)-(h)), another constant θ3=45.16
°
 measured from the CAD model also exists as 

shown in Figs. 6.6(i)-6.6(m), that is 6R mode II; In this mode, the new 7R SLMMRM is 

in fact a new overconstrained 6R mechanism where R1, R2, R4, R5, R6, R7 are active and 

R3 is the automatically locked. Its parameters are as shown in Table 6.5. 

  

Table 6.5 The parameters for the new 6R overconstrained mechanism 

 ai di 𝛼i (deg) 

1 122.47 0.00 −90.00 

2 0.00 771.60 −31.51 

3 122.47 −771.60 − 90.00 

4 122.47 0.00 −90.00 

5 0.00 324.04 −75.52 

6 122.47 −324.04 − 90.00 

 

6.6 Summary 

 

This chapter has proposed a novel 7R SLMMRM based on an overconstrained Bricard 

linkage, another successful case to construct 7R single-loop reconfigurable mechanisms 

with three or more operation modes using the method proposed in Chapter 4. The 

kinematic analysis of it has shown that the 7R SLMMRM has four operation modes: 

one 4R, two 6R and one 7R modes and the transition configurations have also been 

identified. Meanwhile, the theoretical results have been verified using its CAD model 

and a physical prototype in different operation modes. Moreover, the proposed 

mechanism in one of its 6R modes has in fact been identified as a new overconstrained 

6R mechanism.  

As with other SLMMRMs, the new 7R SLMMRM has the advantage of transiting 

into different modes without disconnecting and reassembly and does not require 

additional actuators. Furthermore, the 7R SLMMRM has four operation modes with 

three different numbers of effective links (joints).  
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Chapter 7 – Conclusions 

 

7.1 General Conclusions 

 

The dissertation is mainly devoted to the design of new SLMMRMs that have more 

than two specified operation modes and their kinematic analysis using effective 

algebraic geometry methods. 

    In addition to the introduction of several existing classes of reconfigurable 

mechanisms in Chapter 1, a review of single-loop overconstrained mechanisms 

(SLOMs) is also completed and forms the foundation to construct new MMRMs. 

Moreover, in Chapter 2 several mathematical tools for the kinematic analysis of 

mechanisms have been revisited. The kinematic mapping method in conjunction with 

the numerical and algebraic algorithms has been found to be very effective and have 

been adopted and developed to deal with the kinematic analysis of SLMMRMs.  

    In Chapter 3, the basic serial chains used as compositional units to construct closed-

loop (or parallel) mechanisms are systematically listed and their constraint equations are 

derived employing the explicitation and implicitization algorithms based on the 

kinematic mapping method. The constraint equations from the implicitization 

algorithms are analysed and selected according to the linear algebra method. Following 

the above work in the kinematic analysis of mechanisms, the constraint equations for a 

mechanism from the base to the platform can be integrated via a developed MAPLE 

program that unifies the transformations in the base and platform to simple serial 

kinematic chains (legs) of a mechanism.  

    There have been different methods used to design SLMMRMs, such as the method 

for synthesizing single-DOF single-loop mechanisms with two specified operation 

modes and the method for designing multi-mode single-loop reconfigurable 

mechanisms with variable DOFs. Chapter 4 presents three methods to construct 7J 

single-loop reconfigurable mechanisms with three or more operation modes such that a 

large number of this kind of mechanisms can be obtained. Three new classes of 7J 

single-loop reconfigurable mechanisms with three or more operation modes are 

obtained from the first method. Examples to construct 7R single-loop reconfigurable 

mechanisms with three or more operation modes using the second method are given to 

show the potential to generate these mechanisms based on two same SLOMs. 

In Chapters 5 and 6, the design and kinematic analysis of two typical 7R SLMMRMs 

obtained from the third method are carried out. SLMMRMs can be classified into 
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several kinds depending on their active joint numbers in different operation modes. The 

7R SLMMRM in Chapter 5 is initially analysed using the numerical method and then 

the algebraic method which both illustrate that the mechanism has two types of 

operation modes including a 6R mode and two 7R modes. Chapter 6 presents a 7R 

SLMMRM which is analysed using algebraic approach showing that the mechanism has 

three types of operation modes including a 4R mode, two 6R modes and a 7R mode. A 

new overconstrained 6R mechanism is obtained as a by-product. The transition 

configurations among the different operation modes are identified for both 7R 

SLMMRMs. Moreover, CAD models and prototypes are built to successfully verify the 

analysis results. 

The kinematic analysis of a MLMMRM based on the compositional serial kinematic 

chains (constraint equations obtained earlier) has also been attempted to implement. A 

3-RRRR MMRM is demonstrated (see Appendix III) and its constraint equations can be 

obtained from Table A.I.3 in Appendix I, although obtaining the complete set of 

solutions for the 3-RRRR MMRM has not been possible as shown in Appendix III due 

to the high degree polynomials, however, the work conducted can pave the way for 

further development. 

 

7.2 Main Contributions 

 

The aim of the dissertation was to produce new SLMMRMs that have more specified 

operation modes than most existing SLMMRMs with two specified operation modes, 

and to implement analysis and verification of their operation modes. The main 

achievements of this dissertation are: 

    1) A system that contains typical serial kinematic chains and their constraint 

equations is presented, which gives an overview of serial chains with same number of 

joints and the relationship among serial chains with different number of joints but 

similar arrangements. A linear algebraic method is presented to select proper number of 

constraint equations obtained from the implicitization approach for a serial chain rather 

than select the constraint equations arbitrarily. These are the foundations of completing 

the kinematic analysis of MMRMs. 

    2) Three methods are presented for proposing new 7J single-loop reconfigurable 

mechanisms with three or more operation modes in this dissertation. Based on these 

methods, numerous motivation-targeted 7J mechanisms can be obtained. For example, 

if a 7R SLMMRM with 4R, 5R and 7R modes is needed, then it can be constructed by 
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combing 4R and 5R SLOMs to form a 6R mechanism followed by inserting an 

additional R joint into it. These 7R SLMMRMs have the ability to fulfil the targeted 

tasks while they can change over in a shorter time and be more energy efficient. 

3) Two novel 7R SLMMRMs separately with three and four operation modes have 

been proposed and analysed for the first time. The proposed 7R SLMMRM based on a 

Saruss linkage has two types of operation modes: one 6R mode and two 7R modes. The 

7R SLMMRM generated by inserting an R joint into a Bricard linkage turns out to be 

the first SLMMRM with three types of operation modes: one 4R mode, two 6R modes 

and one 7R mode. Moreover, a novel 6R overconstrained mechanism is produced as a 

by-product. 

 

7.3 Future Work 

 

The work in this dissertation focuses on the design of single-DOF 7J single-loop 

reconfigurable mechanisms with three or more operation modes as well as the kinematic 

analysis of their operation modes and transit configurations. However, there is much 

work to be conducted in the future. 

    It is still open to explore new single-loop reconfigurable mechanisms with three or 

more operation modes. It would also be promising to explore/discover variable DOFs 

single-loop reconfigurable mechanisms with three or more operation modes due to their 

outstanding advantages, using the methods presented in this dissertation or new 

methods will be proposed. 

    Although the methods effectively show that a new SLMMRM can be formed by 

inserting one new joint to a SLOM, further work still needs to be done to identify the 

appropriate/optimal location of the new added joint which may impact the operation 

modes. 

After the investigation of serial kinematic chains as the compositional units of 

parallel mechanisms has been completed, the foundation of the kinematic analysis of 

MLMMRMs can be formed and their constraint equations can be directly recalled from 

Appendix I. However, it is a challenging issue to obtain the complete solutions of the 

MLMMRMs as shown in Appendix III, which should inspire the future work.  

Meanwhile, the design methods for MLMMRMs are to be investigated. 
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Appendix I ‒ Constraint Equations of Other Serial 

Kinematic Chains 

 

Though the constraint equations of some typical serial kinematic chains have been 

presented in Chapter 3, this appendix gives the constraint equations for most serial 

kinematic chains.  

 

Table A.I.1 Constraint equations for 4R serial chains using the explicitation algorithm 

in other tangent half angles 

T(v1v3) 2 2 3 3 1 1 3 3 2 3 3 1 1 3 2 3 1 1 1 2 3 3 1 1 1 2

2 2 3 3 1 2 2 2 3 1 1 0 2 2 3 3 1 0 3 2 3 3 1 2 3 2 3 1 1 0

3 2 3 3 1 0 2 3 3 1 1 0 3 3 3 1 1 0 2 3 1 1 3 3 3 1 1 3

(1) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a w w v v w x a w w v v w x w v a v w x w v a v w x

a w w v v x a w w v w x a w w v w x a w w v v x a w w v w x

a w w v w x w d v v w x w d v v w x w v a v x w v a v x

   

    

    

 2 1 1 1 1 3 1 1 1 1 2 3 1 1 1 3 3 1 1 1 2 3 1 1 3 2 2 3 1 1

2 2 3 3 1 2 2 3 1 3 3 3 1 1 3 3 2 3 1 1 3 2 3 3 1

3 2 3 1 3 2 3 3 1 1 3 3 3 1 1 2 3 1 1 3 3 3 1 1 3

2 3 3

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

w a v w x w a v w x w v a w x w v a w x a v v w x a w w v x

a w w v x a w w w x a v v w x a w w v x a w w v x

a w w w x w d v v x w d v v x w d v w x w d v w x

w d v w

    

    

    

 1 3 3 3 3 1 3 2 3 1 1 3 3 3 1 1 3 2 1 1 0 3 1 1 0

2 3 1 0 3 3 1 0 2 1 1 2 3 1 1 2 2 3 1 2 2 1 1 0 2 3 1 0

2 2 3 2 3 3 1 2 3 1 1 0 3 3 1 0 3 2 3 2 2 3 1 2 3 3 1 2

2 4 4 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

x w d v w x w v v w y w v v w y w a v x w a v x

w v a x w v a x w a w x w a w x a v v x a v w x a v w x

a w w x a v v x a v w x a v w x a w w x w d v x w d v x

    

      

      

 2 3 3 2 3 3 3 2 2 3 1 0 3 3 1 0 2 3 1 2 3 3 1 2 2 1 1 0

3 1 1 0 2 3 1 0 3 3 1 0 2 1 3 3 1 3 2 1 1 2 3 1

2 1 3 3 1 1 3 3 1 3 1 3 2 3 1 3 3 1 2 1 1 3 1 1

2

2 2 2 2 4 4 4

4 4 4 2 2 2 2

2 2 2 2 2 2 4 4

4

w d v x w d v x w d w x w d w x w v v y w v v y w v w y

w v w y w v w y w v w y w a x w a x a v x a v x

a w x a v x a v x a w x w d x w d x w v y w v y

w v

     

      

       

 3 1 3 3 1 2 1 3 3 1 3 2 2 3 2 2 2 3 24 4 4 2 2 4 4y w v y w w y w w y a x a x w y w y      

 

2 3 3 1 1 1 3 2 3 3 3 1 1 1 2 3 3 1 1 2 2 3 1 1 1 0

2 3 3 1 1 0 2 2 3 1 1 2 2 3 3 1 1 2 3 2 3 1 1 2 3 3 3 1 1 2

2 3 3 3 1 0 2 3 3 1 1 2 2 3 3 3 1 2 2 3 3 1 1 2 3 1 1 1

(2) 2 2 2 2

2 2 2 2 2

2 2 2 4 2

w w v a v w x w w d v v w x w w v a v x w w a v w x

w w v a w x a w v v w x a w v v w x a w v v w x a w v v w x

w w d v v x w w d v w x w w d v w x w w v v w y v a v w x

   

    

     3

2 3 1 1 1 2 3 3 1 1 2 3 1 1 3 2 2 3 1 3 2 3 3 1 3

2 2 1 1 1 2 3 1 1 1 2 2 3 1 1 2 3 3 1 1 3 2 3 1 3

3 3 3 1 3 3 2 1 1 1 3 3 1 1 1 3 2 3 1 1 3 3 3 1 1 3 3 1 1 1

2 3

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2

w w a v x w w v a x w w a w x a w v v x a w v v x

a w v w x a w v w x a w v w x a w v w x a w v v x

a w v v x a w v w x a w v w x a w v w x a w v w x d v v w x

w w d

    

    

     

 3 1 3 2 3 3 3 3 2 3 3 1 1 2 3 3 1 3 2 3 1 1 1 1 2

2 3 3 1 1 3 1 1 2 1 1 1 0 3 1 1 0 2 3 1 2 2 2 1 0 3 0

2 3 1 0 2 2 3 0 2 3 3 0 2 2 1 2 2 3 1 2 3 2 1 0

3 3 1 0

2 2 4 4 4

4 2 2 2 2 2 4

2 2 2 2 2 2

2 2

v x w w d v x w w d w x w w v v y w w v w y w y

w w v w y v a v x a v w x v a w x w w a x a w v x v y

a w v x a w v x a w v x a w w x a w w x a w v x

a w v x a

    

      

     

  3 2 3 0 3 3 3 0 3 2 1 2 3 3 1 2 3 3 1 0 3 1 1 2

3 3 1 2 2 3 3 0 3 1 1 2 2 3 1 0 2 3 3 0 2 3 1 2 1 1 1

3 1 1 1 1 3 2 2 3 2 3 3 3 2 3 3 3 3 3 1 3 3 3 3

3 1 1

2 2 2 2 2

2 2 4 4 4 4 2

2 2 2 2 2 2 2 2

2 4

w v x a w v x a w w x a w w x d v v x d v w x

d v w x w w d x v v w y w w v y w w v y w w w y a v x

v a x a w x a w x a w x a w x a w x d v x d v x

d w x v

    

      

       

  3 1 3 1 1 1 3 1 1 2 3 3 1 2 3 0 1 0 34 4 4 2 2 4 4v y v w y v w y w w y a x d x v y y      
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2 2 3 3 1 1 0 3 2 3 3 1 1 0 2 3 1 1 1 1 3 3 1 1 1 1

2 2 3 3 1 1 2 2 3 1 1 3 2 2 3 3 1 3 3 2 3 3 1 1 3 2 3 1 1 3

3 2 3 3 1 3 2 3 3 1 1 3 3 3 3 1 1 3 2 3 1 1 0 3 3 1 1 0

(3) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

a w w v v w x a w w v v w x w v a v w x w v a v w x

a w w v v x a w w v w x a w w v w x a w w v v x a w w v w x

a w w v w x w d v v w x w d v v w x w v a v x w v a v x

  

    

    

 2 1 1 1 2 3 1 1 1 2 2 3 1 1 2 3 3 1 1 2 2 3 1 1 0 2 2 3 1 2

2 2 3 3 2 2 2 3 1 0 3 3 1 1 0 3 2 3 1 2 3 2 3 3 2

3 2 3 1 0 2 3 3 1 2 3 3 3 1 2 2 3 1 1 0 3 3 1 1 0

2 3 3 1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

w a v w x w a v w x w v a w x w v a w x a v v w x a w w v x

a w w v x a w w w x a v v w x a w w v x a w w v x

a w w w x w d v v x w d v v x w d v w x w d v w x

w d v w

    

    

    

 0 3 3 3 1 0 2 3 1 1 0 3 3 1 1 0 2 1 1 3 3 1 1 3

2 3 1 3 3 3 1 3 2 1 1 1 3 1 1 1 2 3 1 1 2 1 1 3 2 3 1 3

2 2 3 1 3 3 1 1 3 1 1 3 3 3 1 3 3 2 3 1 2 3 1 1 3 3 1 1

2 4 4 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2

x w d v w x w v v w y w v v w y w a v x w a v x

w v a x w v a x w a w x w a w x a v v x a v w x a v w x

a w w x a v v x a v w x a v w x a w w x w d v x w d v x

    

      

      

 2 3 3 1 3 3 3 1 2 3 1 3 3 3 1 3 2 3 1 1 3 3 1 1

2 1 1 3 3 1 1 3 2 3 1 3 3 3 1 3 2 1 0 3 1 0 2 1 2

2 3 2 2 1 0 3 1 2 3 3 2 3 1 0 2 3 2 3 3 2 2 1 2

3 1 2 2 3

2 2 2 4 4

4 4 4 4 2 2 2

2 2 2 2 2 2 2 4

4 4

w d v x w d v x w d w x w d w x w v v y w v v y

w v w y w v w y w v w y w v w y w a x w a x a v x

a v x a w x a v x a v x a w x w d x w d x w v y

w v y w v

    

      

       

  2 3 3 2 2 1 0 3 1 0 2 1 3 1 2 1 3 14 4 4 2 2 4 4y w v y w w y w w y a x a x w y w y      

 

2 3 3 1 1 1 0 2 3 3 3 1 1 2 2 3 3 1 1 1 2 3 1 1 1 3

2 3 3 1 1 3 2 2 3 1 1 1 2 3 3 1 1 1 3 2 3 1 1 1 3 3 3 1 1 1

2 3 3 3 1 3 2 3 3 1 1 1 2 3 3 3 1 1 1 3 1 2 3 1 1 1 3 1 0

(4) 2 2 2 2

2 2 2 2 2

2 2 2 4 2

w w v a v w x w w d v v w x w w v a v x w w a v w x

w w v a w x a w v v w x a w v v w x a w v v w x a w v v w x

w w d v v x w w d v w x w w d v w x v v w w w y a v v w x

  

    

    

1 1 2 3 2 1 3 2 3 2 1 1 2 3 0 2 1 3 2 0 2 1 3 3 0

2 1 1 2 2 2 1 1 3 2 2 3 1 2 2 2 3 1 3 2 3 1 3 2 0

3 1 3 3 0 3 1 1 2 2 3 1 1 3 2 3 3 1 2 2 3 3 1 3 2

3 1 3 1 2 3 1 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2

a v w w x a v w w x a w w w x a v v w x a v v w x

a v w w x a v w w x a v w w x a v w w x a v v w x

a v v w x a v w w x a v w w x a v w w x a v w w x

d v v w x d v w

    

    

    

  3 0 3 3 2 3 0 3 1 2 3 2 1 3 2 3 0

1 1 2 3 2 3 1 2 3 2 1 1 3 1 1 1 1 3 1 3 1 3 1 2 3 1

2 1 2 3 2 1 3 3 2 3 2 3 2 3 3 3 2 1 2 1 2 1 3 1

3 1 2 3 3 1 3 3 3 3 2 3 3 3

2 2 4

4 4 2 2 2 2

2 2 2 2 2 2

2 2 2 2

w x d v w w x d w w w x v v w w y

v w w w y v w w w y a v v x a v w x a v w x a w w x

a v w x a v w x a v w x a v w x a w w x a w w x

a v w x a v w x a v w x a v

  

     

     

    3 3 3 1 2 1 3 1 3 1

3 1 3 3 3 1 1 1 3 3 1 1 3 2 3 3 1 3 1 1 1 2 3 3

3 2 3 3 1 2 3 1 1 1 2 1 3 2 1 1 0 2 2 0 2 3 0

3 2 0 3 3 0 3 1 0 3 3 0 3 1 2 1 3 0 1 1 2

2 2

2 2 2 2 4 4

4 4 2 2 2 2 2

2 2 2 2 2 4 4

w x a w w x a w w x

d v v x d v w x d v w x d w w x v v w y v w w y

v w w y w w w y a v x a v x a w x a w x a w x

a w x a w x d v x d v x d w x v v y v w y

 

     

      

       3 1 2

2 3 0 1 1 3 3 1 3 3 3 1 1 0

4

4 2 2 4 4 4 4

v w y

w w y a x d x v y v y w y y



      
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T(v1v4) 2 1 4 1 2 3 0 1 1 4 1 3 1 2 1 4 1 2 1 2 1 4 2 3 1

2 1 1 2 3 3 2 4 1 2 3 3 3 1 4 1 3 1 2 1 4 1 3 3 3 1 4 1 3 3

1 1 4 1 0 1 1 4 3 0 1 1 1 3 2 1 4 1 3 2 2 1 4 2 0 2 1 1

(1) 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

a v v w w w x a v v w w x a v v w w x a v v w w x

a v w w w x a v w w w x a v v w w x d v v w w x d v v w w x

a v v w x a v v w x a v w w x a v w w x a v v w x a v w w

   

    

      2 2

2 1 2 3 2 2 4 1 2 2 2 4 2 3 2 2 1 2 3 0 3 1 4 1 0

3 1 4 3 0 3 1 1 3 2 3 4 1 3 2 2 1 4 1 2 2 1 4 3 2 2 1 1 3 0

2 4 1 3 0 3 1 4 1 2 3 1 4 3 2 3 1 1 3 0 3 4 1 3 0 1

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 4

x

a v w w x a v w w x a v w w x a w w w x a v v w x

a v v w x a v w w x a v w w x d v v w x d v v w x d v w w x

d v w w x d v v w x d v v w x d v w w x d v w w x v v

    

     

      4 1 3 0

1 1 4 1 1 1 1 3 1 1 3 3 1 4 1 3 1 4 3 3 1 1 3 1 2 1 2 3

2 4 2 3 2 1 2 1 2 2 3 1 3 1 4 1 3 1 1 3 3 1 3 3 3 4 1 3

3 4 3 3 3 1 3 1 2 1 4 3 2 1 1 1 2 1 3 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

w w y

a v v x a v w x a v w x a v w x a v w x a w w x a v w x

a v w x a w w x a w w x a v v x a v w x a v w x a v w x

a v w x a w w x d v v x d v w x d v w x d

      

      

      2 4 1 1 2 4 3 1

2 1 3 3 3 1 4 3 3 1 1 1 3 1 3 1 3 4 1 1 3 4 3 1 3 1 3 3

1 4 1 1 1 4 3 1 1 1 3 3 4 1 3 3 1 1 2 1 4 2 1 1 0

1 3 0 2 2 0 3 1 2 3 4 2 3 1 0 3 3 0

2

2 2 2 2 2 2 2

4 4 4 4 2 2 2

2 2 2 2 2 2

v w x d v w x

d w w x d v v x d v w x d v w x d v w x d v w x d w w x

v v w y v v w y v w w y v w w y a v x a v x a w x

a w x a w x a v x a v x a w x a w x



      

      

       2 1 0 2 4 0

2 1 2 2 3 2 3 1 0 3 4 0 3 1 2 3 3 2 1 4 0 1 1 2

1 3 2 4 1 2 4 3 2 1 3 0 1 1 3 1 2 3 3 3 1 3

4 3 1 1 3 1 0

2 2

2 2 2 2 2 2 4 4

4 4 4 4 2 2 2 2 4

4 4 4 4

d v x d v x

d w x d w x d v x d v x d w x d w x v v y v w y

v w y v w y v w y w w y a x a x d x d x v y

v y w y w y y



       

        

   

  

 

1 1 4 1 2 3 0 3 1 4 1 2 3 0 2 1 4 1 2 3 2 3 1 4 1 2 3 2

1 1 4 1 2 1 1 1 4 2 3 1 1 1 1 2 3 3 1 4 1 2 3 3 2 1 4 1 3 1

3 1 4 1 2 1 3 1 4 2 3 1 3 1 1 2 3 3 3 4 1 2 3 3 2 1

(2) 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a v v w w w x a v v w w w x d v v w w w x d v v w w w x

a v v w w x a v v w w x a v w w w x a v w w w x a v v w w x

a v v w w x a v v w w x a v w w w x a v w w w x d v v

   

    

     4 1 2 3

2 1 4 2 3 3 2 1 1 2 3 1 2 4 1 2 3 1 3 1 4 1 2 3 3 1 4 2 3 3

3 1 1 2 3 1 3 4 1 2 3 1 1 4 1 2 3 1 1 1 4 2 0 1 1 1 2 2

1 1 2 3 2 1 4 1 2 2 1 4 2 3 2 1 1 2 3 0 2 1 4

2 2 2 2 2

2 2 4 2 2

2 2 2 2 2

w w x

d v v w w x d v w w w x d v w w w x d v v w w x d v v w w x

d v w w w x d v w w w x v v w w w y a v v w x a v w w x

a v w w x a v w w x a v w w x a w w w x a v v w

    

    

     1 0 2 1 4 3 0

2 1 1 3 2 2 4 1 3 2 3 1 4 2 0 3 1 1 2 2 3 1 2 3 2 3 4 1 2 2

3 4 2 3 2 3 1 2 3 0 2 1 4 2 2 2 1 1 2 0 2 1 2 3 0 2 4 1 2 0

2 4 2 3 0 2 1 2 3 2 3 1 4 2 2 3

2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

x a v v w x

a v w w x a v w w x a v v w x a v w w x a v w w x a v w w x

a v w w x a w w w x d v v w x d v w w x d v w w x d v w w x

d v w w x d w w w x d v v w x d v



     

     

    1 1 2 0 3 1 2 3 0 3 4 1 2 0

3 4 2 3 0 3 1 2 3 2 1 4 1 2 0 1 4 2 3 0 1 1 2 3 2 4 1 2 3 2

1 1 2 3 1 4 2 3 1 1 2 1 1 2 3 1 2 1 4 1 2 1 1 3 2 1 3 3

2 4 1 3 2 4 3 3 2 1

2 2

2 2 4 4 4 4

2 2 2 2 2 2 2

2 2 2

w w x d v w w x d v w w x

d v w w x d w w w x v v w w y v v w w y v w w w y v w w w y

a v w x a v w x a w w x a w w x a v v x a v w x a v w x

a v w x a v w x a w w

 

     

      

   3 1 3 1 2 3 3 4 2 3 3 1 2 1 3 2 3 1

2 1 2 1 2 4 2 1 2 1 2 3 2 2 3 3 3 1 2 1 3 4 2 1 3 1 2 3

3 2 3 3 1 4 2 1 1 1 2 3 1 2 3 3 4 1 2 3 4 2 3 3 1 2 3 1

1 2 0 2 1 2

2 2 2 2

2 2 2 2 2 2 2

2 4 4 4 4 4 4

2 2

x a v w x a v w x a w w x a w w x

d v w x d v w x d w w x d w w x d v w x d v w x d w w x

d w w x v v w y v w w y v w w y v w w y v w w y w w w y

a w x a v x

   

      

      

   2 4 2 2 1 0 2 3 0 3 2 0 2 2 2 3 2 2

1 2 2 4 2 2 1 2 0 2 3 0 2 1 2 1

2 2 2 2 2 2

4 4 4 4 2 4

a v x a w x a w x a w x d w x d w x

v w y v w y w w y w w y a x w y

    

     
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1 1 4 1 2 3 3 3 1 4 1 2 3 3 2 1 4 1 2 3 1 3 1 4 1 2 3 1

1 1 4 1 2 2 1 1 4 2 3 2 1 1 4 1 2 3 3 3 1 4 1 2 3 3

2 1 4 1 2 3 1 3 1 4 1 2 3 1 1 1 4 1 2 2 1 1 4 2 3 2

3 4 1 2 3

(3) 2 2 2 2

2 2 2 2

2 2 2 2

2

a v v w w w x a v v w w w x d v v w w w x d v v w w w x

a v v w w x a v v w w x a v v w w w x a v v w w w x

d v v w w w x d v v w w w x a v v w w x a v v w w x

a v w w w x

   

   

   

 0 2 1 4 1 2 0 2 1 4 2 3 0 2 1 1 2 3 2 2 4 1 2 3 2

3 1 4 1 2 0 3 1 4 2 3 0 3 1 1 2 3 2 3 4 1 2 3 2 1 4 1 2 3 2

1 1 4 2 3 1 1 1 2 1 1 1 2 3 1 1 4 1 2 1 1 4 2 3 1 1 1 2 3 3

2 2 2 2

2 2 2 2 4

2 2 2 2 2 2

d v v w w x d v v w w x d v w w w x d v w w w x

d v v w w x d v v w w x d v w w w x d v w w w x v v w w w y

a v v w x a v w w x a v w w x a v w w x a v w w x a w w w x

   

    

     

 2 1 4 1 3 2 1 4 3 3 2 1 1 3 1 2 4 1 3 1 3 1 4 2 3 3 1 1 2 1

3 1 2 3 1 3 4 1 2 1 3 4 2 3 1 3 1 2 3 3 2 1 4 2 1 2 1 1 2 3

2 1 2 3 3 2 4 1 2 3 2 4 2 3 3 2 1 2 3 1 3 1 4

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

a v v w x a v v w x a v w w x a v w w x a v v w x a v w w x

a v w w x a v w w x a v w w x a w w w x d v v w x d v w w x

d v w w x d v w w x d v w w x d w w w x d v v w

    

     

     2 1 3 1 1 2 3

3 1 2 3 3 3 4 1 2 3 3 4 2 3 3 3 1 2 3 1 1 4 1 2 3

1 4 2 3 3 1 1 2 3 1 4 1 2 3 1 1 1 2 0 1 4 2 0 1 1 2 2

1 2 3 2 2 1 4 2 2 1 1 0 2 1 3 0 2 4 1 0 2 4 3

2

2 2 2 2 4

4 4 4 2 2 2

2 2 2 2 2 2

x d v w w x

d v w w x d v w w x d v w w x d w w w x v v w w y

v v w w y v w w w y v w w w y a v w x a v w x a w w x

a w w x a v v x a v w x a v w x a v w x a v w x



    

     

      0 2 1 3 2

3 1 2 0 3 4 2 0 3 1 2 2 3 2 3 2 2 1 2 2 2 4 2 2 2 1 2 0

2 2 3 0 3 1 2 2 3 4 2 2 3 1 2 0 3 2 3 0 1 4 2 2 1 1 2 0

1 2 3 0 2 1 2 0 2 2 3 0 3 1 2 2 3 4 2

2

2 2 2 2 2 2 2

2 2 2 2 2 4 4

4 2 2 2 2

a w w x

a v w x a v w x a w w x a w w x d v w x d v w x d w w x

d w w x d v w x d v w x d w w x d w w x v v w y v w w y

v w w y d w w x d w w x d v w x d v w x



      

      

     2 3 1 2 0 3 2 3 0

1 4 2 2 1 1 2 0 1 2 3 0 4 1 2 0 4 2 3 0 1 2 3 2 1 2 3

2 1 1 2 4 1 2 1 3 2 3 3 3 2 3 2 2 1 3 2 1 1 2 1

4 2 1 1 2 3 2 3 3 2 2 2 2

2 2

4 4 4 4 4 4 2

2 2 2 2 2 2 2 4

4 4 4 2 4

d w w x d w w x

v v w y v w w y v w w y v w w y v w w y w w w y a w x

a v x a v x a w x a w x a w x d w x d w x v w y

v w y w w y w w y a x w y

 

      

       

    

 

2 1 4 1 2 3 3 1 1 4 1 3 2 2 1 4 1 2 2 2 1 4 2 3 2

2 1 1 2 3 0 2 4 1 2 3 0 3 1 4 1 3 2 2 1 4 1 3 0 3 1 4 1 3 0

1 1 4 1 3 1 1 4 3 3 1 1 1 3 1 1 4 1 3 1 2 1 4 2 3 2 1 1 2

(4) 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

a v v w w w x a v v w w x a v v w w x a v v w w x

a v w w w x a v w w w x a v v w w x d v v w w x d v v w w x

a v v w x a v v w x a v w w x a v w w x a v v w x a v w w

  

    

      1

2 1 2 3 1 2 4 1 2 1 2 4 2 3 1 2 1 2 3 3 3 1 4 1 3

3 1 4 3 3 3 1 1 3 1 3 4 1 3 1 2 1 4 1 1 2 1 4 3 1 2 1 1 3 3

2 4 1 3 3 3 1 4 1 1 3 1 4 3 1 3 1 1 3 3 3 4 1 3 3 1 4

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 4

x

a v w w x a v w w x a v w w x a w w w x a v v w x

a v v w x a v w w x a v w w x d v v w x d v v w x d v w w x

d v w w x d v v w x d v v w x d v w w x d v w w x v v

    

     

      1 3 3

1 1 4 2 1 1 1 0 1 1 3 0 1 4 1 0 1 4 3 0 1 1 3 2 2 1 2 0

2 4 2 0 2 1 2 2 2 2 3 2 3 1 4 2 3 1 1 0 3 1 3 0 3 4 1 0

3 4 3 0 3 1 3 2 2 1 4 0 2 1 1 2 2 1 3 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

w w y

a v v x a v w x a v w x a v w x a v w x a w w x a v w x

a v w x a w w x a w w x a v v x a v w x a v w x a v w x

a v w x a w w x d v v x d v w x d v w x d

      

      

      4 1 2 2 4 3 2

2 1 3 0 3 1 4 0 3 1 1 2 3 1 3 2 3 4 1 2 3 4 3 2 3 1 3 0

1 4 1 2 1 4 3 2 1 1 3 0 4 1 3 0 1 1 1 1 4 1 1 1 3 1 3 3

2 2 3 3 1 1 3 4 1 3 1 3 3 3 3

2

2 2 2 2 2 2 2

4 4 4 4 2 2 2 2

2 2 2 2 2 2

v w x d v w x

d w w x d v v x d v w x d v w x d v w x d v w x d w w x

v v w y v v w y v w w y v w w y a v x a v x a w x a w x

a w x a v x a v x a w x a w x



      

       

      2 1 3 2 4 3 2 1 1 3 2

2 3 1 3 1 3 3 4 3 3 1 1 3 3 1 1 4 3 1 1 1 1 3 1 3

4 1 1 4 3 1 1 3 3 1 2 3 2 2 0 3 0 1 0 4 0 1 2

2 2 4

2 2 2 2 2 4 4 4 4

4 4 4 2 2 2 2 4 4 4

d v x d v x d w x w y

d w x d v x d v x d w x d w x v v y v w y v w y y

v w y v w y w w y a x a x d x d x v y v y w y

  

        

         
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T(v2v4) 2 1 2 3 4 3 2 2 2 3 4 3 2 1 1 2 2 1 2 4 2 2 1 2

2 2 2 4 2 1 2 2 2 1 2 4 2 1 2 3 2 1 3 3 2 1 3 4

2 2 2 2 2 2 2 4 2 2 2 3 2 2 3 3 2 2 3 4 2 1

2 2 1 2 2 2 4 1

(1) 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

x w v a v w x w v a v w x a w w x a v v x a w w

x a v v x w d v x w d v x w v d x w a w x w d v

x w d v x w d v x w v d x w a w x w d v x a

x a x d v w v x w

    

     

     

   2 2 3 3 1 1 2 1 4 1 1 2 2

1 4 2 2 4 2 1 2 4 2 2 2 1 2 2 3 1 1 2 2 4 3

3 2 1 2 2 4 3 3 1 1 2 3 3 1 2 4 3 3 2 1 2 3 3 2 2 4 3

3 1 2 2 3 3 1 2 4 3 3 1 2 3 4 2 1 1 2 2

4 4 4

4 4 4 4 4 2

2 2 2 2 2

2 2 2 2

v a w y w v y v w y w v

y v w y v v w y v v w y w y w x a w w v v w

x a w w v v w x a w w w x a v v w x a w w w x a v v w

x w d v w x w d v w x w v a v x a w w v v

  

     

    

    4 2 2 1 2 2 4

3 2 3 4 3 3 1 3 3 2 3 3 1 3 3 2 3 0 3 2 1

0 3 4 1 0 3 2 2 0 3 4 2 3 3 2 3 1 2 3 3

3 1 3 4 3 3 2 2 2 3 3 2 2 4 3 3 2 2 3 4 3 2 2 3 3

3 3 1 0 2 3 4

2

2 2 2 2 2 4

4 4 4 4 2

2 2 2 2 2

4 2 2

x a w w v v

x w d v w x a w x a w x w a x w a y w v w

y w v w y w v w y w v w y w w x w v d w

x w d v w x w d v w x w d v w x w v a v x w v d w

y w w x w a v x



     

    

    

   0 2 3 3 3 3 4 2 1 3 3 4 2 2

0 1 1 2 4 3 0 2 1 2 2 3 0 2 1 2 4 3 0 1 2 2 4 3

0 1 2 3 4 3 0 2 2 2 4 3 0 2 2 3 4 3 0 1 2 3 0 1 4 3

0 2 2 3 0 2 4 3 0 1 2 3 0 1 2 3 0 1 3 4

4 4

2 2 2 2

2 2 2 2 2

2 2 2 2 2

w d w y w v v w y w v v w

x a w w v w x a w w v w x a w w v w x w d v v w

x w v d v w x w d v v w x w v d v w x a v w x a v w

x a v w x a v w x w d w x w v a x w a v

 

   

    

      0 1 3 3

0 2 2 3 0 2 2 3 1 2 2 3 4 1 2 3 4 3 1 1 2 1 1 4

1 2 2 1 2 4 1 1 2 1 1 3 1 2 2 1 2 3 1 1 1 2 2

1 1 1 2 4 1 2 1 2 2 1 2 1 2 4 1 2 2 1 4 1 1 2 3 3

1 1 2 3

2

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2

2

x w d w

x w d w x w v a x w v d v x w a v w x a v x a v

x a v x a v x w d x w d x w d x w d x a w w v

x a w w v x a w w v x a w w v x d v w v x w v a w

x w v d v

     

      

    

 4 1 1 3 4 3 0 1 1 2 2 32 2x w a v w x a w w v w 

 

 

2 3 4 3 2 3 3 3 3 3 3 4 0 4 1 3 4 2 3

0 2 3 3 0 2 3 4 0 2 2 1 1 2 4 3 2 1 2 2 4 3 0 1 2 4

2 2 2 2 4 3 2 1 2 2 2 3 2 1 2 2 4 3 2 1 2 2 3 4

2 1 2 2 3 3 2 1 2 3

(2) 2 2 2 2 4 4 4

2 2 2 2 2 2

2 2 2 2

2 2

x d v w x a x w a x d v y v y w v y w

x v a w x v d v x d x a w v v w x a w v v w x a w v

x a w v v w x w w d v w x w w d v w x w w v a v

x w w v d w x w w d v

      

     

   

  4 3 2 1 1 3 2 1 2 3 2 2 1 3

2 2 2 3 2 1 2 3 1 2 3 4 3 1 2 3 1 2 3 0 1 2 2 2 4

0 1 2 2 3 3 0 1 2 2 3 4 0 1 2 3 4 3 0 1 1 2 0 1 1 4

0 1 2 2 2 2 1 2 4 3 0 2 1 2 0 2 1

2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

w x a w w x a w w x a w w

x a w w x w w a x v d v w x d w x v a x w w d v v

x w w v a w x w w v d v x w w a v w x a w v x a w v

x a w v x a w v v w x a w v x a w v

  

     

    

    4 0 2 2 2 0 2 2 4

0 1 2 2 0 1 2 3 0 2 2 4 3 1 3 4 1 3 3 0 3 4 3

0 3 2 2 2 3 2 2 4 3 2 2 3 4 2 2 3 3 3 1 2 2 3 4 3

3 1 1 2 4 3 1 2 2 4 3 2 1 2 4 3 2 2 2 4 3 1 2

2 2

2 2 2 4 2 2 2

2 2 2 2 2 2

2 2 2 2 2

x a w v x a w v

x w w d x w w d x d v v y x a v x w d x a v w

x d x d v w x d v w x v a v x v d w x w w v a v w

x w a v v x a w v v x a w v v x a w v v x w w d

 

      

     

     2 2

3 1 2 2 4 3 1 2 2 3 3 1 2 3 4 2 1 1 2 2 2 4 3

1 1 2 2 3 4 3 1 1 1 2 3 1 1 1 4 3 1 1 2 2 3 1 1 2 4 3

1 2 1 2 3 1 2 1 4 3 1 2 2 2 3 1 2 2 4 3 1 1 2 2 3

1 1 2 2 3 1

2 2 4 4 2

2 2 2 2 2

2 2 2 2 2

2 2

v

x w w d v x w w v d y w w y v v x w w d v v w

x w w v d v w x a w v w x a w v w x a w v w x a w v w

x a w v w x a w v w x a w v w x a w v w x w w d w

x w w v a x w

    

    

    

  1 2 3 4 1 1 2 3 3 1 2 2 4 3 3 1 2 3 3

3 1 2 3 4 3 2 3 4 3 3 1 1 3 1 2 3 2 1 3 2 2 3 2 2

3 2 4 3 2 3 0 1 2 2 0 1 2 4 0 2 1 1 2 2 3 1 3 2

1 1 2 4 3 2 1 2 2 4 3 2

2 2 2

2 2 2 2 2 2 2

2 2 4 4 4 4 4

4 4 4

w a v x w w d w x d v v w x w w a w

x w w d v x v a v w x a w x a w x a w x a w x d v

x d v x v d y w w v y w w v y v y w w v w y w v

y w w v w y w w v v w y w

  

      

      

   1 2 3 2 3 4 2 3 1 2 2 44 4w w y w v v y w w v v 
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3 2 2 3 3 2 4 3 3 1 2 3 3 1 2 3 3 1 3 4 3 1 3 3

3 2 2 3 0 1 1 2 2 4 3 0 2 1 2 2 4 3 0 1 1 2 3 0 1 2 4 3

0 2 1 2 3 0 2 2 4 3 0 1 2 2 3 0 1 2 4 3 0 1 2 3 4

0 1 2 3

(3) 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

x a v w x a v w x w d w x w v a x w a v x w d w

x w d w x a w w v v w x a w w v v w x a w w w x a v v w

x a w w w x a v v w x w d v w x w d v w x w v a v

x w v d w

     

    

    

 3 0 1 3 4 3 0 2 2 2 3 0 2 2 4 3 0 2 2 3 4

0 2 2 3 3 0 2 3 4 3 0 1 3 0 2 3 0 1 3 0 2 3

1 1 1 2 2 4 1 2 1 2 2 4 1 1 2 3 4 3 1 2 2 3 4 3 1 1 1 2

1 1 2 4 1 2 1 2 1 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2

x w d v w x w d v w x w d v w x w v a v

x w v d w x w d v w x a w x a w x w a x w a

x a w w v v x a w w v v x w v a v w x w v a v w x a w w

x a v v x a w w x a v v

   

     

    

   4 1 1 2 2 1 1 2 4 1 1 2 3

1 1 3 3 1 1 3 4 1 2 2 2 1 2 2 4 3 2 2 3 3 2 3 4

3 2 3 3 0 3 4 2 1 0 3 4 2 2 0 3 1 0 3 2 1 4 2 1

1 4 2 2 1 1 1 2 2 1 2 2 4 1 2 2 2

2 2 2

2 2 2 2 2 2

2 4 4 4 4 4

4 4 4 4 4 4 4

x w d v x w d v x w v d

x w a w x w d v x w d v x w d v x w v a x w a v

x w d w y w v v w y w v v w y w w y w w y v v w

y v v w y w y w y w v y v w y w v y

  

     

     

       2 4 2

3 3 2 1 3 3 4 1 3 3 2 2 3 3 4 2 1 2 2 3 1 2 3 3

1 2 3 4 1 1 1 2 2 1 1 2 2 2 1 1 2 4 2 2 1 2 2

2 2 1 2 4 2 2 2 1 4 2 1 2 3 3 2 1 2 3 4 2 1 3 4 3

2 2 2 2 4 2

4 4 4 4 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2

v w

y w v w y w v w y w v w y w v w x w v d x w a w

x w d v x a x a x a w w v x a w w v x a w w v

x a w w v x d v w v x w v a w x w v d v x w a v w

x d v w v x w

     

     

    

  2 2 3 3 2 2 2 3 4 2 2 3 4 3 2 1 2 2 1 4

2 2 2 2 2 4 2 1 2 2 1 3 2 2 2 2 2 3 3 1 1 2 2 3

3 1 1 2 4 3 3 2 1 2 2 3 3 2 1 2 4 3 3 1 2 2 4 3

3 1 2 3 4 3 3 2 2 2 4 3 3 2

2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2 2 2

v a w x w v d v x w a v w x a v x a v

x a v x a v x w d x w d x w d x w d x a w w v w

x a w w v w x a w w v w x a w w v w x w d v v w

x w v d v w x w d v v w x w v

   

      

   

   2 3 4 3 3 1 2 3 3 1 4 32 2d v w x a v w x a v w 

  

3 3 4 3 3 3 1 3 2 3 4 3 4 1 3 4 3 2 3 4

1 3 2 3 3 0 0 3 3 0 3 4 0 1 2 2 4 0 1 2

0 4 2 1 1 2 2 4 3 1 1 2 3 1 3 4 2 2 1 2 2 3

2 1 2 4 3 2 3 2 3 1 2 2 3 1

(4) 2 2 4 4 4 2 2

2 2 4 2 2 4 4

4 4 4 4 4

4 4 4 4

x a v w x d y w y w v y v x d v w x a v

x a x w d y x w a x d v y w w v v y w w

y v v y w w v v w y w w w y w v v y w w v w

y w w v w y w v y w w v y w

     

      

    

    2 4 3 2 1 1 1 2 4 3

1 1 2 2 4 3 1 2 1 2 4 3 1 2 2 2 4 3 1 1 2 2 2 3 3 2

1 1 2 2 4 3 1 1 2 2 3 4 1 1 2 2 3 3 1 1 2 3 4 3 1 1 1 3

1 1 2 3 1 2 1 3 1 2 2 3 1 1 2 3 1 2 2

4 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

w v y v x a w v v w

x a w v v w x a w v v w x a w v v w x w w d v w x d

x w w d v w x w w v a v x w w v d w x w w d v w x a w w

x a w w x a w w x a w w x w w a x d v

 

    

    

     3 1 2 4 3

1 2 3 4 1 2 3 3 2 1 2 2 2 4 3 2 1 2 2 3 4 3 2 1 1 2 3

2 1 1 4 3 2 1 2 2 3 2 1 2 4 3 2 2 1 2 3 2 2 1 4 3

2 2 2 2 3 2 2 2 4 3 2 1 2 2 3 2 1 2 2 3 2 1 2 3 4

2

2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

w x d v w

x v a v x v d w x w w d v v w x w w v d v w x a w v w

x a w v w x a w v w x a w v w x a w v w x a w v w

x a w v w x a w v w x w w d w x w w v a x w w a v

x



    

    

    

 1 2 3 3 2 2 2 4 3 2 2 3 4 3 2 2 3 2 2 3 0 1 1 2 4

0 1 2 2 3 4 3 0 1 2 2 4 0 2 1 2 4 0 2 2 2 4 0 1 2 2 2

0 1 2 2 4 0 1 2 2 3 0 1 2 3 3 0 1 2 3 4 0 2 3 4 3

0 1 1 0 1 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2

w w d w x d v v w x v d v w x d w x v a x w a v v

x w w v a v w x a w v v x a w v v x a w v v x w w d v

x w w d v x w w v d x w w a w x w w d v x v a v w

x a w x a w

    

    

    

  0 2 1 0 2 2 0 2 2 0 2 4 3 1 2 2 2 4

0 2 3 3 1 2 2 3 3 3 1 2 2 3 4 3 1 2 3 4 3 3 1 1 2

3 1 1 4 3 1 2 2 3 1 2 4 3 2 1 2 3 2 1 4 3 2 2 2

3 2 2 4 3 1 2 2 3 1 2 3 3

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

x a w x a w x d v x d v x w w d v v

x v d x w w v a w x w w v d v x w w a v w x a w v

x a w v x a w v x a w v x a w v x a w v x a w v

x a w v x w w d x w w d x

    

    

     

    2 2 4 3 2 3 3 3 2 3 42 2d v v x v a w x v d v 
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Table A.I.2 Constraint equations for 3J serial kinematic chains using the implicitization 

algorithm ( tan( / 2)iwi  , Study parameter: [x0, x1, x2, x3, y0, y1, y2, y3]) 

Note: solid arrow represents z axis, and dotted arrow represents x axis. 

1 

 

RŔR ́ a) The axes 

of the first two R 

joints are 

perpendicular but 

do not intersect. 

The axes of the 

last two R joints 

are parallel. 

 

α1= π/2, d1=0, 

α2=0, d2=0. 

 

, 

, 

, 

 

 

 

 

 

RŔR ́ b) The axes 

of the first two R 

joints are 

perpendicular and 

intersect. The 

axes of the last 

two R joints are 

parallel. 

 

α1=π/2, d1=0, 

a1=0, 

α2=0, d2=0. 

, 

, 

, 

, 
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RŔR ́ c) The axes 

of the first two R 

joints intersect. 

The axes of the 

last two R joints 

are parallel. 

 

d1=0, a1=0, 

α2=0, d2=0. 

, 

, 

, 

, 

 

 

 

 

2 

 

ŔRŔ a) The axes 

of the first and 

third R joints are 

parallel. The axes 

of the first two R 

joints are 

perpendicular but 

do not intersect. 

 

α1=π/2, d1=0,  

α2=-Pi/2, d2=0. 

, 

, 

, 

, 

, 

, 

, 

 ,
 

, 

ŔRŔ b) The axes 

of the first and 

third R joints are 

parallel. The axes 

of the first two R 

joints are 

, 

, 

, 

, 
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perpendicular and 

intersect. 

 

α1=π/2, d1=0,  

α2=- π /2, a2=0. 

, 

, 

, 

 

Ŕ𝑅Ŕ c) The axes 

of the first and 

third R joints are 

parallel, the axes 

of the first two R 

joints intersect, 

and the axes of 

the last two R 

joints intersect. 

 

a1=0, d1=0, 

a2=0. 

 

 

 

 

 

 

 

 

 

3 

 

ṘṘR a) The axes 

of the first two R 

joints intersect, 

the axes of the 

last two R joints 

are not in the 

 

 

 



150 

same plane. 

 

a1=0, d1=0, 

d2=0. 

 

 

 

 

 

ṘṘR b) The axes 

of the first two R 

joints intersect. 

The axes of the 

last two R joints 

intersect. 

 

a1=0, d1=0, 

a2=0. 
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ṘṘR c) The axes 

of the first two R 

joints intersect. 

The axes of the 

last two R joints 

are parallel. 

 

a1=0,  

α2=0, d2=0. 

 

 

, 

 

 

 

 

 

 

 

4 RṘṘ a) The axes 

of the first two R 

joints intersect. 

The axes of the 

last two R joints 

intersect. 

  

a1=0, d1=0, 

a2=0. 
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RṘṘ  b) The axes 

of the first two R 

joints are parallel. 

The axes of the 

last two R joints 

intersect. 

 

α1=0, d1=0, 

a2=0. 

 

 

 

 

 

 

 

 

 

5 

 

ṘRṘ  The axes of 

the first and third 

R joints intersect 

at some 

configurations. 
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a1=0, d1=0, 

a2=0. 

 

 

 

 

6 

 

 

a) The axes of the 

first and third R 

joints are 

symmetric about 

the axis of the 

second R. 

 

a2=a1, 

d2=˗d1. 
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b) The axes of the 

first and third R 

joints are 

symmetric about 

the plane through 

the axis of the 

second R. 

 

a2=a1, 

d2=˗d1. 
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7 The axes of the 

three R joints are 

parallel. 

 

α1= α2=0,   

d1= d2=0.   

 

 

 

 

8 The axes of the 

three R joints 

intersect at one 

point. 

 

a1=a2=0,   

d2=0.   
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Table A.I.3 Constraint equations for 4J serial kinematic chains using the implicitization 

algorithm ( tan( / 2)iwi  , Study parameter: [x0, x1, x2, x3, y0, y1, y2, y3]) 

1 ŔŔR̀R̀ a) The axes of the 

first two R joints are 

parallel, the axes of the 

last two R joints are 

parallel, the axes of the 

second and third R 

joints are perpendicular 

but not in the same 

plane. 

 

α1=0, d1=0,  

α2=π/2, d2=0,  

α3=0, d3=0.  

 

 
 

 

 

 

 

 

 

ŔŔR̀R̀ b) The axes of the 

first two R joints are 

parallel, the axes of the 

last two R joints are 

parallel, and the axes of 

the second and third R 

joints are perpendicular 

and intersect. 

α1=0, d1=0,  

α2=π/2, a2=0, d2=0, 

α3=0, d3=0. 
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ŔŔR̀R̀ c) The axes of the 

first two R joints are 

parallel, the axes of the 

last two R joints are 

parallel, and the axes of 

the second and third R 

joints intersect. 

 

α1=0, d1=0,  

a2=0,  

α3=0, a3=0. 

, 
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2 

 

ŔR̀R̀Ŕ a) The axes of the 

first and fourth R joints 

are parallel, the axes of 

the second and third R 

joints are parallel, the 

axes of the first and 

second R joints are 

perpendicular but not in 

the same plane. 

 

α1= π/2, d1=0,  

α2=0, d2=0, 

α3=˗ π/2, d3=0. 

 

, 

, 
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ŔR̀R̀Ŕ b) The axes of the 

first and fourth R joints 

are parallel, the axes of 

the second and third R 

joints are parallel, the 

axes of the first and 

second R joints are 

perpendicular and 

intersect. 

 

α1= π/2, a1=0, d1=0,  

α2=0,  

α3=˗ π/2, a3=0. 

 

 

 

 

 

ŔR̀R̀Ŕ c) The axes of the 

first and fourth R joints 

are parallel, the axes of 

the second and third R 

joints are parallel, the 

axes of the first and 

second R joints are 

perpendicular and 

intersect. 

α1= π/2, a1=0, d1=0,  

α2=0, d2=0, 

α3=π/2, a3=0. 
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3 

 

ŔR̀ŔR̀ a) The axes of the 

first and third R joints 

are parallel, the axes of 

the second and fourth R 

joints are parallel, the 

axes of the first and 

second R joints are 

perpendicular but not in 

the same plane. 

   

α1= π/2, a1=0, d1=0,  

α2= ˗π/2, d2=0, 

α3=π/2, d3=0. 

 

 

 

 

 

 

 

ŔR̀ŔR̀ b) The axes of the 

first and third R joints 

joints are parallel, the 

axes of the second and 
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fourth R are parallel, the 

axes of the first and 

second R joints are 

perpendicular and 

intersect. 

 

α1= π/2, a1=0, d1=0,  

α2= ˗π/2, a2=0, 

α3=π/2, a3=0. 

 

 

 

 

 

 

4 ŔŔRŔ a) The axes of the 

first, second and fourth 

R joints are parallel, the 

axes of the second and 

third R joints are 

perpendicular but not in 

the same plane with 

other axes. 

 

α1= 0, d1=0,  

α2= π/2, d2=0, 

α3=˗π/2, d3=0. 

With the conditions: a1=1, a2=1, a3=1. 

, 
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ŔŔRŔ b) The axes of the 

first, second and fourth 

R joints are parallel in 

some configuration, the 

axes of the second and 

third R joints are 

perpendicular and 

intersect with the second 

and fourth R axes. 

 

α1= 0, d1=0,  

α2= π/2, a2=0, 

α3=˗π/2, a3=0. 

 

 

 

5 ŔRŔŔ a) The axes of the 

first, third and fourth R 

joints are parallel, the 

axes of the second and 

third R joints are 

perpendicular but not in 

the same plane. 

α1= π/2, d1=0,  

α2= ˗π/2, d2=0, 

α3=0, d3=0. 

 

With the conditions: a1=1, a2=3, a3=4. 
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ŔRŔŔ b) The axes of the 

first, third and fourth R 

joints are parallel, the 

axes of the second R 

joints are perpendicular 

and intersect with the 

first and third R axes. 

 

α1= π/2, a1=0, d1=0,  

α2= ˗π/2, a2=0, 

α3=0, d3=0. 

, 
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6 

 

RŔŔŔ a) The axes of the 

last three R joints are 

parallel, the axes of the 

first R is perpendicular 

but not in the same 

plane with other axes. 

 

α1= π/2, d1=0,  

α2= 0, d2=0, 

α3=0. 

 , 

 

, 

, 

, 

RŔŔŔ b) The axes of the 

last three R joints are 

parallel, the axes of the 

first R is perpendicular 

and intersect with the 

second axis.  

α1= π/2, a1=0, d1=0, 

α2= 0, d2=0, 

α3=0, d3=0. 

  

, 

, 

, 

, 

, 

Without the condition: d3=0. 

 

 

 

 

 

RŔŔŔc) The axes of the , 
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last three R joints are 

parallel, and the axis of 

the first R joint 

intersects with the 

second axis.  

 

a1=0, d1=0, 

α2= 0, d2=0, 

α3=0, d3=0. 

, 

, 

, 

, 

 

 

 

 

 

 

 

 

7 RṘṘṘ a) The axes of the 

first two R joints are 

parallel, and the axes of 

the last three R joints 

intersect. 

 

α1=0, d1=0, 

a2= 0,  

a3=0, d3=0. 
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RṘṘṘ  b) The axes of 

the first two R joints are 

perpendicular but not in 

the same plane, the axes 

of the last three R joints 

intersect. 

 

α1=π/2, d1=0, 

a2= 0,  

a3=0, d3=0. 

, 

 

 

 

 

 

 

RṘṘṘ c) The axes of the 

first two intersect, and 

the axes of the last three 

R joints intersect. 

 

a1=0,  

a2= 0,  

a3=0, d3=0. 
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8 

 

ṘṘṘR a) The axes of the 

first three R joints 

intersect, and the axes of 

the last two are parallel. 

 

α1=0, d1=0, 

a2= 0, d2=0, 

α3=0. 

 

 

 

 

 

ṘṘṘR b) The axes of the 

first three R joints 

intersect, the axes of the 

last two R joints are 

perpendicular but do not 

intersect. 

 

a1=0, d1=0, 

a2= 0, a2=0, 

α3=π/2, d3=0. 
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ṘṘṘR c) The axes of the 

first three R joints 

intersect, and the axes of 

the last two R intersect. 

 

a1=0, d1=0, 

a2= 0, a2=0, 

a3=0.  
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Table A.I.4 Constraint equations for 5J serial chains using the implicitization algorithm 

( tan( / 2)iwi  , Study parameter: [x0, x1, x2, x3, y0, y1, y2, y3]) 

1 

 

 

ŔŔR̀R̀R̀ a) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints are parallel. The axes of the third and fourth R joints are 

perpendicular but not in the same plane. 

α1=0, d1=0,        α2=0, d2=0,  

α3=π/2, d3=0,     α4=0, d4=0. 

 

ŔŔR̀R̀R̀ b) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints are parallel. The axes of the third and fourth R joints are 

perpendicular and intersect. 

α1=0, d1=0,        α2=0,  

α3=π/2, d3=0,     α4=0, d4=0. 

 

R̀R̀R̀ŔŔ c) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints are parallel. The axes of the third and fourth R joints 

intersect. 

α1=0, d1=0,        α2=0,  

d3=0,                  α4=0, d4=0. 
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R̀R̀R̀ŔŔ d) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints are parallel. The axes of the third and fourth R joints 

intersect. 

α1=0, d1=0,        α2=0, d2=0,  

a3=0,                 α4=0. 

 

R̀R̀R̀ŔŔ e) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints are parallel. The axes of the third and fourth R joints are 

perpendicular and intersect. 

α1=0, d1=0,        α2=0, d2=0,  

α3=π/2, a3=0,     α4=0. 

 

2 

 

 

ŔR̀R̀R̀Ŕ a) 

 

The axes of the three successive R in the middle are parallel, and the 

axes of other two R joints are parallel. The axes of two group R joints 

are perpendicular but not in the same plane. 

α1= π/2, d1=0,        α2=0, d2=0,  

α3=π/2, d3=0,         α4=0, d4=0. 
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ŔR̀R̀R̀Ŕ b) 

 

The axes of the three successive R in the middle are parallel, and the 

axes of other two R joints are parallel. The axes of two group R joints 

are perpendicular and intersect. 

α1= π/2, a1=0, d1=0,              α2=0,  

α3=π/2,                                  α4=0, a4=0. 

 

ŔR̀R̀R̀Ŕ c) 

 

The axes of the three successive R in the middle are parallel, and the 

axes of other two R joints are parallel. The axes of two group R joints 

are perpendicular and intersect. 

α1= π/2, a1=0,            α2=0, d2=0,               

α3=0, d3=0,                α4= π/2, a4=0. 

 

3  ṘṘR̀R̀R ̀ a) 

 

The axes of the first two R joints intersect, and the axes of the last 

three R joints are parallel. The axes of the second and third R joints 

intersect. 

a1=0,                         a2=0,  

α3=0, d3=0,                α4= 0, a4=0. 
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 ṘṘR̀R̀R̀ b)  

 

The axes of the first two R joints intersect, and the axes of the last 

three R joints are parallel. The axes of the second and third R are not 

in the same plane. 

a1=0,                          

α3=0, d3=0,                α4= 0, a4=0. 

 

 ṘṘR̀R̀R̀ c) 

 

The axes of the first two R joints intersect, and the axes of the last 

three R joints are parallel. The axes of the second and third R joints 

intersect. 

a1=0,                         a2=0,  

α3=0,                         α4= 0. 

 

4  R̀R̀R̀ṘR ̇ a) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints intersect. The axes of the third and fourth R joints 

intersect. 

a1=0, d1=0,                a2=0, d2=0,                 

a3=0,                          a4=0. 
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 R̀R̀R̀ṘṘ b) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints intersect. The axes of the third and fourth R are not in 

the same plane. 

a1=0, d1=0,                a2=0, d2=0,                 

a4=0. 

 

 

 R̀R̀R̀ṘR ̇ c) 

 

The axes of the first three R joints are parallel, and the axes of the last 

two R joints intersect. The axes of the third and fourth R joints 

intersect. 

α1=0, a1=0,                α2=0,  

a3=0,                          a4=0. 

 

 

5 ṘṘṘR̀R̀ 

 

The axes of the first three R joints intersect, and the axes of the last 

two R joints are parallel. The axes of the second and third R joints 

intersect. 

a1=0,                          a2=0, d2=0,                 

a3=0,                          d4=0. 
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6 

 

 

R̀R̀ṘṘṘ 

 

The axes of the first two R joints are parallel, and the axes of the last 

three R joints intersect. The axes of the second and third R joints 

intersect. 

α1=0, d1=0,                a2=0,  

a3=0,                          a4=0, d4=0.                

 

 

7 

 

(RRR)𝑠ṘṘ

 

The axes of the first three R joints intersect, and the axes of the last 

two R joints intersect. The axes of the second and third R are not in 

the same plane. 

a1=0,                  a2=0, d2=0,                 

a4=0.  

 

8 

 

ṘṘ(RRR)𝑠 

 

The axes of the first two R joints intersect, and the axes of the last 

three R joints intersect. The axes of the second and third R are not in 

the same plane. 

a1=0,                   

a3=0,                 a4=0, d4=0.                
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Appendix II ‒ Expressions of S1, S2 and S3 in the Algebraic 

Approach in Chapter 5 

 

S1： 

5.14340728·10
8
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S2: 
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Appendix III ‒ Kinematic Analysis of Multi-Loop Multi-

Mode Reconfigurable Mechanisms 

 

This appendix mainly deals with the kinematic analysis of MLMMRMs based on work 

proposed in the text of this thesis. Constraint equations of serial chains with 

transformations in the base and moving frame (platform) are firstly unified and the 

kinematic analysis of a 3-RRRR MMRM is then carried out. 

 

A.III.1 Unifying the Constraint Equations of Serial Chains with Transformations 

in the Base and Moving Frames 

 

The constraint equations obtained in Chapter 3 and Appendix I only refer to simple 

kinematic chains. Thus the transformations in the base and moving frame need to be 

unified into the constraint equations in the kinematic analysis of a parallel mechanism. 

Generally, the base frame is fixed at the centre of a base or at the start of a leg and the 

moving frame is fixed in the centre of a platform or at the end of a leg. In this appendix, 

the parameters from the base to the start of a leg and from the end of a leg to the moving 

frame are first defined. 

 

A.III.1.1 Transformation in the Base 

 

Figure A.III.1 Parameters from the base to the start of a leg 
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    As shown in Fig. A.III.1, the origin of the base frame ∑0 is at the centre of the base 

with axis z0 is perpendicular with the base plane and axis x0 is parallel with the base 

plane. The origin of the frame ∑1 is at the centre of the first R joint with axis z1 is 

coincident with the axis of the first R joint and the axis x1 placed such that the plane 

formed by axes z1 and x1 is parallel to axis z0.  

    Here, the transformation from ∑0 to ∑1 can be obtained by translating [xb, yb, zb] in the 

frame ∑0, then rotating θb about axis zt (as shown in Fig. A.III.1, a transition axis) and 

rotating γb about axis y1, which can be represented by  

1 2 3B B B B                                                     (A.III.1) 

where 

1

1 0 0 0

1 0 1

0 1 0

0 0 1

b

b

b

x
B

y

z

 
 
 
 
 
 

                                                 (A.III.2) 
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0 sin( ) cos( ) 0

0 0 0 1

b b

b b

B
 

 

 
 
 
 
 
 

                                       (A.III.3) 
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 
 

 

                                       (A.III.4) 

    The transformation from the base to the start of a leg can be obtained by multiplying 

the three matrixes together: 

1 0 0 0

cos( )cos( ) sin( ) cos( )sin( )

sin( )cos( ) cos( ) sin( )sin( )

sin( ) 0 cos( )

b b b b b b

b b b b b b

b b b

x
B

y

z

    

    

 

 
 


 
 
 

 

                    (A.III.5) 

    Generally, there are some common arrangements for the connection of the base and 

the legs; some cases along with simple transformations are listed in Table A.III.1.   
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Table A.III.1 Some usual arrangements between a base and a leg   

(1) 

 

𝑧b= 0, 𝛾b= π/2. 
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0 cos( ) sin( )
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b b b

b b b

x
B

y

 

 

 
 


 
 
 

 

 

(2) 

 

𝑧b= 0, 𝛾b= π/2. 
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(4) 

 

𝑧b= 0. 
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A.III.1.2 Transformation in the Platform 

The origin of the platform frame ∑m is at the centre of the platform, axis zm is 

perpendicular with the platform plane and axis xm is parallel with the platform plane.       

    The origin of the frame ∑i is at the centre of the last R joint of a leg, axis zi is 

coincident with the axis of the Ri joint and axis xi is parallel with the platform plane (Fig. 

A.III.2).  

 

Figure A.III.2 Parameters from the end of a leg to the platform 

    The transformation can be continued in the frame ∑i by first translating [xm, ym, zm], 

then rotating αm about xi and rotating θm about zm which can be expressed as: 

1 2 3M M M M                                             (A.III.6) 

where 
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3

1 0 0 0

0 cos( ) sin( ) 0

0 sin( ) cos( ) 0

0 0 0 1

m m

m m

M
 

 

 
 
 
 
 
 

                                   (A.III.9) 

then multiplying the above three matrixes together gives: 
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                (A.III.10) 

   Some common cases of the connection between a leg and platform along with their 

transformations are shown in Table A.III.2. 

Table A.III.2 Some common arrangements between a leg and a platform 
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A.III.1.3 Obtaining Complete Constraint Equations for a Parallel Mechanism by 

Unifying Transformations in the Base and Platform  

 

Once the transformations in the base and platform are obtained, the associated study 

parameters can be calculated according to Eqs. (2.31) and (2.32) leading to the 

construction of the projective transformation matrixes in the kinematic mapping space. 

Then the projective transformation matrixes can be applied to a serial chain (leg) by 

1( )i b mX T T X                                                 (A.III.11) 

where X is study parameters in the constraint equations for a serial chain, Xi is study 

parameters in the constraint equations of a parallel mechanism. The next step is to 

replace X using Xi so that the constraint equations for a parallel mechanism, “Eq. (p)”, 

can be obtained 

.(p) .( )( )iEq Eq s X X                                      (A.III.12) 

where “Eq. (s)” represent the constraint equations for a serial chain. 

 

A.III.1.4 An Example of Obtaining Complete Constraint Equations for a Leg of a 

Parallel Mechanism  

 

In the following, an example to obtain the constraint equations for a 3R-leg parallel 

mechanism is demonstrated. A 3R chain in Table 3.3 1-(a) is arranged as one leg for a 

parallel mechanism, as shown in the Fig. A.III.3. The parameters for the leg are listed 

below: 

xb=0, yb=1, zb=0, b =0, b =−π/3, 

xm=0, ym=0, zm=1, m = π/2, m =π/6,                          (A.III.13) 

a1=1, a2=1, 
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Figure A.III.3 Parallel mechanism with 3R-leg 

     There are nine equations for this 3R chain, and three equations (Eqs. (3.2), (3.3) and 

(3.9)) are selected according to the previous analysis in Chapter 3. Meanwhile, their 

transformations in the base and platform can be obtained according to Tables A.III.1-(4) 

and A.III.2-(2): 
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                                   (A.III.14 b) 

    Calculating the study parameters [b0, b1, b2, b3, b4, b5, b6, b7] in the base from B, and 

[m0, m1, m2, m3, m4, m5, m6, m7] in the platform from M, we can obtain Tb and Tm 

according to Eqs. (2.34) and (2.35): 
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                (A.III.16) 

    Therefore, obtaining the new study parameters Xi according to Eq. (A.III.11) and 

substituting them to the corresponding parameters X in the Eqs. (3.2), (3.3) and (3.9), 

three constraint equations for the parallel mechanism are obtained which can be used for 

the followed kinematic analysis of the mechanism. The three equations are detailed 

below 
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(A.III.17)         
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18.68041274 12.96416330 19.80166888 11.43249887

34.29749668 12.96416330 34.29749668 11.43249887

32.76583225 19.80

x x y x y x y

x y y y y y y

y y y y y y y

y

  

   

   

  2 2

2 3 3 0

0 1 0 2 0 3 0 0

2

0 1 0 2 0 3 1

166888 32.76583225 24.19145807

17.14874833 9.900834468 1.531664446 27.04958282

35.41875283 58.28375061 4.184584969 4.389789141

y y y x

x x x x x x x y

x y x y x y x

 

   

   

 

(A.III.19) 

 

A.III.2 Kinematic Analysis of a 3-RRRR MMRM 

 

In Chapters 5 and 6, two single-loop multi-mode reconfigurable mechanisms 

(SLMMRMs) have been designed and analysed using the explicitation approach based 

on the kinematic mapping method and it proved that the method is quite effective for 

the kinematic analysis of SLMMRMs. In [120], the implicitization approach was used 

to complete the forward kinematic problem for a multi-loop parallel mechanism. With 

similar motivation in this appendix, the aim is to analyse a Multi-Mode Multi-Loop 

Reconfigurable Mechanism (MLMMRM) using the implicitization approach. 

 

A.III.2.1 Description of the MLMMRM 

 

    A 3-RRRR mechanism presented in [133] was regarded as a 3-DOF parallel 

mechanism which is in fact a MLMMRM with one DOF, as demonstrated in Fig. 

A.III.4. Its three legs are exactly the same as the leg of the 7R SLMMRM proposed in 

Chapter 5 and the three R joints in the base and platform are line symmetrical. The 

relationships of its parameters are as follows: 

Ri1 // Ri3 // Ri4 ┴ Ri2                                                (A.III.20) 

a11=a21=a31, a12=a22=a32, a11=a21=a31                               (A.III.21) 

ai1+ai2=ai3                                                        (A.III.22) 

    The parameters for the legs are listed in Table A.III.3. The parameters from the centre 

of the base to the starts of the three legs are listed in Table A.III.4. The parameters from 

the ends of the legs to the centre of the platform are listed in Table A.III.5.  
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                             Figure A.III.4 Structure of 3-RRRR MMRM 

 

Table A.III.3 Parameters for the legs of the 3-RRRR MMRM 

i ai1 ai2 ai3 di1 di2 di3 αi1 (deg) αi2 (deg) αi3 (deg) 

1 1.00 1.00 1.00 0.00 0.00 0.00 90.00 90.00 90.00 

2 3.00 3.00 3.00 0.00 0.00 0.00 −90.00 −90.00 −90.00 

3 4.00 4.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A.III.4 Parameters from the centre of the base to the starts of the legs 

i xbi ybi zbi θbi (deg) γbi (deg) 

1 0.00 1.00 0.00 0.00 90.00 

2 0.50 0.87 0.00 120.00 90.00 

3 0.50 −0.87 0.00 −150.00 90.00 

 

Table A.III.5 Parameters from the ends of the legs to the centre of the platform 

i xmi ymi zmi αmi(deg) θmi(deg) 

1 1.00 0.00 0.00 −90.00 −90.00 

2 1.00 0.00 0.00 −90.00 150.00 

3 1.00 0.00 0.00 −90.00 30.00 

 

∑11 

∑12 

∑13 

∑14 

∑b 

∑p 
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A.III.2.2 Motion Patterns of the 3-RRRR MMRM  

 

Several operation modes can be identified by the CAD models as shown in Fig. A.III.5. 

Figure A.III.5(a) shows a translational operation mode which is the same as that of the 

7R SLMMRM (Fig. 5.1(b)). Figure A.III.5(b) shows 1-DOF planar operation mode 

similar to the operation mode I of the 7R SLMMRM. Figures A.III.5(c) shows another 

1-DOF planar operation mode similar to the operation mode II of the 7R SLMMRM.  

 

 

 

Figure A.III.5 Some operation modes of the 3-RRRR MMRM 

Leg 1 

(a) Translational motion (b) One-DOF planar motion  

Leg 2 

Leg 3 

Leg 1 

Leg 2 

Leg 3 

(c) Another one-DOF planar motion  
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A.III.2.3 Kinematic Analysis of the 3-RRRR MMRM 

 

In this section, constraint equations for the 3-RRRR MMRM are derived. The constraint 

equations for the leg have been obtained using the implicitization approach in Table 

A.I.3 5-a): 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 2 1 2 1 2 2 1 2 2 0 1 0 2 1 3 2 316 9 09x y x y x x y y x y x y y y y y y y y y         

(A.III.23) 

2 2

0 1 2 3 0 2 1 3 1 1 1 2 1 2 1 3 0 2

2 2 2 2 2 2 2 2 2 2

2 2 2 3 0 1 0 1 0 2 1 3 2 3

12 12 4 8 12

4 12 0

x x y y x x y y x y x x y y x x y y

x y x x y y y y y y y y y y

    

     
             (A.III.24) 

    Adding the transformation in the base and in the platform separately into legs 1, 2 

and 3, then six constraint equations are obtained with two equations for each leg. Take 

leg 1 for an example, the transformations in the base frame B1 and moving frame M1 are  

1

1 0 0 0

0 0 0 1

1 0 1 0

0 1 0 0

B

 
 
 
 
 

 

, 1

1 0 0 0

1 0 1 0

0 0 0 1

0 1 0 0

M

 
 
 
 
 
 

                           (A.III.25) 

    The transformations matrixes Tb1 and Tm1 in the kinematic mapping space can be 

derived after calculating the Study parameters, leading to execution of the 

transformations to the Eqs. (A.III.23) and (A.III.24) and then constraint equations for 

the 3-RRRR MMRM are obtained: 

2 2 2 2 2 2 2

0 2 0 0 3 0 0 0 1 0 2 3 3 0 2 0 2

2 2 2 2 2 2

0 3 2 0 0 2 0 1 2 2 3 2 3 2 3 2 0 2

2 2 2 2 2 2 2 2 2 2 2

2 0 3 3 2 3 3 0 2 0 3 1 2

8.0 36.0 4.0 4.0 64.0 16.0

72.0 8.0 8.0 32.0 64.0 8.0

8.0 36.0 4.0 4.0 4.0 4.0 4

x x y x x x y x y x x x y x x y y

x x y x y y x y y x y x x y y x y y

x y y x y x y y y y y y y

    

     

       2 2

1 3

0

.0y y



 

(A.III.26) 

2 2 2 2 2 2 2 2 2 2

0 2 0 3 1 2 1 3 3 3 2 3 2 3

2 2 2 2 2 2

2 0 2 2 0 3 2 2 2 3 1 2 0 3 1 3 0 2

2 2

1 2 3 1 2 3 2 0 1 2 0 2 3 3 0 2 0 2

4.0 4.0 4.0 4.0 16.0 32.0

8.0 8.0 12.0 4.0 48.0 48.0

48.0 48.0 8.0 32.0 16.0

48.0

y y y y y y y y x y x x y y

x y y x y y x y x y x x y y x x y y

x x y x x x y x y y x x x y x x y y

x

    

     

    

 2

0 2 1 3 0 3 1 2 0 0 2 0 1 2 3 0 1 3 0

2 2 2 2 2 2 2 2 2

0 2 2 0 2 0 2 0 0 3 1 0 0 0 1

48.0 8.0 48.0 48.0

24.0 12.0 8.0 48.0 4.0 4.

0

0

x y y x x y y x y y x x x x x x x y

x x y x x x x y x x y x y x y

   

    





 

(A.III.27) 

    The equations for legs 2 and 3 are too long to show in the text. In brief, a total of 

eight constraint equations for the mechanism can be obtained including the six 
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equations for the three legs, the equation Eq. (A.III.28) and the equation of the Study 

quadric, i.e., Eq. (2.33). 

2 2 2 2

0 1 2 3 1x x x x                                         (A.III.28) 

    Although the set of constraint equations are obtained for the forward kinematic 

analysis of the 3-RRRR MMRM, it will be quite difficult to use “resultant method” to 

obtain a univariate expression due to their high degrees of polynomials. In the process 

of dealing with the constraint equations of forward kinematic problem of a 5-RPUR 

parallel mechanisms (3T2R) as reported in [120], the authors tried to use a numerical 

algebraic geometry algorithm through Bertini (a software to solve polynomials using 

homotopy continuation approach) where 1680 infinite real and complex solutions have 

been obtained of which 208 are real solutions. However, the numbers are not the upper 

bound for the solutions. In order to obtain the upper bound for the solutions a univariate 

expression for the forward kinematic analysis of the 3-RRRR MMRM needs to be 

developed which will be an extremely difficult and complicated task. According to 

Bezour’s theorem [130,131] the set of solutions of these constraint equations will have 

an upper bound of solutions  

 64 2 2 16384                                           (A.III.29) 

where there are six equations of degree 4, and two equations of degree 2. 

    Therefore, this appendix terminates without giving the complete solutions of the 

forward kinematic analysis of the 3-RRRR MMRM due to the above issue. 

 

A.III.3 Summary 

 

In this appendix the constraint equations of serial chains with transformations in the 

base and moving frame have been unified, which is used to obtain constraint equations 

for parallel mechanisms. A 3-RRRR MMRM proposed before turns out to have several 

operation modes using CAD models. The forward kinematic analysis for the 3-RRRR 

MMRM is attempted to undertake and its constraint equations have been obtained. 

However, solving the constraint equations to obtain the complete solutions is extremely 

difficult task and is left for the future work.  
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