468 research outputs found

    Computationally efficient deformable 3D object tracking with a monocular RGB camera

    Get PDF
    182 p.Monocular RGB cameras are present in most scopes and devices, including embedded environments like robots, cars and home automation. Most of these environments have in common a significant presence of human operators with whom the system has to interact. This context provides the motivation to use the captured monocular images to improve the understanding of the operator and the surrounding scene for more accurate results and applications.However, monocular images do not have depth information, which is a crucial element in understanding the 3D scene correctly. Estimating the three-dimensional information of an object in the scene using a single two-dimensional image is already a challenge. The challenge grows if the object is deformable (e.g., a human body or a human face) and there is a need to track its movements and interactions in the scene.Several methods attempt to solve this task, including modern regression methods based on Deep NeuralNetworks. However, despite the great results, most are computationally demanding and therefore unsuitable for several environments. Computational efficiency is a critical feature for computationally constrained setups like embedded or onboard systems present in robotics and automotive applications, among others.This study proposes computationally efficient methodologies to reconstruct and track three-dimensional deformable objects, such as human faces and human bodies, using a single monocular RGB camera. To model the deformability of faces and bodies, it considers two types of deformations: non-rigid deformations for face tracking, and rigid multi-body deformations for body pose tracking. Furthermore, it studies their performance on computationally restricted devices like smartphones and onboard systems used in the automotive industry. The information extracted from such devices gives valuable insight into human behaviour a crucial element in improving human-machine interaction.We tested the proposed approaches in different challenging application fields like onboard driver monitoring systems, human behaviour analysis from monocular videos, and human face tracking on embedded devices

    Computationally efficient deformable 3D object tracking with a monocular RGB camera

    Get PDF
    182 p.Monocular RGB cameras are present in most scopes and devices, including embedded environments like robots, cars and home automation. Most of these environments have in common a significant presence of human operators with whom the system has to interact. This context provides the motivation to use the captured monocular images to improve the understanding of the operator and the surrounding scene for more accurate results and applications.However, monocular images do not have depth information, which is a crucial element in understanding the 3D scene correctly. Estimating the three-dimensional information of an object in the scene using a single two-dimensional image is already a challenge. The challenge grows if the object is deformable (e.g., a human body or a human face) and there is a need to track its movements and interactions in the scene.Several methods attempt to solve this task, including modern regression methods based on Deep NeuralNetworks. However, despite the great results, most are computationally demanding and therefore unsuitable for several environments. Computational efficiency is a critical feature for computationally constrained setups like embedded or onboard systems present in robotics and automotive applications, among others.This study proposes computationally efficient methodologies to reconstruct and track three-dimensional deformable objects, such as human faces and human bodies, using a single monocular RGB camera. To model the deformability of faces and bodies, it considers two types of deformations: non-rigid deformations for face tracking, and rigid multi-body deformations for body pose tracking. Furthermore, it studies their performance on computationally restricted devices like smartphones and onboard systems used in the automotive industry. The information extracted from such devices gives valuable insight into human behaviour a crucial element in improving human-machine interaction.We tested the proposed approaches in different challenging application fields like onboard driver monitoring systems, human behaviour analysis from monocular videos, and human face tracking on embedded devices

    Computer Vision Based Structural Identification Framework for Bridge Health Mornitoring

    Get PDF
    The objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using full non-contact approach using video/image processing, c) image-based structural identification using input-output measurements and new damage indicators. The input (loading) data due vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing computer vision algorithms (detection, classification, and localization of objects) based on the video images of vehicles. Meanwhile, the output data as structural displacements are also obtained by defining and tracking image key-points of measurement locations. Subsequently, the input and output data sets are analyzed to construct novel types of damage indicators, named Unit Influence Surface (UIS). Finally, the new damage detection and localization framework is introduced that does not require a network of sensors, but much less number of sensors. The main research significance is the first time development of algorithms that transform the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge assessment within the context of Structural Identification with input and output characterization. The study exploits the unique attributes of computer vision systems, where the signal is continuous in space. This requires new adaptations and transformations that can handle computer vision data/signals for structural engineering applications. This research will significantly advance current sensor-based structural health monitoring with computer-vision techniques, leading to practical applications for damage detection of complex structures with a novel approach. By using computer vision algorithms and cameras as special sensors for structural health monitoring, this study proposes an advance approach in bridge monitoring through which certain type of data that could not be collected by conventional sensors such as vehicle loads and location, can be obtained practically and accurately

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    Robotic navigation and inspection of bridge bearings

    Get PDF
    This thesis focuses on the development of a robotic platform for bridge bearing inspection. The existing literature on this topic highlights an aspiration for increased automation of bridge inspection, due to an increasing amount of ageing infrastructure and costly inspection. Furthermore, bridge bearings are highlighted as being one of the most costly components of the bridge to maintain. However, although autonomous robotic inspection is often stated as an aspiration, the existing literature for robotic bridge inspection often neglects to include the requirement of autonomous navigation. To achieve autonomous inspection, some methods for mapping and localising in the bridge structure are required. This thesis compares existing methods for simultaneous localisation and mapping (SLAM) with localisation-only methods. In addition, a method for using pre-existing data to create maps for localisation is proposed. A robotic platform was developed and these methods for localisation and mapping were then compared in a laboratory environment and then in a real bridge environment. The errors in the bridge environment are greater than in the laboratory environment, but remained within a defined error bound. A combined approach is suggested as an appropriate method for combining the lower errors of a SLAM approach with the advantages of a localisation approach for defining existing goals. Longer-term testing in a real bridge environment is still required. The use of existing inspection data is then extended to the creation of a simulation environment, with the goal of creating a methodology for testing different configurations of bridges or robots in a more realistic environment than laboratory testing, or other existing simulation environments. Finally, the inspection of the structure surrounding the bridge bearing is considered, with a particular focus on the detection and segmentation of cracks in concrete. A deep learning approach is used to segment cracks from an existing dataset and compared to an existing machine learning approach, with the deep-learning approach achieving a higher performance using a pixel-based evaluation. Other evaluation methods were also compared that take the structure of the crack, and other related datasets, into account. The generalisation of the approach for crack segmentation is evaluated by comparing the results of the trained on different datasets. Finally, recommendations for improving the datasets to allow better comparisons in future work is given

    Multi-task near-field perception for autonomous driving using surround-view fisheye cameras

    Get PDF
    Die Bildung der Augen führte zum Urknall der Evolution. Die Dynamik änderte sich von einem primitiven Organismus, der auf den Kontakt mit der Nahrung wartete, zu einem Organismus, der durch visuelle Sensoren gesucht wurde. Das menschliche Auge ist eine der raffiniertesten Entwicklungen der Evolution, aber es hat immer noch Mängel. Der Mensch hat über Millionen von Jahren einen biologischen Wahrnehmungsalgorithmus entwickelt, der in der Lage ist, Autos zu fahren, Maschinen zu bedienen, Flugzeuge zu steuern und Schiffe zu navigieren. Die Automatisierung dieser Fähigkeiten für Computer ist entscheidend für verschiedene Anwendungen, darunter selbstfahrende Autos, Augmented Realität und architektonische Vermessung. Die visuelle Nahfeldwahrnehmung im Kontext von selbstfahrenden Autos kann die Umgebung in einem Bereich von 0 - 10 Metern und 360° Abdeckung um das Fahrzeug herum wahrnehmen. Sie ist eine entscheidende Entscheidungskomponente bei der Entwicklung eines sichereren automatisierten Fahrens. Jüngste Fortschritte im Bereich Computer Vision und Deep Learning in Verbindung mit hochwertigen Sensoren wie Kameras und LiDARs haben ausgereifte Lösungen für die visuelle Wahrnehmung hervorgebracht. Bisher stand die Fernfeldwahrnehmung im Vordergrund. Ein weiteres wichtiges Problem ist die begrenzte Rechenleistung, die für die Entwicklung von Echtzeit-Anwendungen zur Verfügung steht. Aufgrund dieses Engpasses kommt es häufig zu einem Kompromiss zwischen Leistung und Laufzeiteffizienz. Wir konzentrieren uns auf die folgenden Themen, um diese anzugehen: 1) Entwicklung von Nahfeld-Wahrnehmungsalgorithmen mit hoher Leistung und geringer Rechenkomplexität für verschiedene visuelle Wahrnehmungsaufgaben wie geometrische und semantische Aufgaben unter Verwendung von faltbaren neuronalen Netzen. 2) Verwendung von Multi-Task-Learning zur Überwindung von Rechenengpässen durch die gemeinsame Nutzung von initialen Faltungsschichten zwischen den Aufgaben und die Entwicklung von Optimierungsstrategien, die die Aufgaben ausbalancieren.The formation of eyes led to the big bang of evolution. The dynamics changed from a primitive organism waiting for the food to come into contact for eating food being sought after by visual sensors. The human eye is one of the most sophisticated developments of evolution, but it still has defects. Humans have evolved a biological perception algorithm capable of driving cars, operating machinery, piloting aircraft, and navigating ships over millions of years. Automating these capabilities for computers is critical for various applications, including self-driving cars, augmented reality, and architectural surveying. Near-field visual perception in the context of self-driving cars can perceive the environment in a range of 0 - 10 meters and 360° coverage around the vehicle. It is a critical decision-making component in the development of safer automated driving. Recent advances in computer vision and deep learning, in conjunction with high-quality sensors such as cameras and LiDARs, have fueled mature visual perception solutions. Until now, far-field perception has been the primary focus. Another significant issue is the limited processing power available for developing real-time applications. Because of this bottleneck, there is frequently a trade-off between performance and run-time efficiency. We concentrate on the following issues in order to address them: 1) Developing near-field perception algorithms with high performance and low computational complexity for various visual perception tasks such as geometric and semantic tasks using convolutional neural networks. 2) Using Multi-Task Learning to overcome computational bottlenecks by sharing initial convolutional layers between tasks and developing optimization strategies that balance tasks

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    corecore