3,630 research outputs found

    Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

    Get PDF
    BACKGROUND: For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg(2+), one of the most versatile metal cofactors in cellular biochemistry. Even when Mg(2+)-proteins share insufficient sequence homology to identify Mg(2+)-specific sequence motifs, they may still share similarity in the Mg(2+)-binding site structure. However, no structural motifs characteristic of Mg(2+)-binding sites have been reported. Thus, our aims are (i) to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii) to apply it to Mg(2+)-proteins sharing <30% sequence identity. Our motif discovery method employs structural alphabet encoding to convert 3D structures to the corresponding 1D structural letter sequences, where the Mg(2+)-structural motifs are identified as recurring structural patterns. RESULTS: The structural alphabet-based motif discovery method has revealed the structural preference of Mg(2+)-binding sites for certain local/secondary structures: compared to all residues in the Mg(2+)-proteins, both first and second-shell Mg(2+)-ligands prefer loops to helices. Even when the Mg(2+)-proteins share no significant sequence homology, some of them share a similar Mg(2+)-binding site structure: 4 Mg(2+)-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg(2+)-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca(2+)-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg(2+ )plays an important biological role. CONCLUSION: The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for proteins with unknown function that are being solved from structural genomics incentives. For such proteins, which share no significant sequence homology to proteins of known function, the presence of a structural motif that maps to a specific protein function in the structure would suggest likely active/binding sites and a particular biological function

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multiple sequence alignment based on set covers

    Full text link
    We introduce a new heuristic for the multiple alignment of a set of sequences. The heuristic is based on a set cover of the residue alphabet of the sequences, and also on the determination of a significant set of blocks comprising subsequences of the sequences to be aligned. These blocks are obtained with the aid of a new data structure, called a suffix-set tree, which is constructed from the input sequences with the guidance of the residue-alphabet set cover and generalizes the well-known suffix tree of the sequence set. We provide performance results on selected BAliBASE amino-acid sequences and compare them with those yielded by some prominent approaches

    Tertiary Alphabet for the Observable Protein Structural Universe

    Get PDF
    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence—a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure

    Protein structure search and local structure characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural similarities among proteins can provide valuable insight into their functional mechanisms and relationships. As the number of available three-dimensional (3D) protein structures increases, a greater variety of studies can be conducted with increasing efficiency, among which is the design of protein structural alphabets. Structural alphabets allow us to characterize local structures of proteins and describe the global folding structure of a protein using a one-dimensional (1D) sequence. Thus, 1D sequences can be used to identify structural similarities among proteins using standard sequence alignment tools such as BLAST or FASTA.</p> <p>Results</p> <p>We used self-organizing maps in combination with a minimum spanning tree algorithm to determine the optimum size of a structural alphabet and applied the k-means algorithm to group protein fragnts into clusters. The centroids of these clusters defined the structural alphabet. We also developed a flexible matrix training system to build a substitution matrix (TRISUM-169) for our alphabet. Based on FASTA and using TRISUM-169 as the substitution matrix, we developed the SA-FAST alignment tool. We compared the performance of SA-FAST with that of various search tools in database-scale search tasks and found that SA-FAST was highly competitive in all tests conducted. Further, we evaluated the performance of our structural alphabet in recognizing specific structural domains of EGF and EGF-like proteins. Our method successfully recovered more EGF sub-domains using our structural alphabet than when using other structural alphabets. SA-FAST can be found at <url>http://140.113.166.178/safast/</url>.</p> <p>Conclusion</p> <p>The goal of this project was two-fold. First, we wanted to introduce a modular design pipeline to those who have been working with structural alphabets. Secondly, we wanted to open the door to researchers who have done substantial work in biological sequences but have yet to enter the field of protein structure research. Our experiments showed that by transforming the structural representations from 3D to 1D, several 1D-based tools can be applied to structural analysis, including similarity searches and structural motif finding.</p

    WebFR3D—a server for finding, aligning and analyzing recurrent RNA 3D motifs

    Get PDF
    WebFR3D is the on-line version of ‘Find RNA 3D’ (FR3D), a program for annotating atomic-resolution RNA 3D structure files and searching them efficiently to locate and compare RNA 3D structural motifs. WebFR3D provides on-line access to the central features of FR3D, including geometric and symbolic search modes, without need for installing programs or downloading and maintaining 3D structure data locally. In geometric search mode, WebFR3D finds all motifs similar to a user-specified query structure. In symbolic search mode, WebFR3D finds all sets of nucleotides making user-specified interactions. In both modes, users can specify sequence, sequence–continuity, base pairing, base-stacking and other constraints on nucleotides and their interactions. WebFR3D can be used to locate hairpin, internal or junction loops, list all base pairs or other interactions, or find instances of recurrent RNA 3D motifs (such as sarcin–ricin and kink-turn internal loops or T- and GNRA hairpin loops) in any PDB file or across a whole set of 3D structure files. The output page provides facilities for comparing the instances returned by the search by superposition of the 3D structures and the alignment of their sequences annotated with pairwise interactions. WebFR3D is available at http://rna.bgsu.edu/webfr3d

    DeePSLiM: A Deep Learning Approach to Identify Predictive Short-linear Motifs for Protein Sequence Classification

    Get PDF
    With the increasing quantity of biological data, it is important to develop algorithms that can quickly find patterns in large databases of DNA, RNA and protein sequences. Previous research has been very successful at applying deep learning methods to the problems of motif detection as well as classification of biological sequences. There are, however, limitations to these approaches. Most are limited to finding motifs of a single length. In addition, most research has focused on DNA and RNA, both of which use a four letter alphabet. A few of these have attempted to apply deep learning methods on the larger, twenty letter, alphabet of proteins. We present an enhanced deep learning model, called DeePSLiM, capable of detecting predictive, short linear motifs (SLiM) in protein sequences. The model is a shallow network that can be trained quickly on large amounts of data. The SLiMs are predictive because they can be used to classify the sequences into their respective families. The model was able to reach scores of 94.5% on accuracy, precision, recall, F1-Score and Matthews-correlation coefficient, as well as 99.9% area under the receiver operator characteristic curve (AUROC)
    corecore