1,680 research outputs found

    Excitable Delaunay triangulations

    Full text link
    In an excitable Delaunay triangulation every node takes three states (resting, excited and refractory) and updates its state in discrete time depending on a ratio of excited neighbours. All nodes update their states in parallel. By varying excitability of nodes we produce a range of phenomena, including reflection of excitation wave from edge of triangulation, backfire of excitation, branching clusters of excitation and localized excitation domains. Our findings contribute to studies of propagating perturbations and waves in non-crystalline substrates

    Improvement of the robustness on geographical networks by adding shortcuts

    Get PDF
    In a topological structure affected by geographical constraints on liking, the connectivity is weakened by constructing local stubs with small cycles, a something of randomness to bridge them is crucial for the robust network design. In this paper, we numerically investigate the effects of adding shortcuts on the robustness in geographical scale-free network models under a similar degree distribution to the original one. We show that a small fraction of shortcuts is highly contribute to improve the tolerance of connectivity especially for the intentional attacks on hubs. The improvement is equivalent to the effect by fully rewirings without geographical constraints on linking. Even in the realistic Internet topologies, these effects are virtually examined.Comment: 14 pages, 10 figures, 1 tabl

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients σ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ω\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ω\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    An analysis of the dense packing of disks : a computer simulated approach

    Get PDF
    This thesis is concerned with the analysis of dense packing of hard disks. The Voronoi diagram and the geometric neighbours were first computed. The average number of geometric neighbours of a disk is six. It is thus more efficient to choose structural neighbours from among the geometric neighbours than from among all other disks. Through the Monte Carlo simulation by Rosato et. al., disk configurations after pouring and subsequent shaking were provided for analysis. The mean number of geometric neighbours and the average coordination number were computed. The angular distribution of the structural neighbours was discussed. The packing fraction increases with number of shakes in a linear relationship. It seems to be packing into an ordered close packing after continued shaking. A configuration constrained by two rigid vertical walls was analyzed. It was found the packing fraction is smallest in the vicinity of the wall and increased asymptotically to the mean packing fraction when moving away from the wall
    • …
    corecore