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Abstract

Title of Thesis: An Analysis of the Dense Packing of Hard Disks

—A Computer Simulated Approach.

Jir-Yih Tsaur, Master of Science in Mechanical Engineering, 1988.

Thesis directed by: Dr. Anthony D. Rosato, Assistant Professor

Mechanical Engineering Department.

This thesis is concerned with the analysis of dense packing of hard disks. The

Voronoi diagram and the geometric neighbours were first computed. The average

number of geometric neighbours of a disk is six. It is thus more efficient to choose

structural neighbours from among the geometric neighbours than from among all

other disks.

Through the Monte Carlo simulation by Rosato et. al., disk configurations after

pouring and subsequent shaking were provided for analysis. The mean number of

geometric neighbours and the average coordination number were computed. The

angular distribution of the structural neighbours was discussed. The packing fraction

increases with number of shakes in a linear relationship. It seems to be packing into

an ordered close packing after continued shaking.

A configuration constrained by two rigid vertical walls was analyzed. It was found

the packing fraction is smallest in the vicinity of the wall and increased asymptotically

to the mean packing fraction when moving away from the wall.
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1 Introduction

1.1 Motivation and Literary Survey

The study of packing of spheres and disks have been of interest for modelling the

structure of granular materials, liquids and glasses. A survey on related research

which gives rise to the work in this thesis is presented in this Chapter.

1.1.1 The Packing of Spheres

Dated as early as 1929, the three-dimensional packing of homogeneous spheres was

studied by W. 0. Smith et. al. [50]. And, as late in 1983, J. G. Berryman [13] pre-

sented his definition on random close packing and found the critical packing fraction

for random close packing of both spheres and disks.

J. D. Bernal [9] studied the structure of liquids by viewing it as a "heap" of par-

ticles of the same size. A liquid in Bernal's original postulate [10] was homogeneous,

coherent and essentially irregular, as contrasted with a crystal, which may be called a

"pile" of molecules, regularly arranged. In respect to order, a liquid is different from

a crystal and resembles a gas. On the other hand, with respect to density, a liquid

would resemble a crystal and differ from a gas.

Through an experiment, Bernal simulated a liquid by a heap of spheres, a close

arrangement of particles, where each is in contact with a large number of others but

not in any regular way. He calculated the packing density and the average number of

geometric neighbour for the model he created. The packing densities were calculated
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to be 0.637 for random close packing and 0.60 for random loose packing, as compared

to 0.74 for ordered close packing. And, the average number of geometric neighbours

was calculated to be 13.6 as compared to 12 for ordered close packing.

Bernal defined the structural neighbours as those having their centroids within

1.05 diameter away from each other. The tolerance 0.05 was experimentally deter-

mined in the following procedure by Bernal. A number of steel ball bearings having

a light coating of grease were packed in a balloon. Paint was then poured through

the bearings. The paint was left, held by surface tension where the balls touched or

nearly touched. When the paint was dry and the balloon removed, the spheres within

5% of a diameter away from each other had a dot or a ring formed at the place where

they were in contact. By counting number of dots or rings on the surface of a sphere,

the number of structural neighbours for the sphere, or the coordination number, was

found.

Further, W. B. Haines and G. Mason [26,32] modeled the pore space in soils

and rocks. J. L. Finney [19] modeled the structure of amorphous metals and alloys.

C. A. Angel et. al. [4] studied the formation of glasses and gave a survey of com-

puter experiments. D. P. Haughey [27] studied the voidage variation in equal-sized

spheres and provided a review of earlier experiments on the packing of spheres. And,

J. G. Berryman [11] studied the flow through aggregates of spheres.

More literature can be found in [3], [37], and [1]. For example, S. Nemat-

Nasser et. al. [38] used a sample model in an experiment and found that particle
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rolling instead of particle sliding is the major microscopic deformation mechanism.

S. B. Savage et. al. [18] derived the general conservation equations for the rapid flow

of a binary mixture of smooth, inelastic, spherical granular particles following the

approach of the kinetic theory for mixtures of dense gases.

Other studies of sphere packing exist in the literature, including computer- sim-

ulations and theoretical model. They are listed in the Reference and will not be

discussed respectively here.

1.1.2 The Packing of Disks

While much work exists on the packing of spheres, the literature is not as extensive

with regard to the nature of the structure of the packing of disks. The exact nature

of disk packings is not as well understood as its three-dimensional counterpart. There

seems to be no analogue to the concept of "loose" and "close" packings with regard

to disks as there is for spheres. Disk packings are generally used as a model for

monolayer structures.

G. T. Barnes et. al. [6] used packing of disks as a model to study the covering

of a liquid surface by surfactant molecules, enabling the rate of evaporation through

the "holes" in the surface layer to be deduced. The model of Barnes pictured the

monolayer on the surface of water as an array of randomly placed hard disks on a plane

surface, and the evaporating water molecules as hard spheres. The model assumed

that water molecules could penetrate a monolayer only when void larger than a water
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molecule appeared in the monolayer, and that water evaporates through these voids

at the usual rate for a free surface. Thus, the reduction of evaporation rate caused

by a monolayer is simply a consequence of the reduction of voids in the monolayer.

After obtaining the void area, Barnes calculated the evaporation/condensation rate.

Krishna K. Pillai [39] used packed disks as a model to find the cross sectional

voidage variation in the vicinity of a wall for a packed bed of particles. Hard disks were

used in an experiment to simulate the particles, which would appears as a monolayer

of spheres and have the same front view as that of a disk model. When considering

heat conduction between particles along the bed, it is necessary to know the cross-

sectional area of solids perpendicular to the direction of heat flow. Though the average

void fraction within the bed can be calculated, the existence of a constraining wall will

alter the particle packing on the cross-sectional area of the solid in the vicinity of the

wall. Through Pillai's model, the packing fraction of a cross-section at some distance

x away from the wall can be calculated. A packing fraction versus x relationship was

derived, which could be described by a curve oscillating in the vicinity of the wall,

damped and converging to a mean value at approximately three diameters away from

the wall.

Using the fact that the packing density variation near the wall is almost the same

as that about a central sphere in the interior, Tory et. al. [23] introduced the molecular

pair-correlation function to explain the variation in the local packing density. The

results obtained agree with that of Pillai's discussed in the previous paragraph fairly
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well.

Quickenden and Tan [41] simulated monolayer structures using a method proposed

by Stillinger et. al. [51]. This was done by randomly placing homogeneous disks on an

isotropically stretched and subsequently contracted rubber film. The process modeled

the compression of a monolayer on a liquid surface. The packing fraction of the disks

increased with the contraction of the rubber film rapidly until a value of 0.83 was

reached, after which it increased slowly and asymptotically to the value of 0.906 for

a ordered close packing. It is interesting that the packing fraction of 0.83 is close

to that at the phase transition, which occurs when monolayers of long chain acids

or alcohols on a water surface are compressed from the liquid-condensed to the solid

phase. Quickenden and Tan thus declared that it is possible to explain and calculate

the position of the change from the solid to the liquid-condensed phase, purely on the

basis of an array of non-interacting disks.

Following the same idea from Stillinger, Mason [33] modeled a two-dimensional

packing of disks through computer simulation. Instead of contracting the coordinate

system or moving the disks toward a point inside the packing, Mason kept the disks at

the same coordinates and increased their size to densify the packing. Consequently,

this technique produced several disks overlapping each other which is mechanically

impossible for inelastic hard disks. Two disks in a overlapping pair were then moved

equally apart along the line of their centers until they are just touching. This process,

called shuffling by Mason, was repeated until no disk remained overlapped. Mason
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achieved the same result as Quickenden and Tan, i.e., an ordered close packing would

finally be formed.

1.2 Objectives and Methods

The packing structures of assemblies of disks are analyzed. They are created via a

Monte Carlo computer simulation developed by Rosato et. al [42]. A locus method

which solves many proximity problems in computational geometry, the Voronoi dia-

gram [58], is applied to find geometric neighbours for each disk. An algorithm orig-

inated from the one constructed by Kurt E. Brassel and Douglas Reif [14] is chosen

to create the Voronoi diagram. The algorithm is implemented in Pascal because the

language facilitates the handling of dynamic data structures and recursive subroutine

calls. The distribution of the number of geometric neighbours possessed by a disk is

computed. The average number is found to be exactly six.

Following the convention of J. D. Bernal, we define disks having their centroids

within 1.05 diameter apart from each other as structural neighbours. Structural

neighbours are chosen for each disk from among its geometric neighbours, which is

more efficient than from among all other disks in the configuration. The distribution

of the number of structural neighbours possessed by a disk, the coordination number

is calculated.

Included among the geometric neighbours also is a nearest neighbour (Theorem 2,

Appendix A), which is nearest to the center disk among all geometric neighbours. In

case of a dense packing, which is the topic of this thesis, it is also true that the nearest
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neighbour is in touch with the center disk. Therefore, the nearest neighbour of a disk

can be found within a even smaller subset composed of the structural neighbours. The

cumulative probability of nearest neighbour radii is obtained and gives the median

nearest neighbour radius.

A vector is extended from the center disk to each of its structural neighbours.

An angle, which is called structural neighbour angle is associated with each of the

vectors. For a group of disks having M structural neighbours, where M is less than or

equal to six, the frequency distribution for each of the M angles is found, from which,

the mean and deviation are calculated. Finally, Packing fractions are computed for

all assemblies and the variation of the packing fraction in the vicinity of a wall is

determined.

1.3 Outline of Chapters

Chapter Two introduces the Voronoi diagram. A variety of proximity related prob-

lems which can be solved by Voronoi diagram are discussed. The B-R method is

described, which is applied to construct the Voronoi diagram.

Random close packing of hard disks is then discussed in Chapter Three. Defi-

nitions and relations are presented. The radial distribution function is introduced,

which gives a better understanding of the concept of randomness. The Monte Carlo

simulation is described and its output is analyzed.

The Summary and Conclusion are given in Chapter Four. The Appendix contains

definitions and properties regarding Voronoi diagram, simplified flow charts for the
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algorithm finding next geometric neighbour and completing the Voronoi diagram, and

the program disk. pas.
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2 Voronoi Diagram

The Voronoi diagram is applied to find geometric neighbours for each disk. From the

geometric neighbours, structural neighbours and the nearest neighbour can be selected

efficiently. Various algorithms exist for the creation of the Voronoi diagram [15,30,48].

The algorithm by Kurt E. Brassel and Douglas Reif [14] is chosen and will be discussed

in section 2.2.

2.1 Proximity Problems

Geometric objects, such as points, circles, and spheres, are sometimes used to model

physical entities in the real world. In some cases we would like to have access to

a suitable neighbourhood of the objects. For instance, in air traffic control it is

important to keep track of the closest two aircrafts. In studying the configuration

of an ensemble of granular particles, like liquid, or powdered materials, knowing the

local environment of each particle as well as properties is desirable. The above are

examples of proximity related problems. Some typical problems in this discipline [29]

are listed below:

• (Closest pair): Given n points in the plane, find two points that are closest.

• (All nearest neighbours): Given n points in the plane, find for each point a

nearest neighbour (other than itself).

• (Euclidean minimum spanning tree, EMST): Given n points in the plane, find

a tree that interconnects all the points with minimum total edge length.
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• (Triangulation): Given n points in the plane, construct a planar graph on the

set of points such that each bounded polygon within the convex hull of the n

points is a triangle.

• (Nearest neighbour search): Given n points in the plane (with preprocessing

allowed), find the nearest neighbour of a query point. This problem is also

known as the "post office problem".

• (k Nearest neighbours search): The same as the nearest neighbour search prob-

lem, except that the k nearest neighbours are sought.

All the above listed kinds of problems can be solved by resorting to the locus method—

the Voronoi diagram.

2.2 The B -R Method

The algorithm constructed by Kurt E. Brassel and Douglas Reif, hence termed the

B-R Method, is chosen for the creation of the Voronoi diagram. In viewing the

Voronoi diagram, a Box was first fixed. The computation of Voronoi diagrams uses

an iterative walking process, whereby the processing starts at the lower left corner of

the diagram. The use of a sorted array of linked list of points provides for a dynamic

data structure and efficient processing.
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2.2.1 Sorting

Given an set S of n points {pi , p2 , • • pn}, we first sort it in lexicographical order.

A point p i (x i , y1 ) is lexicographically less than a point point p2 (x 2 , y2 ) if and only if

either one of the following condition is satisfied:

1. x1 < X2.

2. x 1 = x2 and y1 ≤  Y2.

To access a point/points within a range, only this particular range will be searched.

All data out of this is neglected.

A merge sort algorithm by Sedgewick [46] was applied in the sorting process. The

running time of the merge sort is of order n log n as opposed to the n 2-order of the

insertion sort, selection sort, or bubble sort.

2.2.2 Fixing the Viewing Box

In viewing the Voronoi diagram, we fix a Box containing all the centroids of the given

set of disks.

Definition 1 The viewing box for the Voronoi diagram of a disk set S is the region:

Box {(x,y) Xmin — BoxC • Dmax ≤  x ≤  Xmax BoxC • Dmax;

Ymin BoxC • .Dmax ≤ y ≤ Ymax BoxC

in which xmin , xmax, ymin and ymax are minimum and maximum coordinates of the

centroids of the disks in S, Dmax is the maximum diameter of the disks, and BoxC
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is a selected constant.

The choice of the constant BoxC introduces slight differences in the number of

"unbounded" Voronoi polygons on the boundary of the Voronoi diagram. The larger

the constant Box C, the smaller will be the number of unbounded Voronoi polygons

on the boundary of the Voronoi diagram. A minimum number of unbounded Voronoi

polygons on the boundary of the Voronoi diagram, which is exactly the number of

disks with centroids located on the convex hull of the disk set, will result when the

constant BoxC reaches BoxCl.b ., its lower bound.

As an example, let a set of 14 disks be given with D max = 1 unit and xmin = 1.5,

xmax = 9, ymin = 1, and ymax = 9.2. If the value of 1 is selected for the constant

BoxC, according to Definition 1, the viewing box will be defined by the lines: x = 0.5,

x = 10, y 0, and y = 10.2 as shown in Figure 1. If the value of 10 is selected for the

constant BoxC, the viewing box will then be defined by: x = —8.5, x = 19, y —9,

and y = 19.2 as shown in Figure 2. Refer to Figures 1 and 2 the unbounded Voronoi

polygons are identified as those having an edge lying on the edges of the viewing box.

The diagram in Figure 2 has 9 unbounded Voronoi polygons, while the diagram in

Figure 1 has 10 unbounded Voronoi polygons.

It is desirable to generate a Voronoi diagram which contains only Voronoi points at

the neighbourhood of the configuration. This is achieved by assigning a small value,

a value of 1 for example, for the constant BoxC in Definition 1, and by adding some

dummy points to the query point in each processing loop discussed in the following

12



Figure 1: The Voronoi diagram and Delaunay triangulation of 14 disks with a selected
value of 1 for the constant BoxC.
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Figure 2: The Voronoi diagram and Delaunay triangulation of 14 disks with a selected
value of 10 for the constant Box C.
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section.

2.2.3 Processing Loop

Beginning with the set of disk center coordinates, a set of points, the box is fixed as

previously described and the processing loop begins. The point nearest to the lower

left corner of the box, point A in Figure 3, is selected as the query point in the first

loop. Some assignment are executed before the first loop commences.

Four dummy points dummyl, dummy2, dummy3, and dummy4 are introduced so

that the perpendicular bisectors between point A and the four dummy points coincide

with the four edges of the viewing box. In Figure 3 it can be seen that dummy4 and

dummyl are neighbours of point A, and Vo is a vertex of Voronoi polygon about

point A. Further searching for the next clockwise neighbour, i.e., the next neighbour

clockwise to dummyl will be performed in the loop as described in the following.

The procedure to search for the next clockwise neighbour is based on the following

properties given in Appendix A.

• Corollary 1 — Voronoi polygon are always star-shaped.

• Corollary 2 — For a point having a bounded Voronoi polygon, the next clockwise

neighbour is always located in the right half plane of the vector from the query

point to the present neighbour. (By the introduction of the four dummy points,

Voronoi polygons associated with the given set of points are all bounded.)

• Lemma 3 — A point p equidistant to three points pi, pi, and pk is a true Voronoi

15



Figure 3: Geometric neighbours and dummy points associated with point A, the first
point processed.



point if no other point is located within a circle centered at point p with radius

the distance from point p to either one of the three points pi, pi, and Pk.

Based on the three properties, we use the following strategy in the processing loop

finding the remaining geometric neighbours of a disk. Take disk A for example, in

which dummy4 and dummyl were two geometric neighbours and Vo was one Voronoi

point already known; dummy4 is predefined as NbrFirst[l] 1 dummyl is predefined

as NewNbr2 :

1. Define the two half planes Er (A, NewNbr) and E1 (A, NewNbr), such that

Er (A, NewNbr) is the right half plane of vector A NewNbr. E 1 (A, N ewNbr) is

the left half plane of vector A NewNbr.

2. Assign the first clockwise dummy point in the right half plane Er(A, NewNbr)

as the potential new neighbour, denoted PNewNbr, of A. Find the point V

equidistant to A, NewNbr, and PNewNbr  by intersecting perpendicular bi-

sectors B (A, NewNbr) and B(NewNbr, PNewNbr). V is termed the potential

new vertex. A, NewNbr,  and PNewNbr form a circle (V, R) with center V

and radius R.

3. Search for point P' among the given point set, which is both in the right half

plane Er (A, NewNbr) and inside the circle (V, R). If such a point P' exists,

1 The symbol NbrFirst[k] will be used for the first geometric neighbour found for the kth query
disk undergoing processing.

2 The symbol NewNbr will be used for the new geometric neighbour found for the disk undergoing
processing.
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assign P' as the PNewNbr, calculate potential new vertex V' and new radius

R', where if < R.

4. Repeat Step 3 until there is no point in the given point set which is both in the

right half plane Er (A,NewNbr) and in the circle (V, R), or (V', R') if exists.

Then, declare PNewNbr as NewNbr and V' as the new vertex.

5. Redefine half planes Er (A, NewNbr) and E1 (A, N ewN br). Repeat Steps 2, 3,

and 4 until a complete walk around A is completed; i.e., until a NewNbr is

identical with NbrFirst[1], the first neighbour of the query point A. At this

point, all geometric neighbours of point A have been computed.

Following the above strategy and referring to Figure 3, the geometric neighbours

of point A are calculated in the following sequence:

1. Dummy4 is known as the first neighbour and dummyl is known as NewNbr.

Define half planes Er (A, dummyl) and E1 (A, dummyl).

2. Select dummy2 as the PNewNbr. Compute V6 and R by intersecting bisectors

of A dummyl and A dummy2. Search for a point among given point set which

both lies in Er (A, dummyl) and in the circle (V6 , R). The search is in the

lexicographical order indicated by the dashed line in Figure 3. Since B is both

in Er (A, dummyl) and (V6 , R), it is assigned the PNewNbr. Compute V1 and

R'. As no other point is within (V1 , R'), B is declared as the NewNbr, and VI

the new vertex.
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3. Redefine half planes ET (A, B) and E1(A, B). Again, the PNewNbr starts from

dummy2. Compute (V,R). Find C within ET(A,B) and (V, R). Assign C to

be the PNewNbr, compute (V2 , R'). Since there is no point within (V2 , R'),

declare C as the NewNbr, V2 the new vertex.

4. Redefine half planes ET (A, C) and E1 (A, C). This time the PNewNbr starts

from dummy3. Compute (V,R). Find F as the second PNewNbr, compute

(V', R'). Find D within Er (A, C) and (V', R'), assign D the PNewNbr, com-

pute (V3 , R'). No point exists in (V3 , R'). Declare D as the NewNbr, V3 the

new vertex.

5. Redefine half planes Er (A, D) and E1 (A, D). Select dummy3 as the first PNewNbr,

compute (V, R). Find E both lies in ET (A, D) and (V, R), assign E the PNewNbr,

compute (V4 , R'). No other point lies in (V4 , R'), E is declared the NewNbr,

and V4 the new vertex.

6. Redefine half planes ET (A, E) and El(A, E). Dummy4 is assigned the first

PNewNbr,(V5 ,R) are computed. No point in the given point set lies in (V5 , R),

dummy4 is declared the NewNbr.

7. Now that the NewNbr is identical with NbrFirst, a completed walk around

point A has been completed; i.e., the Voronoi polygon about point A has been

constructed.

Because each vertex Vi pertains to three Voronoi polygons, all neighbourhood
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relationships are mutual. Once a vertex is found, it is stored and the mutual relation-

ships among the centroids involved are recorded in a bookkeeping process. Referring

to Figure 3 again, when point B was found as a geometric neighbour of point A,

with a common Voronoi point V1 among points A, dummyl, and B, point A was

also recorded as a geometric neighbour of point B. And, when point C was found

as the next geometric neighbour of point A, with a common Voronoi point V2 among

points A, B, and C, point C is also recorded as a geometric neighbour of point B.

When the first loop ceases, five records exist in the bookkeeping and record geometric

neighbours for points A, B, C, D, and E.

Once the first loop which processes point A has been completed, point B, the

first non- dummy geometric neighbour of point A is processed next. The processes

continue until all points have been processed and the Voronoi diagram completed.

Consider the eight points in Figure 4, the complete process is tabulated in the fol-

lowing. Whenever a new vertex V is found, the bookkeeping for the three related

centroids will be modified and appear in bold face in the table. Though dummy

points are also shown for better understanding of the complete mutual relationship,

they will not be recorded in the bookkeeping. Also, a centroid or vertex which has

previously been recorded will not be recorded in duplicate and will be put in a pair

of parentheses.

V0 : A — dummy4, dummyl

dummy4 dummyl, A
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Figure 4: An ensemble of 8 disks.



dummyl — A, dummy4

VI : A — dummy4, dummyl, B

dummy4 — dummy1, A

dummyl — B, A, dummy4

B — A, dummyl

V2: A — dummy4, dummyl, B, C

dummy4 — dummyl, A

dummyl — B, A, dummy4

B — C, A, dummyl

C — A, B

Vs: A — dummy4, dummyl, B, C, D

dummy4 — dummyl, A

dummyl — B, A, dummy4

B — C, A, dummyl

C — D, A, B

D — A, C

V4: A — dummy4, dummyl, B, C, D, E
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dummy4 — dummy1, A

dummyl B, A, dummy4

B — C, A, dummyl

C — D, A, B

D E, A, C

E — A, D

V5: A — dummy4, dummyl, B, C, D, E, (dummy4)

dummy4 — dummyl, A, E

dummyl — B, A, dummy4

B — C, A, dummyl

C — D, A, B

D — E, A, C

E — dummy4, A, D

(dummy4 — A, E)

Now that the NewNbr dummy4 was the first neighbour, the geometric neighbours

of A have all been found and the Voronoi polygon about A has been completed. The

first geometric neighbour of point A is now to be processed. By skipping the dummy

points dummy4 and dummyl, we choose point B with known neighbours C and A,

where C is the first neighbour and A is the NewNbr. Shift the dummy point to new

positions such that the bisectors of the dummy points and B generate the four edges
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of the viewing box. To continue:

(VI ): B — C, A, dummyl

C D, A, B

D E, A, C

E — A, D

(A — dummyl, B)

dummyl B, A

V6: B C, A, dummyl, dummy2

C— D, A, B

D E, A, C

E A, D

dummyl dummy2, B, A

dummy2 B, dummyl

V7: B C, A, dummyl, dummy2, F

C	 D, A, B

D E, A, C

E — A, D

dummyl dummy2, B, A

dummy2 — F, B, dummyl
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F — B, dummy2

V8: B — C, A, dummyl, dummy2, F, (C)

C — D, A, B, F

D — E, A, C

E — A, D

dummyl — dummy2, B, A

dummy2 — F, B, dummyl

F C, B, dummy2

(C	 B, F)

The Voronoi polygon about B is now completed. Now, start processing C with

known neighbours D, A, B, and F.

V9: C - D, A, B, F, (D)

D — E, A, C, F

E — A, D

F — D, C, B

(D — C, F)

The Voronoi polygon about C is now completed. The next point to be processed

will be D, with known neighbours E, A, C, and F.

V10 : D — E, A, C, F, G
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E A, D

F — G, D, C, B

G — D, F

V11: D — E, A, C, F G, H

E — A, D

F G, D, C, B

G —H,D,F

H —D, G

V12: D 	 E, A, C, F, G, H, (E)

E — A, D, H

F — G, D, C, B

G H, D, F

H E, D, G

(E D, H)

Continuing on:

V13: E — A, D, H, dummy3

F G, D, C, B

G H, D, F

H dummy3, E, D, G
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dummy3 E, H

V14: E — A, D, H, dummy3, dummy4

F — G, D, C, B

G — H, D, F

H dummy3, E, D, G

dummy3 — dummy4, E, H

dummy4 — E, dummy3

(V5 ): E — A, D, H, dummy3, dummy4, (A)

F 	 G, D, C, B

G — H, D, F

H — dummy3, E, D, G

dummy3 — dummy4, E, H

dummy4 — A, E, dummy3

(A — E, dummy4)

To keep on:

(V7 ): F — G, D, C, B, dummy2

G — H, D, F

H — E, D, G

(B dummy2, F)
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dummy2 F, B

V15: F — 0, D, C, B dummy2, (G)

G — H, D, F, dummy2

H — E, D, G

dummy2 — G, F, B

(G — F, dummy2)

For point G:

(V15 ): G — H, D, F, dummy2

H — E, D, G

(F — dummy2, G)

dummy2 G, F,

V16: G — H, D, F, dummy2, (H)

H — E, D, G, dummy2

dummy2 H, G, F

(H G, dummy2)

Finally, for the last centroid H:

(V16 ): H — E, D, G, dummy2

(G — dummy2, H)
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dummy2 H, G

V17: H — E, D, G, dummy2, dummy3

dummy2 — dummy3, H, G

dummy3 — H, dummy2

(V13 ): H — E, D, G, dummy2, dummy3, (E)

dummy2 — dummy3, H, G

dummy3 — E, H, dummy2

(E — H, dummy3)

After a NewNbr E is found which is the same as NbrFirst of the query point H,

the last Voronoi polygon is completed. The Voronoi diagram is also finished because

all points have been processed. The complete frameworks finding the next geometric

neighbour and completing the Voronoi diagram are shown in Appendices B and C.

Once the entire diagram is completed, an array of linked list of geometric neigh-

bours and another array of linked list of vertices are created and stored in two different

files. Each element of these arrays is associated with a point of the set. Using the

array in the two files the Voronoi diagram and the Delaunay triangulation [16] can

be drawn. The Voronoi diagrams associated with the set are shown in solid lines in

Figures 1 and 2, and the Delaunay taiangulations are shown in dashed lines.
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3 Random Close Packing

3.1 Definition

Given an ensemble of disks, first, is it an ordered packing or a random packing?

Second, is it a close packing or not?

A random packing differs from a ordered packing in that the latter has a regular

periodic structure with a fixed lattice spacing. Berryman [13] had given the following

geometric interpretation of random packing:

1. A random packing is a packing containing no statistically significant short- or

long- range order.

2. A random close packing is a random packing so dense such that the density of

it will not be increased without signigicant increase in short-range order.

3. From (1) and (2) above, it is derived that a disk in a random close packing must

be in contact with several others.

4. Any decrease in density makes a random close packing not close, though still

random, anymore. It is because a given disk will not necessarily be in contact

with another disk when the density is decreased.

Obviously, Berryman's description was based on geometry only and was independent

of thermodynamic interpretation.

Based on the previous concepts, Berryman had made the following definitions:
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Definition 2 Let D be the diameter of the disks in the random packing, P(r < R) be

the cumulative probability that the nearest neighbour of a disk at the origin is at some

radius r in the range D < r < R. Then, for a fixed packing fraction 77, the median

For a dilute packing of disks, the median nearest neighbour radius will be large,

tending to infinity as the packing density 77 approaches 0. As the density increases

toward random close packing, the median nearest neighbour radius will approach D.

Furthermore, it follows from our previous discussion that

is characteristic of random close packing since each disk must be touching its nearest

neighbour in such a packing. Thus, the problem of determining whether a disk con-

figuration forms a close packing can be answered by checking if Eq. (2) is satisfied.

However, it has been found that RMNN never reaches D if a digital computer with

some fixed precision is used. The median nearest neighbour radius calculated for a

1,000 disk configuration after different number of shakes are listed in Table 1. To

conquer this problem, a tolerance is introduced and Eq. (2) is modified as follows

while using a computer:

The choice of the tolerance will be discussed in Section 3.4.3.
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Table 1: Normalized median nearest neighbour radii versus cycle number for a 1,000
disk configuration.

Eqs. (2) and 3 are also characteristic of all configurations with a packing fraction

greater than the packing fraction of a random close packing. Thus, a definition is

given below which defines the packing fraction of a random close packing, denoted

ηRCP:

Definition 3 The packing fraction of a random close packing is the minimum packing

The problem of determining ηRCP can now be reduced to one of estimating

RMNN (η) for dilute packings of disks and then extrapolating to higher densities to

find the point at which Eq. (4) is satisfied. This is where the Voronoi diagram comes

into play. However, this will require more configurations with much more distributed

packing fractions. And, it is not the topic of this thesis. So, no more discussion will

be focussed on it.
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3.2 Radial Distribution Function Characteristics of A Ran-
dom Close Packing

The concept of randomness can be understood by introducing RDF, the radial dis-

tribution function [36]. This function, denoted by g, gives the number of disk centers,

Nc , within an annulus (or shell in three dimensions) located at a radial distance r

from a central disk of diameter D, in which N, is normalized by 27r 7;-. Hence, in two

dimensions,

number cab be calculated from Eq. (5). Also,

tends to the number density p, the number of disks per unit area, as r/D becomes

large. If

then the packing fraction, PF, defined as the fraction of a unit area which is occupied

by disks, can be expressed as:

In the case of an two-dimensional ordered close packing, also termed HCP (hexag-

onal close packing), or crystallographic packing, the RDF has peaks at some discrete

values of rID and zeroes in between. These locations can be easily determined and

are listed in Table 2.
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Table 2: Radial distribution peaks in a two-dimensional ordered close packing.

This feature possessed by the ordered close packing does not occur for a random

close packing. Therefore a comparison of the RDF of a random packing with that of

an HCP will give a measure of the "randomness" of the configuration.

In this work, attention is not focused on the RDF and plots of this function are

given only to demonstrate that the generated packings are indeed random. Rather,

the main thrust here is on the analysis of the packing through the use of Voronoi

diagram.

3.3 Monte Carlo Simulation

The work by Rosato et. al. [42,43] has been discussed in Chapter One. The "pouring"

and "shaking" of hard disks were simulated based on a Monte Carlo method. It was

able to model the dynamical many-particle process, which occurs during the shaking

of disks. Horizontal boundary conditions could be either non-periodic or periodic,

i.e., with or without hard vertical walls. The one with periodic condition simulates

closely the behaviour of an infinite system, while the non-periodic one gives a model

which shows the effects of walls.

The initial coordinates of the disk centers, which form a configuration, are created

by a random number generator. For any possible variation, a trial configuration

is created by moving one disk at a time within a small predefined neighbourhood,
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usually some fraction of the disk diameter and denoted 6. A trial configuration is

accepted as the new configuration based on the change in the system—inter-particle

and gravitational potential energy variation 6E, using the Boltzmann distribution.

The details of the algorithm will not be repeated here, and may be found in [42]. An

attempt to move all of the disks once is defined as a pass. In general, many passes

are necessary to attain the equilibrium configuration. The simulation is run so as to

allow no upward movements of disks, so that the gravitational potential is permitted

only to decrease. This simulates a process whereby the initially randomly placed

disks slowly settle to the bottom of the container.

To simulate a shaking, the disks are first lifted uniformly by a specific amount,

called amplitude. Then, using the Monte Carlo method again, they are allowed to

settle to an equilibrium state. This process is called a cycle. A cycle ceases when

the change of the average system energy is less then a preselected tolerance. The

disks are now packed at the bottom and a new cycle may begin. Figure 34 shows

an assembly of 1,000 disks after a pouring of 60,000 passes and Figure 35 shows the

same assembly after 20 cycles of shaking.

3.4 Analysis of the Monte Carlo Simulation Output

Some analysis of the output given by the code briefly described in the previous section

will be discussed in this section. This includes (1) the radial distribution function,

(2) the average count of geometric neighbours, (3) the average count of structural

neighbours, (4) the angular distribution of structural neighbours, (5) the packing
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Table 3: Cases Studied.

fraction, and (6) the rigid wall effect. The case studies include: (1) 1,000 disks in a

cell with horizontal periodic boundary conditions and (2) 1,250 disks in a cell with

impenetrable vertical walls. The maximum allowed movement, 8, for each disk during

a pass was equal to one sixth of the disk diameter, while the shaking amplitude for

both cases was one third of the disk diameter. The details are shown in Table 3.

3.4.1 Radial Distribution Function

The radial distribution functions, denoted by g, for the case study (1), 1,000 disks with

periodic boundary condition are shown in Figure 5 and 6 for the poured configuration

and the one after 20 cycles of shake respectively. After shaking, the peaks become

more pronounced since the packing has become more dense and less random, as

depicted in Figures 34 and 35.

The value of the first peak at r/D 	 1 has also increased after shaking. It is

calculated as 0.654809 for the poured case and 0.761822 for the shaken one. It yields

an estimate of the average coordination number as mentioned in Section 3.2. Using
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Figure 5: Radial distribution function for a 1,000 disk configuration after pouring.



Figure 6: Radial distribution function of a 1,000 disk configuration after 20 cycles of
shakings.
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Eq. (5), the average coordination number estimated are:

3.4.2 Average Number of Geometric Neighbours

It is well known that the average number of edges per Voronoi polygon is six [49].

That is, the average count of geometric neighbours of a disk is six, independent of

the randomness and the density of the packing.

To obtain an acceptable statistical result, the number of disk in the configuration

to be analyzed is supposed to be great enough so that the finite size effect, sometimes

called edge effect, would be eliminated. However, to utilize the minimum space and

time on computer for each study, the size of the system to be processed is restricted.

To minimize the edge effects rooted from a small configuration, an inner box

adjusted within the viewing box introduced in Definition 1, was fixed. The method

of fixing the inner box is described below with reference to Figure 7.

1. Define disks having an unbounded Voronoi polygon as the boundary disks. All

boundary disks form the boundary of a disk configuration.

2. Find Corner.' , Corner2, Corner3, and Corner 4, the disks closest to the lower

left, upper left, upper right, and lower right corners of the viewing box respec-

tively. The four corners divide the boundary of the disk configuration into four

divisions, namely left, top, right, and bottom boundaries
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3. Find the most inner disk on each of the four boundaries; i.e., (x 1 ,y1)-the right

most disk on the left boundary, (x t , yt )-the bottom most disk on the top bound-

ary, (x T , yT )-the left most disk on the right boundary, and (x b , y b )-the top most

disk on the bottom boundary.

4. Walk twice the maximum disk diameter further toward the center to get the

constraint on the four edges of the inner box:

Each and every disk in the ensemble is then checked and discarded from the anal-

ysis if it lies completely outside of the inner box. The analysis is then be performed

on disks possessing no edge disk characteristics.

What is the edge disk characteristics? For instance, a disk on the edge of an

ensemble would possess significantly fewer geometric neighbours on the average than

the inner disks. Through the introduction of the inner box, the edge disks are taken

out and the result will be closer to that of an infinite ensemble.

A geometric neighbour number distribution for the inner disks of a finite disk

configuration composed of 1,000 disks, after 15 cycles of shaking, is presented in

figure 8. The average count of it is calculated to be 5.99875. The small deviation

from six is due to the remaining finite size effect and the machine error.
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Figure 7: The fixing of a inner box within the viewing box.



Figure 8: Distribution of geometric neighbour number.



3.4.3 Average Number of Structural Neighbours — Mean Coordination

Number

The structural neighbours of a disk are contained in its geometric neighbours and

are those disks in contact with it. The number of structural neighbours is called

coordination number. It is well known that all disks in a ordered close packing have six

geometric neighbours and the geometric neighbour set for each disk in such a packing

is also the structural neighbour set. Therefore, the average coordination number of a

ordered close packing is six, the same as the average number of geometric neighbour.

A Voronoi diagram and its Delaunay triangulation for an ordered close packing are

shown in Figure 9 and 10. It can be seen that each inner Voronoi polygon has exactly

six edges and each vertex in the Delaunay triangulation has six lines incident upon

it.

Unlike the ordered packing the coordination number may vary from disk to disk.

Thus, we can only speak of coordination numbers in a statistical mean sense for a

random close packing.

For this work, the accuracy of the digital computer must be considered. Let the

distance between one geometric neighbour and its center disk be r, and let their radii

be r 1 and r2 respectively. For the case in which the geometric neighbour is in contact

with the center disk, the following is true:

r = 	 r2
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Figure 9: Voronoi diagram for an ordered close packing.
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Figure 10: Delaunay triangulation for an ordered close packing.
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However, since the equality can never be exactly obtained, a tolerance is introduced:

A disk is classified as a structural neighbour if Eq. 7 is satisfied.

Figure 11 and 12 give the cumulative probability of the normalized nearest neigh-

bour radius, ?VD, that is, P(r/D < R), for the poured and shaken (with 15 cycles)

configurations. In Figure 12,

It seems to indicate that a tolerance of 0.03 would be appropriate. This value is

regarded as a lower bound on the tolerance. The upper bound is chosen to be 0.05

following Bernal's [9] convention. In all of the analysis, the upper bound value was

used. Figure 13 indicates that the average coordination number increases with toler-

ance.

Also, the structural neighbour number distributions for the 1,000 disk configura-

tion after pouring and after 15 cycles of shaking respectively respectively are shown in

Figures 14 and 15. It is observed that that shaking increases the average coordination

number. Figures 16 and 17 clearly exhibit this trend for case studies 1 and 2. This is

physically reasonable since it is expected more disks would be in contact with each

other after shaking.
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Figure 11: Cumulative probability of the normalized nearest neighbour radius r/D
for 1,000 disks after pouring.



Figure 12: Cumulative probability of the normalized nearest neighbour radius r/D
for 1,000 disks after shaking.



Figure 13: Relationship between coordination number and tolerance.



Figure 14: Distribution of structural neighbour number after pouring.



Figure 15: Distribution of structural neighbour number after shaking.



Figure 16: Average coordination number versus shaking: 1,000 disks with periodic
boundary conditions.



Figure 17: Average coordination number versus shaking: 1,250 disks with non-
periodic boundary conditions.



3.4.4 Angular Distribution of Structural Neighbours

As discussed in the previous section, structural neighbours are those geometric neigh-

bours which satisfy Eq. (7). Under a selected tolerance, a disk will have a number

of structural neighbours, less than or equal to six. The structural neighbours "park"

on the circumference of the center disk and each one has an associated structural

neighbour angle. The structural neighbour angle is defined as follows:

Definition 4 Let p and q be the centroids of a disk and one of its structural neighbour

respectively. The structural neighbour angle associated with this structural neighbour

direction.

A disk in a random close packing, possessing M structural neighbours, will have

M structural neighbour angles. It is interesting to determine the distribution of

structural neighbour angles for those disks having M = 1, 2, 3, 4, 5, or 6 structural

neighbours.

To accomplish this task, the disks were first categorized into groups with the same

number, M, of structural neighbours. The M structural neighbour angles for each

disk possessing M structural neighbour were then sorted in descending order such

that the first structural neighbour had the largest structural neighbour angle and the

Math one had the smallest structural neighbour angle.

The distributions of the first through the Mth angles were computed, resulting in

M distributions. These distributions are presented in Figures 18 to 22 for the 1,000
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Table 4: Mean values for each structural neighbour angle.

Table 5: Standard deviation for each structural neighbour angle.

disk configuration after 15 cycles of shakings. The mean value and standard deviation

were derived from the distribution and were presented in Tables 4 and 5.

3.4.5 Packing Fraction

Knowledge of the packing fraction gives an estimate of the density of the granular

mass. In addition, the use of Voronoi diagram permits the determination of the

distribution of void fraction for each Voronoi polygon. Such information is of use

in modelling the behavior of powdered materials. However, calculations of the void

fraction distributions has not been done in this study. Rather, the packing fraction

for the whole configuration has been determined for pouring and subsequent shaking

of disk assemblies. The purpose of the shaking is to densify the assembly.
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Figure 18: Angular distribution of each structural neighbour for disks possessing two
structural neighbours.



Figure 19: Angular distribution of each structural neighbour for disks possessing three
structural neighbours.



Figure 20: Angular distribution of each structural neighbour for disks possessing four
structural neighbours.



Figure 21: Angular distribution of each structural neighbour for disks possessing five
structural neighbours.



Figure 22: Angular distribution of each structural neighbour for disks possessing six
structural neighbours.



Figures 23 and 24 show the decrease of the system energy versus shaking, while

Figures 25 and 26 show the increase of the packing fraction versus shaking. In case

study (1), the linear least square fit of the data in Figures 23 and 25 show that

a 6.17% decrease in the system energy over 20 cycles resulted in a 6.96% increase

in the packing fraction. Similarly, in case study (2), the linear least square fit of

the data in Figures 24 and 26 show that a 6.13% decrease in the system energy

over 20 cycles of shaking resulted in a 6.39% increase in the packing fraction. As

the assemblies become more dense, the average coordination number also increases

as discussed in Section 3.4.3. Figures 27 and 28 further illustrate the relationship

between the packing fraction and the average coordination number. The fact that

the packing fraction increases with average coordination number is in agreement with

the results of D. N. Sutherland [52] although the coordination numbers presented

here are greater. This may have been caused by the selection of Bernal's tolerance

of 0.05 applied in three-dimensional spheres, which is an upper bound we selected in

our study.

3.4.6 Rigid Wall Effect

Up to this point, the analyses were aimed at the overall characteristics of a con-

figuration. The configuration with non-periodic boundaries, a finite configuration

with constraining walls at both sides, has some interesting local characteristics in the

vicinity of the wall, which are now discussed. Specifically, the variation of the packing
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Figure 23: Energy variation versus shaking: 1,000 disks with periodic boundary
conditions.



Figure 24: Energy variation versus shaking: 1,250 disks with non-periodic boundary
conditions.



Figure 25: Packing fraction variation versus shaking: 1,000 disks with periodic bound-
ary conditions.



Figure 26: Packing fraction variation versus shaking: 1250 disks with non-periodic
boundary conditions.



Figure 27: Packing fraction versus average coordination number: 1,000 disks with
periodic boundary conditions.



Figure 28: Packing fraction versus average coordination number: 1,250 disks with
non-periodic boundary conditions.



fraction affected by walls is discussed.

Starting with an collection of 1,250 disks in a cell with hard vertical walls the

poured configuration was obtained, and subsequently it was shaken for 19 cycles. To

find the packing fraction variation near the wall, different PF boxes were selected and

the corresponding packing fractions were calculated.

The left edge of the PF boxes in which the packing fractions were determined,

denoted PFI , was fixed at the left wall of the configuration cell x = 0. The bottom

edge, denoted PFb , was fixed at the bottom of the cell y = 0. The top edge, denoted

PFt , was selected so that no top boundary disk would be included. Initially, the

PF box had a width equal to one disk diameter. The right edge, denoted P FT , was

gradually moved until it coincided with the right wall of the cell. For any PF box,

the packing fraction, is calculated as:

Figure 29 shows the variation of η with respect to PFr (normalized by the disk

diameter). The packing fraction is smallest at the location of the wall and increases

with the size of the PFbox. It reaches the average packing fraction discussed in

Section 3.4.5 while PFr moves to the right wall, which is far away from the left

wall. The trend here is similar to that studied by Pillai [39] and Tory [23], in which

the variation of cross sectional packing fraction of a monolayer with respect to the

distance from the wall was of calculated.
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Figure 29: Influence of rigid walls on packing fraction for a 1,250 disk configuration.



4 Summary

The purpose of this work was to study the disk packing structure generated using a

Monte Carlo technique, whereby disks slowly settle under gravity to the bottom of a

container. This container of disks was then shaken, using a modification of the Monte

Carlo code [42,43], and the resulting configurations were analyzed.

Two different types of boundary conditions were used: horizontal, periodic bound-

ary conditions and rigid vertical walls. The former condition simulates a very large

system by removing the restrictions imposed by hard vertical walls. In this way,

the wall effects are eliminated. Imposition of hard vertical walls was done to study

the effects of this type of boundary on the packing fraction. In order to analyze

the configurations, an algorithm by Kurt E. Brassel and Douglas Reif [14] was cho-

sen, modified and implemented to construct the Voronoi diagram. This permitted

measurements of the distribution of coordination number, geometric and structural

neighbors, distribution of structural neighbour angles, packing fraction and rigid wall

effects. The Voronoi code was verified by checking that the average number of ge-

ometric neighbors, or the average number of sides of a Voronoi polygon, was equal

to the mathematically proven value of six. In addition, the packing fraction for a

hexagonally close-packed structure was computed as 0.906901, which agreed very

well with the theoretically-computed value of 0.9068997. The structural neighbours

of a disk (of diameter D) were defined as those disks whose centers were (1 + f) • D

away from the specific disk. The tolerance, e, was chosen to be equal to Bernal's
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experimentally-determined value of 0.05. From the list of structural neighbours, the

median nearest neighbor radius was computed. The cumulative probability of the

median nearest neighbour radius was also computed. The upper bound value of r/D,

for which the probability equaled unity, was 1.03. Therefore, the tolerance value of

0.03 may be considered a lower bound. Analyses on the sensitivity of the algorithm to

the tolerance was not done. However, the variation of the coordination number versus

tolerance gave an indication of this sensitivity over the range of tolerance values, from

0.0 to 0.2. A continuation of this curve past a tolerance of 0.2 would have resulted

in an average coordination number of six, and hence all of the geometric neighbours

would be captured.

After the pouring was completed, the assembly was shaken for a number of cy-

cles. For both the periodic and non-periodic boundary conditions, this resulted in

an increase of the coordination number after 19 cycles. Linear regressions on the

coordination number versus cycle number resulted in a high correlation. The values

predicted from the regression equation (in the case of periodic boundary conditions)

agreed well with those calculated from the first peak of the radial distribution func-

tion for the poured and shaken assemblies. The increase of coordination number as

shaking proceeds is physically reasonable and is a consequence of the densification of

the assembly and an increase in the average number of contacts per disk. In fact, the

structure was quite hexagonally close-packed and the packing fraction increased from

its poured value of approximately 0.79 to 0.85. Linear regressions on the packing
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fraction versus cycle number yielded a high value of the correlation coefficient, indi-

cating a good linear fit. A linear regression on the packing fraction against average

coordination number also gave a very good linear fit.

The influence of the wall on the packing fraction was determined by using the

hard vertical wall boundary conditions. A plot of the packing fraction versus nor-

malized distance from the wall indicated that the wall had a strong influence up to

approximately nine diameters away from the wall for the poured configuration. This

influence extended somewhat further for the shaken assembly. The trend for both the

poured and shaken assemblies were the same.

Two observations are made concerning the result of shaking the poured assembly

of disks. The first of these deals with the coordination number, or the average num-

ber of structural neighbours. The simulated shaking has the effect of changing the

poured, random configuration to a somewhat ordered, dense structure The average

coordination number increased linearly with the cycle and this is physically realistic

since shaking should cause an increase in the disk contacts. Secondly the packing

fraction showed a six percent increase over its poured value. The structure became

less random and appeared to more like an hexagonal close-packed crystal. This result

is apparent from the actual disk configuration as well as from the fact that the peaks

of the radial distribution function became more pronounced. The location of these

peaks were in very good agreement with those of a hexagonal close-packed structure.

In fact, the first three peaks are indicative of short-range order.
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Extensions—the following is a listing of possible extensions to this research:

1. Study of the effect of the tolerance on the average coordination number.

2. Determination of the distribution of void space within the assembly.

3. Experimentation to verify the data with regard to the poured configuration.

4. Study of the angular distribution of geometric neighbours as the assembly den-

sifies with shaking.

5. Extensions to three-dimensional systems of spheres.
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Appendix:

A Definitions and Properties Regarding Voronoi
Diagram

The Voronoi polygon', also termed Thiessen polygon [54] or Dirichlet region [17], is

used to define the geometric neighbour. In any collection of points there is, about

each point, a region containing all points of the plane closer to that point than to any

other point. Dirichlet was first to describe these regions, hence the name Dirichlet

region. It has been proven [49] that for any collection of points in the plane the

Voronoi polygon has an average of six sides. If the perpendicular bisectors of all the

lines connecting the point in question and all other points of the set are constructed,

a set or polygons will result. The "closest" of these polygon, the one which is not

truncated by any other line, is the one which satisfies the condition that it shall

contain all points of plane closest to the point in question. With this understanding

in mind, the following definitions quoted from D. T. Lee [30] are easier to understand:

Definition 5 Given an ensemble S of points .1{P1, P2, • .•, pn}, the locus of pointsLi 

closer to pi than to any other point is called the Voronoi polygon, denoted V(pi),

associated with p i ,

For an ensemble of n points, there are n Voronoi polygon associated with each

and every point. A side of the Voronoi polygon is called a Voronoi Edge. A collection

3A Voronoi polygon corresponds to a two-dimensional point. However, a three-dimensional point
will have a Voronoi polyhedron correspond to it.

74



of the n Voronoi polygon is called the Voronoi diagram V(S).

Definition 6 The points of the ensemble which contribute edges to the Voronoi poly-

gon of a point are defined as the geometric neighbours of that point.

Before applying the B - R Method, some properties of the Voronoi diagram are also

needed to be discussed.

Definition 7 A region R is star-shaped with nucleus p, where p is a point in R, if

the line segment of p and any other point in R lies completely in R.
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Figure 30: Lemma 1.
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We thus have the following inequality from Eq. (9) — (11) above:

which contradicts the assertion that pi is the nearest neighbour of p. Thus, for all

From Definition 7 and Lemma 1, the following corollary is given:

Corollary 1 Given an ensemble of points {p1, P2 • • • , pn} the Voronoi polygonL 

V(pi ) is a star-shaped polygon with nucleus p i .

The angle extended from the nucleus to any two vertices in sequence of a bounded

Voronoi polygon is a star-shaped polygon as of Corollary 1, it is thus followed:

Corollary 2 Let point 0 and point A be the nucleus and one of the vertices of a

bounded Voronoi polygon. Let Er(O, A) and E 1 (0, A) be the right and left half planes

A will lie in Er(O, A) and the next sequential vertex in counterclockwise direction to

vertex A will lie in E 1 (0, A).

This is a simple, while important property of Voronoi polygon.

Lemma 2 Given an ensemble S of	 p2, • • Pnb the Voronoi polygons

V(pi) and V(pj) share an edge if and only if there exists a point q such that the circle
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Figure 31: The extended angle A013.
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centered at q with radius d(q, pi ) passing through points p i and pi does not include

any other point of S in its interior or on its boundary.

Proof: Refer to Figure 32. Suppose there exists a point q satisfying this condition;

the circle Q centered at q with radius d(q, p i ) passing through points pi and pi does

not include any other point of S. Then the point q must lie on the bisector B(pi,pj)

perpendicularly bisecting points pi and pi , and both pi and pi are its nearest neigh-

bours. Since q is shared by V(pi ) and V(pj ), by continuity of the distance metric we

portion of B (pi , pi ) must be shared by V (pi ) and V (pi ).

To prove the converse, let us consider any point q on the edge shared by V(p2 )

and V(p), but q is not an endpoint of the edge. Since both p i and pi are the nearest

neighbours of q, the circle Q centered at q with radius d(q, p i ) passes through p i and

pi and will not contain any other point of S in its interior or on its boundary. t1

common point p, the point p is the circumcenter of the triangle Δpipjpk,. If we assume

that no more than three points are cocircular , then for each Voronoi point there are

three Voronoi edges incident with it.
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Figure 32: Lemma 2.
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Lemma 3 A point p equidistant to three points p i , pi , and pk is a true Voronoi point

if no other point is located within a circle centered at point p with radius the distance

from point p to either one of the three points p i , pi , or pk .

Now, let us consider the straight-line dual of the Voronoi diagram V(S), the De-

launay triangulation, denoted D(S). D(S) is a planar graph on the given set of

points in which two points are connected if and only if their associated polygon share

a Voronoi edge. D(S) partitions the plane into a number of finite triangular regions

and its complementary infinite region. The edges in D(S) are called Delaunay edges.

Since each Voronoi polygon V(p i ) is star-shaped with nucleus p i , the edges of the

Voronoi polygon must occur in sequence, and the two corresponding Delaunay edges

must appear in sorted angular order. In particular, the point pi whose associated

Voronoi polygon is unbounded will be on the boundary of D(S), and the two bound-

ary edges incident with pi correspond to the two unbounded Voronoi edges. The

Delaunay triangulations for a set of 1,000 points is shown in Figure 33. The corre-

sponding configuration plot and Voronoi diagram are presented in Figures 34 to 36.

The Delaunay triangulation can be said to be a byproduct of the Voronoi diagram.

With some modifications, it can be applied for triangular mesh generation in finite el-

ement method. Knowledge on the Delaunay triangulation helps better understanding

of the Voronoi diagram.

Definition 8 Given two points pi and pi and a point p which lies to the left of the
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Figure 33: Delaunay traingulation of 1,000 disks after pouring.
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MONTE CARLO SIMULATION
Periodic Boundary Conditions.

Shaking - Segregation.

CYCLE NUMBER = 0

AMPLITUDE =0.000

Pass Number = 	 60000
Number of Discs =1000

Diameter =0.300

Diameter Ratio =1.000

Energy =1.647315

Figure 34: The configuration of 1,000 disks after pouring —courtesy of A. Rosato,
K. Reddy, and Y. Lan.
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MONTE CARLO SIMULATION
Periodic Boundary Conditions.
Shaking - Segregation.

CYCLE NUMBER = 20

AMPLITUDE =0.100

Pass Number = 460000
Number of Discs =1000

Diameter =0.300

Diameter Ratio =1.000

Figure 35: The configuration of 1,000 disks after 20 cycles of shaking —courtesy of
A. Rosato, K. Reddy, and Y. Lan.
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Figure 36: Voronoi diagram of 1,000 disks after pouring.
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passes through pi and pi and is called the limiting circle LC(p i ,pi ) of pi and pi when

In L2-Metric [30], the limiting circle LC(pi , pi ) and LC(pj, pi) coincides and is the

Theorem 1 The boundary of the dual graph D(S) of the Voronoi diagram V(S) is

the convex hull CH(S) of the set S of points.

shown in dashed line, of the set S of points. All the points of S must lie on one side of

and hence does not contain any other point of S in its interior. From Lemma 2, the

perpendicular bisector B (pi , pi ) must contain an unbounded Voronoi edge of V(S),

sponds to an unbounded Voronoi edge on B(pi,pj ), the limiting circle centered at the

unbounded end of B(pi,pj) does not contain any other point in its interior. That is,

the convex hull CH(S). This completes the proof.#

circles of pi and pi does not contain any other point of S in its interior. Each boundary
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Figure 37: Theorem 1.
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edge of D(S) has an unbounded Voronoi edge corresponding to it. This can be

extended to another statement:

The number of points on the convex hull of the ensemble S is the same as

the number of unbounded Voronoi polygon in the Voronoi diagram V(S).

Theorem 2 Given an set S of points {pi , p2 , 	 pm}, let D i (S) denote the subset

of points of S which are connected to p i in the Delaunay triangulation. Then D i (S)

contains the nearest neighbour of p i , i.e., there exists a point pj E Di(S) such that

Also, the circle centered at z with radius d(z,pi ) does not contain any other point of

S. So,

From Eq. (13) and (14) and the triangular inequality:
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This is a contradiction of the assumption. therefore Di (S) contains the nearest neigh-

bour of pi .
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Figure 38: Theorem 2.
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B Algorithm Finding Next Clockwise Geometric
Neighbour
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C Strategy on Completing the Voronoi Diagram
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D Program disk.pas
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IF SQRT ( SQR ( X2 - X1 ) + SQR ( Y2 - YI ) ) <
( 1 + TOLERANCE ) * ( DIA1 / 2 + DIA2 / 2 ) THEN

BEGIN

NEW ( NBR_TEMP);
NBRTEMP^.NEXT := Z;
NBR_TEMP^.DATA := NBR LAST [Kr]^.DATA;

SNBR_LAST [K]^.NEXT := NBR_TEMP;

SNBR_LAST (K] := SNBR_LAST [C A .NEXT;

NUMSN [K] := NUM_SN (K] + 1

END;
NBR LAST [K] :=NBR_LAST [K]^.NEXT

UNTIL
NBR_LAST (K] = Z

END; 	 (END FOR K := 1 TO NUM_IN)
FOR K := 1 TO NUM IN DO

BEGIN
WRITELN (SNBRFILE);

WRITELN (SNBRFILE, ' THE # 	 K:5, ' LINKED LIST OF STRUCTURAL',

' NEIGHBOUR FOR INNER DISKS IS:');
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ELSE
BEGIN

CP_NNR[0] := 0;

DIVISION := (MEDIAN_NNR 	 DMAX) / 5;
MIN := DMAX + DIVISION;
K := 1;

J := 0;

I := 0;

REPEAT
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FIND_PF (INNER, LEFT, RIGHT, BOTTOM, TOP, ETA, SUM);
WRITELN (TABLE, LEFT, RIGHT, BOTTOM, TOP, ", SUM, ", ETA)

END; 	 (END IF EQ_DISKS)
100: CLOSE (DISKIN);

CLOSE (NBRFILE);

CLOSE (VTXFILE);
CLOSE (BOX);
CLOSE (DELAUNAY);

CLOSE (SNBRFILE);
CLOSE (TABLE)

END.
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