680 research outputs found

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games

    Semantic subtyping for objects and classes

    Get PDF
    In this paper we propose an integration of structural subtyping with boolean connectives and semantic subtyping to define a Java-like programming language that exploits the benefits of both techniques. Semantic subtyping is an approach for defining subtyping relation based on set-theoretic models, rather than syntactic rules. On the one hand, this approach involves some non trivial mathematical machinery in the background. On the other hand, final users of the language need not know this machinery and the resulting subtyping relation is very powerful and intuitive. While semantic subtyping is naturally linked to the structural one, we show how our framework can also accommodate the nominal subtyping. Several examples show the expressivity and the practical advantages of our proposal

    First-order theory of subtyping constraints

    Get PDF
    We investigate the first-order theory of subtyping constraints. We show that the first-order theory of non-structural subtyping is undecidable, and we show that in the case where all constructors are either unary or nullary, the first-order theory is decidable for both structural and non-structural subtyping. The decidability results are shown by reduction to a decision problem on tree automata. This work is a step towards resolving long-standing open problems of the decidability of entailment for non-structural subtyping

    On Satisfiability of Nominal Subtyping with Variance

    Get PDF
    Nominal type systems with variance, the core of the subtyping relation in object-oriented programming languages like Java, C# and Scala, have been extensively studied by Kennedy and Pierce: they have shown the undecidability of the subtyping between ground types and proposed the decidable fragments of such type systems. However, modular verification of object-oriented code may require reasoning about the relations of open types. In this paper, we formalize and investigate the satisfiability problem for nominal subtyping with variance. We define the problem in the context of first-order logic. We show that although the non-expansive ground nominal subtyping with variance is decidable, its satisfiability problem is undecidable. Our proof uses a remarkably small fragment of the type system. In fact, we demonstrate that even for the non-expansive class tables with only nullary and unary covariant and invariant type constructors, the satisfiability of quantifier-free conjunctions of positive subtyping atoms is undecidable. We discuss this result in detail, as well as show one decidable fragment and a scheme for obtaining other decidable fragments

    Using higher-order contracts to model session types

    Full text link
    Session types are used to describe and structure interactions between independent processes in distributed systems. Higher-order types are needed in order to properly structure delegation of responsibility between processes. In this paper we show that higher-order web-service contracts can be used to provide a fully-abstract model of recursive higher-order session types. The model is set-theoretic, in the sense that the meaning of a contract is given in terms of the set of contracts with which it complies. The proof of full-abstraction depends on a novel notion of the complement of a contract. This in turn gives rise to an alternative to the type duality commonly used in systems for type-checking session types. We believe that the notion of complement captures more faithfully the behavioural intuition underlying type duality.Comment: Added definitions of m-closed terms, of 'dual', and a discussion to show the problems of the complement functio

    Higher-order subtyping and its decidability

    Get PDF
    AbstractWe define the typed lambda calculus Fω∧ (F-omega-meet), a natural generalization of Girard's system Fω (F-omega) with intersection types and bounded polymorphism. A novel aspect of our presentation is the use of term rewriting techniques to present intersection types, which clearly splits the computational semantics (reduction rules) from the syntax (inference rules) of the system. We establish properties such as Church-Rosser for the reduction relation on types and terms, and strong normalization for the reduction on types. We prove that types are preserved by computation (subject reduction), and that the system satisfies the minimal types property. We define algorithms for type checking and subtype checking. The development culminates with the proof of decidability of typing in Fω∧, containing the first proof of decidability of subtyping of a higher-order lambda calculus with subtyping

    Predicate Abstraction for Linked Data Structures

    Full text link
    We present Alias Refinement Types (ART), a new approach to the verification of correctness properties of linked data structures. While there are many techniques for checking that a heap-manipulating program adheres to its specification, they often require that the programmer annotate the behavior of each procedure, for example, in the form of loop invariants and pre- and post-conditions. Predicate abstraction would be an attractive abstract domain for performing invariant inference, existing techniques are not able to reason about the heap with enough precision to verify functional properties of data structure manipulating programs. In this paper, we propose a technique that lifts predicate abstraction to the heap by factoring the analysis of data structures into two orthogonal components: (1) Alias Types, which reason about the physical shape of heap structures, and (2) Refinement Types, which use simple predicates from an SMT decidable theory to capture the logical or semantic properties of the structures. We prove ART sound by translating types into separation logic assertions, thus translating typing derivations in ART into separation logic proofs. We evaluate ART by implementing a tool that performs type inference for an imperative language, and empirically show, using a suite of data-structure benchmarks, that ART requires only 21% of the annotations needed by other state-of-the-art verification techniques
    • 

    corecore