58,441 research outputs found

    Properties of Random Graphs with Hidden Color

    Full text link
    We investigate in some detail a recently suggested general class of ensembles of sparse undirected random graphs based on a hidden stub-coloring, with or without the restriction to nondegenerate graphs. The calculability of local and global structural properties of graphs from the resulting ensembles is demonstrated. Cluster size statistics are derived with generating function techniques, yielding a well-defined percolation threshold. Explicit rules are derived for the enumeration of small subgraphs. Duality and redundancy is discussed, and subclasses corresponding to commonly studied models are identified.Comment: 14 pages, LaTeX, no figure

    Spectra of "Real-World" Graphs: Beyond the Semi-Circle Law

    Full text link
    Many natural and social systems develop complex networks, that are usually modelled as random graphs. The eigenvalue spectrum of these graphs provides information about their structural properties. While the semi-circle law is known to describe the spectral density of uncorrelated random graphs, much less is known about the eigenvalues of real-world graphs, describing such complex systems as the Internet, metabolic pathways, networks of power stations, scientific collaborations or movie actors, which are inherently correlated and usually very sparse. An important limitation in addressing the spectra of these systems is that the numerical determination of the spectra for systems with more than a few thousand nodes is prohibitively time and memory consuming. Making use of recent advances in algorithms for spectral characterization, here we develop new methods to determine the eigenvalues of networks comparable in size to real systems, obtaining several surprising results on the spectra of adjacency matrices corresponding to models of real-world graphs. We find that when the number of links grows as the number of nodes, the spectral density of uncorrelated random graphs does not converge to the semi-circle law. Furthermore, the spectral densities of real-world graphs have specific features depending on the details of the corresponding models. In particular, scale-free graphs develop a triangle-like spectral density with a power law tail, while small-world graphs have a complex spectral density function consisting of several sharp peaks. These and further results indicate that the spectra of correlated graphs represent a practical tool for graph classification and can provide useful insight into the relevant structural properties of real networks.Comment: 14 pages, 9 figures (corrected typos, added references) accepted for Phys. Rev.

    k-core decomposition: a tool for the visualization of large scale networks

    Full text link
    We use the k-core decomposition to visualize large scale complex networks in two dimensions. This decomposition, based on a recursive pruning of the least connected vertices, allows to disentangle the hierarchical structure of networks by progressively focusing on their central cores. By using this strategy we develop a general visualization algorithm that can be used to compare the structural properties of various networks and highlight their hierarchical structure. The low computational complexity of the algorithm, O(n+e), where 'n' is the size of the network, and 'e' is the number of edges, makes it suitable for the visualization of very large sparse networks. We apply the proposed visualization tool to several real and synthetic graphs, showing its utility in finding specific structural fingerprints of computer generated and real world networks

    Computing Scalable Multivariate Glocal Invariants of Large (Brain-) Graphs

    Full text link
    Graphs are quickly emerging as a leading abstraction for the representation of data. One important application domain originates from an emerging discipline called "connectomics". Connectomics studies the brain as a graph; vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional connections between them. To explore the variability of connectomes---to address both basic science questions regarding the structure of the brain, and medical health questions about psychiatry and neurology---one can study the topological properties of these brain-graphs. We define multivariate glocal graph invariants: these are features of the graph that capture various local and global topological properties of the graphs. We show that the collection of features can collectively be computed via a combination of daisy-chaining, sparse matrix representation and computations, and efficient approximations. Our custom open-source Python package serves as a back-end to a Web-service that we have created to enable researchers to upload graphs, and download the corresponding invariants in a number of different formats. Moreover, we built this package to support distributed processing on multicore machines. This is therefore an enabling technology for network science, lowering the barrier of entry by providing tools to biologists and analysts who otherwise lack these capabilities. As a demonstration, we run our code on 120 brain-graphs, each with approximately 16M vertices and up to 90M edges.Comment: Published as part of 2013 IEEE GlobalSIP conferenc

    Asymptotic Analysis of Statistical Estimators related to MultiGraphex Processes under Misspecification

    Full text link
    This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to structural properties of sequences of graphs. The estimators studied originate from a particular class of graphex model introduced by Caron and Fox. The analysis is however performed here under very weak assumptions on the underlying data generating process, which may be different from the model of Caron and Fox or from a graphex model. In particular, we consider generic sparse graph models, with unbounded degree, whose degree distribution satisfies some assumptions. We show that one can relate the limit of the estimator of one of the parameters to the sparsity constant of the true graph generating process. When taking a Bayesian approach, we also show that the posterior distribution is asymptotically normal. We discuss situations where classical random graphs models such as configuration models, sparse graphon models, edge exchangeable models or graphon processes satisfy our assumptions

    The approximate Loebl-Komlos-Sos conjecture and embedding trees in sparse graphs

    Full text link
    Loebl, Koml\'os and S\'os conjectured that every nn-vertex graph GG with at least n/2n/2 vertices of degree at least kk contains each tree TT of order k+1k+1 as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of kk. For our proof, we use a structural decomposition which can be seen as an analogue of Szemer\'edi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of GG to embed a given tree TT. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050]

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Independent sets in hypergraphs

    Get PDF
    Many important theorems in combinatorics, such as Szemer\'edi's theorem on arithmetic progressions and the Erd\H{o}s-Stone Theorem in extremal graph theory, can be phrased as statements about independent sets in uniform hypergraphs. In recent years, an important trend in the area has been to extend such classical results to the so-called sparse random setting. This line of research culminated recently in the breakthroughs of Conlon and Gowers and of Schacht, who developed general tools for solving problems of this type. In this paper, we provide a third, completely different approach to proving extremal and structural results in sparse random sets. We give a structural characterization of the independent sets in a large class of uniform hypergraphs by showing that every independent set is almost contained in one of a small number of relatively sparse sets. We then derive many interesting results as fairly straightforward consequences of this abstract theorem. In particular, we prove the well-known conjecture of Kohayakawa, \L uczak and R\"odl, a probabilistic embedding lemma for sparse graphs. We also give alternative proofs of many of the results of Conlon and Gowers and Schacht, and obtain their natural counting versions, which in some cases are considerably stronger. We moreover prove a sparse version of the Erd\H{o}s-Frankl-R\"odl Theorem on the number of H-free graphs and extend a result of R\"odl and Ruci\'nski on Ramsey properties in sparse random graphs to the general, non-symmetric setting. We remark that similar results have been discovered independently by Saxton and Thomason, and that, in parallel to this work, Conlon, Gowers, Samotij and Schacht have proved a sparse analogue of the counting lemma for subgraphs of the random graph G(n,p), which may be viewed as a version of the K\L R conjecture that is stronger in some ways and weaker in others.Comment: 42 pages, in this version we prove a slightly stronger variant of our main theore

    Recovering Structured Probability Matrices

    Get PDF
    We consider the problem of accurately recovering a matrix B of size M by M , which represents a probability distribution over M2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient algorithm that accurately recovers the underlying M by M matrix using Theta(M) samples. This result easily translates to Theta(M) sample algorithms for learning topic models and learning hidden Markov Models. These linear sample complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. We provide an even stronger lower bound where distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by an HMM with two hidden states requires Omega(M) observations. This precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs
    • …
    corecore