80,809 research outputs found

    Unconscious Inference Theories of Cognitive Acheivement

    Get PDF
    This chapter argues that the only tenable unconscious inferences theories of cognitive achievement are ones that employ a theory internal technical notion of representation, but that once we give cash-value definitions of the relevant notions of representation and inference, there is little left of the ordinary notion of representation. We suggest that the real value of talk of unconscious inferences lies in (a) their heuristic utility in helping us to make fruitful predictions, such as about illusions, and (b) their providing a high-level description of the functional organization of subpersonal faculties that makes clear how they equip an agent to navigate its environment and pursue its goals

    Mapping hybrid functional-structural connectivity traits in the human connectome

    Get PDF
    One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework, to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common hybrid connectivity patterns that represent the connectivity fingerprint of a subject. We test this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracted two main task-sensitive hybrid traits. The first, encompassing the within and between connections of dorsal attentional and visual areas, as well as fronto-parietal circuits. The second, mainly encompassing the connectivity between visual, attentional, DMN and subcortical networks. Overall, these findings confirms the potential ofthe hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.Comment: article: 34 pages, 4 figures; supplementary material: 5 pages, 5 figure

    Literal Perceptual Inference

    Get PDF
    In this paper, I argue that theories of perception that appeal to Helmholtz’s idea of unconscious inference (“Helmholtzian” theories) should be taken literally, i.e. that the inferences appealed to in such theories are inferences in the full sense of the term, as employed elsewhere in philosophy and in ordinary discourse. In the course of the argument, I consider constraints on inference based on the idea that inference is a deliberate acton, and on the idea that inferences depend on the syntactic structure of representations. I argue that inference is a personal-level but sometimes unconscious process that cannot in general be distinguished from association on the basis of the structures of the representations over which it’s defined. I also critique arguments against representationalist interpretations of Helmholtzian theories, and argue against the view that perceptual inference is encapsulated in a module

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    The kindergarten-path effect revisited: children’s use of context in processing structural ambiguities

    Get PDF
    Research with adults has shown that ambiguous spoken sentences are resolved efficiently, exploiting multiple cues—including referential context—to select the intended meaning. Paradoxically, children appear to be insensitive to referential cues when resolving ambiguous sentences, relying instead on statistical properties intrinsic to the language such as verb biases. The possibility that children’s insensitivity to referential context may be an artifact of the experimental design used in previous work was explored with 60 4- to 11-year-olds. An act-out task was designed to discourage children from making incorrect pragmatic inferences and to prevent premature and ballistic responses by enforcing delayed actions. Performance on this task was compared directly with the standard act-out task used in previous studies. The results suggest that young children (5 years) do not use contextual information, even under conditions designed to maximize their use of such cues, but that adult-like processing is evident by approximately 8 years of age. These results support and extend previous findings by Trueswell and colleagues (Cognition (1999), Vol. 73, pp. 89–134) and are consistent with a constraint-based learning account of children’s linguistic development.</p

    Towards a framework for investigating tangible environments for learning

    Get PDF
    External representations have been shown to play a key role in mediating cognition. Tangible environments offer the opportunity for novel representational formats and combinations, potentially increasing representational power for supporting learning. However, we currently know little about the specific learning benefits of tangible environments, and have no established framework within which to analyse the ways that external representations work in tangible environments to support learning. Taking external representation as the central focus, this paper proposes a framework for investigating the effect of tangible technologies on interaction and cognition. Key artefact-action-representation relationships are identified, and classified to form a structure for investigating the differential cognitive effects of these features. An example scenario from our current research is presented to illustrate how the framework can be used as a method for investigating the effectiveness of differential designs for supporting science learning

    Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning

    Get PDF
    This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53 The final publication is available at www.springerlink.com Published version: http://dx.doi.org/10.3758/BF0321390

    Testing like you teach: The challenge of constructing local, ecologically valid tests

    Get PDF
    In an educational context, local, ecologically valid tests can reflect the use of literacy and thinking tools. These tests present a challenge to central, content focused, high-stakes testing, and to transmission approaches to teaching. They require teachers to accept knowledge as a verb, and to design assessment protocols that reflect co-constructive ways of teaching. This article reports the outcome of praxis action research with middle and secondary school teachers who incorporated topic-appropriate literacy and thinking tools into their teaching. They also redesigned their local tests linked to high-stakes test protocols to reflect the use of these tools. A thematic analysis of observations and interviews suggests that this process impacted on the structural characteristics (morés) of the schools, and posed affective, cognitive and pedagogical challenges to teachers

    More than one way to see it: Individual heuristics in avian visual computation

    Get PDF
    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally
    • 

    corecore