167 research outputs found

    A new window to understanding individual differences in reward sensitivity from attentional networks

    Get PDF
    Existing evidence suggests that the presence of reward cues modifies the activity in attentional networks, however, the nature of these influences remains poorly understood. Here, we performed independent component analysis (ICA) in two fMRI datasets corresponding to two incentive delay tasks, which compared the response to reward (money and erotic pictures) and neutral cues, and yielded activations in the ventral striatum using a general linear model approach. Across both experiments, ICA revealed that both the right frontoparietal network and default mode network time courses were positively and negatively modulated by reward cues, respectively. Moreover, this dual neural response pattern was enhanced in individuals with strong reward sensitivity. Therefore, ICA may be a complementary tool to investigate the relevant role of attentional networks on reward processing, and to investigate reward sensitivity in normal and pathological populations

    Relationships between Personality Traits and Brain Gray Matter Are Different in Risky and Non-risky Drivers

    Get PDF
    We would like to thank the support of the Andalusian Regional Government, and the European Regional Development Fund (ERDF), to the Brain, Behavior, and Health, scientific excellence unit (SC2), ref: SOMM17/6103/UGR. This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness (PSI2016-80558-R) awarded to A.Ct. and a predoctoral fellowship of the Spanish Ministry of Education, Culture and Sports (FPU18/03263) to L.M. We would also like to thank the professional English proofreader, yourenglishlab, for her work.Personality traits such as impulsivity or sensitivity to rewards and punishments have been associated with risky driving behavior, but it is still unclear how brain anatomy is related to these traits as a function of risky driving. In the present study, we explore the neuroanatomical basis of risky driving behavior and how the level of risk-taking influences the relationship between the traits of impulsivity and sensitivity to rewards and punishments and brain gray matter volume. One hundred forty-four participants with different risk-taking tendencies assessed by real-life driving situations underwent MRI. Personality traits were assessed with selfreport measures. We observed that the total gray matter volume varied as a function of risky driving tendencies, with higher risk individuals showing lower gray matter volumes. Similar results were found for volumes of brain areas involved in the reward and cognitive control networks, such as the frontotemporal, parietal, limbic, and cerebellar cortices. We have also shown that sensitivity to reward and punishment and impulsivity are differentially related to gray matter volumes as a function of risky driving tendencies. Highly risky individuals show lower absolute correlations with gray matter volumes than less risk-prone individuals. Taken together, our results show that risky drivers differ in the brain structure of the areas involved in reward processing, cognitive control, and behavioral modulation, which may lead to dysfunctional decision-making and riskier driving behavior.Andalusian Regional GovernmentEuropean Commission PSI2016-80558-RSpanish Government FPU18/03263 SOMM17/6103/UG

    Hot cognition and activation of the medial prefrontal cortex: Self-regulating in contexts involving motivational pressures

    Get PDF
    The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts

    Individual differences in social reward and threat expectancies linked to grey matter volumes in key regions of the social brain

    Get PDF
    Prospection (mentally simulating future events) generates emotionally charged mental images that guide social decision-making. Positive and negative social expectancies - imagining new social interactions to be rewarding vs. threatening - are core components of social approach and avoidance motivation, respectively. Stable individual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant social scenario that was ambiguous with regards to possible social acceptance or rejection. During this task we measured their expectancies for social reward (e.g. anticipated feelings of social connection) or threat (e.g. anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry (VBM) was used to explore the relation between their social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key regions involved in prospection, subjective valuation and emotion regulation (including ventromedial prefrontal cortex), correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies were uniquely linked with rGMV of regions involved in social attention (posterior superior temporal sulcus) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning

    Electrocortical underpinnings of error monitoring in health and pathology

    Get PDF
    It becomes clear from the literature described above (Chapter 1), that the error monitoring mechanisms play a fundamental role in signalling the need for cognitive control. Many studies already provided a consistent evidence on the existence of peculiar ways in which the brain signals this need through electrophysiological changes. However, the following set of empirical studies aims to gain further insight into these complex processes by measuring brain activity changes in situations that alter the way one experience errors. The second Chapter (Chapter 2) consists of a brief commentary that was made in response to an article on the brain activity to action errors. In this commentary we propose new possibilities to explore our topic of interest, by taking advantage of EEG and modern virtual reality facilities. The thesis includes three EEG-VR studies: one on the error-mechanism in healthy participants (Chapter 3) and two studies on error monitoring system in pathological populations (Chapter 4, 5), as main parts of the core of the thesis. As a collateral project, in the Appendix, there is an EEG study on action observation in elite players (Chapter 7). In the first study (Chapter 3), we investigated a very simple but fundamental question. As we saw in the introduction, error-related signatures are evoked when an error occurs. But it is not clear how much of this is due to the occurrence of a violation of the intended goal or simply to the observation of a rare – thus less predictable – event. To this aim, we used a paradigm developed in the former years in our laboratory (Pavone et al., 2016; Spinelli et al., 2017), characterized by a setup in immersive Virtual Reality (VR) and simultaneous EEG recording. Building on the previous findings, we designed an EEG-VR study in which we manipulated the probability of observing errors in actions. In another study (Chapter 4) we investigated how erroneous actions are experienced by people with brain damage and diagnosis of Apraxia. Apraxic patients are people with hemispheric lesions and defective awareness on a variety of aspects that cover perceptuo-motor, cognitive or emotional domains. This study was developed after the results obtained by Canzano and colleagues (2014) in a behavioral study in which apraxic patients were asked to imitate the actions executed by the experimenter and judge their correctness; results revealed that bucco-facial apraxic patients manifest a specific deficit in detecting their own gestural errors when they are explicitly asked to judge them. With the present study we wanted to investigate apraxic brain’ response to action errors, while they embody an avatar in first person perspective (EEG-VR setup). The third study (Chapter 5) investigates the integrity of the error-monitoring system in Parkinson’s Disease and the impact of the dopaminergic treatment in the brain response to errors. To this aim we used the proposed VR action-observation paradigm, in which Parkinson patients observed successful and unsuccessful reach-to-grasp actions in first person perspective while EEG activity was recorded; the same patients were tested while being under dopaminergic treatment and during a dopaminergic withdrawal state. In another chapter we provide a critical overview of the findings of this work (General Discussion, Chapter 6). In the last chapter, the Appendix (Chapter 7), there is a collateral project of another research line of the Laboratory, in which I have being involved. In this study we are investigating the cortical underpinning of elite players during observation of goal-directed actions, in their domain of expertise. We recorded the EEG activity of elite wheelchair basketball players while observing free-throws performed by paraplegic athletes. We expected their brain correlates to be different from novice players and to be able to easily discriminate whether a basketball shot would be successful or unsuccessful (project still ongoing)

    Neural correlates of an early attentional capture by positive distractor words

    Get PDF
    Exogenous or automatic attention to emotional distractors has been observed for emotional scenes and faces. In the language domain, however, automatic attention capture by emotional words has been scarcely investigated. In the current event-related potentials study we explored distractor effects elicited by positive, negative and neutral words in a concurrent but distinct target distractor paradigm. Specifically, participants performed a digit categorization task in which task-irrelevant words were flanked by numbers. The results of both temporo-spatial principal component and source location analyses revealed the existence of early distractor effects that were specifically triggered by positive words. At the scalp level, task-irrelevant positive compared to neutral and negative words elicited larger amplitudes in an anterior negative component that peaked around 120 ms. Also, at the voxel level, positive distractor words increased activity in orbitofrontal regions compared to negative words. These results suggest that positive distractor words quickly and automatically capture attentional resources diverting them from the task where attention was voluntarily directedThis work was supported by grants PSI2012-37535 and PSI2011-26314 from the Ministerio de Economía y Competitividad (MINECO) of Spain, and grant PI13/01759 from the Institute of Health Carlos III (ISCIII) of Spai

    Relationships between personality traits and brain gray matter Are different in risky and non-risky drivers

    Get PDF
    Personality traits such as impulsivity or sensitivity to rewards and punishments have been associated with risky driving behavior, but it is still unclear how brain anatomy is related to these traits as a function of risky driving. In the present study, we explore the neuroanatomical basis of risky driving behavior and how the level of risk-taking influences the relationship between the traits of impulsivity and sensitivity to rewards and punishments and brain gray matter volume. One hundred forty-four participants with different risk-taking tendencies assessed by real-life driving situations underwent MRI. Personality traits were assessed with self-report measures. We observed that the total gray matter volume varied as a function of risky driving tendencies, with higher risk individuals showing lower gray matter volumes. Similar results were found for volumes of brain areas involved in the reward and cognitive control networks, such as the frontotemporal, parietal, limbic, and cerebellar cortices. We have also shown that sensitivity to reward and punishment and impulsivity are differentially related to gray matter volumes as a function of risky driving tendencies. Highly risky individuals show lower absolute correlations with gray matter volumes than less risk-prone individuals. Taken together, our results show that risky drivers differ in the brain structure of the areas involved in reward processing, cognitive control, and behavioral modulation, which may lead to dysfunctional decision-making and riskier driving behavior

    Effects of loss aversion on neural responses to loss outcomes: an event-related potential study

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light onthe spatio-temporal processes underlying loss aversion, we analysed the associations between individual lossaversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task.Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as thedifference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linearparametric fitting of choices in a separate gamble task.Loss aversion correlated positively with FRN amplitude (233–263 ms) at electrodes covering the lower face.Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, strongeractivity in a source located in the orbitofrontal cortex was associated with loss aversion.The results suggest that loss aversion implemented during risky decision making is related to a valuationprocess in the orbitofrontal cortex, which manifests during learning choice outcomes
    corecore