7,948 research outputs found

    Strongly typed heterogeneous collections

    Get PDF
    A heterogeneous collection is a datatype that is capable of storing data of different types, while providing operations for look-up, update, iteration, and others. There are various kinds of heterogeneous collections, differing in representation, invariants, and access operations. We describe HList --- a Haskell library for strongly typed heterogeneous collections including extensible records. We illustrate HList's benefits in the context of type-safe database access in Haskell. The HList library relies on common extensions of Haskell 98. Our exploration raises interesting issues regarding Haskell's type system, in particular, avoidance of overlapping instances, and reification of type equality and type unificatio

    Strongly typed heterogeneous collections

    Get PDF
    A heterogeneous collection is a datatype that is capable of storing data of different types, while providing operations for look-up, update, iteration, and others. There are various kinds of heterogeneous collections, differing in representation, invariants, and access operations. We describe HList --- a Haskell library for strongly typed heterogeneous collections including extensible records. We illustrate HList's benefits in the context of type-safe database access in Haskell. The HList library relies on common extensions of Haskell 98. Our exploration raises interesting issues regarding Haskell's type system, in particular, avoidance of overlapping instances, and reification of type equality and type unificatio

    Fast and Lean Immutable Multi-Maps on the JVM based on Heterogeneous Hash-Array Mapped Tries

    Get PDF
    An immutable multi-map is a many-to-many thread-friendly map data structure with expected fast insert and lookup operations. This data structure is used for applications processing graphs or many-to-many relations as applied in static analysis of object-oriented systems. When processing such big data sets the memory overhead of the data structure encoding itself is a memory usage bottleneck. Motivated by reuse and type-safety, libraries for Java, Scala and Clojure typically implement immutable multi-maps by nesting sets as the values with the keys of a trie map. Like this, based on our measurements the expected byte overhead for a sparse multi-map per stored entry adds up to around 65B, which renders it unfeasible to compute with effectively on the JVM. In this paper we propose a general framework for Hash-Array Mapped Tries on the JVM which can store type-heterogeneous keys and values: a Heterogeneous Hash-Array Mapped Trie (HHAMT). Among other applications, this allows for a highly efficient multi-map encoding by (a) not reserving space for empty value sets and (b) inlining the values of singleton sets while maintaining a (c) type-safe API. We detail the necessary encoding and optimizations to mitigate the overhead of storing and retrieving heterogeneous data in a hash-trie. Furthermore, we evaluate HHAMT specifically for the application to multi-maps, comparing them to state-of-the-art encodings of multi-maps in Java, Scala and Clojure. We isolate key differences using microbenchmarks and validate the resulting conclusions on a real world case in static analysis. The new encoding brings the per key-value storage overhead down to 30B: a 2x improvement. With additional inlining of primitive values it reaches a 4x improvement

    Data Structures and Data Types in Object-Oriented Databases

    Get PDF
    The possibility of finding a static type system for object-oriented programming languages was initiated by Cardelli [Car88, CW85] who showed that it is possible to express the polymorphic nature of functions such a

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    Projector - a partially typed language for querying XML

    Get PDF
    We describe Projector, a language that can be used to perform a mixture of typed and untyped computation against data represented in XML. For some problems, notably when the data is unstructured or semistructured, the most desirable programming model is against the tree structure underlying the document. When this tree structure has been used to model regular data structures, then these regular structures themselves are a more desirable programming model. The language Projector, described here in outline, gives both models within a single partially typed algebra and is well suited for hybrid applications, for example when fragments of a known structure are embedded in a document whose overall structure is unknown. Projector is an extension of ECMA-262 (aka JavaScript), and therefore inherits an untyped DOM interface. To this has been added some static typing and a dynamic projection primitive, which can be used to assert the presence of a regular structure modelled within the XML. If this structure does exist, the data is extracted and presented as a typed value within the programming language

    A Calculus with Partially Dynamic Records for Typeful Manipulation of JSON Objects

    Get PDF
    This paper investigates language constructs for high-level and type-safe manipulation of JSON objects in a typed functional language. A major obstacle in representing JSON in a static type system is their heterogeneous nature: in most practical JSON APIs, a JSON array is a heterogeneous list consisting of, for example, objects having common fields and possibly some optional fields. This paper presents a typed calculus that reconciles static typing constraints and heterogeneous JSON arrays based on the idea of partially dynamic records originally proposed and sketched by Buneman and Ohori for complex database object manipulation. Partially dynamic records are dynamically typed records, but some parts of their structures are statically known. This feature enables us to represent JSON objects as typed data structures. The proposed calculus smoothly extends with ML-style pattern matching and record polymorphism. These results yield a typed functional language where the programmer can directly import JSON data as terms having static types, and can manipulate them with the full benefits of static polymorphic type-checking. The proposed calculus has been embodied in SML#, an extension of Standard ML with record polymorphism and other practically useful features. This paper also reports on the details of the implementation and demonstrates its feasibility through examples using actual Web APIs. The SML# version 3.1.0 compiler includes JSON support presented in this paper, and is available from Tohoku University as open-source software under a BSD-style license
    • 

    corecore