
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Strongly typed heterogeneous collections

O. Kiselyov, R. Lämmel, K. Schupke

REPORT SEN-E0420 NOVEMBER 2004

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Strongly Typed Heterogeneous Collections

ABSTRACT
A heterogeneous collection is a datatype that is capable of storing data of different types, while
providing operations for look-up, update, iteration, and others. There are various kinds of
heterogeneous collections, differing in representation, invariants, and access operations. We
describe HList --- a Haskell library for strongly typed heterogeneous collections including
extensible records. We illustrate HList's benefits in the context of type-safe database access in
Haskell. The HList library relies on common extensions of Haskell 98. Our exploration raises
interesting issues regarding Haskell's type system, in particular, avoidance of overlapping
instances, and reification of type equality and type unification.

1998 ACM Computing Classification System: E.2; D.2.13; D.3.1
Keywords and Phrases: Collections; Extensible records; Type-safe database access; Dependently typed programming;
Type-indexed rows; Type equality; Type improvement; Haskell

Strongly Typed Heterogeneous Collections
August 26, 2004

�

Oleg Kiselyov
FNMOC, Monterey, CA

Ralf Lämmel
VU & CWI, Amsterdam

Keean Schupke
Imperial College, London

Abstract
A heterogeneous collection is a datatype that is capable of stor-
ing data of different types, while providing operations for look-up,
update, iteration, and others. There are various kinds of heteroge-
neous collections, differing in representation, invariants, and access
operations. We describe HLIST — a Haskell library for strongly
typed heterogeneous collections including extensible records. We
illustrate HLIST’s benefits in the context of type-safe database ac-
cess in Haskell. The HLIST library relies on common extensions
of Haskell 98. Our exploration raises interesting issues regarding
Haskell’s type system, in particular, avoidance of overlapping in-
stances, and reification of type equality and type unification.

Categories and Subject Descriptors: E.2 [Data Storage Represen-
tations]; D.2.13 [Software Engineering]: Reusable Software; D.3.1
[Programming Languages]: Formal Definitions and Theory

General Terms: Design, Languages.

Keywords: Collections, Extensible records, Type-safe database ac-
cess, Dependently typed programming, Type-indexed rows, Type
equality, Type improvement, Haskell.

1 Introduction
Programmers in typed functional languages are used to homoge-
neous collections, where values of the same type are stored in lists,
sets, and others. There exist collection libraries, e.g., Edison for
Haskell [26]. Homogeneous collections rely on parametric poly-
morphism. C++ programmers are also used to homogeneous col-
lections such as those in the Standard Template Library, likewise for
Ada and Eiffel. Java programmers are about to receive support for
parametric polymorphism, finally. This may end the use of weakly
typed collections (“Everything is of type Object!”), which require
run-time type casts with the potential of unappreciated exceptions.

Unfortunately, the notion of typeful homogeneous collections fails
to work for all the scenarios that require storing values of different
types. Here is an open-ended list of typical examples that call for
heterogeneous collections:

� A symbol table that is supposed to store entries of different
types is heterogeneous. It is a finite map, where the result
type depends on the argument value.

� An XML element is heterogeneously typed. In fact, XML
elements are nested collections that are constrained by regular
expressions and the 1-ambiguity property.

�
A shorter version of this paper appeared in the proceedings of

the ACM SIGPLAN Haskell Workshop 2004, September 22, 2004,
Snowbird, Utah, USA, Published by ACM Press. This longer ver-
sion provides several appendices and some extra paragraphs.

� Each row returned by an SQL query is a heterogeneous map
from column names to cells. The result of a query is a homo-
geneous stream of heterogeneous rows.

� Adding an advanced object system to a functional language
requires heterogeneous collections of a kind that combine ex-
tensible records with subtyping and an enumeration interface.

Weakly typed encodings are feasible for all the listed scenarios. For
instance, a heterogeneously typed symbol table can be encoded us-
ing a suitably universal type, or dynamic typing, or type-safe cast.

The present paper introduces a strong typing discipline for het-
erogeneous collections. We deliver a dedicated Haskell library
HLIST, which covers collection types such as lists, arrays, ex-
tensible records, type-indexed products and co-products. To this
end, we advance techniques for dependently typed programming
in Haskell [12, 21], and we rely on Haskell 98 with common ex-
tensions for multi-parameter classes and functional dependencies,
as available in the GHC and Hugs implementations. (We manage
to avoid overlapping instances — in the end!) Our development
does not introduce yet another language extension, which is an im-
provement over earlier proposals for extensible records and other
collection types [10, 31, 23, 29]. We explore some murky waters of
Haskell’s type system, such as the reification of type equality and
type unification. While we have found portable, sound and practical
ways around, more research is needed to deliver foundational clar-
ifications that enable fundamental solutions. We identify the issues
that need to be resolved.

The paper is structured as follows. In Sec. 2, we review weakly
typed techniques for dealing with heterogeneous collections. In
Sec. 3, we introduce typeful heterogeneous lists, which provide the
basis for the HLIST library. We then work out different kinds of
access operations and collection types:

� Sec. 4 — numeral-based access operations,
� Sec. 5 — labelled collections (or records),
� Sec. 6 — type-based access operations,
� Sec. 7 — type-indexed products.

In Sec. 8, we demonstrate the merits of heterogeneous collections
in the context of type-safe database access in Haskell. In Sec. 9, we
review our take on Haskell’s type system. In Sec. 10, we discuss
related work, and we conclude in Sec. 11. There are several appen-
dices with various details. The source code from the paper can be
retrieved from [1].

1

2 Not so strongly typed collections
We use database programming for the motivation of the HLIST li-
brary in this paper. We want to get to a point where SQL queries
can be rephrased in Haskell in a typed and structured manner. As a
simple example, let us attempt to encapsulate a simple SQL query
in a Haskell function. The query should retrieve all animals (their
keys and names) of a given breed from the ‘foot-n-mouth’ database.
A query for sheep (rather than cows) looks as follows:

SELECT key,name FROM Animal WHERE breed = ’sheep’;

Cheap strings
The following Haskell code encodes the parameterised query:

selectBreed :: String -> SqlHandle SqlQueryResult
selectBreed b =
sqlQuery ("SELECT key,name FROM Animal "

++ "WHERE breed =’" ++ b ++ "’")

Here we use a low-level ODBC binding for database access. The
query is wrapped in an SqlHandle type, which encapsulates an IO
action for an ODBC connection. The query function is parame-
terised in a String for the breed parameter. The type of query
results is defined as follows:

type SqlQueryResult = ([ColName],[Row])
type ColName = String
type Row = [Cell]
type Cell = String

That is, the result of a query consists of a list of column names and
a list of rows, where a row in turn is a list of cells. Both column
names and cells are plain strings. This is painful code in the eye of
most programmers, but it is often a cheap way to make things work.
Prominent database access techniques for all kinds of programming
languages are string-based just like that.

Hand-made universes
If we wanted to maintain at least the primitive datatypes of cells,
then we could replace the use of the string type with a universe of
cell types (or a tagged union):

data Cell = IntObject Int
| FloatObject Float
| StringObject String
| ... -- and perhaps a few more cases

A row is still a list of such cells, but it is effectively a heterogeneous
list. Instead of Int and IntObject we can use types and tags that
are more descriptive of the columns, as below. Clearly, such an
application-specific universe is subject to change whenever the data
dictionary changes.

These are the types for the columns in the ‘foot-n-mouth’ database:

newtype Key = Key Integer deriving (Show,Eq,Ord)
newtype Name = Name String deriving (Show,Eq)
data Breed = Cow | Sheep deriving (Show,Eq)
newtype Price = Price Float deriving (Show,Eq,Ord)
data Disease = BSE | FM deriving (Show,Eq)
...

We derive Show, Eq, and Ord instances to allow for printing of query
results, and comparison of cells in WHERE conditions. We redefine
Cell such that it is complete for the ‘foot-n-mouth’ database.

data Cell = KeyCell Key
| NameCell Name
| BreedCell Breed
| ... -- and certainly more cases

The universal universe
Rather than introducing problem-specific universes of cell types,
we can employ dynamics [2, 3]. Haskell’s library Data.Dynamic
provides the type Dynamic and an injection toDyn as well as a pro-
jection fromDynamic. Although this approach does not seem more
typed, at least it is more extensible: we can make each new user-
defined type amenable to injection and projection by providing an
instance of Haskell’s type class Typeable. There is a fully equiv-
alent alternative: we can use existentially quantified cell types to-
gether with a nominal, extensible, type-safe cast [19].

Using dynamic typing, the encoding of column names in cell types
allows us to leave them out in the type of query results. A row ends
up being a heterogeneous list of Dynamics. That is:

type SqlQueryResult = [Row]
type Row = HList
type HList = [Dynamic]

Using injection we construct an HList-typed value for cow Angus:

angus = [toDyn (Key 42)
, toDyn (Name "Angus")
, toDyn Cow
, toDyn (Price 75.5)]

We can process such HLists with ordinary list-processing func-
tions, e.g., head, tail, null, and foldr. We can also provide
type-based operations, e.g., an operation hOccursMany to retrieve
all elements of a given type:1

hOccursMany :: Typeable a => HList -> [a]
hOccursMany = map fromJust -- unwrap Just

. filter isJust -- remove Nothing

. map fromDynamic -- get out of Dynamic

For instance, we can attempt to look up the breed of cow Angus:

ghci-or-hugs> hOccursMany angus :: [Breed]
[Cow]

Note that printing HLists such as angus requires extra effort. A
value of type Dynamic is normally opaque. We can revise toDyn
to include a Show constraint in addition to the Typeable constraint.
Alternatively, we can provide a Show instance for Dynamic, which
attempts fromDynamic towards all showable types that we can pos-
sibly think of. These two options account for weak extensibility.

Too few or too many types
Most programmers are likely to loath operating on strings: it is
completely untyped. A non-Haskell programmer might regard
tagged unions as reasonably typed. The Haskell programmer will
ask for much more typing. Most notably, the above type-based
look-up gives no static guarantee that an element of the relevant
type will be found at run-time.

In database programming, these guarantees correspond to static
checks on column access in WHERE phrases and elsewhere. Static
checks would require a mapping of the data dictionary to Haskell
types. For example, we could define one newtype per database ta-
ble, with each newtype describing table columns as a product or
a record. We can process values of these newtypes with generic
functions [19]. However, we are stuck: it is not enough to have
precise types for database tables. We also would need precise types
for queries and their intermediate expressions. So we face the need
for an open-ended set of product or record types. This challenge is
addressed below.

1To avoid confusion, we prefix all heterogeneously typed func-
tions, types, and classes with an “h” (or, an “H”) such as in
hOccursMany and HList.

2

3 Typeful heterogeneous lists
We seek a notion of heterogeneous lists that is more typeful than
[Dynamic]. The type of a list should precisely describe the types
of its elements, as a type sequence or product. This will allow us to
make static promises, e.g., a guarantee that a look-up operation for
a type delivers a result. As we will see, precision of typing does not
impair our ability to define ‘normal’ list-processing functionality.

Heterogeneous list constructors
We start by defining datatypes for lining up type sequences:

data HNil = HNil deriving (Eq,Show,Read)
data HCons e l = HCons e l deriving (Eq,Show,Read)

These datatypes reify normal list structure at the type level, and
thereby they allow us to statically distinguish empty and non-empty
lists just as in dependently typed programming [12, 21]. Further-
more, each list element may have a different type.

For less parentheses, we assume right-associative infix operators:

type e :*: l = HCons e l -- type level constructor
e .*. l = HCons e l -- value level constructor

Here is a type sequence for animals:

type Animal =
Key :*: Name :*: Breed :*: Price :*: HNil

Here is a heterogeneous list that represents cow Angus:

angus :: Animal -- optional type declaration
angus = Key 42

.*. Name "Angus"

.*. Cow

.*. Price 75.5

.*. HNil

We note that heterogeneous lists are essentially nested tuples. So
we could use the normal type constructors () and (,) instead of
HNil and HCons as in: (Key,(Name,(Breed,(Price,())))). We
favour fresh datatypes for building heterogeneous list. This helps
avoiding confusion and clashes with ‘normal’ applications of ()
and (,). We could also consider implicitly terminated type se-
quences. Again, we require a terminating HNil to avoid a mess.

A class of heterogeneous lists
When using HCons such as in HCons e l, we want the tail l to be a
heterogeneous list type again. To this end, we will now work out a
class HList whose extension is the set of all proper type sequences,
i.e., the set of all nested, right-associative, binary products. This
class replaces the type [Dynamic] from the previous section.

class HList l
instance HList HNil
instance HList l => HList (HCons e l)

What is the purpose of this class? Some readers might wonder
whether we want to constrain the type constructor HCons like that:

data HList l => HCons e l = HCons e l deriving ...

After due discussion we decided: NO, being in good company [27].
The problem with constraints on datatypes is that they only imply a
proof obligation, but type inference does not propagate them nicely.
This would lead to a proliferation of HList constraints.

We rather place HList constraints on list-processing functionality
whenever we want them. A user of the HLIST library does not
employ the unconstrained constructor HCons, but only a constrained
version of it. To this end, we retype (.*.):

(.*.) :: HList l => e -> l -> HCons e l
(.*.) = HCons

List-processing operations
Functions on normal lists (e.g., head, tail, and null) can be sys-
tematically transposed to the type level. Normally, each type-level
operation is subject to a dedicated class; see App. A for some ex-
amples, and the HLIST source distribution for additional examples.
Let us consider the recursive function for concatenation in some
detail. For comparison, we recall normal list concatenation:

append :: [a] -> [a] -> [a]
append [] = id
append (x:l) = (:) x . append l

We define a class HAppend for concatenation of heterogeneous lists:

class HAppend l l’ l’’ | l l’ -> l’’
where hAppend :: l -> l’ -> l’’

Here we use Haskell’s extensions for multi-parameter classes and
functional dependencies — which, incidentally, were introduced
for the sake of ‘normal’ collection libraries. So it is not surpris-
ing that we end up using these extensions for heterogeneous collec-
tions. The functional dependency l l’ -> l’’ indicates that the
class is a type-level function — rather than a mere relation on types.

The instances follow the definition of append very closely:

instance HList l => HAppend HNil l l
where hAppend HNil = id

instance (HList l, HAppend l l’ l’’)
=> HAppend (HCons x l) l’ (HCons x l’’)

where hAppend (HCons x l) = HCons x . hAppend l

We note that append’s equational term patterns show up twice in the
class HAppend: once in the instance heads of HAppend and once in
its method definitions. Also, the instance constraints for HList are
like type checks to be performed at type checking ‘run-time’. But
otherwise we transcribe list processing to the heterogeneous case in
a systematic manner. There is just a constant factor of noise.

Rather than defining all kinds of specific list-processing functions,
one might wonder if the general recursion schemes for list process-
ing can also be transcribed to the heterogeneous situation. This is
indeed the case; see App. B for a heterogeneous fold operation and
the HLIST source distribution for further higher-order operations
on HLists.

Aside: stanamic lists
The class HList, and all the classes with list-processing operations
(e.g., the shown HAppend) are in no way restricted to lists built
from HNil and HCons. We can easily add instances for HList,
HAppend, and others such that we also deal with less typeful het-
erogeneous lists (e.g., [Dynamic]), or with less generic heteroge-
neous lists (such as hand-made universes). This allows us to use our
collection framework even in cases when the precise type sequence
for a collection is not known statically, e.g., when collections are
built from user input. One can even mix statically and dynamically
typed collections. An advanced example of such a “stanamically”
constrained data structure are the balanced trees in [18]. For the rest
of the paper we will focus on statically typed heterogeneous lists.

4 Numeral-based access operations
We will now define array-like (or numeral-based) access operations
for HLists. That is, we will use type-level naturals to address list el-
ements. These access operations provide a basic layer in the HList
library because type-based and label-based access operations can
actually be implemented in terms of numeral-based operations.

3

class HNat n => HLookupByHNat n l e | n l -> e where hLookupByHNat :: n -> l -> e
class HNat n => HDeleteAtHNat n l l’ | n l -> l’ where hDeleteAtHNat :: n -> l -> l’
class HNat n => HUpdateAtHNat n e l l’ | n e l -> l’ where hUpdateAtHNat :: n -> e -> l -> l’
class HNats ns => HProjectByHNats ns l l’ | ns l -> l’ where hProjectByHNats :: ns -> l -> l’
class HNats ns => HSplitByHNats ns l l’ l’’ | ns l -> l’ l’’ where hSplitByHNats :: ns -> l -> (l’,l’’)

Figure 1. Numeral-based access operations for heterogeneous collections

Type-level naturals
Type-level naturals are represented by datatypes for zero and suc-
cessor function. These datatypes are solely for the type-level: the
only value of these types is � .2

class HNat n
data HZero; instance HNat HZero
data HSucc n; instance HNat n => HNat (HSucc n)
hZero :: HZero; hZero = �
hSucc :: HNat n => n -> HSucc n; hSucc _ = �
hPred :: HNat n => HSucc n -> n; hPred _ = �

Eventually, one needs to perform all kinds of operations on type-
level naturals such as arithmetics or comparison. As an example,
we present (type-level) equality, as needed elsewhere in the paper.

First, we need type-level Booleans:
class HBool x
data HTrue; instance HBool HTrue
data HFalse; instance HBool HFalse
hTrue :: HTrue; hTrue = �
hFalse :: HFalse; hFalse = �
-- classes for HAnd and HOr omitted

Here are the classes for general type-level equality and comparison
including the straightforward instances for the equality of naturals:
class HBool b => HEq x y b | x y -> b
class HBool b => HLt x y b | x y -> b
instance HEq HZero HZero HTrue
instance HNat n => HEq HZero (HSucc n) HFalse
instance HNat n => HEq (HSucc n) HZero HFalse
instance (HNat n, HNat n’, HEq n n’ b)

=> HEq (HSucc n) (HSucc n’) b
-- likewise for HLt

Induction on type-level naturals
One can define various access operations using naturals as indices;
see Fig. 1 for an overview. For instance, the delete operation boils
down to two instances: one for HZero; another for HSucc:
instance HDeleteAtHNat HZero (HCons e l) l
where hDeleteAtHNat _ (HCons _ l) = l

instance (HDeleteAtHNat n l l’, HNat n)
=> HDeleteAtHNat (HSucc n) (HCons e l) (HCons e l’)
where hDeleteAtHNat n (HCons e l)

= HCons e (hDeleteAtHNat (hPred n) l)

Extra constraints
Functionality on collections carries implied constraints due to all
the involved access operations. In addition, one might want to add
extra constraints. For instance, we can use the following class to
restrict the maximum length of a list (or an array):
class HMaxLength l s
instance (HLength l s’, HLt s’ (HSucc s) HTrue)

=> HMaxLength l s

2We also prefix all faked dependently typed functions and types
with an “h” (or, an “H”) such as in hTrue and HBool. These types
correspond to subsets of values of normal types such as Int, and so
let us discriminate the subsets of values at compile time.

class (HList l, HNat n) => HLength l n | l -> n
instance HLength HNil HZero
instance (HLength l n, HNat n, HList l)

=> HLength (HCons a l) (HSucc n)

By adding HMaxLength constraints to signatures or instances, one
instructs Haskell to enforce size boundaries at compile time.

5 Extensible records
We will now define labelled collections, i.e., maps from labels to
values. In essence, we will employ type-level naturals for labels,
but we will enrich the structure of labels for convenience of pro-
gramming with labelled collections. We end up defining exten-
sible records this way, without requiring the language extensions
of earlier proposals. From the point of view of database access,
records provide the ultimate expressiveness for mapping column
names to values in a typeful manner. Extensibility (and shrinkabil-
ity) of records is key to dealing with types of joins and projections.

Haskell’s nonextensible records recalled
In Haskell 98, we can define record types like this:

data Unpriced = Unpriced { key :: Integer
, name :: String
, breed :: Breed }

Here is a unpriced cow Angus:

unpricedAngus = Unpriced { key = 42
, name = "Angus"
, breed = Cow }

What are access operations that are available for Haskell 98
records? We can retrieve components, and we can update records
in a point-wise fashion:

ghci-or-hugs> breed unpricedAngus
Cow
ghci-or-hugs> unpricedAngus { breed = Sheep }
Unpriced{key=42,name="Angus",breed=Sheep}

We can not extend such records (unless we were thinking of nesting
records and using polymorphic dummy fields for extension [6]).
Also, we can not reuse labels among different record types, neither
can we treat labels as data; so labels are not first-class citizens.

An extensible record demo
We place related labels in a namespace modelled by a silly datatype:

data FootNMouth = FootNMouth -- a namespace

Labels in a namespace are constructed in a sequence starting with
firstLabel, with nextLabel generating the next distinguished la-
bel. Each label is also annotated with a string for the label name.
These are the labels for animals:

key = firstLabel FootNMouth "key"
name = nextLabel key "name"
breed = nextLabel name "breed"
price = nextLabel breed "price"

4

We build the record for the unpriced cow Angus as follows:
unpricedAngus = key .=. (42::Integer)

.*. name .=. "Angus"

.*. breed .=. Cow

.*. emptyRecord

That is, record construction starts from emptyRecord; the label-
value pairs are connected by “.=.”; and each label-value pair is
added by using an overloaded operation “.*.”.

Extensible records are printed more or less like Haskell 98 records:
ghci-or-hugs> unpricedAngus
Record{key=42,name="Angus",breed=Cow}

We retrieve a component from a record as follows:
ghci-or-hugs> unpricedAngus .!. breed
Cow

We can update components as follows:
ghci-or-hugs> unpricedAngus .@. breed .=. Sheep
Record{key=42,name="Angus",breed=Sheep}

We can really extend such records:
ghci-or-hugs> price .=. 8.8 .*. unpricedAngus
Record{price=8.8,key=42,name="Angus",breed=Cow}

One possible model of extensible records
Labels can be implemented by type-level naturals, qualified by a
namespace, and annotated by a string for the label name:
data HNat x => Label x ns = Label x ns String
firstLabel = Label hZero
nextLabel (Label x ns _) = Label (hSucc x) ns

Records are maps from labels to values. We could go for hetero-
geneous lists of pairs; we could also go for pairs of heterogeneous
lists of equal length. We abstract from this choice as follows:
class HZip x y l | x y -> l, l -> x y
where hZip :: x -> y -> l

hUnzip :: l -> (x,y)

A record is a zipped list wrapped within Record:
newtype Record r = Record r -- to be constrained

Record construction is constrained as follows:
mkRecord :: (HZip ls vs r, HLabelSet ls)

=> r -> Record r
mkRecord = Record

For instance, the empty record is denoted as follows:
emptyRecord = mkRecord $ hZip HNil HNil

Labels in a record must be distinct:
class HLabelSet ls
instance HLabelSet HNil
instance (HNat n, HMember (Label n ns) ls HFalse

, HLabelSet ls)
=> HLabelSet (HCons (Label n ns) ls)

To this end, we define HEq-based membership test as follows:
class HBool b => HMember e l b | e l -> b
instance HMember e HNil HFalse
instance (HEq e e’ b -- compare e and head e’

, HMember e l b’ -- use of label in tail
, HOr b b’ b’’ -- type-level OR
) => HMember e (HCons e’ l) b’’

We also extend equality, which was already defined for type-level
naturals, such that we can compute equality of labels. Here we
assume that the labels in a record are in the same namespace:
instance HEq x x’ b -- compare naturals in labels

=> HEq (Label x ns) (Label x’ ns) b

Access operations
In the demo, we encountered access operations for look-up, update,
and extension. There are also operations for appending records,
for deletion of a label and its value in a record, for renaming of a
label in a record, for projection and splitting of a record accord-
ing to a label set. We can implement these operations directly on
the representation of records (cf. “pair of lists” vs. “list of pairs”).
Alternatively, we can use numeral-based access complemented by
zipping and unzipping.

For instance, deletion (“.-.”) can be defined as follows:

(Record r) .-. l = Record r’
where (ls,vs) = hUnzip r

n = hFind l ls -- uses HEq on labels
ls’ = hDeleteAtHNat n ls
vs’ = hDeleteAtHNat n vs
r’ = hZip ls’ vs’

That is, we unzip the record; we find the index n of the given label
l in the list ls of labels; we delete the subscripted elements in the
lists ls and vs of labels and values; we finally re-zip the record.

6 Type-based access operations
Numeral-based and label-based access is in some sense still value-
based — even though we had to reify naturals at the type level.
We will now work out truly type-based access operations. From a
database perspective, type-based operations are useful when types
are descriptive of columns. In that case, there is no need to employ
label-to-value mappings.

As for the coding style, we will make transient use of overlapping
instances, as supported by the GHC and Hugs implementations of
Haskell. We later circumvent overlapping instances.

Filter an HList for elements of a given type
The operation hOccursMany from Sec. 2 is an example of a type-
based operation. The type of elements to be extracted from a list
of dynamics is specified by fixing the result type of hOccursMany.
We will now define such type-based operations on HList including
more strongly typed ones; see Fig. 2 for an overview.

We dedicate a class to hOccursMany:

class HOccursMany e l where hOccursMany :: l -> [e]

The instance for HNil returns []:

instance HOccursMany e HNil where hOccursMany _ = []

Another instance deals with a non-empty HList whose head is of
the type of interest; notice that e is used twice in the instance head:

instance (HList l, HOccursMany e l)
=> HOccursMany e (HCons e l)

where hOccursMany (HCons e l) = e : hOccursMany l

There is yet another instance for a non-empty HList whose head is
not of the same type as the element type in hOccurs’s result type:

instance (HList l, HOccursMany e l)
=> HOccursMany e (HCons e’ l)

where hOccursMany (HCons _ l) = hOccursMany l

The two HCons instances are overlapping, while the former is more
specific than the latter, which is thereby only applied when the for-
mer is not applicable, i.e., whenever the types e and e’ are different.

hOccursMany is the regular “ � ” operation for type-based look-
up. Then there are similar operations hOccursMany1 (i.e., “

�
”),

hOccursOpt (i.e., “?”), and hOccursFst (for the first occurrence).
The class HOccurs and its complement HOccursNot require more
thought. Most notably, a type-checked application of hOccurs is
supposed to assure that there is exactly one element of the type in

5

class HOccursMany e l where hOccursMany :: l -> [e] -- return as many occurrences of type e as there are
class HOccursMany1 e l where hOccursMany1 :: l -> (e,[e]) -- return at least one occurrence but all again
class HOccursOpt e l where hOccursOpt :: l -> Maybe e -- return the first occurrence if any
class HOccursFst e l where hOccursFst :: l -> e -- return the first occurrence out of one ore more
class HOccurs e l where hOccurs :: l -> e -- establish that there is precisely one occurrence
class HOccursNot e l -- constraint-only class for lack of occurrences

Figure 2. Type-based look-up operations for heterogeneous collections

question. Successful type checking of hOccurs angus :: Breed
implies that angus’s breed is defined unambiguously. We will de-
velop the definitions of HOccurs and HOccursNot in detail.

Documenting potential type errors
At first sight, there is no HOccurs instance for HNil, but we can
provide one — be it for the sake of instructive error messages. In-
stances like the following make class-based dependently typed pro-
gramming more manageable:

instance Fail (TypeNotFound e) => HOccurs e HNil
where hOccurs = �

Here we use a vacuous class Fail without instances, which just
implements what its name promises, and we also assume a datatype
TypeNotFound that serves for nothing but an error message:

class Fail x -- no methods, no instances!
data TypeNotFound e -- no values, no operations!

Hence we obtain somewhat suggestive error messages:

ghci-or-hugs> hOccurs (HCons True HNil) :: Int
No instance for (Fail (TypeNotFound Int))

So we try to look up a value of a type that’s not in the list. Hence,
iteration ends up at HNil, and TypeNotFound is reported. Such doc-
umentary failure instances are used throughout the HList library.

Static look-up
We will now provide the actual definition of hOccurs. There are
again two overlapping instances for non-empty lists; one for the
case that the head fits with the type of interest, and another for re-
cursion in case we haven’t found an occurrence yet:

instance (HList l, HOccursNot e l)
=> HOccurs e (HCons e l)

where hOccurs (HCons e _) = e

instance (HList l, HOccurs e l)
=> HOccurs e (HCons e’ l)

where hOccurs (HCons _ l) = hOccurs l

The constraint HOccursNot e l in the first instance assures that
no elements of type e occur in the tail l. The class HOccursNot is
for constraining only rather than actual look-up. Consequently, its
definition does not comprise any method:

class HOccursNot e l -- no methods!
data TypeFound e -- for a failure instance
instance HOccursNot e HNil
instance (HList l, HOccursNot e l)

=> HOccursNot e (HCons e’ l)
instance Fail (TypeFound e)

=> HOccursNot e (HCons e l)

The instances fold over l to test that each type is different from
e. The last instance leads to failure for an offending head. This
failure instance is obligatory because the more general instance for
HCons would otherwise silently skip over the offending occurrence.
Notice that Haskell’s instance selection is solely based on syntacti-
cal matching. Hence, the failure of the more specific instance (via
Fail) will not lead to reconsideration of the more general instance.

From look-up to projection
We can now readily define projection by mapping over a list of re-
quested element types using simple look-up for each element type;
see the HLIST source distribution for the actual code. For instance,
the following query retrieves the key and the name of cow Angus:

ghci-or-hugs> hProject angus
:: (HCons Key (HCons Name HNil))

HCons (Key 42) (HCons (Name "Angus") HNil)

This operation resembles projection in the sense of relational al-
gebra, or in the sense of SQL’s SELECT statements. (Think of the
column names following the keyword SELECT.)

Type-based mutation operations
We also need mutation operations such as the following:

� Delete list elements identified by their type.
� Update list elements by values of the same type.
� Split a list into a projected list and its complement.

The update operation(s) mutate at the value level only, e.g.:

-- Replace the occurrences of type e
class HUpdateMany e l
where hUpdateMany :: e -> l -> l

So the type-level programming bits of look-up can be adopted for
type-preserving update. Deletion requires functional dependencies:

-- Delete the occurrences of type e in l, return l’
class HDeleteMany e l l’ | e l -> l’
where hDeleteMany :: ... -- to be completed

Such mutation operations also mutate types. Without functional
dependencies, users had to specify the result type explicitly, which
is impractical. The trouble is that the combination of overlapping
instances and functional dependencies leads us into murky water.
We take this as an incentive to identify an overlapping-free idiom.

Passing on types as proxies
Let us first get the type of hDeleteMany right. It could be this one:

class HDeleteMany e l l’ | e l -> l’
where hDeleteMany :: e -> l -> l’

The argument of type e would merely describe the type of the ele-
ments that should be deleted. We might not have any suitable value
around (except �). Also, the above type obscures the role of the
first argument. So we go for this type instead:

hDeleteMany :: Proxy e -> l -> l’

Proxies are defined as follow:

data Proxy e; proxy :: Proxy e; proxy = �
Hence, the only value of a proxy type is the specific value � of the
constructed proxy type — not to be confused with the value � of
the type being proxied. We can reduce values to proxies if needed:

toProxy :: e -> Proxy e; toProxy _ = �
For example, we delete the name of cow Angus as follows:

ghci-or-hugs> hDeleteMany (proxy::Proxy Name) angus
HCons (Key 42) (HCons Cow (HCons (Price 75.5) HNil))

6

A non-solution
Adopting the style that we offered for look-up operations, we would
want to implement hDeleteMany with one instance for HNil; one
instance for ‘delete head’; one instance for ‘keep head’:

instance HDeleteMany e HNil HNil
where hDeleteMany _ HNil = HNil

instance (HList l, HDeleteMany e l l’)
=> HDeleteMany e (HCons e l) l’

where hDeleteMany p (HCons _ l) = hDeleteMany p l

instance (HList l, HDeleteMany e l l’)
=> HDeleteMany e (HCons e’ l) (HCons e’ l’)
where hDeleteMany p (HCons e’ l)

= HCons e’ (hDeleteMany p l)

Alas, the two overlapping instance heads for HCons are in no substi-
tution ordering. (Neither GHC nor Hugs can be persuaded to accept
this code.)

Move patterns from the head to constraints
There is a rescue. We simply need to generalise one instance head
so that it becomes more general than the other. Then, instance selec-
tion will be re-enabled. We generalise the head of the last instance:

� before: HDeleteMany e (HCons e’ l) (HCons e’ l’)
� after: HDeleteMany e (HCons e’ l) l’’

But we must maintain the type equation l’’ equals HCons e’ l’!
To this end, we employ type cast. We add an instance constraint
TypeCast (HCons e’ l’) l’’, and we also cast in the method:

instance (HList l, HDeleteMany e l l’
, TypeCast (HCons e’ l’) l’’)

=> HDeleteMany e (HCons e’ l) l’’
where hDeleteMany p (HCons e’ l)

= typeCast (HCons e’ (hDeleteMany p l))

There is no shortage of type-safe casts for Haskell [34, 8, 4, 19].
The one we need here is really resolved at the type-level. So there
is no Maybe involved, since typeCast cannot fail at run-time:

class TypeCast x y | x -> y, y -> x
where typeCast :: x -> y

The functional dependencies capture our expectation of type cast to
be an isomorphism on types (in fact, the identity function). We will
discuss the implementation of TypeCast in Sec. 9.

Ended up in murky water
There is no real consensus on the overlapping instance mechanism
as soon as functional dependencies are involved. Our result from
above fits with GHC’s model, but Hugs reports that the instances
are inconsistent with the functional dependency for HDeleteMany.
Here is a simple example that exercises this disagreement:

data Foo x y
class Bar x y | x -> y
class Zoo x y | x -> y
instance Zoo y r => Bar (Foo x y) r
instance Zoo z r => Bar (Foo (Foo x y) z) r

Hugs’ type system misses the point that Bar’s second parameter is
still functionally dependent on part of Bar’s first parameter.

Overlapping banned
We give up on persuading Hugs. Also, we do not want to depend
on the doubtful future of overlapping instances in general. Further-
more, regimes for instance selection differ in ways other than con-
sistency criteria for functional dependencies. For instance, GHC’s
instance selection is lazy, whereas Hugs’ is eager.

We avoid overlapping instances by reformulating our problem into
a case selection driven by a type-level Boolean denoting a computed
type equality. The predicate for type equality is provided as follows:

class HBool b => TypeEq x y b | x y -> b
proxyEq :: TypeEq t t’ b => Proxy t -> Proxy t’ -> b
proxyEq _ _ = �

We take for granted that we can define type equality; see Sec. 9.
Using type equality, we replace the overlapping instances for
HDeleteMany by the following case-preparing instance:

instance (HList l, TypeEq e e’ b
, HDeleteManyCase b e e’ l l’)

=> HDeleteMany e (HCons e’ l) l’
where hDeleteMany p (HCons e’ l)
= hDeleteManyCase (proxyEq p (toProxy e’)) p e’ l

That is, we compute type equality so that we are able to decide
whether the head needs to be deleted. This decision is then imple-
mented by the helper class HDeleteManyCase with instances (i.e.,
branches) for the two Booleans:

class HDeleteManyCase b e e’ l l’ | b e e’ l -> l’
where
hDeleteManyCase :: b -> Proxy e -> e’ -> l -> l’

instance HDeleteMany e l l’
=> HDeleteManyCase HTrue e e l l’

where hDeleteManyCase _ p _ l = hDeleteMany p l

instance HDeleteMany e l l’
=> HDeleteManyCase HFalse e e’ l (HCons e’ l’)

where hDeleteManyCase _ p e’ l
= HCons e’ (hDeleteMany p l)

This idiom works equally well for other type-based operations.

Type-to-natural mapping
We can even factor out case discriminations for type equality to be
used in just a single location, namely in a type-to-natural mapping.
The remaining type-based access operations can then employ this
mapping completed by numeral-based access.

The type-to-natural mapping is hosted by the following class:

class HNat n => HType2HNat e l n | e l -> n

The implementation adopts the overlapping-free idiom:

instance (TypeEq e’ e b, HType2HNatCase b e l n)
=> HType2HNat e (HCons e’ l) n

class (HBool b, HNat n)
=> HType2HNatCase b e l n | b e l -> n

instance HOccursNot e l
=> HType2HNatCase HTrue e l HZero

instance HType2HNat e l n
=> HType2HNatCase HFalse e l (HSucc n)

We note that the first instance carries a constraint HOccursNot e l.
This makes sure that the type e in question is associated with a
single natural as index. Alternatively, we could return a list of a
indexes for elements of type e. This would be necessary for the
reconstruction of operations like hOccursMany.

For instance, type-based delete can now be expressed concisely in
terms of numeral-based delete — without the hassle of a helper
class for case discrimination on Booleans:

hDelete p l = hDeleteAtHNat (hType2HNat p l) l

Here we invoke the type-to-natural mapping using this function:

hType2HNat :: HType2HNat e l n => Proxy e -> l -> n
hType2HNat _ _ = �

7

Aside: type schemas and class-based programming
The fine details of our heterogeneous collections reflect the em-
ployment of Haskell’s class concept. Most notably, all involved
type schemas must be sufficiently instantiated to allow for instance
selection without causing ambiguities. This is just the same as in
the case of show . read whose application to a string cannot be
evaluated because the type of the intermediate result is not fixed.

We can store and look up polymorphic values as long as their type
schemas are not needed for instance selection. So numeral-based
access works fine even for arbitrary polymorphic elements, because
the element types do not drive instance selection:

ghci-or-hugs> hLookupByHNat hZero (id .*. HNil) $ 42
42

The following type-based access still works:

ghci-or-hugs> hOccursMany (id .*. HNil) :: [Bool]
[]

We note that hOccursMany compares its result type with all element
types. The type schema forall a. a -> a of id is sufficiently
instantiated for that, i.e., forall a. a -> a is different from Bool
for all possible a. Here is an example of an ambiguous situation:

ghci-or-hugs> hOccursMany (� .*. HNil) :: [Bool]
No instance for ... <snipped>

The interaction of polymorphic elements in collections and class-
based programming will continue to be a topic in the next section.

7 Type-indexed products
As a refinement of type-based access to heterogeneous collections,
one can even require that a given collection is entirely type-indexed,
i.e., that no type occurs more than once. Imposing this requirement
on lists, we obtain so-called type-indexed products (TIPs; [31]). We
will now briefly describe an implementation of TIPs. The dual of
TIPs, TICs, are defined in App. C.

We wrap TIPs in a newtype so that we make the status of being type-
indexed explicit in type signatures. Also, we can provide special
instances for TIPs once we made this type distinction:

newtype TIP l = TIP l -- to be constrained
unTIP (TIP l) = l

The public constructor for TIPs supplies the key constraint for TIPs:

mkTIP :: HTypeIndexed l => l -> TIP l
mkTIP = TIP

The class HTypeIndexed is defined as follows:

class HList l => HTypeIndexed l
instance HTypeIndexed HNil
instance (HOccursNot e l,HTypeIndexed l)

=> HTypeIndexed (HCons e l)

The instances traverse over the type sequence, and the class
HOccursNot is employed to assure that the type of the head does
not occur (again) in the tail.

Let us upgrade angus to a TIP:

ghci-or-hugs> let myTipyCow = TIP angus

Lifting operations
Most trivially, there is a replacement for HNil:

emptyTIP = mkTIP HNil

Operations on TIPs are lifted as follows. “TIP” is unwrapped in ar-
guments, and it is wrapped in the result (if this is a TIP), while con-
straints are added so that the HTypeIndexed property is enforced.
For instance:

instance (HAppend l l’ l’’, HTypeIndexed l’’)
=> HAppend (TIP l) (TIP l’) (TIP l’’)

where hAppend (TIP l) (TIP l’) = mkTIP (hAppend l l’)

Likewise we overload (.*.) to work for TIPs, i.e., extensions are
assured to preserve the TIP property. To illustrate extension, we
label myTipyCow with BSE:
ghci-or-hugs> BSE .*. myTipyCow
TIP (HCons BSE ...)

The animal myTipyCow is a cow; so it can’t be a sheep then:
ghci-or-hugs> Sheep .*. myTipyCow
No instance for (Fail (TypeFound Breed))

Subtype constraints
TIPs naturally give rise to a subtype property. One TIP type l is a
subtype of another TIP type l � if l contains all types from l � . This is
expressed as follows:
class SubType l l’
instance SubType (TIP l) (TIP HNil)
instance (HOccurs e l, SubType (TIP l) (TIP l’))

=> SubType (TIP l) (TIP (HCons e l’))

From this it is clear that we do not care about the order of elements
in the type-indexed products. We also note that the intersection of
HSubType x y and HSubType y x immediately provides a faithful
form of type equivalence for TIPs (while mere equality of the un-
derlying type sequences would not be faithful).

As an aside, we can also instantiate subtyping for records. (This
can be used in deriving an effective object system in Haskell.) A
record type r is a subtype of some record type r � if r contains at
least the labels of r � , and the component types for the shared labels
are the same. Projection according to label sets is of use here:
instance (HZip ls vs r’

, HProjectByLabels ls (Record r) (Record r’))
=> SubType (Record r) (Record r’)

An idiom for constraint annotation
Let us review idiomatic support for adding extra constraints. For
instance, let us deploy a constrained hOccurs that is meant to re-
turn the Key of an animalish TIP. TIPs that are not of a subtype of
TIP Animal are to be rejected — even if they carry a Key. This can
be encoded as follows:
animalKey :: (SubType l (TIP Animal) -- extra

, HOccurs Key l -- implied
) => l -> Key

animalKey = hOccurs

The trouble is that this conservative approach forces one to gather
all the implied constraints and to make them explicit just as the ex-
tra constraints. There is an idiom that allows one to solely enumer-
ate extra constraints. Essentially, one defines a constrained identity
function that imposes the constraints of interest on its argument.

The following identity function insists on animals:
animalish :: SubType l (TIP Animal) => l -> l
animalish = id

We can now discipline the Key getter as follows:
animalKey l = hOccurs (animalish l) :: Key

The subtype constraint takes action as one can see here:
ghci-or-hugs> animalKey myTipyCow
Key 42
ghci-or-hugs> animalKey (Key 42 .*. emptyTIP)
No instances for (Fail (TypeNotFound Price),

Fail (TypeNotFound Breed),
Fail (TypeNotFound Name))

8

The error message lists the types that are missing from Animal.

A polymorphism benchmark
As proposed by a reviewer of this paper, we will now consider an
example from [31], which is, in a way, about type-based matching.

The following function selects two elements from a collection:
tuple l = let x = hOccurs l

l’ = hDeleteAtProxy (toProxy x) l
y = hOccurs l’

in (x,y)

The following session shows that we can match the elements of
a collection in whatever order, while the overloaded operations in
tuple are resolved by the consumers of the matched values:
ghci-or-hugs> let one = (1::Int)
ghci-or-hugs> let inc x = x + one
ghci-or-hugs> let incNot (a,b) = (inc a,not b)
ghci-or-hugs> let notInc (a,b) = (not b,inc a)
ghci-or-hugs> let oneTrue = one .*. True .*. HNil
ghci-or-hugs> incNot (tuple oneTrue)
(2,False)
ghci-or-hugs> notInc (tuple oneTrue)
(False,2)

The following example should arguably work, but it doesn’t:
ghci-or-hugs> inc $ fst (tuple oneTrue)
No instances for ... <snipped>

We are going to make this work as well! We note that oneTrue
stores two components; so by fixing the type of one component to
Int, it should not matter that the type of the other component is left
unspecified. The problem boils down to the following issue:
ghci-or-hugs> hOccurs (HCons True HNil)
No instance for (HOccurs e (HCons Bool HNil))

We would like to default e to Bool here. Rather than comparing
the type of the head with a not yet instantiated result type, the two
types should be unified. The hOccurs operation for TIPs does this:
ghci-or-hugs> hOccurs (True .*. emptyTIP)
True
ghci-or-hugs> let oneTrue = one .*. True .*. emptyTIP
ghci-or-hugs> inc $ fst (tuple oneTrue)
2

Even the following added polymorphism is handled:
ghci-or-hugs> let oneNull = one .*. [] .*. emptyTIP
ghci-or-hugs> inc $ fst (tuple oneNull)
2

The key idea is to provide a special instance for singleton lists, and
to replace the test for type equality by unification via type cast:
instance TypeCast e’ e

=> HOccurs e (TIP (HCons e’ HNil))
where hOccurs (TIP (HCons e’ _)) = typeCast e’

instance HOccurs e (HCons x (HCons y l))
=> HOccurs e (TIP (HCons x (HCons y l)))

where hOccurs (TIP l) = hOccurs l

This example reveals that type cast provides a powerful idiom for
type improvement — a more fine-grained one than functional de-
pendencies. That is, type cast operates at the instance level as op-
posed to the class level!

8 Database programming
We will now demonstrate heterogeneous collections for database
programming in Haskell. To this end, we adopt concepts from Lei-
jen and Meijer’s embedding approach for SQL [20]. We employ
extensible records for two purposes:

� to represent the results of queries, and
� to represent schemas for relational algebra operations.

A detailed discussion of the approach is beyond the scope of this pa-
per. We note however that the approach scales to the full relational
algebra, and to a rich set of SQL idioms including all kinds of joins,
existential quantification, nested queries, and table statements.

We recall the simple query from the beginning of the paper:
SELECT key,name FROM Animal WHERE breed = ’sheep’;

In Haskell, we can now write this query in a type-safe manner.

selectBreed b = -- argument b for the breed
do r1 <- table animalTable

r2 <- restrict r1 (\r -> r .!. breed ‘SQL.eq‘ b)
r3 <- project r2 (key .*. name .*. HNil)
doSelect r3

Type inference works fine, but here is the type of the query anyway:
selectBreed :: Breed -> Query [

Tkey :=: AnimalId :*:
Tname :=: String :*: HNil]

That is, the result is a query for records with two components. (The
types for the labels key and name are denoted by Tkey and Tname.)

The above do sequence encodes the SQL query in four steps:
� r1: We identify the table as in “FROM Animal”.
� r2: We restrict the table according to the WHERE condition.
� r3: We perform projection as in “SELECT key,name”.
� doSelect r3: The actual query is issued.

Steps 1–3 do not involve any database access. (Monadic style is
used for hygienic name supply.) The operations table, restrict,
project create or modify type-annotated, syntactical expressions
for relations. The underlying key data structure looks as follows:
data Relation schema -- type annotation layer
= Relation schema SqlRelation

data SqlRelation -- expression layer
= SqlRelation {
rTag :: SqlTag,
rSource :: SqlSource,
rRestrictList :: [SqlExpression],
rProjectList :: [SqlExpression],
rGroupList :: [SqlExpression],
rOrderList :: [SqlExpression] }

That is, relations carry a schema, and their structural ingredients
comprise a unique tag, a source (i.e., a database table), as well as
lists of expressions describing restrictions (cf. WHERE), projections
(including computed columns), grouping and ordering.

The type of the relational schema for animals is the following:
type AnimalSchema =
Tkey :=: Attribute AnimalId SqlInteger :*:
Tname :=: Attribute String SqlVarchar :*:
Tbreed :=: Attribute Breed SqlVarchar :*:
Tprice :=: Attribute Float SqlNumeric :*:
Tfarm :=: Attribute FarmId SqlInteger :*: HNil

The schema type lists both the domain of a column and the cor-
responding SQL type. For instance, the Haskell type for the key
component is the newtype AnimalId rather than the SQL type
SqlInteger. This ‘domain as newtypes’ technique increases type
safety: one cannot possibly confuse an AnimalId and a FarmId.
We note that some of the column types could be wrapped in Maybe,
but this is not the case for AnimalSchema.

The datatype Attribute is a phantom type in its two type
parameters. These phantoms drive coercions and make at-
tribute access type-safe. For instance, consider the subexpression

9

r .!. breed ‘SQL.eq‘ b for restriction in the above query. The
look-up r .!. breed does not just establish that there is a breed
component, but it also delivers a phantom-typed attribute, so that
its use in the compound expression is type-constrained.

Structurally, attributes keep track of some details such as precision,
and NULL constraints. All such information is extracted from the
data dictionary of a database.

Here is a snippet of the extracted table description for animals:
animalTable :: Table AnimalSchema
animalTable = mkTable "Animal" (
key .=. Attribute { ... } .*.
name .=. Attribute { ... } .*.
... HNil)

This is all what’s needed to make attribute access type-safe. Re-
turning typed query results relies on further provisions. That is, the
action doSelect for executing a query has to recast query results
such that they are phrased in the Haskell types for column domains.

The code for the execution of SELECTs makes it all clear:
doSelect (Relation schema rel) = do

sqlDo (showSqlRelation rel)
rows <- getSqlRows
return $ map (labelHList labels

. readHList values
) rows

where (labels,values) = hUnzip schema

The subexpression showSqlRelation rel computes the SELECT
statement as a string, which is then given to sqlDo — the low-level,
ODBC-based SQL handler. In the next step, we get all the queried
rows as a lazy list of lists using this SQL service:
getSqlRows :: SqlHandle [[Maybe String]]

The subsequent map transforms the string-based rows into typeful
ones in two steps. Firstly, we build an HList from the strings with
readHList, while we use the attributes from the schema to drive
this heterogeneous list construction. Secondly, we turn the HList
into a record, while we reuse the labels of the schema.

9 By chance or by design?
We will now discuss the issues surrounding the definition of type
equality, inequality, and unification — and give implementations
differing in simplicity, genericity, and portability.

We define the class TypeEq x y b for type equality. The class re-
lates two types x and y to the type HTrue in case the two types
are equal; otherwise, the types are related to HFalse. We should
point out however groundness issues. If TypeEq is to return HTrue,
the types must be ground; TypeEq can return HFalse even for un-
ground types, provided they are instantiated enough to determine
that they are not equal. So, TypeEq is total for ground types, and
partial for unground types. We also define the class TypeCast x
y: a constraint that holds only if the two types x and y are unifi-
able. Regarding groundness of x and y, the class TypeCast is less
restricted than TypeEq. That is, TypeCast x y succeeds even for
unground types x and y in case they can be made equal through
unification. TypeEq and TypeCast are related to each other as fol-
lows. Whenever TypeEq succeeds with HTrue, TypeCast succeeds
as well. Whenever TypeEq succeeds with HFalse, TypeCast fails.
But for unground types, when TypeCast succeeds, TypeEq might
fail. So the two complement each other for unground types. Also,
TypeEq is a partial predicate, while TypeCast is a relation. That’s
why both are useful.

A representation-based equality predicate
The predicate TypeEq x y b was introduced in Sec. 6 as follows:

class HBool b => TypeEq x y b | x y -> b

We now need to provide instances of the class. A very naive im-
plementation would be to explore all combinations of all possible
types; see the HLIST source distribution for an illustration. Albeit
being portable (Haskell 98 + multi-parameter classes), this leads to
an impractical, exponential explosion in the number of instances.
A more scalable approach is to introduce a family of infinite types
for type-level type representations. That is, we associate types with
type representations via a bijection, and we make sure that type rep-
resentations are more easily compared than the types themselves.
We already have all tools for constructing the family of type rep-
resentations: we can associate with each type constructor an HNat,
and associate with each type term an HList of the representations
for the type constructor and its arguments. For instance, using ‘0’
for Bool, ‘1’ for Int, ‘2’ for ->, we obtain:

class TTypeable a b | a-> b
instance TTypeable Bool (HCons HZero HNil)
instance TTypeable Int (HCons (HSucc HZero) HNil)
instance (TTypeable a al, TTypeable b bl)
=> TTypeable (a->b) (HCons (HSucc (HSucc HZero))

(HCons al (HCons bl HNil)))

Because these type representations are constructed in a regular way
with ever-increasing naturals, it is sufficient to accommodate type-
level equality such that it can compare heterogeneous lists of type-
level naturals. Type-level equality for naturals was given in Sec. 4.
Here are the remaining instances for HNil and HCons:

instance HEq HNil HNil HTrue
instance HList l => HEq HNil (HCons e l) HFalse
instance HList l => HEq (HCons e l) HNil HFalse
instance (HList l, HList l’

, HEq e e’ b, HEq l l’ b’, HAnd b b’ b’’
) => HEq (HCons e l) (HCons e’ l’) b’’

All the involved functionality does not go beyond Haskell 98 and
multi-parameter classes with uni-directional functional dependen-
cies. GHC and Hugs readily support this combination.

We can now define the class TypeEq, using the following instance:

instance (TTypeable t tt, TTypeable t’ tt’
, HEq tt tt’ b) => TypeEq t t’ b

We make use of a generic instance, which is a common Haskell 98
extension. In turns out that we have essentially transposed what’s
known as the Data.Typeable approach [19] to the type level. We
share the drawback of this approach: we need to define an instance
of TTypeable for each new type constructor. When adding new in-
stances, we have to maintain the bijection between types and type
representations. On the other hand, the remaining code is fully
generic and does not need to be amended at all.

A generic type equality predicate
We have seen that we can implement TypeEq in a portable and even
practically usable way, using only commonly supported Haskell
extensions. We would like to introduce a fully generic approach,
which does not need to be amended when a new type constructor
is introduced. Alas, this elegant approach leads us out of the safe
haven into uncharted waters of experimental extensions.

The most concise implementation reuses the overlapping tricks that
were discussed in Sec. 6, which makes the solution GHC-specific:

instance TypeEq x x HTrue
instance (HBool b, TypeCast HFalse b)

=> TypeEq x y b

Here we take advantage of TypeCast, which we define next.

10

Reification of type unification
The class TypeCast was introduced in Sec. 6 and further em-
ployed in Sec. 7. TypeCast x y differs from just type equality
TypeEq x y HTrue as follows. If TypeCast x y succeeds, then
the two types are unified. The difference between unification and
just equality emerges when the types are not grounded, i.e., when
they contain uninstantiated type variables. The types [a] (e.g., of
the polymorphic constant []) and [Bool] are unifiable, but they are
not equal. TypeEq cannot establish equality for ungrounded types;
however it can establish disequality in case the schemas are suffi-
ciently instantiated to determine that they are not equal.

The most generic implementation of TypeCast, which works for
both Hugs and GHC, is as follows:

instance TypeCast x x where typeCast = id

For this implementation to work, we need to import it at a higher
level in the module hierarchy than all clients of the class TypeCast.
Otherwise, type simplification will turn constraints of the form
TypeCast x y into the form TypeCast x x, and thereby inline the
unification. We refer to App. D, where we give another implemen-
tation of TypeCast, which does not require separate compilation.
This time, we effectively delay the simplification step with the help
of two auxiliary classes. It seems that this delay of type simplifica-
tion is at the core of all attempts at type-safe cast or type equality
(e.g., [4]).

A specific property of our TypeCast is that it allows us to con-
trol type improvement on a per-instance basis, as the polymorphism
benchmark for TIPs showed in Sec. 7. So the utility of TypeCast
goes strictly beyond a generic implementation of TypeEq.

10 Related work

Heterogeneous lists
Type-level list-processing is a relatively obvious opportunity once
we get hold on faked dependently typed programming in Haskell, as
pioneered by Hallgren and McBride [12, 21]. For instance, homo-
geneous type-level vectors are considered in [21]. The idea of het-
erogeneous type-level constructors (what we call HNil and HCons)
occurs elsewhere in the literature. In App. H of [9], Duck et al. mo-
tivate their CHR-based model of functional dependencies by op-
erating on such lists using numeral-based access (similar to our’s
in Sec. 4); Sulzmann also gives a related implementation in the
Haskell-style language Chameleon [33]. In [22, 23], Neubauer et al.
motivate Haskell extensions for a functional notation of functional
dependencies, and for functional logic overloading. The authors
consider examples like type-level functions append and length, as
well as record-like operations. By contrast, our goal was to explore
the various kinds of access operations for heterogeneous collec-
tions: list processing, numeral-based, label-based, and type-based
operations. HLIST is the first heterogeneous collection library to
the best of our knowledge.

Type-indexed rows
Shield and Meijer have studied the type theory of extensible records
and variants starting from a more basic principle, namely type-
indexed rows (TIRs) [31]. A TIR is nothing but a type expression
that enumerates types. This resembles HLists, but TIRs do not
comprise any values. So we could go for constructor-less datatypes:

class TIR r
data Empty; instance TIR Empty
data e :#: r; instance TIR r => TIR (e :#: r)

A TIR is well-formed if the enumerated types are distinct. Well-
formedness corresponds to our HTypeIndexed constraint. Shield

and Meijer provide type-level operators ALL and ONE that, given
a TIR, derive types for type-indexed products (TIPs; recall Sec. 7)
and type-indexed co-products (TICs; see App. C for the HLIST im-
plementation of TICs). We could redefine our datatypes for TIPs
and TICs such that they take a TIR as parameter, but these def-
initions and their usage would be more complicated in Haskell.
Shield and Meijer argue that, conceptually, a newtype-like mecha-
nism is sufficient for labelling. Our development provides labels as
first-class citizens, and we can provide labelled collections without
reference to general type-indexing (i.e., numeral indexing is suffi-
cient). Our Haskell-based reconstruction of TIPs and TICs does not
require new language extensions.

Extensible records
Foundations of extensible records have been studied intensively.
Several Haskell language extensions have been proposed [10, 31,
29], alike for other languages, e.g., (S)ML [6, 30]. There are also
record calculi by Bracha, Ohori and others [5, 24]. There are re-
lated type systems, e.g., for relational algebra [14]. We have shown
that we can reconstruct extensible records in Haskell starting from
simpler notions; in particular: heterogeneous lists and equality and
of type-level naturals. We cover all typical record operations. We
have also defined subtyping constraints in our framework.

Labels, values and records are all first-class citizens in HLIST. So
we can write abstractions that take and produce entities of all these
kinds. For instance, here is an operation to rename a record label:

hRenameLabel l l’ r = r’’ where
v = r .@. l -- look up by label
r’ = r .-. l -- delete at label
r’’ = l’ .=. v .*. r’ -- add new label, old value

Type equality and type cast
In our development of heterogeneous collections, we rely on ob-
servability of type equality. Also, we employed a reified type
unification (‘type-level type cast) in a few places. Related ex-
pressiveness has been studied in the context of intensional poly-
morphism [13], dynamic typing [2, 3], and universal representa-
tions [36]. Some more recent Haskell-biased work on these no-
tions [34, 8, 4] is not directly usable for our purposes. These ap-
proaches either require the programmer to use type representations,
or they make a closed-world assumption with regard to the cov-
ered types, or they are focused on sums-of-products (as opposed
to the immediate coverage of Haskell’s newtypes and datatypes),
or they involve existential quantification (which makes it difficult
to perform more arbitrary operations on elements in the collec-
tions). Most notably, we require a type cast that is resolved at type-
checking time; run-time would be too late.

Haskell’s type classes
Multi-parameter classes [7, 15, 16, 28] with functional dependen-
cies [17, 9] are crucial for type-level programming in Haskell.
These typing notions are reasonably understood. There is an on-
going debate if instance selection should be programmable by us-
ing constraint-handling rules or functional logic evaluation [32, 23].
Also, the mere notation for encoding type-level functions could per-
haps be improved [22]. We have considered using overlapping in-
stances for the definition of some access operations, but ultimately
we eliminated use of this debated extension in a systematic manner.

Statically enforced invariants
The TIP newtype is an example of a data structure with a stati-
cally checked invariant (i.e., uniqueness). Okasaki and others have
worked on statically assuring invariants of complex data types, e.g.,

11

that a matrix is square [25]. These examples normally rely on clev-
erly chosen data constructors, which make it impossible to con-
struct “wrong” data structures. Our approach is different: type
classes let us impose static constraints irrespective of data construc-
tors. Indeed, we use the same data constructor HCons to build het-
erogeneous lists with and without duplicates. We express the con-
straints in types (sometimes, in phantom types). Our approach does
not require extraordinary cleverness in the design of data represen-
tation. Furthermore, in the case of constraints encoded in phantom
types, there is no run-time or -space overhead of storing and travers-
ing chains of data constructors (TIP is just as efficient as HList).
Because TIP is essentially HList, we were able to trivially lift all
list-processing functions to TIPs. Statically checking complex in-
variants on data structures, such as well-formedness of red-black
trees and size-boundaries of lists, is a known application of depen-
dently typed programming [35]. The latter requires non-trivial ex-
tensions to a programming language. We have shown that certain
invariants, e.g., size boundaries for HLists, or uniqueness in TIPs,
can be statically expressed in Haskell’s type system already.

11 Conclusion
We have systematically developed a Haskell library over strongly-
typed data structures for heterogeneous collections — lists, arrays,
extensible records, and others. The composition of such a data
structure, e.g., the types of all elements, is manifest in its type. This
makes it possible to strongly type the operations on collections, e.g.,
look-ups, updates, insertions, and projections. The name of the
library, HLIST, emphasises that all data structures are built from
typeful heterogeneous lists. We have defined restricted collections,
e.g., TIPs, constrained by the requirement that no two elements may
have the same type. The constraints are again manifest in the type
of the collections and are enforced by the type checker.

The immediate application of our HLIST library is a database ac-
cess library that covers SQL92, returns the query results as a stream
of records, and statically checks that all the queries are consistent
with the database schema.

The implications of the library HLIST turn out far reaching, and are
still under active investigation. Our TIPs and records are extensible
and offer subtyping polymorphism. Our records have first-class la-
bels that can be reused across several record types. We notice that
HLIST is implemented in Haskell with only common extensions.
Hence the HLIST library addresses the challenge for better Haskell
records, without breaking existing programs, as articulated by Si-
mon Peyton Jones at the Haskell Workshop 2003 [11]. Our records
also let us implement has/lacks, record concatenation, length vs.
depth subtyping. We can now experiment with these features in
real programs — again, without requiring any language extension.

Extensible TIPs and records can be the foundation of the gen-
uine object system. The latter offers subtyping polymorphism (cf.
OCaml) as opposed to the class-bounded polymorphism of Haskell.
It is remarkable that type classes themselves were instrumental in
implementing open TIPs. Extensible records can also be elabo-
rated to provide strongly typed keyword arguments with reusable
labels. That is, function arguments can be addressed by keywords,
and these arguments can be optional or mandatory. The HLIST
source distribution demonstrates keyword arguments. Dual to TIPs
are open TICs, offering us dynamics with a statically-checkable
constraint on the sort of types encapsulated in the dynamic enve-
lope (cf. App. C). The lists, TIPs, TICs and records of the HLIST
library can also be employed in typeful foreign-function interfaces
and in XML processing.

Our code relies on the most common Haskell extensions; the use of
overlapping instances can be circumvented. In fact, a generic im-

plementation of the predicate TypeEq for type equality would still
rely on overlapping in a single location. We can also implement
TypeEq in a portable but non-generic manner relying on one in-
stance per user-defined datatype. Our development suggests that a
fundamental solution could be to offer type equality as a primitive
in Haskell. We have also identified the utility of reified type unifi-
cation (or ‘type-level type cast’) as a tool for type improvement —
more fine-grained than functional dependencies. More research is
needed to deliver foundational clarifications.

Acknowledgements
We thank Chung-chieh Shan, Martin Sulzmann and the PC of the Haskell
Workshop 2004 for very helpful comments and feedback.

12 References
[1] This paper’s web site http://www.cwi.nl/˜ralf/HList/,

2004. This site provides an extended paper version with extra
appendicies that could not be included into the Haskell work-
shop paper. This site also provides a source code distribution
for the GHC and Hugs implementations of Haskell.

[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically-typed language. In 16th ACM Confer-
ence on Principles of Programming Languages, pages 213–
227, Jan. 1989.

[3] M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic
typing in polymorphic languages. In Proceedings of the 1992
ACM Workshop on ML and its Applications, pages 92–103,
San Francisco, June 1992.

[4] A. Baars and S. Swierstra. Typing dynamic typing. In Pro-
ceedings of the seventh ACM SIGPLAN International Con-
ference on Functional Programming, pages 157–166. ACM
Press, 2002.

[5] G. Bracha and G. Lindstrom. Modularity Meets Inheritance.
In Proceedings: 4th International Conference on Computer
Languages, pages 282–290. IEEE Computer Society Press,
1992.

[6] F. Burton. Type extension through polymorphism. TOPLAS,
12(1):135–138, 1990.

[7] K. Chen, P. Hudak, and M. Odersky. Parametric type classes.
In Proceedings of the 1992 ACM Conference on LISP and
Functional Programming, pages 170–181. ACM Press, 1992.

[8] J. Cheney and R. Hinze. A lightweight implementation of
generics and dynamics. In Proceedings of the ACM SIGPLAN
Workshop on Haskell, pages 90–104. ACM Press, 2002.

[9] G. Duck, S. Peyton Jones, P. Stuckey, and M. Sulzmann.
Sound and Decidable Type Inference for Functional Depen-
dencies. In D. Schmidt, editor, Proceedings, 13th European
Symposium on Programming, ESOP 2004, Barcelona, Spain,
March 29 - April 2, 2004, volume 2986 of LNCS, pages 49–
63. Springer-Verlag, 2004.

[10] B. Gaster and M. Jones. A Polymorphic Type System for
Extensible Records and Variants. Technical report NOTTCS-
TR-96-3, University of Nottingham, Department of Computer
Science, Nov. 1996.

[11] H. Nilsson. The Future of Haskell discussion at the
Haskell Workshop, 2003. http://www.mail-archive.
com/haskell\@haskell.org/msg13366.html.

[12] T. Hallgren. Fun with functional dependencies. In Joint
Winter Meeting of the Departments of Science and Computer
Engineering, Chalmers University of Technology and Gote-
borg University, Varberg, Sweden, Jan. 2001, 2001. http:
//www.cs.chalmers.se/˜hallgren/Papers/wm01.html.

12

[13] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In 22nd ACM Symposium on Princi-
ples of Programming Languages (POPL’95), pages 130–141.
ACM Press, Jan. 1995.

[14] E. W. J. Van den Bussche. Polymorphic type inference for
the relational algebra. Journal of Computer and System Sci-
ences, 64:694–718, 2002. An extended abstract appeared in
PODS’99.

[15] M. Jones. A theory of qualified types. In Symposium pro-
ceedings on 4th European symposium on programming, pages
287–306. Springer-Verlag, 1992.

[16] M. Jones. Simplifying and improving qualified types. In
Proceedings of the seventh international conference on Func-
tional Programming Languages and Computer Architecture,
pages 160–169. ACM Press, 1995.

[17] M. Jones. Type classes with functional dependencies. In Pro-
ceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244. Springer-Verlag,
2000.

[18] O. Kiselyov. Polymorphic stanamically balanced binary trees,
2003. http://www.haskell.org/pipermail/haskell/
2003-April/011621.html.

[19] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. ACM SIG-
PLAN Notices, 38(3):26–37, Mar. 2003. Proc. of the ACM
SIGPLAN Workshop TLDI 2003.

[20] D. Leijen and E. Meijer. Domain specific embedded compil-
ers. In Proceedings of the 2nd conference on Domain-Specific
Languages, pages 109–122. ACM Press, 1999.

[21] C. McBride. Faking It (Simulating Dependent Types in
Haskell), July 2002.

[22] M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sper-
ber. A Functional Notation for Functional Dependencies. In
Proc. 2001 ACM SIGPLAN Haskell Workshop, Firenze, Italy,
September 2001, pages 101–120, 2001.

[23] M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sperber.
Functional logic overloading. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of Programming
languages, pages 233–244. ACM Press, 2002.

[24] A. Ohori. A polymorphic record calculus and its compilation.
ACM TOPLAS, 17(6):844–895, 1995.

[25] C. Okasaki. From fast exponentiation to square matrices: an
adventure in types. In Proceedings of the fourth ACM SIG-
PLAN International Conference on Functional Programming,
pages 28–35. ACM Press, 1999.

[26] C. Okasaki. An Overview of Edison. In G. Hutton, edi-
tor, Electronic Notes in Theoretical Computer Science, vol-
ume 41. Elsevier, 2001.

[27] S. Peyton Jones. Adding Ord constraint to instance
Monad Set?, 2004. http://www.haskell.org/pipermail/
haskell-cafe/2004-March/005998.html.

[28] S. Peyton Jones, M. Jones, and E. Meijer. Type classes: ex-
ploring the design space. In J. Launchbury, editor, Haskell
workshop, Amsterdam, 1997.

[29] S. Peyton Jones and G. Morrisett. A proposal for
records in Haskell, 24 Feb. 2003. Online document:
http://research.microsoft.com/˜simonpj/Haskell/
records.html.

[30] D. Remy. Type inference for records in natural extension of
ml. In Theoretical aspects of object-oriented programming:
types, semantics, and language design, pages 67–95. MIT

Press, 1994.
[31] M. Shields and E. Meijer. Type-indexed rows. In Proceedings

of the 28th ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, pages 261–275. ACM Press,
2001.

[32] P. Stuckey and M. Sulzmann. A theory of overloading. In Pro-
ceedings of the seventh ACM SIGPLAN International Con-
ference on Functional Programming, pages 167–178. ACM
Press, 2002.

[33] M. Sulzmann et al. Chameleon, 2004. Web site http://www.
comp.nus.edu.sg/˜sulzmann/chameleon/.

[34] S. Weirich. Type-safe cast: (functional pearl). In Proceed-
ings of the fifth ACM SIGPLAN International Conference on
Functional Programming, pages 58–67. ACM Press, 2000.

[35] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages
214–227. ACM Press, 1999.

[36] Z. Yang. Encoding types in ML-Like languages. In
M. Berman and S. Berman, editors, Proceedings of the third
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’98), volume 34, 1 of ACM SIGPLAN No-
tices, pages 289–300, New York, Sept. 27–29 1998. ACM
Press.

A Some trivial list-processing operators
We will now transpose several normal list-processing operators to
the heterogeneous situation.

Transposition of head and tail
class HList r => HHead r a | r -> a
where hHead :: r -> a

instance Fail HListEmpty => HHead HNil ()
where hHead _ = ()

instance HList r => HHead (HCons a r) a
where hHead (HCons a _) = a

class (HList r,HList r’) => HTail r r’ | r -> r’
where hTail :: r -> r’

instance Fail HListEmpty => HTail HNil HNil
where hTail _ = HNil

instance HList r => HTail (HCons a r) r
where hTail (HCons _ r) = r

In the above instances, we use the same technique for error mes-
saging as explained in Sec. 6. That is, we employ the Fail class to
handle invalid applications of the operations. In particular, there is
an error message HListEmpty, whenever we attempt to access an
empty list where a nonempty list is needed. Thus, we have:

class Fail x -- no instances!
data HListEmpty -- no structure!

Transposition of null
class HBool b => HNull l b | l -> b
instance HNull HNil HTrue
instance HNull (HCons e l) HFalse

Transposition of length
class HNat n => HLength l n | l -> n
instance HLength HNil HZero
instance HLength l n

=> HLength (HCons e l) (HSucc n)

13

B A heterogeneously typed fold operator
We go for the fold operation because it is the ultimate example of a
higher-order list-processing function. We dedicate a class HFoldr
to right-associative folding. The HFoldr instances will lift the
defining equations for foldr to the class level:
class HList l => HFoldr f v l r | f v l -> r
where
hFoldr :: f -> v -> l -> r

The instance for empty lists is trivial:
instance HFoldr f v HNil v
where
hFoldr _ v _ = v

The instance for HCons follows the normal foldr again, but we
assume that function application is modelled by an extra class
HApply. This allows us to use hFoldr for functions that require
specific constraints on the involved types:
instance (HFoldr f v l r, HApply f (e,r) r’)

=> HFoldr f v (HCons e l) r’
where
hFoldr f v (HCons e l) = hApply f (e,hFoldr f v l)

The class HApply resembles function application, indeed:
class HApply f a r | f a -> r
where
hApply :: f -> a -> r

For instance, we can now redefine hAppend in terms of hFoldr:
hAppend l l’ = hFoldr ApplyHCons l’ l

The datatype ApplyHCons stands for “application of HCons”:
data ApplyHCons =

ApplyHCons -- a proxy for instance selection

This meaning of ApplyHCons is registered as an HApply instance:
instance HApply ApplyHCons (e,l) (HCons e l)
where
hApply _ (e,l) = HCons e l

C Type-indexed co-products
We will now dualise TIPs to arrive at so-called type-indexed sums
(or co-products; TICs). A TIC-typed data structure holds a datum of
one out of a fixed collection of types. So at the value level, a TIC-
typed data structure is not really a collection, but just one datum.
However, at the type level we use a list of type proxies to maintain
the valid element types of a specific TIC type, and thereby we can
restrict construction and destruction of TIC-like data structures.

A TIC demo
We first define an actual TIC type, namely one that models various
element types for collections related to the animals in the ‘foot-n-
mouth’ database:
type AnimalCol =
Key :+: Name :+: Breed :+: Price :+: HNil

Here we use “:+:” rather than “:*:” to point out that we are inter-
ested in a type-indexed co-product rather than a product. We can
now construct actual TIC-like data. For instance:
ghci-or-hugs> let myCol = mkTIC Cow :: TIC AnimalCol

We can also destruct myCol. If we ask for the ‘right’ type, then
destruction succeeds with a result of the form Just ...; otherwise
we obtain Nothing:
ghci-or-hugs> unTIC myCol :: Maybe Breed
Just Cow
ghci-or-hugs> unTIC myCol :: Maybe Price
Nothing

Most notably, TICs restrict destruction with regard to static typing:

ghci-or-hugs> unTIC myCol :: Maybe String
Type error ...

Sequences of type proxies
We used the alias “:+:” above to enumerate the summands of a TIC
type. In fact, “:+:” is constructed such that it lines up proxy types
in a sequence. Value types would be misleading and confusing here
because the sequence of summands is meant for nothing but listing
‘options’. So the alias is defined as follows:

type e :+: l = HCons (Proxy e) l

The actual property of a type sequences to consist only of proxy
types is easily specified.

class HTypeProxied l
instance HTypeProxied HNil
instance HTypeProxied l

=> HTypeProxied (HCons (Proxy e) l)

TICs as constrained dynamics
The demo suggests that a TIC is more constrained than the type
Dynamic. So in turn, one can define more constrained collection
types than just [Dynamic] or String -> Dynamic. There exist
different implementations of TICs, but we will favour here one that
indeed directly employs Haskell’s dynamics at the value level.

A TIC type is then of the following form:

data TIC l = TIC Dynamic -- to be constrained

The phantom type parameter l of TIC enumerates the admitted
types that can be injected into this TIC, and that can be subject to
extraction attempts. The public constructor for TICs (aka injection)
lists all the necessary constraints:

mkTIC :: (HTypeIndexed l
, HTypeProxied l
, HOccurs (Proxy i) l
, Typeable i
)

=> i -> TIC l

mkTIC i = TIC (toDyn i)

The HTypeIndexed and HTypeProxied constraints require that l is
a type-indexed sequences of type proxies. The HOccurs constraint
ensures that the proxy type of the injected value i is covered by the
sequence of proxies l. Finally, the Typeable constraint allows us
to use Haskell’s module Data.Dynamic.

It remains to define destruction (or projection), which happens to
simply invert the constrained value-to-dynamics conversion:

unTIC :: (HTypeIndexed l
, HTypeProxied l
, HOccurs (Proxy o) l
, Typeable o
)

=> TIC l -> Maybe o

unTIC (TIC i) = fromDynamic i

14

D Generic type unification cont’d
The class TypeCast was described in the subsection ’Reification of
type unification’ of Sec. 9.

class TypeCast a b | a->b, b->a
where typeCast :: a -> b

That section showed the most straightforward implementation of
that class: a single instance TypeCast x x with the method
typeCast being just the identity. However, that simple implemen-
tation was difficult to use. Separate compilation had to be put to use
in some tricky way. Indeed, recall the following example of using
TypeCast from Sec. 7:

instance TypeCast e’ e
=> HOccurs e (TIP (HCons e’ HNil))

where hOccurs (TIP (HCons e’ _)) = typeCast e’

When the compiler sees the instance TypeCast x x and combines
that with the functional dependencies a->b, b->a of the class, the
compiler infers that the two parameters of TypeCast must be the
same. That conclusion is correct — the type cast is meant to be an
isomorphism on types (in fact, the identity function). What is trou-
blesome is that the type checker applies that conclusion — as a type
simplification rule — to the HOccurs instance above and infers that
e must be e’. That is a problem however: if a type signature con-
tains distinct type variables, one should be able to instantiate them,
at least in principle, with distinct types. Otherwise, the inferred
type is less polymorphic than the explicit signature prescribes.

This is the same sort of error that arises in the following code:

foo:: a -> b
foo x = x

When processing the instance declaration HOccurs, the compiler
eagerly applies the correct type simplification rule – the two pa-
rameters of TypeCast must be the same – and infers that two type
variables e and e’ must be the same. The eagerness creates the
problem. We would like to delay the type simplification until af-
ter the instance HOccurs has been selected and e and e’ have been
instantiated. In other words, we would like to unify the types that
e and e’ are instantiated with, rather than the two type variables
themselves.

To keep the compiler from applying the type simplification rule too
early, we should prevent the early inference of the rule from the
instance of TypeCast in the first place. For example, we may keep
the compiler from seeing the instance TypeCast x x until the very
end. That is, we place that instance in a separate module and import
it at a higher level in the module hierarchy than all clients of the
class TypeCast. That was the approach described in Sec. 9.

We will now give another implementation of TypeCast, which does
not require separate compilation. It effectively delays the simplifi-
cation step with the help of two auxiliary classes.

Our new implementation must keep the semantics of the constraint:
TypeCast a b should hold if and only if the type corresponding
to a can be unified with the type corresponding to b. On the other
hand, we need to allow for polymorphism and pretend that in a
constraint TypeCast a b, b may be something other than a — so
to keep the typechecker from unifying the type variables a in b in
occurrences of that constraint. Fortunately, the type system is not
very smart: when choosing the instances the type-checker looks
only at the syntactic form of the type terms involved. Therefore,
to fool the type-checker into thinking that TypeCast a b is more
polymorphic than it really is, we introduce a series of redirections
and eventually arrive at the following implementation.

class TypeCast’ t a b | t a -> b, t b -> a
where typeCast’ :: t->a->b
class TypeCast’’ t a b | t a -> b, t b -> a
where typeCast’’ :: t->a->b

instance TypeCast’ () a b => TypeCast a b
where typeCast x = typeCast’ () x

instance TypeCast’’ t a b => TypeCast’ t a b
where typeCast’ = typeCast’’

instance TypeCast’’ () a a
where typeCast’’ _ x = x

The auxiliary classes TypeCast’ and TypeCast’’ have an extra,
dummy type parameter, which we instantiate to () in the instances.
Any other ground type would have sufficed. The key to solving the
polymorphism quandary is the last instance TypeCast’’ () a a.
It signifies that in the constraint TypeCast’’ t a b, b is not neces-
sarily a, because t can be something other than (). Semantically,
though, it can never be anything but. However, the type-checker
cannot see that and remains satisfied.

Alas, this implementation is specific to GHC; it does not work
in Hugs because of the peculiarities of that system with regard to
multi-parameter type classes and functional dependencies, which
we briefly hinted at in Sec. 6. That shows that multi-parameter type
classes with functional dependencies are hard to get right.

While this code works in GHC and is logically sound, we have
to admit that we turned the drawbacks of the type-checker to our
advantage. This leaves a sour after-taste. We would have preferred
to rely on a sound semantic theory of overloading rather than on
playing games with the type-checker. Hopefully, the results of the
foundational work by Sulzmann and others [32, 23] will eventually
be implemented in all Haskell compilers.

15

