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Abstract
An immutable multi-map is a many-to-many thread-friendly
map data structure with expected fast insert and lookup oper-
ations. This data structure is used for applications processing
graphs or many-to-many relations as applied in static anal-
ysis of object-oriented systems. When processing such big
data sets the memory overhead of the data structure encod-
ing itself is a memory usage bottleneck. Motivated by reuse
and type-safety, libraries for Java, Scala and Clojure typi-
cally implement immutable multi-maps by nesting sets as
the values with the keys of a trie map. Like this, based on
our measurements the expected byte overhead for a sparse
multi-map per stored entry adds up to around 65B, which
renders it unfeasible to compute with effectively on the JVM.

In this paper we propose a general framework for Hash-
Array Mapped Tries on the JVM which can store type-
heterogeneous keys and values: a Heterogeneous Hash-Array
Mapped Trie (HHAMT). Among other applications, this allows
for a highly efficient multi-map encoding by (a) not reserving
space for empty value sets and (b) inlining the values of
singleton sets while maintaining a (c) type-safe API.

We detail the necessary encoding and optimizations to
mitigate the overhead of storing and retrieving heterogeneous
data in a hash-trie. Furthermore, we evaluate HHAMT specifi-
cally for the application to multi-maps, comparing them to
state-of-the-art encodings of multi-maps in Java, Scala and
Clojure. We isolate key differences using microbenchmarks
and validate the resulting conclusions on a real world case in
static analysis. The new encoding brings the per key-value
storage overhead down to 30B: a 2 x improvement. With
additional inlining of primitive values it reaches a 4 x im-
provement.

1. Introduction
This paper is about the challenges of optimizing immutable
multi-maps on the Java Virtual Machine (JVM) and how they
can be solved using a general method of coding heterogenous
hash-array mapped tries. A multi-map is a data structure

which acts as an associative array storing possibly multiple
values with a specific key. Typically multi-maps are used to
store graphs or many-to-many relations.

Many-to-many relations or graphs in general occur nat-
urally in application areas such as static analysis of object-
oriented software. In some applications it is the case that
the initial raw data is many-to-one, and further processing or
exploration incrementally leads to a many-to-many mapping
for some of the entries. In other applications the distribution
of sizes of the range sets in the raw data is highly skewed,
such as when representing scale-free networks, like academic
citations, the web, online social networks, and program de-
pendence graphs. The number of values associated with a
specific key is then practically always very low, yet there
are possibly numerous exceptions to cater for nevertheless,
where many values end up being associated with the same
key. A key insight in the current paper is that we can exploit
these highly common skewed distributions to save memory
for the most frequent cases.

On the JVM relations are not natively language-supported;
rather the standard libraries of Java, Scala and Clojure either
provide implementations of multi-maps, or the map and set
Application Program Interfaces (APIs) allow programmers to
construct multi-maps easily in a type-safe manner (i.e., using
sets as the values of a normal polymorphic map). The goal
of this paper is to overcome the limitations of these existing
implementations of multi-maps, improving drastically on
the memory footprint without loss of storage, lookup and
iteration efficiency. Typically state-of-the-art multi-maps
come with a mode of 65B overhead per stored key/value
item, while the most compressed new encoding in this paper
reaches an optimum of 30B. In general the encoding has 2 x
smaller footprints (modal) when storing reference objects,
and 4 x smaller footprints when storing Java primitive values.

On the JVM, immutable collections are used mostly by
functional/object-oriented programmers from the Scala and
Clojure communities. However, since Java 8 the functional
and streaming APIs [4] are becoming mature, making im-
mutable collections become more relevant in the Java context.
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Immutability for collections implies referential transparency
(without giving up on sharing data) and it satisfies safety re-
quirements for having co-variant sub-types [12]. Because of
these properties, immutable collections are also safely shared
in presence of concurrency.

Our point of departure is the Hash-Array Mapped Trie
(HAMT) data structure [2], which has proven to be an efficient
immutable alternative to array-based implementations. In
contrast to arrays, HAMTs enable fine-grained memory layout
optimizations [17]. There exists an optimized encoding [18]
of HAMTs tailored the JVM, named Compressed Hash-Array
Mapped Prefix-tree (CHAMP). The CHAMP data structure al-
lows for time and memory efficient immutable maps and
sets. To efficiently encode multi-maps we propose a gener-
alisation of the CHAMP data structure to allow for heteroge-
neous data shapes. The new resulting data structure, called
Heterogeneous Hash-Array Mapped Trie (HHAMT), unifies
design elements from both HAMT and CHAMP. A HHAMT al-
lows for a type-safe API in which keys and values can be
represented using different types of data within the same map.
This allows for all kinds of optimized data structures, but
we focus on multi-maps in this paper as the key purpose. A
basic dichotomous HHAMT multi-map is used to either store
an inlined single value, or a full nested set data structure.
We propose an efficient encoding of HHAMT to mitigate the
incurred overhead.

1.1 Contributions and Roadmap
We address the design and evaluation of HHAMT as follows:

• Section 2 describes the foundations of HHAMT and identi-
fies the main sources of overhead that need to be mitigated.

• Section 3 outlines scalable encoding of source code spe-
cializations (and their necessary runtime support) to yield
memory savings between 2 x and 4 x.

• Section 4 compares HHAMT against CHAMP (baseline) to
understand the cost of turning a (homogeneous) map into
a (heterogeneous) multi-map.

• Section 5 compares a specialized HHAMT multi-map
against idiomatic solutions from Clojure and Scala.

• Section 6 compares the memory footprint of a specialized
HHAMT multi-map against state-of-the-art primitive collec-
tion libraries (Goldman Sachs, FastUtil, Trove, Mahout).

• Section 7 compares the performance of multi-maps in
HHAMT, Clojure, and Scala on a realistic case.

Section 8 discusses related work and Section 9 enumerates
further use cases for heterogeneity, before we conclude in
Section 10.

2. Heterogeneous Hash-Trie Data Layout
A general trie [8, 9] is a lookup structure for finite strings that
acts like a Deterministic Finite Automaton (DFA) without
any loops: the transitions are the characters of the strings, the

1 abstract class HamtCollection {

2 HamtNode root; int size;

3 // 1-bit + runtime checks (e.g., instanceof)

4 class HamtNode {

5 int bitmap;

6 Object[] contentArray;

7 }

8 }

9 abstract class ChampCollection {

10 ChampNode root; int size;

11

12 // 2-bits (distributed)

13 class ChampNode {

14 int datamap;

15 int nodemap;

16 Object[] contentArray;

17 }

18 }

19 abstract class HeterogeneousHamtCollection {

20 HeterogeneousHamtNode root; int size;

21

22 // n-bits (consecutive)

23 class HeterogeneousHamtNode {

24 BitVector bitmap = new BitVector(n * 32);

25 Object[] contentArray;

26 }

27 }

Listing 1. Skeletons of a various HAMTs.

internal nodes encode prefix sharing, and the accept nodes
may point to values associated with the strings. In a HAMT, the
strings are the bits of the hash codes of the elements stored
in the trie. A HAMT is memory efficient not only because
prefixes are shared, but also because child nodes are only
allocated if the prefixes of two or more elements overlap.

The first class in Listing 1 (lines 1–8) depicts a typical
encoding of a HAMT in Java. A single 32-bit integer bitmap
is used to encode which of the 32 trie-branches —and
correspondingly which slots in the untyped array— are used,
together with a mapping function that calculates offsets
in the array by counting bits in the bitmap. In general, a
HAMT must be able to distinguish between three possible
states for each trie-branch: absence of data, and otherwise
distinguishing the data category (either payload, or a sub-
node). Because a single bit cannot differentiate three different
states, additional dynamic checks —such as instanceof—
are used for discriminating the data category. Note that data
payload and sub-nodes occur in arbitrary order in the array.

The second class in Listing 1 (lines 9–18) depicts the
skeleton of the CHAMP encoding [18], which operates like
a HAMT but uses an explicit encoding to eliminate dynamic
instanceof checks. With two bitmaps CHAMP improves the
mapping function to regroup the array slots into two separate
homogeneously-typed sequences: a sequence of data payload,
followed by a sequence of sub-node references. Because each
homogeneous sequence uses its own bitmap, CHAMP kept the
bitmap processing identical to HAMTs.
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Summary. In a HAMT, each trie node contains an arbi-
trary mix of data elements and sub-nodes, therefore array
slots require type checks individually. In contrast, CHAMP
splits HAMT’s mixed data sequence into two homogeneous
sequences, enabling optimizations that were not possible
before. A key to performance —when iterating over or batch-
processing elements of homogeneous or heterogeneous data
structures— is that individual elements do not need to be
checked for its specific type [6]. This is also one of the rea-
sons why the CHAMP performs better than the HAMT. In short:
the homogeneous CHAMP data structure provides a good start-
ing point for heterogeneous collections.

2.1 Generalizing Towards a Heterogeneous HAMT

The third class in Listing 1 (lines 19–27) illustrates the pro-
posed HHAMT skeleton. HHAMT uses a multi-bit encoding like
CHAMP but reverts to a sequential representation: one larger
bitmap that stores a sequence of 32 n-bit tuples consecutively,
instead of at maximum k individual bitmaps. k denotes the
maximum number of supported heterogeneous types while n
denotes the number of bits needed in our encoding.

For any k, a HHAMT requires n = dlog2(k + 2)e bits at
minimum per trie-branch to encode all of its possible states.
The two additional states are needed for encoding the absence
of a trie branch, and encoding sub-trees in case of hash-prefix
collisions. For the sake of clarity we mainly focus on the
k = 2 case in the evaluation (Sections 4, 5, 6 and 7), where
the required number of bits n = 2. This case covers the
scenario of distinguishing between a singleton value, and an
arbitrarily sized nested set for multi-map implementations.
However in the current section we detail the general design
and code for arbitrary k. Note that fixing k does influence
efficiency trade-offs: experimental results for k = 2 do not
generalize directly to other values of k.

2.2 HHAMT API

Although this is not a core contribution, since we model data
structures beyond the power of Java’s type system, we should
detail how to circumvent it. Java does not support union
types, and a polymorphic wrapper (such as Scala’s Either)
would introduce overhead. To solve this we can either write
or generate specialized code for fixed combinations of types,
or use Java’s method type polymorphism and judicious use of
class literals (a.k.a. type tokens like Integer.class).

For multi-maps, which are heterogeneous only internally,
a simple generic API will suffice. For other applications, such
as when the keys or values of a map are type heterogeneous or
primitive values are inlined, code generation for the wrapping
API is possible. If we use Java’s method polymorpism (cf.
Effective Java, Item 29 [5]) instead we may avoid code
generation at a certain cost. We use type tokens and their
cast method to encode type heterogeneity. Up to Java 8 it is
not possible to bind primitive types to type variables though,
and care must be taken to avoid dynamic type errors. Casts
can be avoided using either-typed (temporary) wrappers or

a typed callback interface. Examples can be found in the
Appendix. Note that the internals of the HHAMT can always
decide upon the type a value with 100% certainty.

2.3 Bitmap Encoding and Indexing
The heterogeneous skeleton in Listing 1 (lines 19–27) does
not exhibit an optimal encoding. We specialize the BitVector

code for obtaining better memory performance. Assuming
k = 2, we use a single long field as bitmap, for a larger k we
would use several consecutive int or long fields.

The way we index into the trie node array (for lookup,
insertion or deletion) is a key design element. This indexing
is different between the original CHAMP encoding and the new
HHAMT encoding because there are k-cases to distinguish.

Listing 2 shows how CHAMP’s original per-node-bitmap in-
dexing would work if generalized to multiple entry types. By
default CHAMP already distinguishes between payload data
and nested nodes with separate bitmaps. This baseline (naive)
design for heterogeneous hash tries carries on similarly to
distinguish more types of references. The masking function
(lines 1–3) selects the prefix bits based on the node level in
the tree (shift = 5 * level). The index function (line 4–6)
requires a bitpos variable with a single non-zero bit, desig-
nating one of the 32 possible branches. It then maps from
the bitmap/bitpos tuple to a sparse-array index by count-
ing the non-zero bits in bitmap on the right of bitpos. On
line 9 a method template for lookup, insertion, and deletion
is shown. Because for each of the three data categories a
separate bitmap is used the processing happens in a linear-
scanning manner until the right category for a hash-prefix is
matched, or the default case applies (line 31).

Although lines 12, 18, and 24 suggest the use of separate
bitmaps for each distinct type, two bitmaps are sufficient to
distinguish between three cases:

1 int xxxxMap = rawMap1 & rawMap2;

2 int dataMap = rawMap2 ^ xxxxMap;

3 int nodeMap = rawMap1 ^ xxxxMap;

The above listing depicts how to retrofit three logical bitmaps
onto two physical bitmaps. The fields for datamap and
nodemap are renamed to rawMap1 and rawMap2. Subse-
quently, the data structure infers three logical views from
the two raw bitmaps. We further will refer to this retrofitted
heterogeneous variant as Heterogeneous Compressed Hash-
Array Mapped Prefix-tree (HCHAMP).

Listing 3 illustrates operations on the bitmap in the gener-
alized data structure that is specialized to k = 2. The mask
function can be reused, and the index function is scaled to
using a long. The new template method retrieves the 2-bit
wide pattern (line 12) and translates it to an enum value to
switch on. Instead of having to search linearly, as in Listing 2,
we now jump directly to the relevant case handler. Using a
fast switch is even more beneficial with an increasing number
of heterogeneous types (k > 2), and while iterating which is
when type dispatch will be hot.
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1 static final int mask(int hash, int shift) {

2 return (hash >>> shift) & 0b11111;

3 }

4 static final int index(int bitmap, int bitpos) {

5 return Integer.bitCount(bitmap & (bitpos - 1));

6 }

7

8 // processing in (Heterogeneous) CHAMP

9 void processAtNode(int keyHash, int shift) {

10 int mask = mask(keyHash, shift);

11 int bitpos = bitpos(mask);

12

13 int nodeMap = nodeMap();

14 if ((nodeMap & bitpos) != 0) {

15 // process node

16 int index = index(nodeMap, bitpos);

17 ...code for lookup, insert or delete ...

18 } else {

19 int dataMap = dataMap();

20 if ((dataMap & bitpos) != 0) {

21 // process payload category 1

22 int index = index(dataMap, bitpos);

23 ...code for lookup, insert or delete ...

24 } else {

25 int xxxxMap = xxxxMap();

26 if ((xxxxMap & bitpos) != 0) {

27 // process payload category X

28 int index = index(xxxxMap, bitpos);

29 ...code for lookup, insert or delete ...

30 } else {

31 // process empty slot

32 ...code for lookup, insert or delete ...

33 }

34 }

35 }

Listing 2. Processing of multiple bitmaps with 1-bit entries.

1 static final int index(long bitmap, long bitpos) {

2 return Long.bitCount(bitmap & (bitpos - 1));

3 }

4

5 // processing in a Heterogeneous HAMT

6 void processAtNode(int keyHash, int shift) {

7 long bitmap = bitmap();

8

9 int mask = mask(keyHash, shift) << 1;

10 long bitpos = 1L << mask;

11

12 int pattern = (int) ((bitmap >>> mask) & 0b11);

13 Type type = toEnum(pattern);

14

15 switch (type) {

16 case EMPTY:

17 ...code for lookup, insert or delete ...

18 break;

19 case NODE:

20 int index = index(filter(bitmap, type), bitpos);

21 ...code for lookup, insert or delete ...

22 break;

23 case PAYLOAD_CATEGORY_1:

24 int index = index(filter(bitmap, type), bitpos);

25 ...code for lookup, insert or delete ...

26 break;

27 case PAYLOAD_CATEGORY_2:

28 int index = index(filter(bitmap, type), bitpos);

29 ...code for lookup, insert or delete ...

30 break;

31 }

32 }

Listing 3. Processing of one bitmaps with 2-bit entries.

2.4 Optimizing Bit-Counting
Extra bitwise operations are in the overhead of HHAMT which
we need to mitigate. We explain three techniques to do so.

Relative Indexing into a Single Data Category. The pur-
pose of the index function in Listing 3 is to calculate the rela-
tive index of a data element within its data category. Given
a type enum and a trie-branch descriptor (bitpos), the index

function calculates how often the given type pattern occurs
in the bitmap before the bitpos position.

The Java standard library contains bit count operations for
the types int and long that count the number of bits set to
1. These functions do not support n-bit patterns with n > 1.
However, we want to reuse the aforementioned functions,
because on the widespread X86/X86_64 architectures they
map directly to hardware instructions. We introduce some
bitmap pre-processing with filters to get to that point where
we can use the native bit counters. Listing 4 illustrates how

such a filter reduces a matching 2-bit wide pattern to a single
bit set to 1, while resetting all other bits to 0.

Distribution of Heterogeneous Elements. While lookup,
insertion, and deletion only require indexing into a single
data category, on the other hand iteration and streaming
require information about the types of all elements in a trie
node: their frequency per node. Studies on homogeneous data
structures [6] have shown avoiding checks on a per elements
basis is indeed relevant for performance.

To also avoid such checks in HHAMT we introduce the
use of histograms, on a per node basis, that are calculated in
constant time (for a given branch factor). The computation is
independent of the number of heterogenous types:

1 int[] histogram = new int[2n];
2

3 for (int branch = 0; branch < 32; branch++) {

4 histogram[(int) bitmap & mask]++;

5 bitmap = bitmap >>> n;

6 }
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1 static final long filter(long bitmap, Type type) {

2 long mask = 0x5555555555555555L;

3

4 long masked0 = mask & bitmap;

5 long masked1 = mask & (bitmap >> 1);

6

7 switch (type) {

8 case EMPTY:

9 return (masked0 ^ mask) & (masked1 ^ mask);

10 case NODE:

11 return masked0 & (masked1 ^ mask);

12 case PAYLOAD_CATEGORY_1:

13 return masked1 & (masked0 ^ mask);

14 case PAYLOAD_CATEGORY_2:

15 return masked0 & masked1;

16 }

17 }

Listing 4. Filtering of multi-bit patterns (for k = 2).

The former listing abstracts over the number of heteroge-
neous elements and executes in 32 iterations. n and mask are
constants, where mask has the lowest n bits set to 1. In its
generic form, the code profits from default compiler-level
optimizations —such as scalar replacement [15] to avoid
allocating the array on the heap, and loop unrolling.

We assigned the bit-pattern EMPTY = 0 and NODE = 2n−1,
the various remaining heterogenous types are assigned con-
secutively in the middle. For iteration, streaming, or batch-
processing data, histograms avoid expensive repetition of
indexing individual categories: k bit-count operations, where
each one requires applying a filter to the bitmap. For example,
the total number of elements, regardless of their types, can be
calculated with 32 - histogram[EMPTY] - histogram[NODE].
The otherwise complex code for trie-node iteration reduces
to looping through the two-dimensional histogram using two
integer indices. The added benefit is that inlined values al-
though stored out of order, will be iterated over in concert,
avoiding spurious recursive traversal and its associated cache
misses [18]. Finally, iteration can exit early when the running
counter reaches the maximum branching factor of 32 to avoid
iterating over empty positions in the tail. Note that for fixed k
the code can be partially evaluated (i.e., by a code generator)
to avoid the intermediate histogram completely.

Reversing the Bitmap Encoding: Extracting Index and
Type. For enabling fast structural equality comparisons [18]
maintaining a canonical form of the hash-trie is essential,
also after the delete operation. For HHAMT and especially for
HHAMT multi-maps this takes an extra effort: the deletion
operation does know the index and type of the removed el-
ement, however it does not know the index and type of the
remaining elements. Upon deletion, canonicalization triggers
inlining of sub-tree structures with only a single remaining
payload tuple. Efficiently recovering the index an type of the
only remaining tuple is important for the overall efficiency

of the deletion operation. We devised a recovery function
for bitmaps with n-bit tuples, based on Java’s standard li-
brary functions: Long.numberOfTrailingZeros(bitmap)/n*n.
By first counting the number of trailing zeros, we approxi-
mate the region within the bitmap that contains bit-pattern
information. We subsequently adjust the non-zero count to
our n-bit pattern alignment with an integer division followed
by an multiplication. As a result, we recovered the mask

that allows retrieving the type of the remaining element (cf.
Listing 3, lines 10–13).

Outlook. We have now discussed all techniques to mitigate
Central Processing Unit (CPU) overhead caused by a more
complex indexing. The remaining challenge is saving mem-
ory, which is discussed next.

3. Lean Specializations
Specialization for a fixed number of heterogeneous types
will prove essential for both memory efficiency and CPU
performance. In this section we take the perspective of
the general k-heterogeneous HHAMT. The effect of these
techniques will be evaluated in Sections 4, 5, 6 and 7 in
different contexts.

For a HHAMT with k different types, there exist aritynodes×∏k
i=1 arityi possible strongly-typed variants in theory, with

the constraint that aritynodes +
∑k

i=1 arityi <= 32. We
can reduce this complexity by grouping different heteroge-
neous types together into a section that is represented by
their least upper bound type. Ultimately, we can group to-
gether all reference types and sub-nodes into one section,
and all primitive types into another section [20], to achieve
a quadratic upper bound that overcomes the dichotomy of
reference and primitive types. Therefore, in the remainder of
this section we will focus on the most common case of k = 2
that also satisfies our use case of multi-maps. Note that due
to the bitmap encoding we always know the precise type of
an object, using more general types for internal storage is
solely used to reduce the total number of specializations.

There exist empirical evidence [17] for k = 1 that
specializing up to arities of 8 or 12 balances impact on
memory performance best with the necessary amount of
generated code. However with heterogeneity k > 1 this
may not hold, and to exploit inlining primitive types for
saving more memory we should support specializing the full
bandwidth up to 32.

We now present an improved approach for code generation
that allows fully specialized collections (i.e., "array-less"
data structures) with very low memory footprints. It aims
to overcome the following issues that typically compromise
performance of specialized code:

Additional Polymorphism: Turning a generic data type into
a set of distinct specializations compromises trace-based
inlining strategies of a Just-in-time (JIT) compiler. By
introducing specializations, previous monomorphic call-
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1 abstract class Set1 implements Set {

2 final Object slot0;

3

4 Set add(Object value) {

5 if (slot0.equals(value)) {

6 return this;

7 } else {

8 return new Set2(slot0, value);

9 }

10 }

11 }

Listing 5. Interlinking of specializations prohibits generic
methods: Set1 contains a static reference to Set2.

sites are turned into polymorphic call-sites. Thus a JIT
compiler has to fallback to dynamic dispatch for method
method calls that were previously resolved to direct calls.

Code Bloat: Substituting a dynamic structure with speciali-
ations often demands the specialization of operations as
well. In the case of hash-tries, we specialize for constant
array sizes [17]: instead of referencing a heap structure,
we inline the array-fields into a trie-node. Unfortunately
the resulting memory saving come at a price: suddenly
array operations (i.e., allocation, copy, get, set, length)
must be specialized as well.

Interdependency of Specializations: In general, each spe-
cialized data type contains static references to other spe-
cializations that represent possible next states. Listing 5
exemplary lists the add method of set data structure spe-
cialized for one element that might return a set specialized
for two elements. The switching between specialized rep-
resentations, puts strain on the JIT compiler at run-time
due to incremental class loading and the constant need to
compile methods of specializations during a data structure
builds up, further, it is one source of code bloat.

In the remainder of this section we detail our approach of
specialization that remedies the aforementioned overheads. In
our design, a specialization represents purely a heterogeneous
trie-node, specialized for a certain content size. It contains
pre-evaluated content stored in static fields and instance fields
(storing the bitmap, and the inlined array content), however
does not override methods.

3.1 Indexing and Selecting Specializations
We replace the use of arrays, which can be allocated using an
arbitrary length parameter, with fields inlined in specialized
classes. Commonly, for each specilization a unique construc-
tor must be called (cf. Listing 5, specialization interlinking).
Which constructor must be called depends on the current state
of a trie node and the operation applied to the data structure.

To enable class selection at run-time, we introduce a global
and static two-dimensional Class[][] specializations array,
indexed by the number of primitive data fields (t) and the

number of reference fields (u). This lookup table solves the
interdependency problem of specialization: when adding a
key-value tuple of reference type the next specialization
can be be determined with specializations[t][u + 2], or
respectively with specializations[t - 2][u] when a tuple
of primitive type is deleted. Once a specialization is selected,
it can be initialized by invoking its default constructor:
Object instance = specialization[t][u].newInstance().

Since the array is often used and relatively small, we
found it runs faster than distributing code over the specialized
classes. This also allows for more generic code in base classes
which is therefore used more often and more likely to be
optimized by the JIT compiler.

3.2 Initializing Instances of Specialized Classes
For the generic representation that operates on arrays, we
would use System.arraycopy initializing a new trie node,
which is really fast. Now we want to try and approach similar
efficiency for initializing the fields of our specialized classes.

Our solution is to introduce a arraycopy-like operation
that is capable of copying consecutive fields between object
instances: an ArrayView on an object layout is an abstraction
which logically maps an arbitrary region within objects to an
array. To ensure safety we check whether the JVM indeed
maps the fields in a consecutive region at class loading
time. Using a primitive ArrayView.copy we achieve similar
performance to System.arraycopy. We measured the effect
using a micro-experiment: the new primitive is about 20–30%
faster than field-by-field copying. Since eventually copying
trie nodes is the primary bottleneck we may expect around
similar speedups for insertion- and deletion-intensive code of
HHAMT and less for lookup intensive code.

Listing 6 shows how we can model an array view of
a range of fields within a heap object. Once we have ob-
tained a reference to an ArrayView, we can invoke correspond-
ing (getFrom|setIn)HeapRegionArrayView methods that ei-
ther retrieve or a set a value of a ArrayView. To mimic
System.arraycopy on an ArrayView, we use sun.misc.Unsafe.

copyMemory. For our experiments, we extended the copyMemory

function to support copying from/to objects while catering
for card marking, i.e., signaling the Garbage Collector (GC)
that references changed.

Relationship to VarHandle API of the Upcoming JDK 9.
The Java Development Kit (JDK) 9 will introduce an API
for uniformly referencing, accessing and modifying fields.
Thus, independently of the realization of a variable —static
field, instance field, or array— a handle to the field reference
can be obtained. In earlier versions of Java, the granularity of
references was restricted to objects; a VarHandle in contrast
enables addressing fields or arrays (at a finer granularity)
inside an object. The VarHandle API furthermore contains
abstractions to view and process off-heap memory regions as
arrays. However, it does not provide likewise abstractions for
obtaining array views on on-heap regions.
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1 class TrieNode_T4_U3 implements Node {

2 long bitmap;

3

4 int key0; int val0;

5 int key1; int val1;

6

7 Object slot0;

8 Object slot1;

9 Object slot2;

10

11 static ArrayView getArrayView_T4() {

12 return createHeapRegionArrayView(

13 TrieNode_T4_U3.class, "key0", "val1");

14 }

15

16 static ArrayView getArrayView_U3() {

17 return createHeapRegionArrayView(

18 TrieNode_T4_U3.class, "slot0", "slot2");

19 }

20 }

Listing 6. ArrayView on regions of specialized trie node.

The aforementioned ArrayView implementation we used
provides a proof-of-concept implementation on how to extend
the VarHandle API to support array views for on-heap regions.

3.3 Summary
In the context of collections, we eliminated issues that typi-
cally compromise the performance of specialized code. We
will evaluate the effects of these techniques in Section 4.

4. Assessing the Cost of Multi-Maps
In this section we evaluate the performance characteristics
of the various implementations of multi-maps on top of
the HCHAMP, HHAMT, and specialized HHAMT encodings,
comparing them against the basic homogeneous CHAMP
map data structure as state-of-the-art baseline [18]. We are
interested in isolating the effects that are incurred by adding
the heterogeneity feature:

• HCHAMP is close to CHAMP (same logic, but derives three
bitmap views from two physical bitmaps);

• HHAMT generalizes the heterogeneous bitmap encoding;
• and specialized HHAMT improves memory footprints by

dynamically selecting statically known specializations.

In the case of multi-maps, heterogeneity lies in the internal
distinction between 1 : 1 and 1 : n mappings.

Assumptions. We evaluate the pure overhead of operations
on the data structures, without considering cost functions
for hashCode and equals methods. This performance assess-
ment should reveal the overhead of adding heterogeneity
to CHAMP, the effect of the specialization approach and the
effect of accessing the heterogeneous data elements.

Hypotheses. We expect HHAMT’s runtime performance of
lookup, deletion, and insertion to be similar comparable to
CHAMP’s runtime performance, but never better. Running
times should not degrade below a certain threshold —we feel
that 25% for median values and 50% for maximum values
would about be acceptable as a trade-off— (Hypothesis 1).

Iteration over a multi-map is more complex than iterating
over a map. Iteration (Key) has to distinguish between hetero-
geneous categories, whereas Iteration (Key) has to distinguish
heterogeneous categories, Iteration (Entry) additionally has
to flatten nested sets to obtain a tuple view on multi-maps.
Consequently, we assume costs of about 25% for median
values and 50% for maximum values as well (Hypothesis 2).

Based on related work in the domain of specializing
HAMTs [17], we expect that specializing may introduce run-
time overhead. However, we expect lower overhead (than
the reported 20–40% degradations for lookup) due to our
mitigation strategies outlined in Section 3 (Hypothesis 3).

Furthermore, memory footprints of HCHAMP and HHAMT
should in practice match CHAMP’s footprints, because all
variants use in total 64-bits for bitmaps (Hypothesis 4).

4.1 Experiment Setup
We use a machine with Apple OS X (10.11.3) and 16GB
RAM. It has an Intel Core i7-3720QM CPU, with 2.60GHz,
and an 6MB Last-Level Cache (LLC). Frequency scaling was
disabled. For testing, we used an OpenJDK (JDK 8u65) JVM
configured with a fixed heap size of 8GB. We measure the
exact memory footprints of data structures with Google’s
memory-measurer library.1 Running times of operations are
measured with the Java Microbenchmarking Harness (JMH), a
framework to overcome the pitfalls of microbenchmarking.2

For all experiments we configured JMH to perform 20 mea-
surement iterations of one second each, after a warmup period
of 10 equally long iterations. For each iteration we report the
median runtime, and measurement error as Median Absolute
Deviation (MAD), a robust statistical measure of variability
that is resilient to small numbers of outliers. Furthermore, we
configured JMH to run the GC between measurement iterations
to reduce a possible confounding effect of the GC on time
measurements.

In our evaluation we use collections of sizes 2x for x ∈
[1, 23]. Our selected size range was previously used to mea-
sure the performance of HAMTs [2, 18]. For every size, we
fill the collections with numbers from a random number gen-
erator and measure the resulting memory footprints. Subse-
quently we perform the following operations and measure
their running times:

Lookup, Insert and Delete: Each operation is measured
with a sequence of 8 random parameters to exercise dif-
ferent trie paths. For Lookup and Delete we randomly
selected from the elements that were present in the data

1 https://github.com/DimitrisAndreou/memory-measurer
2 http://openjdk.java.net/projects/code-tools/jmh/
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structures.3 For Insert we ensured that the random se-
quence of values was not yet present.

Lookup (Fail), Insert (Fail) and Delete (Fail): Measuring
unsuccessful operations. The setup equals the aforemen-
tioned setting, however with the difference that we swap
the sequences of present/not present parameters.

Iteration (Key): Iterating over the elements of a set or the
keys of a map respectively.

Iteration (Entry): Iterating over a multi-map, flattening and
yielding tuples of type Map.Entry.

We repeat the list of operations for each size with five
different trees, starting from different seeds. This counters
possible biases introduced by the accidental shape of the tries,
and accidental bad locations in main memory. Evaluating
HAMT data structures containing simply random integers ac-
curately simulates any application for which the elements
have good uniformly distributed hash codes. A worse-than-
uniform distribution would —regardless of the HAMT-like
implementation— overall reduce the memory overhead per
element and increase the cost of updates (both due to clus-
tering of elements). We consider a uniform distribution the
most representative choice for our comparison.

4.2 Experiment Results
We first report the precision of the individual data points.
For 99% of the data points, the relative measurement error
amounts to less than 1% of the microbenchmark runtimes,
with an overall range of 0–4.8% and a median error of 0%.

We summarize the data points of the runs with the five
different trees with their medians. Then Figure 1a, and 1b re-
port for each benchmark the ranges of runtime improvements
or degradations. For brevity, the effects on memory foot-
prints and of specialization are not contained in the boxplots,
but are discussed in text. Each boxplot visualizes the mea-
surements for the whole range of input size parameters. For
improvements we report speedup factors above the neutral
line (measurementCHAMP /measurementHHAMT-Variant),
and degradations as slowdown factors below the neutral line ,
i.e., the inverse of the speedup equation. From this data we
learn the following:

Confirmation of Hypothesis 1: The cost of converting a
map to a multi-map stayed within the specified bounds for
both HCHAMP and HHAMT.
For HCHAMP, Lookup, Insert and Delete added a me-
dian slowdown of 9%, 0%, and 7% respectively, and
Lookup (Fail), Insert (Fail) and Delete (Fail) added 12%,
2% and 7% respectively. With exception to single outliers
produced Delete (Fail), the maximum slowdown are lower
than 18% at most.
For the generalized HHAMT, the costs for multi-maps
over maps are higher. Lookup, Insert and Delete added

3 For < 8 elements, we duplicated the elements until we reached 8 samples.
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(b) HHAMT multi-map versus CHAMP map (baseline).

Figure 1. Visualizing the overhead of various multi-map
implementations over a CHAMP map implementation.

a median slowdown of 20%, 5%, and 10% respectively,
and Lookup (Fail), Insert (Fail) and Delete (Fail) added
22%, 0% and 13% respectively. With exception to single
outliers produced Delete (Fail), the maximum slowdown
are lower than 29% at most.

(Partial) Confirmation of Hypothesis 2: Compared to our
baseline, and counter to our intuition, HCHAMP improved
Iteration (Key) by a median 35% and Iteration (Entry) by
37%. The more general HHAMT improved Iteration (Key)
by a median 16% and Iteration (Entry) by 13%. However,
according to Figure 1, the value spread appears large and
the maximum bounds are violated for Iteration (Key).

(Partial) Confirmation of Hypothesis 3: On average, we
observed an overhead of 3% for Lookup and 6% for
Lookup (Fail) when comparing a specialized HHAMT
against its regular HHAMT counterpart. These numbers
confirm our intuition and are lower then the 20–40%
overhead reported by Steindorfer and Vinju [17]. The
median costs for Insert (24%) and Delete (31%) however
match their results. Concerning memory consumption,
specializations improved memory consumption by at least
38% for data structures with 32 or more entries.

Confirmation of Hypothesis 4: Memory footprints of
HCHAMP and HHAMT (omitted in Figure 1) match exactly
the footprint of CHAMP, when using multi-maps as maps.
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Discussion. A more detailed investigation revealed that for
Iteration (Key) measurements at sizes 21 and 25 showed sig-
nificant deviation from the remaining measurements. These
two measurements were not statistically identified as outliers
due to the small sample size of 23 (sizes 2x for x ∈ [1, 23]).
When removing these two measurements, the upper bound of
slowdowns is 6% for HHAMT and 36% for HCHAMP.

While not impacting lookup performance, specializing
trades the runtime performance of insertion and deletion for
gaining savings of approximately 1.4 x.4 Because only opera-
tions that allocate new tree nodes are affected, we attribute
slowdowns to the lookup table we introduced (adding two
memory indirection). Nevertheless, specializing is of key im-
portance when optimizations for primitive data types; we
evaluate that effect separately in Section 6.

Summary. Despite its more complex and heterogeneous
encoding, HHAMTs achieves excellent runtimes across all
tested operations. Converting a map into a multi-map with
the means of a heterogeneous encoding had usually less costs
associated than we expected beforehand. Our specialization
approach could successfully mitigate overhead for lookups
while reducing memory footprints. However, using a lookup
table for our specializations still impacts insertion and dele-
tion, when compared to regular array allocations that do not
require a lookup table.

5. Comparing Immutable Multi-Maps
We further evaluate the performance characteristics of our
specialized HHAMT multi-map against implementations from
Clojure and Scala. Both languages do not provide native
immutable multi-maps in their standard libraries, however
suggest idiomatic solutions to transform maps with nested
sets into multi-maps.

VanderHart [21, p. 100–103] proposes a solution for
Clojure based on “protocols”. Values are stored untyped as
either a singleton, or a nested set. Consequently, the protocol
extension handles the possible case distinctions —not found,
singleton, or nested set— for lookup, insertion, and deletion.

Scala programmers would idiomatically use a trait for
hoisting a regular map to a multi-map. However, the Scala
standard library only contains a trait for mutable maps; we
therefore ported the standard library program logic of the trait
to the immutable case, nesting typed sets into maps.

Hypotheses. We expect specialized HHAMT’s runtime per-
formance of lookup, deletion, and insertion to equal the com-
petitors performance, because we tried hard to mitigate the
incurred overhead, and the idiomatic solutions require some
overhead as well. Runtimes should not degrade below a cer-
tain threshold —say 10% for median values and 20% for
maximum values would just be acceptable— (Hypothesis

4 Note that only the outer multi-map structure was specialized and not the
nested sets. A further specialization of the nested sets would yield even more
substantial memory savings.
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Figure 2. Performance comparison of a specialized HHAMT
multi-map against implementations in Clojure and Scala.

5). However, for negative lookups we expected that special-
ized HHAMT performs worse than Scala (Hypothesis 6). This
hypothesis is based on related work [18] that explains the in-
herent differences between CHAMP and Scala when it comes
to memoizing hash codes. Our hypothesis expects memory
improvements by at least 50% on average due to omitting
nested collections for singletons (Hypothesis 7).

5.1 Experiment Setup
Data generation is derived from the experimental setup
outlined in Section 4.1. We keep the number of unique keys
equal —2x for x ∈ [1, 23]— but instead of using distinct data
in each tuple, we now use 50% of 1 : 1 mappings, and 50%
of 1 : 2 mappings. Fixing the maximal size of right-hand side
of the mapping to 2 may seem artificial, but it allows us to
precisely observe the singleton case, the case for introducing
the wrapper and the overhead per additionally stored element.
The effect of larger value sets on memory usage and time
can be inferred from that without the need for additional
experiments.

Insert: We call insertion in three bursts, each time with 8
random parameters to exercise different trie paths. Firstly
we provoke full matches (key and value present), secondly
partial matches (only key present), and thirdly no matches
(neither key nor value present). Next to insertion of a new
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key, this mixed workload also triggers promotions from
singletons to full collections.

Delete: We call deletion in two bursts, each time with 8
random parameters. Provoking again, full matches and
partial matches. Next to deletion of a key, this mixed
workload also triggers demotions from full collections to
singletons, and canonicalization where applicable.

Lookup: Similar to Delete we call lookup in two bursts to
exercise full and partial matches.

Lookup (Fail): In a single burst with 8 random parameters
we test negative lookups (neither key nor value present).
We assume this test equivalent to Delete with no match.

5.2 Experiment Results
Figures 2a and 2b show the relative differences of specialized
HHAMT multi-map compared to the implementations in Clo-
jure and Scala. From the data we can evaluate our hypotheses:

Confirmation of Hypothesis 5: Runtimes unexpectedly im-
prove over the competition. Lookup, Insert, and Delete
perform similar to Scala (by a median 12%, 9%, and
16% faster), and clearly better than Clojure (by a median
speedup of 2.51 x, 1.75 x, and 2.05 x). Compared to Scala
we observed individual data points that exhibited minimal
slowdowns of less than 9% at larger input sizes.

Confirmation of Hypothesis 6: HHAMT performs worse
than Scala for negative lookups. Runtimes increased by
a median 39% and roughly doubled at maximum with a
106% increase. In contrast, when compared to Clojure
we do not see a negative impact.

Confirmation of Hypothesis 7: Memory footprints improve
by a median factor of 1.92 x (32-bit) and 1.93 x (64-bit)
over the implementation in Scala, and over in Clojure by
a median factor of 1.9 x (32-bit) and 2.14 x (64-bit).

Discussion. We were surprised that the memory footprint
consumptions of Clojure’s and Scala’s multi-map implemen-
tations are essentially equal. From related work [18] we knew
the typical trade-offs of both libraries: Scala mainly opti-
mizes for runtime performance, while Clojure optimizes for
memory consumption. Code inspection revealed the cause
of Scala’s improved memory performance: their immutable
hash-sets contains a specialization for singleton sets.

All three libraries libraries follow different paradigms
for avoiding code duplication in their collection libraries.
While Scala and Clojure use extension mechanisms (i.e.,
traits and protocols respectively), HHAMT avoids duplication
by supporting internal heterogeneity.

Summary. With microbenchmarks we were able to mea-
sure the performance of individual operation, and further to
measure the footprint of synthetically generated structures
of different sizes. In this setting the heterogeneous design of
specialized HHAMT proved to be better in general: improved

Figure 3. Comparing memory footprint of HHAMT special-
ized for int against state-of-the-art primitive Map<int, int>

structures.

runtimes of lookup, insertion, and deletion —with the notable
exception of negative lookups when compared to Scala— and
most importantly memory improvements of 1.9–2.14 x.

6. Case Study: Primitive Collection Footprint
A type-safe heterogeneous HAMT encoding shines most with
bounded numerical data: it allows to exploit the difference
between primitive (value-based) data types and reference
types. More specifically, a Multimap<int, int> can leverage
storing unboxed inlined singletons. Any non-heterogeneous
immutable collection structure would have to store boxed
integer objects instead, if not singleton sets of boxed integers.
So, instead, as a fair point-of-reference we will compare to
the state-of-the-art hand-optimized specialized immutable
data structures for primitive values.

We are not aware of any comparable persistent or im-
mutable primitive collection library which is optimized for
primitive data types on the JVM. While there are many spe-
cialized primitive collection libraries for the JVM, only some
contain (slower) copy-on-write immutable data structures im-
plemented as facades over their mutable counterparts. With
respect to primitive multi-maps, we did not find any imple-
mentation, neither mutable nor mutable.

So, we concentrate on comparing the memory footprint
of Map<int, int>, implemented in specialized HHAMT (with
1 : 1 mappings) compared to the most efficient primitive
mutable collections we are aware of, namely: Goldman
Sachs Collections, FastUtil, Trove, and Mahout. As a point
of reference we also include Guava’s RegularImmutableMap

because it is a well-known library (but commonly known to
be non-optimal in terms of memory consumption).

6.1 Experiment Results
Figure 3 illustrates observed memory footprints for maps
for sizes 2x for x ∈ [1, 23]. At each size, measurements are
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normalized with respect to the minimum memory footprint
(retained size of heap graph). Consequently, the minimum
value 1 depicts the smallest data structure, whereas all other
data points are displayed in their relative distance (factor of
how much more memory they consume).

The results show that HHAMT consistently consumes the
least amount of memory (median 1.00 x, range 1.00–1.10 x),
followed by Goldman Sachs (median 1.04 x, range 1.00–
2.18 x) and FastUtil (median 1.07 x, range 1.00–4.18 x).
Trove exhibits constant results within a small bandwidth
(median 1.23 x, range 1.15–2.15 x). In contrast to Trove’s
constant results, Mahout delivered surprisingly inconsistent
results (median 1.94 x, range 1.22–29.64 x) —we capped the
plot in Figure 3 to display maximal deviations up to 5 x. With
overheads of 29.64 x, 25.08 x, 19.18 x, 11.24 x and 4.72 x for
the data points 21–25, Mahout exceeds the footprints of our
generic reference data structure from Guava (median 4.00 x,
range 2.27–4.72 x).

Discussion. Compared to all other primitive collections,
HHAMT excelled especially at small collections up to 32 ele-
ments. Given that in practice most collections are small [14]
these improvements look promising. Primitive collections
in general have the problem how to mark which slots are
in use (there is no null equivalent in value types). Several
encodings —e.g., sentinel values, or bitmaps— exist to cir-
cumvent this limitation. HHAMT performs well with respect
to primitive collections, because HHAMT inherently encodes
information about the presence and type of (primitive) values
on a per node basis an therefore obsoletes special encod-
ings for sentinel values. Further applications and benefits of
heterogeneous data structures are discussed in Section 9.

Summary. In our measurements, HHAMT multi-maps that
are specialized for int consume (with 1 : 1 data) a median
4 x less memory than generic map data structures. HHAMT
further achieves the same small footprints as class-leading
primitive Map<int, int> data structures, while providing the
additional functionality of allowing 1 : n mappings.

7. Case Study: Static Program Analysis
The above experiments isolate important factors, but they
do not show the support for the expected improvements
on an algorithm “in the wild”. To add this perspective, we
selected computing control flow dominators using fixed point
computation over sets [1]. The nodes in the graphs are
complex recursive ASTs with arbitrarily complex (but linear)
complexity for hashCode and equals. More importantly, the
effect of the heterogenous encoding does depend on the
accidental shape of the data, as it is initially produced from
the raw control flow graphs, and as it is dynamically generated
by the incremental progression of the algorithm.

Code. Although we do not claim the algorithm in this
section to be representative of all applications of multi-maps,
it is a basic implementation of a well known and fundamental

Table 1. Runtimes of HHAMT for the CFG dominators experi-
ment per CFG count, and statistics over preds relation about
shape of data (unique keys, tuples, 1 : 1 mappings).

#CFG CHAMP HHAMT #Keys #Tuples % 1 : 1

4096 173 s 174 s 315 009 331 218 91%

2048 84 s 85 s 162 418 170 635 91%

1024 64 s 62 s 88 952 93 232 92%

512 28 s 28 s 43 666 45 743 92%

256 19 s 18 s 21 946 22 997 92%

128 14 s 14 s 13 025 13 583 93%

algorithm in program analysis. It has been used before to
evaluate the efficiency of hash-array mapped tried [18]. We
implemented the following two equations directly on top of
the multi-maps:

Dom(n0) = {n0}

Dom(n) =

 ⋂
p∈preds(n)

Dom(p)

 ∪ {n}
Our code uses set union and intersection in a fixed-point loop:
Dom and preds are implemented as multi-maps. The big
intersection is not implemented directly, but staged by first
producing a set of sets for the predecessors and intersecting
the respective sets with each other.

Hypotheses. On the one hand, since Dom is expected to be
many-to-many with large value sets it should not generate
any space savings but at least it should not degenerate the
runtime performance either compared to CHAMP (Hypothesis
8). On the other hand we expect preds to be mostly one-
to-one and we should get good benefit from the inlining
of singletons (Hypothesis 9). Since CHAMP was reported to
outperform existing state-of-the-art implementations in Scala
and Clojure on the same case, there is no need to further
include these [18].

Data. For our experiment, we used ±5000 control flow
graphs for all units of code (function, method and script)
of Wordpress,5 by using the PHP AiR framework [11]. Like
before, we used JMH to measure CPU time. We ran the domina-
tor calculations on a random selection of the aforementioned
graphs. The set of selected graphs range between a size of
from 128 to 4096 in exponential steps. Since smaller graphs
occur much more frequently, we selected samples with expo-
nentially increasing sizes from 128 to 4096. We furthermore
measured the number of many-to-one and many-to-many
entries in the preds relation.

5 https://wordpress.com
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Results. The results were obtained with a Linux machine
running Fedora 20 (kernel 3.17). It featured 16GB RAM and
an Intel Core i7-2600 CPU with 3.40GHz (8MB LLC with
64-byte cache lines). Frequency scaling was disabled.

Table 1 shows the mean runtimes of the experiment for
CHAMP and HHAMT. Both perform almost identically, with at
most ±2 s difference. Due to equal runtimes, HHAMT retains
the same magnitude of speedups that CHAMP yielded over
Clojure and Scala [18], from minimal 9.9 x to 28.1 x. We
also observed that the shape of data in the preds relation
contains a high number of 1 : 1 mappings (median 92%)
and that the average ratio of unique keys to tuples is 1.05 x.
In the case of Wordpress, the CFG algorithm turns out to
profit over CHAMP in terms of memory savings from the
heterogeneous opimizations for 1 : 1 mappings. We conclude
both Hypothesis 8 and 9 to be confirmed.

8. Related Work
Reducing the Memory Footprint of Collections is a goal
of other people as well. Gil et al. [10] identified sources of
memory inefficiencies in Java’s mutable collections and pro-
posed memory compaction techniques to counter them. They
improved the memory efficiency of Java’s Hash{Map,Set}

and Tree{Map,Set} data structures by 20–77%. We ob-
served that even with added heterogeneity, HHAMT multi-
maps achieve lower memory footprints than the class-leading
primitive collection libraries, and in the generic case on aver-
age 4 x improvements over Guava’s maps.

Steindorfer and Vinju [17] specialized internal trie nodes
to gain memory savings of 55% for maps and 78% for sets at
median while adding 20–40% runtime overhead for lookup.
Their approach minimized the amount of specializations to
mitigate effects on code bloat and run-time performance. In
contrast, we targeted the root causes of inefficiency one-by-
one allowing full specialization at all arities.

Optimizing Collections in Dynamically-Typed Languages.
Runtimes of dynamically typed languages often introduce
a significant run-time and memory overhead [19] due to
generic collection data structures that could at run-time hold
a heterogeneous mix of data.

Bolz et al. [6] introduced a technique dubbed stor-
age strategies that enables dynamic conversion of data
representations. A set of interlinked strategies form a
fine-grained type lattice that is based on known optimizations.
Strategies mostly include support for collections of a
homogeneous (primitive) type. An exemplary lattices
for a Set data structure could be EmptySetStrategy <->

(Integer|Float|...)SetStrategy <-> ObjectSetStrategy.
Resulting performance improvements mainly stem from
object layouts that specialize for a homogeneous primitive
types and corresponding optimized operations (e.g., direct
value comparisons instead of calling equals methods).

Bolz [6] showed that with Python on average 10% of col-
lections dehomogenize, mostly at small sizes. These results

suggest that even in the absence of strict typing, collections
are often used homogeneously. Heterogeneous data struc-
tures are orthogonal to homogeneous storage strategies. On
one hand, heterogeneous data structures could diversify cur-
rent strategy approaches, e.g., when homogeneous strategies
are not applicable, or when many conversion occur. On the
other hand, they have the potential to replace homogeneous
strategies when flexibility in mixing data is required upfront.
Furthermore, HHAMT optimizes internal heterogeneity that
occurs in general purpose data structures such as multi-maps.

Specializations and Generics for Primitives Reducing
Code-Bloat. Specializing for primitives can lead to a com-
binatorial explosion of variants amplifying code-bloat. Due
to the object vs. primitive dichotomy, Java does not offer
solutions countering a combinatorial explosion of code dupli-
cation when specializing for primitives. Java 10 or later will
solve this issue by supporting generics of primitive types.6

Ureche et al. [20] presented a compiler-based specializa-
tion transformation technique called miniboxing. Miniboxing
adds automatic specializations for primitive JVM data types
to the Scala compiler while reducing the generated bytecode.
Combinatorial code-bloat is tackled by specializing for the
largest primitive type long, together with automatic coer-
cion for smaller-sized primitives. While not always memory-
optimal due to always utilizing long variables, miniboxing is
a practical approach to tackle combinatorial code explosion.

HHAMT’s contribution is orthogonal to both previously dis-
cussed techniques, because it generalizes the encoding of
heterogeneous data stored together in a collection. HHAMT’s
specializations currently do duplicate code for different (prim-
itive) type combinations. Using primitive generics in later
versions of Java —or miniboxing in Scala— could bring this
down to a single generic specialization per trie node arity.

(Partial) Escape Analysis. Escape analysis enables com-
pilers to improve the run-time performance of programs: it
determines whether an object is accessible outside its allocat-
ing method or thread. Subsequently this information is used
to apply optimizations such as stack allocation (in contrast to
heap allocation), scalar replacements, lock elision, or region-
based memory management [16]. Current JVMs use partial
escape analysis [15], which is a control-flow sensitive and
practical variant tailored toward JIT compilers.

Our scalable encoding of specializing is a memory layout
optimization for value-type based data types: trie nodes are
specialized for arrays of constant sizes that do not escape.
We use code generation to conceptually apply object inlin-
ing [22] of these statically sized (non-escaping) arrays into
the memory layout of their corresponding trie nodes. Memory
layout sensitive inlining as we perform could be applied in
Virtual Machine (VM) based on information obtained from
escape analysis. We hope that future compilers and language
runtimes are capable of doing so out-of-the-box.

6 http://openjdk.java.net/projects/valhalla/
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9. Further Applications of HHAMT
We extrapolate some client applications which would benefit
from HHAMT.

Libraries or Languages Supporting Data or Code Analysis
on the JVM would benefit from more efficient in-memory
multi-maps. Typical examples are frameworks such as KN-
IME [3] for general purpose data analysis or Rascal for
program analysis [13], and MoDisCo [7] for software re-
engineering and reverse engineering, especially when their
algorithms require frequent lookup and thus will benefit from
an efficiently indexed relation such as a multi-map.

Unifying Primitive and Generic Collections. Looking at
specialized collections for primitives from the programming
language designer’s perspective, they are a necessary evil
implied by the dichotomy between objects and primitive
values. Primitive values give programmers access to low level
and memory-efficient data representations, but the impact of
having them leaks through in the type systems and the design
of standard libraries of programming languages supporting
them. The current paper describes a heterogeneous framework
that can be used for implementing data structure which allow
storing either primitive data values or their boxed counterparts
next to each other, while the client code remains practically
oblivious. For statically-typed languages this implies we can
have a generically typed library for both primitive and object
values. For dynamically-typed languages it implies a much
lower overhead for the builtin dictionaries.

Big Integers for Big Data. Most programming languages
feature a library for representing arbitrary-sized integers.
We use these to avoid overflow, especially in the context
of scientific computing applications. The drawback of using
these libraries for data science is that large homogeneous
collections immediately blow up, even if the big numbers
are exceptional. We want to use smaller Fixed-Width Numer-
ics (FIXNUMs) were possible, and Big Object-Represented
Numerics (BIGNUMs) only when necessary.

This application is where HHAMT could potentially have a
rather big impact. Sets and maps filled with mostly inlined
FIXNUM’s and an occasional BIGNUM without having to a pri-
ori allocate space for BIGNUMs, and without having to migrate
at run-time. Even if the entire collection accidentally ends up
filled with BIGNUMs, HHAMT still yields more memory effi-
cient representations than common array-based hash-maps.

Cleaning Raw Data in a Type-Safe Manner. The HHAMT
data structure enables efficient storage and retrieval of objects
of incomparable types without memory overhead (no need to
wrap the objects) and without dynamic type checks. In Java
there exist no “union” types like in C, but using HHAMT we
can approach this in the context of collections. A typical use
case would be reading in raw data from Comma-Separated
Values (CSV) files (or spreadsheets) in Java where the data is
not cleansed and some cells contain integers while the other

contain decimal numbers or even empty cells, depending on
the original manual and unvalidated input of the user. A CSV
parser could output a HHAMT, inferring the most accurate
value for each cell from the used notation, and allowing for
further processing the data downstream in a manner both
type-safe and efficient.

In general, homogeneous collections storing numeric
data struggle with representing empty cells. Sentinel values
(e.g., integer constant −1) are a viable solution if and only
if the data does not use the data type’s full value range.
Cases where the data range is used exhaustively require
additional auxiliary data structure (e.g., an array of booleans)
to encode if a value is initialized. In contrast to homogeneous
collections, HHAMTs by design supports mixing sentinel
values of a different type (e.g., static final EMPTY_CELL

= new Object()) with the full value range of primitives.

10. Conclusion
We proposed HHAMT, a new design for hash-array mapped
tries which allows storage, retrieval and iteration over maps
which store heterogeneously typed data. In particular we
motivate this data structure by applying it to efficiently
implement multi-maps, and it also shines when used to cater
for inlining unboxed primitive values.

The evaluation compared to the state-of-the-art: compar-
ing to other hash-trie data structures with and without the
many-to-many feature, comparing against state-of-the-art en-
codings of multi-maps in Scala and Clojure and comparing
to hand-optimized maps for primitive values. Even when
compared unfairly to implementations which do not feature
heterogeneity, HHAMT compares well. We safe a lot of mem-
ory (2–4 x) at relatively low costs in runtime overhead.

We hope multi-maps based on these results will be avail-
able in the future in the standard libraries for collections on
the JVM, since that would make the JVM even more attractive
for safely computing with large immutable datasets.
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1 interface HeterogeneousMap {

2 // pull-based dispatch on type

3 <K, V> TypedObject<?> put (Class<K> keyType, K key, Class<V> valueType, V value);

4 <K, V> TypedObject<?> remove (Class<K> keyType, K key);

5 <K, V> TypedObject<?> get (Class<K> keyType, K key);

6

7 // push-based dispatch on type

8 <K, V> void put (Class<K> keyType, K key, Class<V> valueType, V value, CallbackMap callbacks);

9 <K, V> void remove (Class<K> keyType, K key, Class<V> valueType, V value, CallbackMap callbacks);

10 <K, V> void get (Class<K> keyType, K key, Class<V> valueType, V value, CallbackMap callbacks);

11 }

12

13 interface TypedObject<T> {

14 Class<T> getType();

15 T get();

16 }

17

18 interface CallbackMap {

19 <E> Consumer<E> put (Class<E> elementType, Consumer<E> consumer);

20 <E> Consumer<E> get (Class<E> elementType);

21 }

Figure 4. Generic HHAMT interface, based on Item 29: Consider typesafe heterogeneous containers of Effective Java [5].

1 public void heterogeneousInterfaceTest() {

2 put(String.class, "abc", int.class, 5); // accepted by guard condition

3 put(String.class, "abc", Integer.class, 5); // accepted by guard condition

4

5 put(String.class, "abc", long.class, 5L); // rejected by guard condition

6 put(String.class, "abc", Long.class, 5L); // rejected by guard condition

7 }

8

9 static <T, U> void put(Class<T> keyType, T keyInstance, Class<U> valueType, U valueInstance) {

10 switch(keyType.getName()) {

11 case "java.lang.String":

12 switch(valueType.getName()) {

13 case "int":

14 put((String) keyType.cast(keyInstance), (int) valueInstance);

15 return;

16 case "java.lang.Integer":

17 put((String) keyType.cast(keyInstance), (Integer) valueInstance);

18 return;

19 }

20 }

21

22 System.out.println("Unsupported Type");

23 }

24

25 static void put(String keyInstance, Integer valueInstance) {

26 System.out.println("put(String keyInstance, Integer valueInstance)");

27 }

28

29 static void put(String keyInstance, int valueInstance) {

30 System.out.println("put(String keyInstance, int valueInstance)");

31 }

Figure 5. The method heterogeneousInterfaceTest illustrates a possible way to map a generalized HHAMT interface to
specialized functions with type guards (cf. switch statement).
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