2,395 research outputs found

    Development of an image converter of radical design

    Get PDF
    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product

    A survey of algorithmic methods in IC reverse engineering

    Get PDF
    The discipline of reverse engineering integrated circuits (ICs) is as old as the technology itself. It grew out of the need to analyze competitor’s products and detect possible IP infringements. In recent years, the growing hardware Trojan threat motivated a fresh research interest in the topic. The process of IC reverse engineering comprises two steps: netlist extraction and specification discovery. While the process of netlist extraction is rather well understood and established techniques exist throughout the industry, specification discovery still presents researchers with a plurality of open questions. It therefore remains of particular interest to the scientific community. In this paper, we present a survey of the state of the art in IC reverse engineering while focusing on the specification discovery phase. Furthermore, we list noteworthy existing works on methods and algorithms in the area and discuss open challenges as well as unanswered questions. Therefore, we observe that the state of research on algorithmic methods for specification discovery suffers from the lack of a uniform evaluation approach. We point out the urgent need to develop common research infrastructure, benchmarks, and evaluation metrics

    A Solder-Defined Computer Architecture for Backdoor and Malware Resistance

    Get PDF
    This research is about securing control of those devices we most depend on for integrity and confidentiality. An emerging concern is that complex integrated circuits may be subject to exploitable defects or backdoors, and measures for inspection and audit of these chips are neither supported nor scalable. One approach for providing a “supply chain firewall” may be to forgo such components, and instead to build central processing units (CPUs) and other complex logic from simple, generic parts. This work investigates the capability and speed ceiling when open-source hardware methodologies are fused with maker-scale assembly tools and visible-scale final inspection. The author has designed, and demonstrated in simulation, a 36-bit CPU and protected memory subsystem that use only synchronous static random access memory (SRAM) and trivial glue logic integrated circuits as components. The design presently lacks preemptive multitasking, ability to load firmware into the SRAMs used as logic elements, and input/output. Strategies are presented for adding these missing subsystems, again using only SRAM and trivial glue logic. A load-store architecture is employed with four clock cycles per instruction. Simulations indicate that a clock speed of at least 64 MHz is probable, corresponding to 16 million instructions per second (16 MIPS), despite the architecture containing no microprocessors, field programmable gate arrays, programmable logic devices, application specific integrated circuits, or other purchased complex logic. The lower speed, larger size, higher power consumption, and higher cost of an “SRAM minicomputer,” compared to traditional microcontrollers, may be offset by the fully open architecture—hardware and firmware—along with more rigorous user control, reliability, transparency, and auditability of the system. SRAM logic is also particularly well suited for building arithmetic logic units, and can implement complex operations such as population count, a hash function for associative arrays, or a pseudorandom number generator with good statistical properties in as few as eight clock cycles per 36-bit word processed. 36-bit unsigned multiplication can be implemented in software in 47 instructions or fewer (188 clock cycles). A general theory is developed for fast SRAM parallel multipliers should they be needed

    Associations between health, management and antimicrobial use in Danish swine and veal calves

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development

    Introduction to the LaRC central scientific computing complex

    Get PDF
    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley

    Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 1. Earth Observatory Satellite system definition study (EOS)

    Get PDF
    A listing of the Earth Observatory Satellite (EOS) candidate missions is presented for use as a baseline in describing the EOS payloads. The missions are identified in terms of first, second, and third generation payloads. The specific applications of the EOS satellites are defined. The subjects considered are: (1) orbit analysis, (2) space shuttle interfaces, (3) thematic mapping subsystem, (4) high resolution pointable imager subsystem, (5) the data collection system, (6) the synthetic aperture radar, (7) the passive multichannel microwave radiometer, and (8) the wideband communications and handling equipment. Illustrations of the satellite and launch vehicle configurations are provided. Block diagrams of the electronic circuits are included

    Significant Accomplishments in Science and Technology at Goddard Space Flight Center, 1969

    Get PDF
    Aerospace scientific and technological studies in 1969 for satellite systems and spacecraft mission
    corecore