190 research outputs found

    Stronger multi-commodity flow formulations of the (capacitated) sequential ordering problem

    Get PDF
    The sequential ordering problem (SOP) is the generalisation of the asymmetric travelling salesman problem in which there are precedence relations between pairs of nodes. Hernandez & Salazar introduced a multi-commodity flow (MCF) formulation for a generalisation of the SOP in which the vehicle has a limited capacity. We strengthen this MCF formulation by fixing variables and adding valid equations. We then use polyhedral projection, together with some known results on flows, cuts and metrics, to derive new families of strong valid inequalities for both problems. Finally, we give computational results, which show that our findings yield good lower bounds in practice

    Valid inequalities for the single-item capacitated lot sizing problem with step-wise costs

    Get PDF
    This paper presents a new class of valid inequalities for the single-item capacitated lotsizing problem with step-wise production costs (LS-SW). We first provide a survey of different optimization methods proposed to solve LS-SW. Then, flow cover and flow cover inequalities derived from the single node flow set are described in order to generate the new class of valid inequalities. The single node flow set can be seen as a generalization of some valid relaxations of LS-SW. A new class of valid inequalities we call mixed flow cover, is derived from the integer flow cover inequalities by a lifting procedure. The lifting coefficients are sequence independent when the batch sizes (V) and the production capacities (P) are constant and if V divides P. When the restriction of the divisibility is removed, the lifting coefficients are shown to be sequence independent. We identify some cases where the mixed flow cover inequalities are facet defining. A cutting plane algorithmis proposed for these three classes of valid inequalities. The exact separation algorithmproposed for the constant capacitated case runs in polynomial time. Finally, some computational results are given to compare the performance of the different optimization methods including the new class of valid inequalities.single-item capacitated lot sizing problem, flow cover inequalities, cutting plane algorithm

    A heuristic approach for multi-product capacitated single-allocation hub location problems

    Get PDF
    Tese de mestrado, Estatística e Investigação Operacional, Universidade de Lisboa, Faculdade de Ciências, 2015Em redes onde o fluxo entre nodos é muito elevado (como pode ser o caso do transporte de pessoas e mercadorias ou até mesmo fluxo de dados numa rede), torna-se menos dispendioso criar pontos onde se concentram os fluxos provenientes das diferentes origens para depois serem consolidados e redistribuídos até aos destinos. A esses pontos dá-se o nome de hubs. O problema de localização de hubs consiste na localização de hubs numa rede e na alocação de todos os nodos da rede a esses hubs, de modo a que se possa encaminhar os fluxos entre os pares origem-destino a menos que sejam hubs. A rede constituída pelos hubs é normalmente definida como completa e não se permitem ligações diretas entre os pares origem-destino. Para além disso, assume-se que existe um factor de desconto para o fluxo que circula entre hubs. Neste tipo de redes (hub-and-spoke networks) podem aparecer duas variantes, no que diz respeito à alocação dos nodos aos hubs: single-allocation e multiple-allocation. No primeiro caso, permite-se apenas uma ligação de cada nodo não hub a um hub de modo a que todo o fluxo com origem e destino a cada nodo saia e chegue a esse nodo através de apenas um hub. No caso em que se tem multiple-allocation, cada nodo poderá ser afecto a mais do que um hub e o fluxo que chega e sai desse nodo poderá usar mais do que um hub. Algumas variantes que se poderão considerar para este problema incluem restrições de capacidade nos hubs (restrições que limitam a capacidade de um hub processar uma certa quantidade de fluxo de origem, limitações na capacidade total, limitações no processamento de fluxo que sai do hub, etc.), restrições de capacidade nos arcos, problemas multi-periódicos, presença de incerteza, o número de hubs ser fixo, o tipo de objectivo (minimizar custos, minimizar distâncias entre hubs, etc.) entre outras. A necessidade de aproximar este tipo de problemas aos casos que se observam no mundo real leva à inclusão de cada vez mais restrições dando origem a mais variantes do problema. Neste trabalho, será abordado o problema de localização de hubs na variante single-Allocation, com restrições de capacidade em relação ao fluxo que cada hub é capaz de processar. Para além disso, considera-se fluxos relativos a mais do que um tipo de produto. Este problema é designado por Problema Multi-produto de Localização de Hubs com Capacidade1. Cada hub poderá ser dedicado a processar apenas um tipo de produto, poderá processar mais do que um, ou mesmo todos. A rede de hubs é completa para cada produto mas, no entanto, se se considerar a rede de hubs para todos os produtos, esta poderá não ser completa. Como constatado em Correia et al. [17], no caso em que cada hub processa todos os tipos de produto, resolver o problema multi-produto ao invés de se resolver vários problemas, um para cada produto em separado, dá origem a melhores resultados. A complexidade inerente a este tipo de problemas leva a que sejam classificados como problemas NP-Hard pois não existem algoritmos que sejam capazes de os resolver em tempo polinomial. Por esta razão faz sentido desenvolver algoritmos heurísticos de modo a se conseguir obter, em tempo útil, soluções para instâncias maiores do problema . Como referido em Meyer et al. [51], em problemas de localização de hubs, duas soluções com valores objectivo muito semelhantes poderão ser estruturalmente muito diferentes, e portanto, através um mecanismo de pesquisa local poderá ser muito difícil a passagem de uma boa solução para outra melhor. Por esta razão, neste trabalho opta-se por uma heurística que se baseia num método em que se constroem soluções repetidamente. Para a construção das soluções, considerando que um processo de construção do tipo Greedy poderia dar origem a um número limitado de soluções e que as componentes da solução que são escolhidas por último são as piores, optou-se pelo desenvolvimento de um algoritmo de Ant Colony Optimization (ACO). Esta meta-heurística baseia-se no comportamento apresentado pelas formigas quando estas procuram alimento. Quando uma formiga deixa a colónia em busca de alimento, no seu trajeto, deposita um químico (feromona) que pode ser detectado por outras formigas. Quanto maior a concentração de feromona, maior a atração de cada formiga por esse trajeto e, portanto, os trajetos com maiores concentrações de feromonas serão percorridos por mais formigas. Por outro lado, se o caminho de ida e volta até ao alimento for mais curto, mais vezes será percorrido e maior será a concentração de feromona nesse caminho. O resultado destes dois tipos de reforço positivo nas concentrações de feromona nos trajetos percorridos pelas formigas, aliados ao facto de que existe evaporação do químico (a concentração de feromona diminui nos caminhos menos percorridos ao longo do tempo) dá origem aos \carreirinhos" de formigas que se podem observar na natureza e que normalmente representam o caminho mais curto entre o alimento e a Colónia de formigas. Considere-se o problema em questão em que se tem n nodos e p produtos. Para a representação das soluções, em vez de se considerar uma matriz binária n χ n χ p, onde o valor 1 representa uma afetação, considerou-se uma matriz n χ p, em que cada entrada representa, para cada produto, o hub ao qual o nodo foi afecto. O caso em que um nodo é afecto a si mesmo indica que esse nodo é hub para o produto correspondente. Este tipo de representação permite reduzir o tamanho da matriz e diminuir o uso da memória computacional. Antes da construção de uma solução, é aplicado um pré-processamento que vai evitar, com base nas restrições do problema, que certas componentes da solução sejam consideradas durante o processo de construção da solução. Deste modo, reduz-se o espaço de procura de soluções e algum esforço computacional. Para a construção de uma solução, escolhe-se o tamanho da colonia (o número de formigas que pertencem à colónia) e cada formiga vai escolhendo, sucessivamente, componentes da solução através de uma regra pseudo-aleatória onde algumas componentes da solução são escolhidas de um modo greedy e outras são escolhidas através de roulette wheel selection. A cada componente da solução é atribuído um valor inicial de feromona e, à medida que cada formiga vai adicionando componentes à solução, o valor da feromona associado à componente adicionada vai decrescendo, o que resulta na diminuição da probabilidade de que essa componente seja escolhida pela próxima formiga, dando origem à diversificação do conjunto de soluções construído por cada colónia. No fim, depois de todas as formigas terem construído uma solução, escolhe-se a melhor solução e reforça-se a concentração de feromona na melhor solução construída pela colónia. Se, por acaso, uma formiga der origem a uma solução não admissível, a solução construída por essa formiga não é considerada. Para mais detalhe em relação a este processo consultar Dorigo et al. [20]. Este tipo de algoritmo permite a inclusão de métodos de pesquisa local de modo a que a solução obtida por cada colónia seja melhorada. Com o objectivo de obter um algoritmo mais eficiente, escolheu-se incluir esta possibilidade e procedeu-se ao reforço da concentração de feromona após feita uma pesquisa local. Na pesquisa local efectuada, usaram-se três tipos de vizinhança. Um deles fecha os hubs dedicados que só servem a si próprios e realoca-os a outros já abertos para esse mesmo produto. Outro, escolhe aleatoriamente um nodo alocado a um hub dedicado para um dado produto e realoca-o a outro hub dedicado ao mesmo produto. Um terceiro, escolhe um hub aleatoriamente e transforma-o num nodo, realocando-o a outro hub dedicado ao mesmo tipo de produto. De modo a obter soluções iniciais melhores, explora-se a possibilidade de atribuir valores iniciais de feromona mais altos às componentes de solução pertencentes à solução da relaxação linear, na proporção do valor correspondente no caso das variáveis 0-1. Uma outra variação explorada consiste em fazer o reforço do valor de feromona às componentes da solução, apenas quando esta é a melhor de todas encontrada até ao momento, permitindo que haja evaporação de certas componentes de solução que poderão estar a ser escolhidas consecutivamente e permitindo que se escape mais facilmente de óptimos locais. Após implementação do algoritmo procede-se à fase dos testes computacionais em instâncias do problema com 10, 20, 25 e 40 nodos, 1, 2 e 3 produtos e hubs que processam 1, 2 e 3 produtos. As instâncias usadas nos testes computacionais pertencem ao Australian Post data set e foram adaptados por Correia et al. [17] de modo a que se tivesse dados para mais do que um tipo de produto.In this thesis, an heuristic procedure is proposed for the the multi-product capacitated single-allocation hub location problem. When addressing a problem in which it is necessary to determine the transportation of large commodity flows between many origin-destination (O-D) pairs, instead of using direct links, it becomes more efficient to design the networks in such a way that some of the nodes become consolidation centers or hubs. The Multi-Product Capacitated Single-Allocation Hub Location Problem (MP-CSAHLP according to Correia et al. [17]), is a NP-Hard problem in which several types of ow are considered, making it possible to consider the case when multiple types of products are to be shipped between each O-D pair. It can be seen as an extension of the classical Capacitated Single-Allocation Hub Location Problem. In the problem investigated in this work, no more than one hub can be located in each node and the hubs can be either dedicated (each hub can only handle one type of product) or non-dedicated (one hub can handle more than one type product). The hubs have capacity limitations regarding the incoming flow. Furthermore, the hub network is complete for each product but, when considering the hub network as a whole, it does not necessarily have to be complete. The goal is to locate the hubs in the network, allocate the non-hub nodes to the opened hubs and route the flow between each O-D pair. The objective is to minimize the total ow routing cost plus the setup costs of the hubs and costs of preparing the hubs to handle the different types of products. In order to obtain feasible solutions to the above problem, an Ant Colony Optimization procedure is proposed, which is a constructive, population-based meta-heuristic based in the foraging behavior of ants. Indirect communication between the ants through pheromones reflects the colony search experience. High-quality solutions are found as an outcome of the global cooperation among all the ants of the colony. A preprocessing procedure is also proposed in which some solution components are forbidden based on the problems restrictions. Such preprocessing reduces the search space and thus may reduce the computational effort. The proposed heuristic uses a single ant colony, which simultaneously chooses the hubs and allocates the nodes to the hubs. Once these solutions are found, the routing of the flow is computed in a short amount of time, using the optimization models for the MP-CSAHLP in which some variables (location and allocation) are fixed. The results show that the proposed heuristic has the potential to find good quality solutions for the MP-CSAHLP and that its performance can be improved with finer parameter tuning, longer runs and more intense local search

    A collaborative framework in outbound logistics for the us automakers

    Get PDF
    The competitive landscape of the U.S. automotive market has transformed from the traditional Big Three players to too many viable players. In 2008-2009, the harsh market conditions, excess production capacity, capital asset redundancies, and many inefficient strategies submerged as the roadblocks for the US automakers to stay competitive and profitable in the North American market. In this new competitive era, cross-company collaboration in product development, standardizing and communizing supply base, sharing flexible manufacturing platforms, using common inbound and out bound logistics service providers and warehousing etc. can play vital roles for the US automakers to reduce overall cost and return to profitability. Through the horizontal collaboration in the outbound logistics operations, these companies can create close-knit business partnership and act faster than the foreign rivals in delivering finished vehicles at the optimum cost. The optimization of outbound logistics operations through consolidation and collaboration among OEMs has tremendous potential to contribute to the profitability by lowering the cost of transportation, in-house inventory, transportation time, and facility costs. The collaboration in the intra- and inter-OEM outbound logistics operations is a critical area that the US automakers need to pay attention and prioritize in their cost reduction initiatives. This research presents an integrated collaboration framework for the outbound logistics operations of the US automakers. In our framework, we propose three potential levels for the US automakers to form outbound logistics collaboration: operational, tactical, and strategic. Our research proposition is to improve the performance of outbound logistics systems of automotive OEMs by means of horizontal collaboration between plants and competing OEMs. The proposed research thus relates to the literature on logistics system design and management and horizontal collaboration in supply chain management. The collaboration framework is demonstrated through a real world case study in US automotive industry. The contribution of this research is the introduction of a framework for intra- and inter-OEM collaboration and the development of novel logistics network design and flow models integrated with inventory models, lost sales, and expedited shipment. Besides the contribution to the academic literature, the proposed collaborative distribution system is a new concept in the automotive industry. Hence, this novel research work will also benefit to the practitioners. Keywords: Operational Collaboration, Tactical Collaboration, Strategic Collaboration, Frequency based Inventory, Customer Patience and Lost Sales, Expedited Shipments

    Survey of Consistent Network Updates

    Get PDF
    Computer networks have become a critical infrastructure. Designing dependable computer networks however is challenging, as such networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be flexible enough to support fast updates, e.g., due to a change in the security policy, an increasing traffic demand, or a failure. The advent of Software-Defined Networks (SDNs) promises to provide such flexiblities, allowing to update networks in a fine-grained manner, also enabling a more online traffic engineering. In this paper, we present a structured survey of mechanisms and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable update consistency properties a network should provide, the algorithmic techniques which are needed to meet these consistency properties, their implications on the speed and costs at which updates can be performed. We also discuss the relationship of consistent network update problems to classic algorithmic optimization problems. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs), the fundamental underlying problems are not new, and we also provide a historical perspective of the subject

    Multi-level production planning with raw-material perishability and inventory bounds

    Get PDF
    This thesis focuses on studying one of the most important and fundamental links in supply chain management: production planning. A considerably common assumptions in most of the production planning research literature is that the intermediate items involved in the production process have unlimited lifespans, meaning they can be stored and used indefinitely. In real life applications, whether referring to physical exhaustion, loss of functionality, or obsolescence, most items deteriorate over time and cannot be stored infinitely without enforcing specific constraints on a set of crucial production planning decisions. This is specially the case for multi-level production structures. In the thesis, we first introduce the fundamental characteristics in production planning modeling and discuss some of the common elements and assumptions used to model complex production planning problems. We also present an overview of the production planning research evolution. Our attention is then focused on the most relevant modeling approaches for perishability in production planning available in the research literature. We present lot-sizing problems that incorporate raw-material perishability and analyze how these considerations enforce specific constraints on a set of fundamental decisions. Three variants of the two-level lot-sizing problem are studied: with fixed raw-material shelf-life, with raw-material functionality deterioration, and with functionality and volume deterioration. We propose mixed-integer programming formulations for each of these variants and perform computational experiments with sensitivity analyses, showing the added value of explicitly incorporating perishability considerations into production planning problems. Using a Silver-Meal-based rolling-horizon algorithm, we develop a sequential approach to solve the studied problems and compare the results with our proposed formulations. We then shift our attention to study the multi-item, multi-level lot-sizing problem with raw-material perishability and batch ordering, inspired by an application in advanced composite manufacturing processes. We proposed a mixed-integer programming formulation for the problem and perform computational experiments with sensitivity analyses, demonstrating its potentials for practical applications in planning composite production. Finally, we address the study of production planning involving inventory bounds. This characteristic is shown to be related to the perishable raw-material considerations and constitutes another fundamental aspect of this family of problems. We study the multi-item uncapacitated lot-sizing problem with inventory bounds, presenting a new mixed-integer programming formulation for the case of non-speculative (Wagner-Whitin) cost structure using a special set of variables to determine the production intervals for each item. We then reformulate the problem using a variable-splitting technique that allows for a Dantzig-Wolfe decomposition. The Dantzig-Wolfe principle exploits the structure of the problem by decomposing it into two sub-problems: one relating to the production decisions per item and another that relates to the inventory decisions per period. We propose a Column Generation algorithm for solving the Dantzig-Wolfe reformulation. Computational experiments are performed to evaluate the proposed formulations and algorithms on a set of benchmark instances. This research presents important contributions on a variety of fields related to production planning that had only been partially studied in the literature. It also opens important research paths for the integration of different types of raw-material perishability in multi-level product structures processes, with the study of finished product inventory bounds

    A compact arc-based ILP formulation for the pickup and delivery problem with divisible pickups and deliveries

    Get PDF
    We consider the capacitated single vehicle one-to-one pickup and delivery problem with divisible pickups and deliveries (PDPDPD). In this problem, we do not make the standard assumption of one-to-one pickup and delivery problems that each location has only one transportation request. Instead we assume there are multiple requests per location that may be performed individually. This may result in multiple visits to a location. We provide a new compact arc-based ILP formulation for the PDPDPD by deriving time-consistency constraints that identify the order in which selected outgoing arcs from a node are actually traversed. The formulation can also easily be applied to the one-to-one PDP by restricting the number of times that a node can be visited. Numerical results on standard one-to-one PDP test instances from the literature show that our compact formulation is almost competitive with tailor-made solution methods for the one-to-one PDP. Moreover, we observe that significant cost savings up to 15% on average may be obtained by allowing divisible pickups and deliveries in one-to-one PDPs. It turns out that divisible pickups and deliveries are not only beneficial when the vehicle capacity is small, but also when this capacity is unrestrictive

    Precedence-Constrained Arborescences

    Full text link
    The minimum-cost arborescence problem is a well-studied problem in the area of graph theory, with known polynomial-time algorithms for solving it. Previous literature introduced new variations on the original problem with different objective function and/or constraints. Recently, the Precedence-Constrained Minimum-Cost Arborescence problem was proposed, in which precedence constraints are enforced on pairs of vertices. These constraints prevent the formation of directed paths that violate precedence relationships along the tree. We show that this problem is NP-hard, and we introduce a new scalable mixed integer linear programming model for it. With respect to the previous models, the newly proposed model performs substantially better. This work also introduces a new variation on the minimum-cost arborescence problem with precedence constraints. We show that this new variation is also NP-hard, and we propose several mixed integer linear programming models for formulating the problem
    corecore