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Abstract. We consider the capacitated single vehicle one-to-one pickup and delivery
problemwith divisible pickups and deliveries (PDPDPD). In this problem, we do not make
the standard assumption of one-to-one pickup and delivery problems (PDPs) that each
location has only one transportation request. Insteadwe assume there aremultiple requests
per location that may be performed individually. This may result in multiple visits to a
location. We provide a new compact arc-based integer linear programming (ILP) for-
mulation for the PDPDPD by deriving time-consistency constraints that identify the order
in which selected outgoing arcs from a node are actually traversed. The formulation can
also easily be applied to the one-to-one PDP by restricting the number of times that a node
can be visited. Numerical results on standard one-to-one PDP test instances from the
literature show that our compact formulation is almost competitive with tailor-made
solution methods for the one-to-one PDP. Moreover, we observe that significant cost
savings of up to 15% on average may be obtained by allowing divisible pickups and
deliveries in one-to-one PDPs. It turns out that divisible pickups and deliveries are not only
beneficial when the vehicle capacity is small, but also when this capacity is unrestrictive.

Funding: This work was partially funded by the Netherlands Organisation for Scientific Research and
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2020.1016.
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1. Introduction
Weconsider the capacitated single-vehicle one-to-one
pickup and delivery problem with divisible pickups
and deliveries (PDPDPD or in short (PD)3). This
problem is related to the standard multicommodity
one-to-one pickup and delivery problem (PDP), in
which several transportation requests, each corre-
sponding to a unique commoditywith an origin and a
destination, have to be carried out at minimal costs
using a single capacitated vehicle. The difference
from the standard one-to-one PDP, however, is that
in the (PD)3 we do not assume that each location is
visited exactly once. Instead we allow multiple visits
to the same location to separately deal with trans-
portation requests that have the same origin but
a different destination or the same destination but a
different origin. However, the loads of the trans-
portation requests cannot be split. This is, for ex-
ample, relevant in offshore logistics when technicians
need to be transported between offshore platforms
using a helicopter with limited capacity. Allowing
divisible pickups and deliveries in such problems
may lead to significant cost savings compared with
when these requests have to be combined.

We propose a new integer linear programming
(ILP) formulation for the (PD)3. Our formulation is
arc-based,with binaryflowvariables representing the
paths from the starting depot to the origin locations of
each transportation request and from their origin
locations to their destination locations, along which
single-vehicle traverses. The challenge in deriving a
correct formulation is that it is not clear which of the
selected outgoing arcs is traversed first based on
the binary flow variables. More importantly, for any
given set of selected arcs it is unclear whether there
exists an Euler path from the starting depot to ending
depot that can fulfill all transportation requests. To
address this issue, we introduce a new set of con-
straints that guarantees that all selected arcs are time
consistent. Intuitively, this new set of constraints
identifies the traversed sequence of the selected out-
going arcs from a node and only allows solutions for
which all transportation requests can be carried out. The
obtained ILP formulation can also easily be applied to
the standard one-to-one PDP by restricting the number
of times that a node may be visited.
The main contributions of this paper are as follows.
• We derive a novel compact arc-based ILP for-

mulation for the one-to-one PDPwith divisible pickups
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and deliveries, (PD)3, by deriving time-consistency con-
straints between arcs.

• Our ILP formulation does not use any artificial
node duplication. This enabled us to be the first to
exactly solve instances of the (PD)3 of significant size:
we solve instances involving up to 25 nodes or 15
transportation requests. This is significantly larger
than the previous record of three nodes.

• When solving standard one-to-one PDPs, our
compact formulation for the (PD)3 is almost com-
petitive with solution methods that were tailor-made
for the standard one-to-one PDP.

• We show that cost savings of up to 15% on av-
erage may be obtained by allowing divisible pickups
and deliveries in one-to-one PDPs. These savings are
not only obtained when the vehicle capacity is small,
but also when the vehicle capacity is unrestrictive.

The remainder of the paper is organized as follows.
We first provide a summary of the relevant literature
in Section 2. Then, we derive our new compact ILP
formulations for the one-to-one PDP and the (PD)3 in
Section 3. In particular, we prove that both ILP for-
mulations are correct. Afterward, we present nu-
merical experiments and insights in Section 4. Finally,
we conclude our paper with a discussion in Section 5.

2. Literature Review
In this section, we review the routing literature re-
lated to our problem. To keep this literature review
concise, we mainly focus on exact solution methods.
We distinguish three categories of routing problems:
(1) standard vehicle routing problems, which con-
sider only transportation requests for loads that origi-
nate at the depot andmust be delivered to a number of
locations; (2) one-to-many-to-one PDPs, which con-
sider transportation requests for loads that originate
at the depot and must be delivered to locations and
loads that originate at locations andmust be delivered
to the depot; (3) one-to-one PDPs, which consider
transportation requests between pairs of locations,
while the vehicle starts and ends empty at the depot.
For a general overview of PDPs, we refer to the survey
papers of Berbeglia et al. (2007) and Parragh, Doerner,
and Hartl (2008). We study a variant of the one-to-one
PDP in this paper.

For each of the three categories of routing prob-
lems, numerous variants exist. We focus here on
those variants that allow for multiple visits to lo-
cations. Specifically, we discuss routing problems with
multiple location visits as resulting from split loads
or from divisible pickups and deliveries. Typically,
the distinction between the two is considered to be
as follows. For split loads each location can serve as
a pickup or delivery point (not both) for one com-
modity (e.g., Haddad et al. 2018). That is, everything
that is to be picked up from (delivered to) a location

has the same destination (origin). The model can de-
termine the quantity to be picked up or delivered
in each visit. For divisible pickups and deliveries, each
location can serve as a pickup and/or delivery point
for multiple commodities (e.g., Nagy et al. 2015). That
is, every location may require transportation of loads
to and/or from multiple other locations. The model
can determine which commodity is picked up or de-
livered in which visit. Our problem classifies as a
problem with divisible pickups and deliveries.
Split loads in the context of standard vehicle rout-

ing problems imply that multiple vehicles may be used
to deliver the total requested load to a location, that is,
the requested load may be split over a number of ve-
hicles. This is known as the split delivery vehicle
routing problem (SDVRP; seeDror and Trudeau 1989).
As a consequence, locations can be visited more than
once, which may result in considerable cost savings
(Archetti, Savelsbergh, and Speranza 2006). If loads
exceed the vehicle capacity, then they are only con-
sidered split if a location is visited more often than
required. In contrast, in problemswith divisible pickups
and deliveries we assume that the loads of all trans-
portation requests are below the vehicle capacity. Thus,
in a one-to-many-to-one PDP with divisible pickups
and deliveries, each customer location is visited at
most twice (i.e., once for the pickup and once for the
delivery; see Nagy et al. 2015). Bruck and Iori (2017)
consider a similar problem and propose an exact so-
lution method based on a nonelementary ILP formula-
tion of the problem. Salazar-González and Santos-
Hernández (2015) present a branch-and-cut algorithm
to address the one-to-many-to-one PDPwith split loads,
albeit with one rather than two commodities. A heu-
ristic for the one-to-many-to-one PDP with split loads
is presented in Lai et al. (2015), which is restricted to
an incomplete graph because of the specifics of the
presented case study.
For standard routing problemswith split loads, any

pair of vehicle routes in an optimal solution can have
at most one customer location in common (Dror and
Trudeau 1989), so that in the optimal solution any arc
between customer locations will be traversed at most
once. This property aids in strongly reducing the
solution space. For one-to-many-to-one PDPs with
divisible pickups and deliveries, however, a com-
parably strong reduction of the solution space ap-
pears not to exist (Nagy et al. 2015). In optimal so-
lutions to a one-to-many-to-one PDP with divisible
pickups and deliveries, arcs may therefore be tra-
versed multiple times (Nagy et al. 2015). This also
holds for our (PD)3, the one-to-one PDPwith divisible
pickups and deliveries (see Section 3.2).
A direct approach to address divisible pickups and

deliveries is to artificially duplicate the nodes in the
graph. Each node in the resulting extended graph then
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corresponds to the origin or destination of a single trans-
portation request only. With this approach, our (PD)3

would reduce to a standard one-to-one PDP on this
extended graph. The issue with this approach, how-
ever, is that state-of-the-art exact methods for the
standard one-to-one PDP can only solve instances
with up to 30 nodes and 15 transportation requests
(Hernández-Pérez and Salazar-González 2009, Gouveia
and Ruthmair 2015). A one-to-many-to-one PDPwith
divisible pickup and deliveries having N nodes would
at most have 2N nodes in the extended graph. This
approach is taken in, for example, Nagy et al. (2015).
In contrast, a one-to-one PDP with divisible pickups
and deliveries, like ours, may have up to 2N(N − 1)
nodes in the extended graph. This means that only
very small problem instances of our (PD)3 can be
solved exactly using this approach. In fact, the only
known exact solutions for the (PD)3 are due to Psaraftis
(2011) for instances with up to three nodes.

The standard one-to-one PDP (Hernández-Pérez
and Salazar-González 2009, Gouveia and Ruthmair
2015, Letchford and Salazar-González 2016) and the
dial-a-ride problem (Cordeau 2006; Baldacci, Bartolini,
and Mingozzi 2011) are strongly related and assume
each location can be visited at most once. Locations
may be visited multiple times in the one-to-one PDP
with split loads (Öncan et al. 2011, Şahin et al. 2013,
Haddad et al. 2018) and the dial-a-ride problem with
split loads (Parragh, de Sousa, and Almada-Lobo
2015). It is assumed that each origin (destination)
is linked to exactly one transportation request and
one destination (origin). In contrast, in the (PD)3 we
consider that pickups from one location may need to
be delivered to many other locations and that de-
liveries for one location may need to be pickup up
from many other locations. We do not allow loads to
be split if they have the same origin and destination,

but we do allow loads to be divided among multiple
pickups (deliveries) if they have a different destina-
tion (origin). To our knowledge, there is no literature
that presents an exact method that can solve the (PD)3

for instances of significant size. Psaraftis (2011) presents
a dynamic programming approach for the (PD)3,
solving instances with up to three nodes and six re-
quests. Heuristic methods are deployed in Nowak,
Ergun, and White (2008) and Nowak, Ergun, and
White (2009), where both split loads and divisible
pickups and deliveries are considered. Also Nowak,
Hewitt, and White (2012) consider both split loads
and divisible pickups and deliveries. However, the
assumption that all pickups in a route must be made
before any delivery is made strongly reduces the
solution space compared with our setting that builds
on the standard one-to-one PDP.
Table 1 summarizes the main differences between

our work and the literature discussed above that
employ exact solution methods. In this table, we use
DPD and SL to refer to divisible pickups and deliv-
eries and to split loads, respectively. We use P,D,PD
and P,D to indicate whether a node in the model may
serve as both pickup and delivery location or not. In
the latter case, the model requires node duplication to
model locations that have both a pickup and a de-
livery. For example, Nagy et al. (2015) study the one-
to-many-to-one PDP with divisible pickups and de-
livery, and hence, this paper could potentially be
classified as “max requests per node” = 2 and “max
node visits” = 2. However, the article uses node
duplication, which reduces the problem to “max re-
quests per node” = 1 and “max node visits” = 1 with
twice asmany nodes. Our paper allows “max requests
per node” and “max node visits” to take any value.
Only three papers fall broadly into the same category
as ours; however, these papers are distinctly different

Table 1. Main Characteristics of Our Paper Compared with the Literature

Reference

Max
requests
per node

Max
node
visits

Location
types

Problem
type

Cordeau (2006) 1 1 P,D —
Baldacci et al. (2011) 1 1 P,D —
Nagy et al. (2015) 1 1 P,D DPD
Öncan et al. (2011) 1 2 P,D SL
Parragh, de Sousa, and Almada-Lobo (2015) 1 ∞ P,D SL
Haddad et al. (2018) 1 ∞ P,D SL
Hernández-Pérez and Salazar-
González (2009)

m 1 P,D,PD —

Gouveia and Ruthmair (2015) m 1 P,D,PD —
Letchford and Salazar-González (2016) m 1 P,D,PD —
Psaraftis (2011) m m P,D,PD DPD
Nowak, Hewitt, and White (2012) m ∞ P,D,PD SL+DPD
Bruck and Iori (2017) 2 2 P,D,PD DPD
This paper m m P,D,PD DPD

Note. DPD, divisible pickups and deliveries; SL, split loads.
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(also discussed above). First, the method of Psaraftis
(2011) only solves problems with up to three nodes.
Second, Nowak, Hewitt, and White (2012) study a
strongly restricted version of the one-to-one PDP.
Third, Bruck and Iori (2017) study the one-to-many-
to-one PDP, whereas we study the one-to-one PDP.

3. Problem Formulation
In this section, we present our novel compact ILP
formulation for the (PD)3. This formulation can also
be used to solve the one-to-one PDP, which we dis-
cuss first in Section 3.1. The formulation for the (PD)3

is discussed in Section 3.2.
Let G � (V̄,A) denote a complete directed graph

with nodes V̄ � {0, 1, . . . ,N} and arcs A. Here, node 0
represents the starting depot, node N the ending
depot, and the remaining nodes V � V̄\{0,N} repre-
sent pickup and delivery locations. The problem is to
transport several commodities k ∈ K from their origin
ok ∈ V to their destination dk ∈ V using a single vehicle
at minimal costs. The vehicle has to start and end at
the starting and ending depots, respectively. More-
over, the capacity of the single vehicle is Q, and each
commodity k ∈ K has a weight 0 ≤ qk ≤ Q. We assume
that, once a commodity is picked up at its origin, it
stays in the vehicle until it is delivered at its desti-
nation. Finally, the costs of traversing arc a � (i, j) ∈ A
are denoted ca ≥ 0 and represent the costs of tra-
versing the shortest path from node i to node j.

In the (PD)3 of Section 3.2, we allow divisible pickups
and deliveries by not restricting the number of times
a node is visited, whereas in the one-to-one PDP
of Section 3.1, every location must be visited ex-
actly once. In all ILP formulations in this paper, we
use the binary variables xa, yka, and zka for all arcs a ∈ A
and commodities k ∈ K. They have the following
interpretation:

• xa represents whether the vehicle traverses a ∈ A,
• yka represents whether a ∈ A is traversed at any

point in time before commodity k ∈ K is picked
up, and

• zka represents whether a ∈ A is traversed at any
point in time after commodity k ∈ K is picked up and
before it is delivered.

For each commodity k ∈ K, the variables yka and zka
define a path from the starting depot to the origin ok
and from the origin ok to the destination dk, respec-
tively. The latter represents the path along which
commodity k is transported. By imposing that yka +
zka ≤ xa for all k ∈ K, we ensure that xa � 1 if this arc a is
on such a path.

3.1. One-to-One Pickup and Delivery Problem
In this subsection, we present a compact ILP for-
mulation for the one-to-one PDP without divisible

pickups and deliveries. We refer to this ILP formu-
lation as (I P):

min
x,y,z

∑
a∈A

caxa

s.t.
∑

a:s a( )�0
xa � 1,

∑
a:t a( )�0

xa � 0, (1)∑
a:s a( )�N

xa � 0,
∑

a:t a( )�N
xa � 1, (2)∑

a:s a( )�v
xa �

∑
a:t a( )�v

xa, v ∈ V, (3)

yka + zka ≤ xa, a ∈ A, k ∈ K, (4)∑
a:s a( )�0

yka � 1 , k ∈ K, (5)∑
k∈K

∑
a:t a( )�N

yka + zka
( ) � 0, (6)∑

a:t a( )�ok
yka −

∑
a:s a( )�ok

yka � 1, k ∈ K, (7)∑
a:t a( )�v

yka −
∑

a:s a( )�v
yka � 0,

k ∈ K, v ∈ V\ ok{ }, (8)∑
a:t a( )�ok

zka −
∑

a:s a( )�ok
zka � −1, k ∈ K, (9)∑

a:t a( )�dk
zka −

∑
a:s a( )�dk

zka � 1, k ∈ K, (10)∑
a:t a( )�v

zka −
∑

a:s a( )�v
zka � 0,

k ∈ K, v ∈ V\ ok, dk{ }, (11)∑
k∈K

qkzka ≤ Qxa, a ∈ A, (12)∑
a:t a( )�v

xa � 1, v ∈ V, (13)

xa, yka, z
k
a ∈ 0, 1{ }, a ∈ A, k ∈ K.

Here, s(a) and t(a) represent the starting and ending
nodes of arc a, respectively. Constraints (1) ensure
that we exit the starting depot once and do not enter it
again. Constraints (2) make sure that we enter the
ending depot once and do not leave it. Constraints (3)
ensure that the number of times a node v ∈ V is en-
tered equals the number of times it is exited. Con-
straints (4) say that we can only send flow along arc
a ∈ A if arc a is actually traversed. Constraints (5)
ensure that all commodities still have to be picked
up when we exit the starting depot. Similarly, con-
straint (6) makes sure that once we enter the ending
depot all commodities aredelivered. Constraints (7)–(11)
represent “flow continuity” and “pickup anddelivery
restrictions” on y and z. They ensure for every k ∈ K
that the yk and zk variables represent a path from the
depot to the origin ok and from the origin ok to the
destination dk, respectively. For the zk variables, this is
because (9) and (10) guarantee that the zk-path starts
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and ends at ok and dk, respectively, and (11) implies
that if the zk-path enters any other node v ∈ V\{ok, dk},
then the zk-path also has to leave that node v. Similarly
for the yk variables, constraints (5) and (7) guarantee
that the yk-path starts and ends at the depot and ok,
respectively, and (8) implies that if the yk-path enters
any node v ∈ V\{ok}, then it also leaves it. Finally,
constraints (12) specify the capacity constraints, and
constraints (13) guarantee that every node is visited
exactly once.

Proposition 1. The one-to-one PDP is correctly formulated
by (I P).
Proof. Because every node is visited exactly once,
because of constraints (13), it suffices to show that the x
variables do not admit any subtours. Suppose toward a
contradiction that the origin node ok of commodity k ∈ K
is part of a subtour. Then, there cannot exist a yk-path
from the starting depot to ok, violating constraints (5)–(8).
Similarly, a destination node dk cannot be part of any
subtour. We conclude that the x variables do not admit
any subtours. Hence, the one-to-one PDP is correctly
formulated by (I P). □

Remark 1. The one-to-one PDP is closely related to the
traveling salesman problem with pickup and delivery
(TSPPDP; see, e.g., Dumitrescu et al. 2010). In fact, the
TSPPDP equals the one-to-one PDP without capacity
constraints. Thus, a compact ILP formulation for the
TSPPDP is obtained by considering (I P) without ca-
pacity constraints (12).

3.2. One-to-One Pickup and Delivery Problem with
Divisible Pickups and Deliveries

Next, we consider (PD)3, the one-to-one PDP with
divisible pickups and deliveries. Thus, contrary to the
previous section, we do not restrict the number of
times each node is visited. Example 1 below illustrates
the potential benefits of doing so. Note that we as-
sume that the load of a commodity k ∈ K cannot be
split. Moreover, we assume that any arc a ∈ A in the
graph can be traversed at most once. This latter as-
sumption is not restrictive because we allow adding
multiple arcs between the same pair of nodes in A.
However, the user has to decide how many arcs to
include when constructing the ILP formulation. Ev-
idently, increasing this number of arcs may result in a
lower objective value, but at the cost of increased
computation times.

An upper bound on the maximum number of re-
quired parallel arcs is obtained as follows. Let αv
denote the number of transportation requests with
their origin at location v ∈ V, and let βv denote the
number of transportation requests with their desti-
nation at location v ∈ V. Then, including at most
min{αv1 + βv1 , αv2 + βv2} arcs from node v1 to every

adjacent node v2 suffices to achieve the lowest possible
objective value. Typically, however, lower values suffice
to take advantage of the divisible pickup and deliveries.

Example 1. In this example, we illustrate the potential
benefits of allowing divisible pickups and deliveries.
We consider a problem instance (see Figures 1 and 2)
with N � 7 and capacity Q � 2. There are four com-
modities that need to be transported: commodities 1–4
with origin-destination pairs (1, 2), (1, 6), (4, 3), and
(4, 5), respectively. All commodities have weight 1.
Figure 1 depicts an optimal solution under the

assumption that every node is visited at most once.
Observe that, in this solution, neither the deliveries of
commodities to nodes 2 and 3 nor those to nodes 5
and 6 are combined. This is because nodes 1 and 4 can
only be visited once. If we visit, for example, node 1,
thenwe have to pick up all commodities at node 1, and
because the vehicle capacity Q is restricted to 2, we
have to deliver all commodities corresponding to
node 1 before we can visit node 4.
If we instead allow divisible pickups and deliver-

ies, thenwemay visit node 1multiple times, and thus,
we can pick up only a single commodity, for example,
commodity 1, during the first visit to node 1. In this
way, there is sufficient remaining capacity in the vehicle
to also pick up commodity 3 at node 4, and deliver
these commodities together to nodes 2 and 3. The
resulting optimal solution is depicted in Figure 2.
Indeed, both nodes 1 and 4 are visited twice: the first
time to pick up commodities for nodes 2 and 3, and the
second time to pick up commodities for nodes 5 and 6.

A natural candidate for a compact ILP formulation
for the (PD)3 is (I P)without constraints (13), relaxing
the constraints that every node is visited exactly once.
However, it turns out that, without additional con-
straints on (x, y, z), infeasible routes may be con-
structed in this formulation (see Example 2). In par-
ticular, the fact that nodes may be visited multiple
times increases the complexity of the problem: based
on the variables yka and zka it is not necessarily clear

Figure 1. Optimal Solution If All Nodes Are Visited at
Most Once
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which of the multiple outgoing arcs from a node
should actually be traversed first.

Example 2. Consider a similar problem as in Example 1
with N � 6, but with sufficient capacity Q. There are
four commodities that need to be transported: com-
modities 1–4 with origin-destination pairs (1, 2), (1, 4),
(3, 4), and (5, 2), respectively.

In Figure 3, we have displayed possible paths along
which the commodities are transported from their
origins to their destinations: the first two commodi-
ties are transported directly (dotted lines) fromnode 1
to 2 and from node 1 to 4, respectively, and the last
two commodities are transported indirectly via node 1
(dashed lines) from node 3 to 4 and from node 5 to 2,
respectively. The solid lines, representing the route that
the vehicle traverses (with xa � 1 for arcs on this route),
cover all z-paths of all commodities. The problem,
however, is that node 1 is visited multiple times, so
that we do not know which outgoing arc, (1, 2) or
(1, 4), is visited first. More importantly, a careful in-
spection shows that in either case we are not able to
deliver all commodities. Indeed, if arc (1, 2) is tra-
versed first, then commodity 4 cannot be transported
from node 5 to 2, and if arc (1, 4) is traversed first, then
the commodity 3 cannot be transported from node 3
to 4. This illustrates that additional constraints on

(x, y, z) are required to guarantee that feasible routes
are obtained.

To address the issues illustrated in Example 2, we
introduce the concept of time consistency in Section 3.2.1,
and we derive appropriate linear constraints on yka
and zka using this concept. Next, we use these linear
constraints to construct a correct compact ILP for-
mulation for the (PD)3 in Section 3.2.2. In Section 3.2.3,
we show that we do not need all time-consistency
constraints to obtain a correct formulation.

3.2.1. Time Consistency. In this section, we assume
that we are given binary values for xa, yka, and zka,
satisfying (1)–(12) of (I P). For every arc a ∈ A, we
define the sets Oa,Da ⊂ K as
• Oa :� {k ∈ K : yka � 1},
• Da :� {k ∈ K : yka + zka � 1}.
That is, Oa contains the commodities k ∈ K that are

not yet picked upwhen arc a ∈ A is traversed,whereas
Da contains the commodities k ∈ K that are not yet
delivered when arc a ∈ A is traversed. The set Da in-
cludes both commodities k ∈ K that are not yet picked
up and commodities k ∈ K that are picked up but not
yet delivered. Thus, Oa ⊆ Da for every arc a ∈ A.
Intuitively, it is clear that if Oa1 ⊃ Oa2 andDa1 ⊃ Da2 ,

then arc a1 needs to be traversed before arc a2 because
more commodities still need to be picked up and
fewer commodities still need to be delivered when
traversing arc a1 compared with when traversing
arc a2. We use this intuition to construct a formal
precedence relation between two arcs a1 and a2, where
a1 
 a2 will have the interpretation that a1 can be
traversed before a2. In case a1 �
 a2 and a2 �
 a1, thenwe
call arcs a1 and a2 time inconsistent because neither arc
a1 can be traversed before a2 nor a2 before a1. We show
in Theorem 1 that we can exclude time inconsistency
between two arcs by using appropriate linear con-
straints on yka and zka. First, however, we introduce our
precedence relation.

Definition 1. For every pair of arcs a1, a2 ∈ Awe say that
a1 precedes a2, denoted a1 
 a2, if and only if Oa1 ⊇ Oa2
and Da1 ⊇ Da2 . If a1 
 a2 and a2 
 a1, then we write
a1 
 a2. Moreover, we say that a1 strictly precedes a2,
denoted a1 ≺ a2, if a1 
 a2 and a1 �
 a2. That is, if Oa1 ⊇
Oa2 andDa1 ⊇ Da2 , and at least one of the two inclusions
is strict.

The interpretation of a1 ≺ a2 is that a1 has to be
traversed before a2. For example, ifOa1 ⊃ Oa2 , then this
is true because there exists a commodity k that is
already picked up when traversing a2 but not when
traversing a1. Similarly, a1 has to be traversed before a2
ifDa1 ⊃ Da2 , and thus, a commodity k has already been
delivered when traversing a2 but not when travers-
ing a1. The interpretation of a1 
 a2 is that Oa1 � Oa2

Figure 3. Inconsistency Between Paths

Figure 2. Optimal Solution If Nodes May Be Visited
Multiple Times
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andDa1 � Da2 , and thus, exactly the same commodities
have to be picked up and have to be delivered when
traversing arc a1 aswhen traversing arc a2. Such arcs a1
and a2 may be traversed in arbitrary order. Finally,
a1 
 a2 implies that either a1 ≺ a2 or a1 
 a2. In either
case, arc a1 can be traversed before arc a2.

Definition 2. For every pair of arcs a1, a2 ∈ A, we call a1
and a2 time consistent if and only if a1 
 a2 or a2 
 a1.
That is, if either a1 precedes a2 or a2 precedes a1. We call
a1 and a2 time inconsistent if a1 �
 a2 and a2 �
 a1.

Remark 2. Note that, when xa � 0, constraints (4) imply
that yka � zka � 0 for all k ∈ K, and thus, Oa � Da � ∅.
Thus, if xa � 0, then by definition arc a is time consistent
with any other arc.

If a1 �
 a2 for two arcs a1, a2 ∈ A, then arc a1 cannot be
traversed before a2. Hence, if a1 and a2 are time in-
consistent, that is, a1 �
 a2 and a2 �
 a1, then there does
not exist a feasible pickup and delivery route corre-
sponding to (x, y, z). Hence, at the least, we require
that all arcs are pairwise time consistent.

Example 3. In the simple problem of Example 2, it
turns out that the arcs (1, 2) and (1, 4) are not time
consistent for the (x, y, z) solution considered there.
In Figures 4 and 5, we see the y-path (dashed) and
z-path (solid) of commodity 3 and commodity 4, re-
spectively. Hence,O(1,2) � {3} andO(1,4) � {4}. Clearly,
O(1,2) �⊆ O(1,4) and O(1,4) �⊆ O(1,2), and thus, (1, 2) and
(1, 4) are not time consistent. Intuitively, O(1,2) � {3}
implies that when traversing arc (1, 2) commodity 4 is
already picked up, but commodity 3 is not, whereas
O(1,4) � {4} implies that when traversing arc (1, 4) com-
modity 3 is already picked up, but commodity 4 is not.
This is an infeasible solution for the (PD)3.

In the remainder of this section, we derive linear
constraints on yka and zka to guarantee that a1 and a2 are

time consistent. For notational convenience we in-
troduce the auxiliary variable z̄ka for all k ∈ K and a ∈ A,
defined as

z̄ka :� yka + zka , k ∈ K, a ∈ A.

This binary variable equals 1 if commodity k still
needs to be picked up or delivered when arc a ∈ A is
traversed. In other words, z̄ka � 1 if and only if k ∈ Da.
First we model when a1 precedes a2.

Lemma 1. Let two arcs a1, a2 ∈ A be given. Then, a1 
 a2 if
and only if yka1 ≥ yka2 and z̄ka1 ≥ z̄ka2 for all k ∈ K.

Proof. This follows directly from the definitions of
a1 
 a2, Oa, and Da. □

Thus, by Lemma 1we can guarantee that a1 precedes
a2 by imposing the constraints yka1 ≥ yka2 and z̄ka1 ≥ z̄ka2
for all k ∈ K. In our optimization problem, how-
ever, we do not know beforehand whether a1 pre-
cedes a2 or a2 precedes a1, but only that they need to
be time consistent. This means that to be able to
use the constraints in an ILP we have to rewrite
the disjunction

⋀
k∈K

yka1 ≥ yka2
( )

∧ z̄ka1 ≥ z̄ka2
( )( )( )

⋁ ⋀
k∈K

yka2 ≥ yka1
( )

∧ z̄ka2 ≥ z̄ka1
( )( )( )

(14)

as a conjunction. To do so, we first introduce the
following auxiliary lemma.

Lemma 2. Let uk1, u
k
2,w

k
1,w

k
2 be binary variables for all

k ∈ K. Then,

uk1 ≥ uk2 ∀ k ∈ K or wk
2 ≥ wk

1 ∀ k ∈ K,

⇔ uk12 + wk2
1 ≤ 1 + uk11 + wk2

2 ∀ k1, k2 ∈ K.

Figure 4. Path of Commodity 3 with Origin-Destination
Pair (3, 4)

Figure 5. Path of Commodity 4 with Origin-Destination
Pair (5, 2)
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Proof. Note that (uk1 ≥ uk2 ∀ k ∈ K or wk
2 ≥ wk

1 ∀ k ∈ K) is
equivalent to the disjunction

⋀
k∈K

uk1 ≥ uk2
( )( )⋁ ⋀

k∈K
wk

2 ≥ wk
1

( )( )
, (15)

which can be rewritten as the conjunction
⋀

k1,k2∈K((uk11 ≥
uk12 ) ∨ (wk2

2 ≥ wk2
1 )). To see this, observe that if the dis-

junction in (15) holds, then either uk1 ≥ uk2 for all k ∈ K
or wk

2 ≥ wk
1 for all k ∈ K, and thus, (uk11 ≥ uk12 ) ∨ (wk2

2 ≥
wk2

1 ) holds for all k1, k2 ∈ K. On the other hand, if the
conjunction holds, then it is not possible that the
disjunction does not hold, because otherwise there
would exist k1 ∈ K and k2 ∈ K such that both uk11 �≥ uk12
and wk2

2 �≥wk2
1 , contradicting that the conjunction is true.

We conclude the proof by observing that, for every
k1, k2 ∈ K in the conjunction,

uk11 ≥ uk12 or wk2
2 ≥ wk2

1 ,

⇔ uk12 + wk2
1 ≤ 1 + uk11 + wk2

2 ,

because uk11 ,u
k1
2 ,w

k2
1 and wk2

2 are binary variables. □

Now we are ready to define the constraints nec-
essary to impose time consistency on any two arcs.

Theorem 1. Let xa, yka, and zka for k ∈ K and a ∈ A satisfy
constraints (1)–(12) of (I P). Suppose that a1, a2 ∈ A are
given. Then, a1 and a2 are time consistent, that is, a1 
 a2 or
a2 
 a1, if and only if for all k1, k2 ∈ K:

i. yk1a2 + yk2a1 ≤ 1 + yk1a1 + yk2a2 ,
ii. yk1a2 + z̄k2a1 ≤ 1 + yk1a1 + z̄k2a2 ,
iii. z̄k1a2 + yk2a1 ≤ 1 + z̄k1a1 + yk2a2 ,
iv. z̄k1a2 + z̄k2a1 ≤ 1 + z̄k1a1 + z̄k2a2 .

Proof. Because two arcs a1 and a2 are time consistent if
and only if their corresponding y and z variables satisfy
the disjunction in (14), we rewrite this disjunction as the
conjunction of

⋀
k∈K

yka1 ≥ yka2
( )( )⋁ ⋀

k∈K
yka2 ≥ yka1
( )( )

, (16)

⋀
k∈K

yka1 ≥ yka2
( )( )⋁ ⋀

k∈K
z̄ka2 ≥ z̄ka1
( )( )

, (17)

⋀
k∈K

z̄ka1 ≥ z̄ka2
( )( )⋁ ⋀

k∈K
yka2 ≥ yka1
( )( )

, (18)

and

⋀
k∈K

z̄ka1 ≥ z̄ka2
( )( )⋁ ⋀

k∈K
z̄ka2 ≥ z̄ka1
( )( )

. (19)

The result follows directly by applying Lemma 2 to
(16)–(19) separately. For example, applying Lemma 2
with uk1 :� yka1 ,u

k
2 :� yka2 ,w

k
1 :� yka1 , and wk

2 :� yka2 to (16)

yields the constraints in (i). Similarly, the constraints
in (ii)–(iv) are obtained from (17)–(19), respectively. □

Remark 3. In terms of Oa and Da, the set of constraints
in Theorem 1 can be equivalently stated as
i. Oa1 ⊆ Oa2 or Oa1 ⊇ Oa2 ,
ii. Oa1 ⊆ Oa2 or Da1 ⊇ Da2 ,
iii. Da1 ⊆ Da2 or Oa1 ⊇ Oa2 ,
iv. Da1 ⊆ Da2 or Da1 ⊇ Da2 .

Observe that constraints (i)–(iv) in Theorem 1 are
defined for all a1, a2 ∈ A and for all k1, k2 ∈ K, meaning
that in total there are 4|A|2|K|2 such constraints. This
number is significantly large already for medium-
sized problems. However, we show in Section 3.2.3
that we do not need all these constraints to guar-
antee that all a1, a2 ∈ A are time consistent. More-
over, in practice not all constraints may be relevant.
Hence, in Section 4.3, we also explain how we iter-
atively add them to our problemwithin a branch-and-
bound framework.

3.2.2. A Compact ILP Formulation for the (PD)3. Armed
with the time-consistency constraints of Theorem 1,
we are ready to define a new compact ILP formulation
for the (PD)3, which we label (I P)3:

min
x,y,z

∑
a∈A

caxa

s.t. 1( )-- 12( ),
yk1a2 + yk2a1 ≤ 1 + yk1a1 + yk2a2 ,

a1, a2 ∈ A, k1, k2 ∈ K, (20)
yk1a2 + z̄k2a1 ≤ 1 + yk1a1 + z̄k2a2

a1, a2 ∈ A, k1, k2 ∈ K, (21)
z̄k1a2 + yk2a1 ≤ 1 + z̄k1a1 + yk2a2

a1, a2 ∈ A, k1, k2 ∈ K, (22)
z̄k1a2 + z̄k2a1 ≤ 1 + z̄k1a1 + z̄k2a2

a1, a2 ∈ A, k1, k2 ∈ K, (23)
xa, yka, z

k
a ∈ 0, 1{ } a ∈ A, k ∈ K.

Observe that the above formulation is equal to that for
the one-to-one PDP without constraints (13) but with
time-consistency constraints (20)–(23) added. In the
remainder of this section we show that (I P)3 is a
correct formulation of the (PD)3.
The time-consistency constraints in (20)–(23) guar-

antee that all arcs a ∈ A with xa � 1 are pairwise time
consistent, so that they can be ordered using the
precedence relation of Definition 1. In fact, this pre-
cedence relation defines a total order on all arcs a ∈ A.
For example, transitivity holds because

a1 
 a2 and a2 
 a3 ⇒ a1 
 a3.
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This implies that there exists a function τ that assigns
a value to each arc a ∈ A with xa � 1 such that τ(a1) <
τ(a2) if and only if a1 ≺ a2, and τ(a1) � τ(a2) if and only
if a1 
 a2.

If the value τ(a) of every arc a ∈ A with xa � 1 is
unique, so that τ(a1) < · · · < τ(aL), then a1 ≺ · · · ≺ aL,
and thus, the order in which arcs need to be traversed
is completely determined by the function τ. For this
reason, we call τ an order function. Moreover, if
a1 ≺ · · · ≺ aL, thenwe assume that this order function τ
is such that τ(a) � l if and only if arc a is the lth arc that
needs to traversed. That is, τ(a1) � 1, τ(a2) � 2, . . . ,
τ(aL) � L.

In general, however, it is possible that ai 
 aj so that
τ(ai) � τ(aj), and thus, arcs ai and aj may be traversed
in arbitrary order. In this case, the order function τ
defines the order in which group of arcs, with ai and aj
in the same group if τ(ai) � τ(aj), have to be traversed.
Within groups, however, arcs may be traversed in
arbitrary order.We assume that the order function τ is
such that τ(a) � l if and only if arc a is in the lth group
that needs to be traversed. Without loss of generality
we assume that there are L such groups.

Throughout this paper we refer to τ as the order
function consistent with the precedence relation of
Definition 1.

Definition 3. Let τ be the order function defined on
the arcs a ∈ A with xa � 1 that is consistent with the
precedence relation of Definition 1. Then, for every
l � 1, . . . ,L, we define

Al :� a ∈ A : xa � 1 and τ a( ) � l{ }.
That is,Al represents the lth group of arcs that need to
be traversed. Moreover, because the yka and zka values
are the same for all arcs a ∈ Al we define Ol and Dl as

• Ol � Oa for all a ∈ Al,
• Dl � Da for all a ∈ Al.

It should be clear that the sets Ol and Dl completely
specify the order in which pickups and deliveries are
carried out. Indeed, O1 � K and if k /∈ O2, then this
implies that commodity k is picked up first. In general,
the time consistency of the arcs imposes the following
order on the sets Ol and Dl for l � 1, . . . ,L.

Lemma 3. For l1, l2 � 1, . . . , L with l1 ≤ l2, we have

Ol1 ⊇ Ol2 and Dl1 ⊇ Dl2 .

Moreover, if l1 < l2, then at least one of the inclusions
is strict.

If every set Al, l � 1, . . . ,L, consists of a single arc al,
then τ(al) � l for every l � 1, . . . , L, and thus, al is the lth
arc that is traversed. Hence, the only pickup and
delivery route corresponding to (x, y, z) that is pos-
sibly feasible in practice is to traverse a1, . . . , aL in this

order. To prove that this route is feasible we need to
show that a1 starts at the starting depot, aL ends at the
ending depot, and t(al) � s(al+1) for all l � 1, . . . , L − 1.
In otherwords,we need to show that there exist nodes
vl ∈ V, l � 1, . . . ,L − 1, that connect al and al+1, that is,
vl � t(al) and vl � s(al+1).
In general, however, the arc set Al may consist of

multiple arcs, which can be traversed in arbitrary
order. Nevertheless, we show that there exist nodes
vl ∈ V̄, l � 0, . . . ,L, with v0 � 0 and vL � N, such that
for every l � 1, . . . ,L, there exists a path Pl, traversing
arcs inAl only, startingatnodevl−1 andendingatnodevl.
Toprove this,we introduceδl(v), the difference between
the number of outgoing and incoming arcs a ∈ Al from
v ∈ V̄, and we analyze properties of δl(v).
Definition 4. Let l ∈ {1, . . . , L} and v ∈ V̄ be given. Then,
we define δl(v) as

δl v( ) :� ∑
a∈Al :s a( )�v

xa −
∑

a∈Al :t a( )�v
xa.

Observe that we can interpret
∑l

λ�1 δλ(v) as the dif-
ference between the number of outgoing and in-
coming arcs at v over all arcs a with τ(a) ≤ l. It turns
out that, for every l � 1, . . . , L, there is a unique node
vl ∈ V̄ with vl �� 0 for which

∑l
λ�1 δλ(vl) � −1. In case

the arc set Al consists of a single arc al, this node vl
equals t(al). In general, this node vl is the ending node
of path Pl.

Lemma 4. For every l � 1, . . . ,L, there exists a node vl ∈ V̄
with vl �� 0 such that

∑l

λ�1
δλ v( ) �

1, if v � 0,
0, if v �� 0, vl,

−1, if v � vl.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Proof. Let l � 1, . . . ,L − 1 be given. Then, by Lemma 3,
we have Ol ⊇ Ol+1 and Dl ⊇ Dl+1, and at least one of
these inclusions is strict. Suppose that there exists a
commodity k ∈ Ol such that k /∈ Ol+1. Then, again by
Lemma 3,

k ∈ Oλ, if λ ≤ l,
k /∈ Oλ, if λ ≥ l + 1.

{
Hence, commodity k is an identifier for

⋃l
λ�1 Aλ in the

sense that yka � 1 if and only if a ∈ ⋃l
λ�1 Aλ, and thus

τ(a) ≤ l. Because yka satisfies the flow-conservation
constraints (6)–(8), it follows that the arcs in

⋃l
λ�1 Aλ

define a path from the starting depot zero to the origin ok
of commodity k and possibly several additional cy-
cles. Hence,

∑l

λ�1
δλ v( ) �

1, if v � 0,
0, if v �� 0, ok,

−1, if v � ok.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (24)
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By similar arguments we can show that if k ∈ Dl\Ol
but k /∈ Dl+1, then (24) holds with ok replaced by dk.
Moreover, (24) may hold for multiple commodities k1
and k2, but only if ok1 � ok2 . Hence, in general there
exists a unique node vl ∈ V with vl �� 0 such that

∑l

λ�1
δl v( ) �

1, if v � 0,
0, if v �� 0, vl,

−1, if v � vl.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (25)

Finally, note that, for l � L, the set
⋃l

λ�1 Aλ contains
all arcs a ∈ A with xa � 1. By constraints (1)–(3), the
indegree of every node v ∈ V̄ equals its outdegree
except for v � 0 and v � N. Hence, the equalities in (25)
also hold for l � L, with vL � N. □

Nowwe are ready to prove that (I P)3 is a correct ILP
formulation of the (PD)3.

Theorem2. Let (x, y, z) be a feasible solution of (I P)3. Then,
there exists a practically feasible route, carrying out all
pickups and deliveries subject to the capacity constraints,
that only traverses arcs a ∈ A with xa � 1.

Proof. Let (x, y, z) be a feasible solution to (I P)3, and
consider the order function τ consistent with the prece-
dence relation of Definition 1, taking values in {1, . . . , L}.
By Lemma 4, there exist nodes vl ∈ V̄, l � 0, . . . , L, with
v0 � 0 and vL � N, such that for every l � 1, . . . , L

∑l

λ�1
δλ v( ) �

1, if v � 0,
0, if v �� 0, vl,

−1, if v � vl.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Because

δl v( ) � ∑l

λ�1
δλ v( ) −∑l−1

λ�1
δλ v( ), l � 1, . . . ,L, v ∈ V̄,

this implies that, for every l � 1, . . . , L, either δl(v) � 0
for all v ∈ V̄ if vl−1 � vl, or

δl v( ) �
1, if v � vl−1,
0, if v �� vl−1, vl,

−1, if v � vl,
if vl−1 �� vl.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
In both cases, it follows from Euler path theory that
there exists a pathPl from vl−1 to vl traversing arcs inAl
only. Note that this path does not necessarily have to
traverse all arcs in Al.

By successively traversing paths Pl, startingwith l � 1
until l � L, we construct a path P from the starting
depot to the ending depot consisting of arcs with xa � 1
only. Moreover, the path P is consistent with the order
function τ in the sense that arcs with lower value are
always traversed before arcs with a higher value. This
immediately proves that each commodity is actually
picked up before it is delivered, and thus, the path

P corresponds to a practically feasible route traversing
only arcs with xa � 1. □

In the proof of Theorem 2, we do not show that the
practical route corresponding to a feasible solution
(x, y, z) in (I P)3 actually traverses all arcs with xa � 1.
This is also not necessarily the case. However, the
practical route corresponding to any optimal solution
(x, y, z) in (I P)3 does traverse all arcs with xa � 1, at
least if ca > 0 for all a ∈ A.

3.2.3. Reduced Number of Time-Consistency Constraints.
In this section, we show that we do not need all the
time-consistency constraints in (20)–(23) of (I P)3 to
obtain a correct formulation of the (PD)3. In fact, we
show that we only need constraints (20)–(23) for each
a1, a2 ∈ A with either s(a1) � s(a2) or t(a1) � t(a2). That
is, we only need to make sure that, for all nodes v ∈ V,
all outgoing arcs from this node v are pairwise time
consistent and all incoming arcs are pairwise time con-
sistent. This yields the following formulation (I PR)3:
min
x,y,z

∑
a∈A

caxa

s.t. 1( )-- 12( ),
yk1a2 + yk2a1 ≤ 1 + yk1a1 + yk2a2 a1, a2 ∈ A with

st a1( ) � st a2( ), k1, k2 ∈ K,

(26)
yk1a2 + z̄k2a1 ≤ 1 + yk1a1 + z̄k2a2 a1, a2 ∈ A with

st a1( ) � st a2( ), k1, k2 ∈ K,

(27)
z̄k1a2 + yk2a1 ≤ 1 + z̄k1a1 + yk2a2 a1, a2 ∈ A with

st a1( ) � st a2( ), k1, k2 ∈ K,

(28)
z̄k1a2 + z̄k2a1 ≤ 1 + z̄k1a1 + z̄k2a2 a1, a2 ∈ A with

st a1( ) � st a2( ), k1, k2 ∈ K,

(29)
xa, yka, z

k
a ∈ 0, 1{ } a ∈ A, k ∈ K,

where st(a1) � st(a2) if and only if s(a1) � s(a2) or t(a1) �
t(a2). To show that the above formulation is correct,
we show that, for any feasible (x, y, z) in (I PR)3, we can
construct a feasible solution (x̂, ŷ, ẑ) to the original
formulation (I P)3 with x̂a ≤ xa for all a ∈ A. The reverse
is obviously true because (I PR)3 is a relaxation of (I P)3.
Before we discuss how to construct (x̂, ŷ, ẑ) based on
(x, y, z), we first derive a time-consistency property
of a feasible solution (x, y, z) of (I PR)3. It turns out that
not only arcs a1, a2 ∈ Awith s(a1) � s(a2) or t(a1) � t(a2)
are time consistent, but also arcs with t(a1) � s(a2).
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To prove this, let v ∈ V be given, and let ain1 , . . . , a
in
m

and aout1 , . . . , aoutm denote the incoming arcs and out-
going arcs with xa � 1 at v, respectively. Note that the
number of incoming arcs equals the number of out-
going arcs. Moreover, because the outgoing arcs
aout1 , . . . , aoutm of a node v ∈ V are pairwise time con-
sistent, there exists a total order among those arcs, so
that without loss of generality we have aout1 
 · · · 
 aoutm .
Similarly, there exists a total order among incoming
arcs: ain1 
 · · · 
 ainm . The next lemma, however, shows
that also aini 
 aouti for all i � 1, . . . ,m.

Lemma5. Let (x, y, z) be a solution to (I PR)3, and let ain1 
 · · ·

 ainm and aout1 
 · · · 
 aoutm denote the incoming and outgoing
arcs at some node v ∈ V. Then,

aini 
 aouti , for all i � 1, . . . ,m.

Proof. Let node v ∈ V be given with incoming and
outgoing arcs aini and aouti , i � 1, . . . ,m, respectively. Let
i � 1, . . . ,m be given, and assume toward a contra-
diction that aini �
 aouti . This implies that there exists a
commodity k ∈ K such that either

i. k ∈ Oaouti
and k /∈ Oaini

, or
ii. k ∈ Daouti

\Oaouti
and k /∈ Daini

.
In the first case, this implies that k ∈ Oaoutj

for all j ≤ i
and k /∈ Oainj

for all j ≥ i, because ain1 
 · · · 
 ainm and
aout1 
 · · · 
 aoutm . However, this contradicts a constraint
in either (7) or (8) because it implies that

∑
a:s(a)�v yka ≥ i

whereas
∑

a:t(a)�v yka ≤ i − 1, so that∑
a:t a( )�v

yka −
∑

a:s a( )�v
yka ≤ −1.

The second case is not possible either by similar ar-
guments. Hence, we conclude that aini 
 aouti for all
i � 1, . . . ,m. □

Lemma 5 shows that we can link any incoming arc
aini of a node v ∈ V in a natural way to an outgoing arc
aouti with aini 
 aouti . In fact, in this way we can assign a
unique outgoing arc to every incoming arc at every
node. Starting with the single outgoing arc a1 from
the starting depot, this allows us to construct a path of
time-consistent arcs a1 
 · · · 
 ar to the ending depot,
by iteratively traversing the unique outgoing arc ai
corresponding to the incoming arc ai−1. The path has
to end at the ending depot because for every node v ∈ V
the number of incoming arcs equals the number of
outgoing arcs.

In general, it is not necessary that the path a1 
 · · · 
 ar
traverses all arcs with xa � 1. This is why we con-
struct a solution (x̂, ŷ, ẑ) that is feasible in (I P)3 with
x̂a � 1 if and only if a ∈ {a1, . . . , ar}. The key observation
used to construct (x̂, ŷ, ẑ) is that the unique corre-
spondence between incoming and outgoing arcs for
(x, y, z) defines a path a1 
 · · · 
 ar and several cycles.
However, for every cycle C � {a1, . . . , ac, a1}, we must

have a1 
 · · · 
 ac 
 a1, and thus, a1
 · · · 
ac. Hence, it
is not surprising that these cycles turn out to be ir-
relevant for the practically feasible route correspond-
ing to (x, y, z).
Theorem3. Let (x, y, z) be a solution to formulation (I PR)3.
Then there exists a corresponding solution (x̂, ŷ, ẑ)with x̂a ≤
xa for all a ∈ A that is feasible in the original formula-
tion (I P)3.
Proof. Consider the path a1 
 · · · 
 ar from starting
depot to ending depot defined by the unique corre-
spondence between incoming and outgoing arcs from
nodes, induced by Lemma 5. The remaining arcs a ∈ A
with xa � 1 define several cycles of the form C :�
{a1, . . . , ac, a1}. Consider one such cycle. We show that
the solution (x̃, ỹ, z̃), defined as

x̃a � ỹka � z̃ka � 0 ∀a ∈ C,∀k ∈ K,

x̃a � xa, ỹka � yka, z̃
k
a � zka ∀a /∈C,∀k ∈ K,

is also feasible in (I PR)3.We do so by arguing that each
constraint of (I PR)3 holds for (x̃, ỹ, z̃).
Constraints (1) and (2) are not affected because the

arcs in the cycle cannot be adjacent to the starting or
ending depots. Obviously, constraints (3) are still sat-
isfied, because for every node v ∈ V∑

a∈C:s a( )�v
xa �

∑
a∈C:t a( )�v

xa.

Constraints (4) are true by construction for every a ∈ C
and a /∈ C, and in (5) and (6), similarly toas in (1) and (2),
arcs adjacent to the starting and ending depot are not
affected. Next, because

∑
a:t a( )�v

yka −
∑

a:s a( )�v
yka �

∑
a/∈C:t a( )�v

yka −
∑

a/∈C:s a( )�v
yka

( )

+ ∑
a∈C:t a( )�v

yka −
∑

a∈C:s a( )�v
yka

( )

and the latter term equals zero, constraints (7) and (8)
also hold for (x̃, ỹ, z̃). An identical argument applies
to (9)–(11). Constraints (12) hold by construction for
all a ∈ C and a /∈ C, and finally, the time-consistency
constraints (26)–(29) hold because if a1 ∈ C, then ỹk1a1 �
ỹk2a1 � 0, so that the first constraint reduces to ỹ k1

a2 ≤
1 + ỹk2a2 , which always holds. Similar arguments apply
to the other constraints and a2 ∈ C. Finally, the binary
restrictions on (x̃, ỹ, z̃) are trivially satisfied.
By applying the above arguments to each cycle, it

follows immediately that (x̂, ŷ, ẑ) defined as

x̂a � xa � 1, ŷka � yka, ẑka � zka, a ∈ a1, . . . , ar{ }, k ∈ K,

xa � yka � zka � 0, otherwise,
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is feasible in (I PR)3. Moreover, because all arcs with
x̂a � 1 are pairwise time consistent, we conclude that
(x̂, ŷ, ẑ) is also feasible for (I P)3. □

We conclude that we do not have to add all time-
consistency constraints (20)–(23) to our model of (PD)3,
but only those for adjacent arcs a1, a2 ∈ A for which
either s(a1) � s(a2) or t(a1) � t(a2).

4. Computational Results
The ILP formulations described in Section 3 for the
one-to-one PDP and the (PD)3 are implemented in C++
and solved using CPLEX 12.8 on an Intel Xeon E5
2680v3 CPU (2.5 GHz). We made use of four parallel
running threads on a single core, a setup nowadays
available on any common desktop machine. In the
remainder of this section, we first describe the test
instances from the literature that we use for our nu-
merical experiments. Next, we investigate the per-
formance of our ILP formulation (I P) for the one-to-
one PDP, andwe compare our results with those from
Hernández-Pérez and Salazar-González (2009) and
Gouveia and Ruthmair (2015). Finally, we turn to
the (PD)3 and present numerical results for divisible
pickups and deliveries. Detailed results of our numerical
experiments are available in the online appendix.

4.1. Test Instances
Because there are no test instances available in the
literature for exact solution methods for the (PD)3, we
use existing test instances fromHernández-Pérez and
Salazar-González (2009) for the one-to-one PDP. To
our knowledge, these are the only test instances that
can be transformed into (PD)3 test instances by allow-
ing multiple visits to each node.

In our numerical experiments, we consider two
classes of test sets proposed by Hernández-Pérez
and Salazar-González (2009): class 2 and class 3. The
difference between these two classes is that in class 3
each node is either the origin or destination of a single
commodity, whereas in class 2 commoditiesmayhave
the same origin or destination. Because there can
only be divided pickups and deliveries in problems
of class 2, we only test the (PD)3 on such instances.
The instances of both classes are used to test our ILP
formulation for the one-to-one PDP.

For completeness, we describe how test instances of
class 2 and class 3 are constructed by Hernández-
Pérez and Salazar-González (2009). Both are based
on a complete graph G � (V̄,A), with a single copy of
each arc, where the starting and ending depot is lo-
cated at the origin (0, 0), and the locations of |V| nodes
are independently and uniformly generated from the
square [−500, 500] × [−500, 500]. The travel cost cij
between nodes i and j is the rounded Euclidean dis-
tance between these two nodes. Next, the origins and

destinations of |K| commodities are iteratively de-
termined. For each commodity k ∈ K in class 2, a
randomarc ak is selected, with ok :� s(ak) and dk :� t(ak),
such that the set of arcs ak remains cycle free. For
class 3 instances, random arcs ak are selected such
that the arcs ak remain unconnected. Finally, for both
instance classes the weights qk of commodities k ∈ K
are independently and discrete uniformly generated
from {1, . . . , 5}.
We assume that in all test instances for the one-to-

one PDP, we have to visit each node exactly once, also
the nodes that are not the origin or destination of any
commodity. This is in line with the numerical experi-
ments of Hernández-Pérez and Salazar-González
(2009) and Gouveia and Ruthmair (2015). In the
corresponding (PD)3 instances, we assume that each
node is visited at least once.

4.2. One-to-One Pickup and Delivery Problem
In this section, we consider the one-to-one PDP with-
out divisible pickups and deliveries and present nu-
merical results obtained by solving test instances from
class 2 and class 3 using our compact ILP formulation
(I P). In Tables 2 and 3, the first four columns corre-
spond to the instance set name, the number |V̄| of
nodes, the number |K| of commodities, and the vehicle
capacity Q. For each setting of (|V̄| , |K| ,Q), we solve
the 10 test instances constructed by Hernández-Pérez
and Salazar-González (2009). The remaining columns
correspond to the number of instances where the
infeasibility of the instance was proved (# Inf.), the
number of instances where the algorithms did not
find an optimal solution within the time limit (Un-
solved within 2 h), and the average computation time
over all instances that are not proven to be infeasible
(Time). The columnswith IP correspond to our results
obtained by solving (I P), the columns with BE cor-
respond to results obtained by the Benders decompo-
sition approach from Hernández-Pérez and Salazar-
González (2009), and the columns C/L/PL correspond
to results obtained by different branch-and-cut methods
fromGouveia and Ruthmair (2015). The results for BE
and C/L/PL are all taken from table 5 in Gouveia and
Ruthmair (2015). Moreover, the BE results are obtained
using a personal computer with Intel Pentium 3.0 GHz
and CPLEX 10.2, whereas the C/L/PL results are ob-
tainedusinga single coreof an IntelXeonE5540orE5649,
both 2.53 GHz. All reported solution methods have a
time limit of two hours.
In Tables 2 and 3 we do not report results for in-

stances with |K| � 5, that is, with only five commod-
ities, because all such instances are solved to opti-
mality within 10 seconds on average. Moreover, for
some test instances not all existing solution methods
from the literature have been applied. In these cases
we report “—”.
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For instances of class 3, we observe in Table 2 that
we can solve instances with up to 32 nodes and 15
commodities. In fact, we easily solve all instances
with |V̄| � 22 and |K| � 10, and the majority of the
instances with |V̄| � 32, |K| � 15, and larger capacity
values Q. For smaller values of Q, such as in m15Q10
and m15Q15, our ILP formulation cannot solve 9 out
of 10 instances within the time limit. However, such
problems with limited capacity cannot be solved by
the other solution methods either. Overall, we con-
clude that our ILP formulation is almost competitive
with existing methods from the literature: BE and C
solve a slightly larger number of class 3 instances and
typically require less computation time. Neverthe-
less, the overall performance of (I P) is surprising,
because our ILP formulation is a compact formulation
using an off-the-shelf solver that can easily be ex-
tended to the (PD)3, whereas the other methods are
tailor-made for the one-to-one PDP.

Our conclusions are confirmed in Table 3, wherewe
show the results for test instances of class 2. In fact, we
are able to solve a test instance from the instance set
n20m10Q10 that both Hernández-Pérez and Salazar-
González (2009) and Gouveia and Ruthmair (2015)
cannot solve. (We have to remark, however, that in an
independent and simultaneously conducted study
Castro, Cire, and Beck (2020) are able to solve this and
themajority of class 2 and class 3 instances for the one-
to-one PDP.) Additionally, our ILP formulation (I P)
correctly identifies in all cases whether an instance is
infeasible. Contrary to instances of class 3, instances of
class 2 may be infeasible because of the total capac-
ity necessary to transport different commodities lo-
cated at the same node. Indeed, when Q is smallest,
that is, Q � 10, then the test instances are infeasible
most often.

4.3. One-to-One Pickup and Delivery Problem with
Divisible Pickups and Deliveries

In this section,wepresent numerical results for the (PD)3,
obtained by solving test instances from class 2.We use
our compact formulation (I PR)3 of Section 3.2.3, which
has a reduced number of constraints comparedwith (I P)3.
However, because the number of time-consistency
constraints (26)–(29) in (I PR)3 remains large, that is, of
order O(|V̄|3|K|2), we have implemented them as lazy
constraints inCPLEX. Every time an incumbent solution
is found, a single violated constraint from (26)–(29) is
added within the lazy constraint callback. The ra-
tionale for using these lazy constraints is that in the
optimal solution most of them are not active. In this
way, we try to include only those constraints that we
actually need. Finally, we observed that the heuris-
tics within CPLEX’s branch-and-bound procedure
typically find incumbent solutions that do not sat-
isfy the relaxed time-consistency constraints. Be-
cause this forces us to add a lazy constraint that is
likely to be irrelevant in the optimal solution, we have
set CPLEX’s MIP emphasis parameter to three, re-
ducing CPLEX’s effort on these heuristics. This sig-
nificantly improved CPLEX’s performance on our
test instances.
The results are presented in Table 4. Similarly to the

tables of the previous section, the first four columns
correspond to the instance set name, the number |V̄| of
nodes, the number |K| of commodities, and the vehicle
capacityQ. For each setting of (|V̄| , |K| ,Q), we solve 10
test instances from class 2. These are the exact same
instances as in Table 3, except thatwe now allowmore
than one visit to a node. In the next two columns, we
report how many instances were unsolved after a
time limit of 7,200 seconds (2 h t.l.) and 10,800 seconds
(3 h t.l.), respectively. The results in the final columns,

Table 2. Results of Solving (IP) on the Test Instances of Class 3

Set |V̄| |K| Q

# Inf. Unsolved within 2 h Time

IP C/L/PL IP BE C L PL IP BE C L PL

m10Q5 22 10 5 0 0 0 0 0 0 0 2 2 2 1 93
m10Q10 22 10 10 0 0 0 0 0 0 7 218 87 165 612 5,670
m10Q15 22 10 15 0 0 0 0 0 2 7 209 62 30 1,741 5,122
m10Q20 22 10 20 0 0 0 0 0 0 5 22 2 2 328 4,128
m10Q25 22 10 25 0 0 0 0 0 1 4 14 1 2 1,099 4,086
m10Q30 22 10 30 0 0 0 0 0 1 4 9 1 2 1,294 4,379
m10Q500 22 10 500 0 — 0 0 — — — 11 1 — — —
m15Q5 32 15 5 0 0 1 2 1 1 8 874 2,006 2,529 1,053 5,922
m15Q10 32 15 10 0 0 9 9 9 9 10 7,119 6,523 6,493 6,908 7,200
m15Q15 32 15 15 0 0 9 5 4 9 10 6,720 4,124 3,284 6,595 7,200
m15Q20 32 15 20 0 0 7 0 0 9 10 5,757 918 269 7,033 7,200
m15Q25 32 15 25 0 0 2 0 0 8 10 3,561 118 40 5,971 7,200
m15Q30 32 15 30 0 0 1 0 0 9 10 2,649 101 43 6,482 7,200
m15Q500 32 15 500 0 — 0 0 — — — 1,905 99 — — —
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however, are all obtained using the latter time limit.
In the first of those columns, we report the number of
instances (# DPD) in which the optimal solution
contains divided pickups and deliveries. Next, we
present the average computation time of the proce-
dure (Time) in seconds, and the average number of
lazy cuts (Cuts) used in CPLEX’s branch-and-bound
procedure, over all instances that have been solved
to optimality. Moreover, we also report the average

number of lazy cuts (Cuts t.l.) over all instances, thus
including those in which CPLEX reached its three-
hour time limit. Finally, we report the number of
instances (# Ins) that were feasible for the one-to-one
PDP and solved for both the PDP and (PD)3. These
are the instances for which we are able to compare
their objective values and, thus, compute the savings
obtained from allowing divisible pickups and de-
liveries. The average savings over those instances are

Table 3. Results of Solving (IP) on the Test Instances of Class 2

Set |V̄| |K| Q

# Inf. Unsolved within 2 h Time

IP C/L/PL IP BE C L PL IP BE C L PL

n10m10Q10 11 10 10 7 7 0 0 0 0 0 0 0 0 0 0
n10m10Q15 11 10 15 1 1 0 0 0 0 0 0 0 0 0 0
n10m10Q20 11 10 20 0 0 0 0 0 0 0 0 0 0 0 0
n10m10Q25 11 10 25 0 0 0 — 0 0 0 0 — 0 0 0
n10m10Q30 11 10 30 0 0 0 — 0 0 0 0 — 0 0 0
n10m10Q500 11 10 500 0 — 0 0 — — — 0 0 — — —
n10m15Q10 11 15 10 10 10 0 — 0 0 0 — — — — —
n10m15Q15 11 15 15 9 9 0 0 0 0 0 0 0 0 0 0
n10m15Q20 11 15 20 6 6 0 0 0 0 0 0 0 0 0 0
n10m15Q25 11 15 25 4 4 0 0 0 0 0 0 0 0 0 0
n10m15Q30 11 15 30 2 2 0 0 0 0 0 0 0 0 0 0
n10m15Q500 11 15 500 0 — 0 0 — — — 0 0 — — —
n15m10Q10 16 10 10 7 7 0 1 0 0 0 7 1,801 1 4 74
n15m10Q15 16 10 15 1 1 0 0 0 0 0 9 0 1 3 36
n15m10Q20 16 10 20 0 0 0 0 0 0 0 6 0 0 6 48
n15m10Q25 16 10 25 0 0 0 0 0 0 0 4 0 0 7 74
n15m10Q30 16 10 30 0 0 0 — 0 0 0 9 0 0 7 67
n15m10Q500 16 10 500 0 — 0 0 — — — 8 0 — — —
n15m15Q10 16 15 10 10 10 0 — 0 0 0 — — — — —
n15m15Q15 16 15 15 4 4 0 0 0 0 0 83 2 1 3 21
n15m15Q20 16 15 20 2 2 0 0 0 0 0 157 1 0 0 4
n15m15Q25 16 15 25 0 0 0 0 0 0 0 15 0 0 0 5
n15m15Q30 16 15 30 0 0 0 0 0 0 0 12 0 0 0 6
n15m15Q500 16 15 500 0 — 0 0 — — — 11 0 — — —
n20m10Q10 21 10 10 2 2 1 2 2 2 3 1,540 1,832 1,806 1,854 3,475
n20m10Q15 21 10 15 0 0 1 0 0 0 3 1,068 67 31 374 3,138
n20m10Q20 21 10 20 0 0 1 0 0 0 2 758 53 1 156 1,853
n20m10Q25 21 10 25 0 0 0 0 0 0 2 353 53 1 231 1,770
n20m10Q30 21 10 30 0 0 0 — 0 0 2 346 — 1 212 1,835
n20m10Q500 21 10 500 0 — 0 0 — — — 343 53 — — —
n20m15Q10 21 15 10 8 8 2 — 2 2 2 7,200 — 7,200 7,200 7,200
n20m15Q15 21 15 15 0 0 8 7 4 5 8 6,530 5,305 3,399 3,684 6,304
n20m15Q20 21 15 20 0 0 6 4 1 3 6 5,417 3,073 910 2,239 4,864
n20m15Q25 21 15 25 0 0 3 0 0 0 4 3,051 172 6 532 3,397
n20m15Q30 21 15 30 0 0 3 0 0 0 2 2,716 114 2 278 2,555
n20m15Q500 21 15 500 0 — 2 0 — — — 2,336 117 — — —
n25m10Q10 26 10 10 1 1 3 3 2 4 8 3,691 3,684 2,004 3,916 6,545
n25m10Q15 26 10 15 0 0 0 0 0 0 10 1,235 137 67 1,577 7,200
n25m10Q20 26 10 20 0 0 0 0 0 2 9 500 14 5 1,980 6,631
n25m10Q25 26 10 25 0 0 0 0 0 3 8 382 14 5 2,367 6,466
n25m10Q30 26 10 30 0 0 0 — 0 1 8 352 — 4 2,146 6,697
n25m10Q500 26 10 500 0 — 0 0 — — — 319 14 — — —
n25m15Q10 26 15 10 3 3 7 — 7 7 7 7,200 — 7,200 7,200 7,200
n25m15Q15 26 15 15 0 0 9 8 4 7 10 7,091 5,786 3,167 5,333 7,200
n25m15Q20 26 15 20 0 0 7 5 1 6 8 5,559 3,804 1,385 4,787 6,520
n25m15Q25 26 15 25 0 0 6 1 0 3 9 5,425 1,387 59 3,545 6,864
n25m15Q30 26 15 30 0 0 4 0 0 4 10 5,253 565 14 3,388 7,200
n25m15Q500 26 15 500 0 — 3 0 — — — 3,464 372 — — —
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reported in the final column (% Savings). Recall that
for the (PD)3 instances we assume that every node is
visited at least once, also if it does not correspond
to the origin or destination of any commodity. Be-
causewe assume in the corresponding PDP instances
that each node is visited exactly once, the reduc-
tion in optimal objective value for the (PD)3 com-
pared with the corresponding PDP instances is ex-
actly the savings obtained by allowing divisible pickups
and deliveries.

From Table 4, we observe that for many instances it
is beneficial to allow divisible pickups and deliveries.
This is not only the case when the capacity Q is small,
and thus, dividing pickups and deliveries may be
required to obtain a feasible solution, but alsowhenQ
is large, that is, when Q � 500. For example, for
n10m15Q500 we observe that 9 out of 10 instances
have an optimal solution with divided pickups and
deliveries, whereas all 10 corresponding PDP in-
stances in Table 3 are feasible. On the other hand, for

Table 4. Results of Solving (I PR)3 on the Test Instances of Class 2

Set |V̄| |K| Q 2h t.l. 3h t.l. # DPD Time Cuts Cuts t.l. # Ins % Savings

n10m10Q10 11 10 10 0 0 10 76 350 350 3 8.1
n10m10Q15 11 10 15 0 0 9 28 121 121 9 11.9
n10m10Q20 11 10 20 0 0 7 14 75 75 10 9.3
n10m10Q25 11 10 25 0 0 6 12 75 75 10 8.1
n10m10Q30 11 10 30 0 0 6 11 71 71 10 8.1
n10m10Q500 11 10 500 0 0 6 9 66 66 10 8.1
n10m15Q10 11 15 10 5 5 5 1,717 1,474 2,188 0 —
n10m15Q15 11 15 15 4 3 7 2,579 1,479 2,028 1 11.9
n10m15Q20 11 15 20 0 0 9 1,183 1,044 1,044 4 13.6
n10m15Q25 11 15 25 1 0 9 910 611 611 6 15.5
n10m15Q30 11 15 30 0 0 9 260 535 535 8 14.4
n10m15Q500 11 15 500 0 0 9 105 359 359 10 12.8
n15m10Q10 16 10 10 2 1 9 1,851 547 706 3 8.5
n15m10Q15 16 10 15 1 1 7 603 456 729 8 5.6
n15m10Q20 16 10 20 0 0 7 631 368 368 10 6.2
n15m10Q25 16 10 25 0 0 8 186 203 203 10 5.8
n15m10Q30 16 10 30 0 0 7 225 315 315 10 6.1
n15m10Q500 16 10 500 0 0 8 155 279 279 10 6.1
n15m15Q10 16 15 10 10 10 — — — 1,601 0 —
n15m15Q15 16 15 15 4 4 6 3,111 763 1,350 2 12.3
n15m15Q20 16 15 20 3 2 8 2,787 852 1,222 6 11.6
n15m15Q25 16 15 25 3 3 6 1,429 523 1,104 7 8.6
n15m15Q30 16 15 30 2 2 8 1,202 638 1,103 8 8.3
n15m15Q500 16 15 500 2 2 8 852 596 1,170 8 8.5
n20m10Q10 21 10 10 5 5 2 1,708 325 725 5 4.7
n20m10Q15 21 10 15 3 2 4 1,895 397 820 8 4.3
n20m10Q20 21 10 20 1 1 1 475 86 290 9 2.2
n20m10Q25 21 10 25 1 1 2 214 73 321 9 2.2
n20m10Q30 21 10 30 1 1 2 287 83 337 9 2.2
n20m10Q500 21 10 500 1 1 2 164 64 320 9 2.2
n20m15Q10 21 15 10 10 10 — — — 586 0 —
n20m15Q15 21 15 15 10 10 — — — 652 0 —
n20m15Q20 21 15 20 9 9 1 5,899 372 761 1 7.4
n20m15Q25 21 15 25 8 6 4 6,767 686 970 4 7.7
n20m15Q30 21 15 30 6 5 5 3,246 316 843 4 9.2
n20m15Q500 21 15 500 5 3 6 4,256 731 1,177 7 8.5
n25m10Q10 26 10 10 8 8 1 3,367 71 355 1 0.0
n25m10Q15 26 10 15 3 2 5 5,512 436 545 8 4.3
n25m10Q20 26 10 20 2 1 4 3,603 221 302 9 2.8
n25m10Q25 26 10 25 1 1 5 2,475 227 384 9 3.2
n25m10Q30 26 10 30 1 1 5 1,901 268 474 9 3.2
n25m10Q500 26 10 500 1 1 5 1,779 277 470 9 3.2
n25m15Q10 26 15 10 10 10 — — — 4 0 —
n25m15Q15 26 15 15 10 10 — — — 2 0 —
n25m15Q20 26 15 20 10 10 — — — 6 0 —
n25m15Q25 26 15 25 10 10 — — — 54 0 —
n25m15Q30 26 15 30 10 10 — — — 148 0 —
n25m15Q500 26 15 500 9 8 2 8,194 364 663 2 4.0
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n10m10Q10we observe that 7 out of 10 PDP instances
are infeasible,whereasall (PD)3 instances can be solved.

The fact that divisible pickups and deliveries may
also lead to savings when capacity is not a restriction
is caused by the pickup and delivery nature of our
problem. In contrast, for example, for the capacitated
SDVRP, there are no savings if the capacity is large
enough. In this case, all customers can be served in a
single tour inwhich every node is visited exactly once.
The fundamental difference with the (PD)3, however,
is that commodities in the SDVRP have the same
destination, that is, the depot,whereas in the (PD)3 the
origins and destinations of commodities are different.
This explains why we obtain positive savings for our
problem, even if Q � 500.

When considering the average number of time-
consistency constraints required in CPLEX’s branch-
and-bound procedure, we observe that we only need
a very small percentage of the total number of available
constraints. For example, for the instances with |V̄| � 11
and |K| � 10, there are approximately 4 · 105 con-
straints, whereas only 60–350 are needed. In general,
the required number of constraints does not exceed
3,500, whereas the number of time-consistency con-
straints in (I PR)3 is of order O(|V̄|3|K|2).

As expected, the average number of time-consistency
constraints required for the instances that are solved
to optimality (Cuts) is consistently below the average
number of time-consistency constraints required for
all instances (Cuts t.l.). Indeed, the unsolved harder
instances require more time-consistency constraints.
Additionally, we observe that, for |V̄| � 11 and 16,
typicallymore time-consistency constraints are required
for instances with small capacity, that is, Q � 10, than
for instances with large capacity, that is,Q � 500. This
may be explained by the fact that, in instances with
lower capacity, nodes may have to be visited more
often than in instances with higher capacity, and thus,
more time-consistency constraints may be required.
For |V| � 26 and |K| � 15, this effect seems to be re-
versed, but the number of time-consistency constraints
are so small that we expect that CPLEX does not get the
opportunity to add many of the required constraints
before the time limit in these instances.

We observe thatwe are able to solve (PD)3 instances
of almost the same size as for the one-to-one PDP.
Only for |V̄| � 26 and |K| � 15 can we solve almost
none of the instances. We also observe that our
compact formulation has difficulties solving instances
with small capacity, in particular, with Q � 10. For
example, for n15m15Q10 and n20m15Q10 none of
the instances are solved. This does not come as a sur-
prise, because our compact ILP formulation and exist-
ing approaches in the literature also could not solve
(slightly larger) one-to-one PDP instances with small
capacity (see Table 3).However, for the uncapacitated

(PD)3, that is, for Q � 500, we can solve the majority of
the instances, evenwith |V̄| � 21 and |K| � 15 or |V̄| � 26
and |K| � 10.
Finally, we discuss the average savings obtained by

allowing divisible pickups and deliveries. As can be
observed from Table 4, they are significant and can be
as large as 15%. As a general rule, we see that savings
are typically larger if the number of nodes |V̄| is
smaller or the number of commodities |K| is larger. In
these cases, there are more commodities per node,
increasing the opportunities for dividing pickups and
deliveries. In particular, for |V̄| � 11 and |K| � 15, the
average savings are largest, and for |V̄| � 21 or 26 and
|K| � 10, they are smallest.

5. Discussion
We consider the capacitated single vehicle one-to-one
pickup and delivery problem with divisible pickups
and deliveries (PDPDPD, or in short (PD)3). In this
problem, nodes are allowed to be visitedmultiple times.
We derive a novel compact arc-based ILP formula-
tion for the (PD)3. To the best of our knowledge, it is
the first nontrivial ILP formulation for this problem.
Moreover, the formulation can be easily applied to the
standard one-to-one PDP by restricting the number of
times that a node can be visited.
Numerical experiments on one-to-one PDP test

instances show that our ILP formulation using an off-
the-shelf solver is almost competitive with tailor-
made solution methods from the literature for the
standard one-to-one PDP. Moreover, for the (PD)3 we
solve instances with up to 21 nodes and 15 trans-
portation requests using our formulation.We observe
cost savings of up to 15% by allowing divisible
pickups and deliveries in one-to-one PDPs.
In our numerical experiments, we have observed

that our ILP formulationhasdifficulties solvingproblem
instances in which the vehicle capacity is relatively
small. That is why a direction for future research is to
derive tight capacity-based cuts for the (PD)3.
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