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RESUMO

Em redes onde o fluxo entre nodos é muito elevado (como pode ser o caso do transporte de pessoas
e mercadorias ou até mesmo fluxo de dados numa rede), torna-se menos dispendioso criar pontos
onde se concentram os fluxos provenientes das diferentes origens para depois serem consolidados e
redistribúıdos até aos destinos. A esses pontos dá-se o nome de hubs.

O problema de localização de hubs consiste na localização de hubs numa rede e na alocação de
todos os nodos da rede a esses hubs, de modo a que se possa encaminhar os fluxos entre os pares
origem-destino a menos que sejam hubs.

A rede constitúıda pelos hubs é normalmente definida como completa e não se permitem ligações
diretas entre os pares origem-destino. Para além disso, assume-se que existe um factor de desconto
para o fluxo que circula entre hubs.

Neste tipo de redes (hub-and-spoke networks) podem aparecer duas variantes, no que diz respeito
à alocação dos nodos aos hubs: single-allocation e multiple-allocation. No primeiro caso, permite-se
apenas uma ligação de cada nodo não hub a um hub de modo a que todo o fluxo com origem e
destino a cada nodo saia e chegue a esse nodo através de apenas um hub. No caso em que se tem
multiple-allocation, cada nodo poderá ser afecto a mais do que um hub e o fluxo que chega e sai
desse nodo poderá usar mais do que um hub.

Algumas variantes que se poderão considerar para este problema incluem restrições de capaci-
dade nos hubs (restrições que limitam a capacidade de um hub processar uma certa quantidade de
fluxo de origem, limitações na capacidade total, limitações no processamento de fluxo que sai do
hub, etc.), restrições de capacidade nos arcos, problemas multi-periódicos, presença de incerteza, o
número de hubs ser fixo, o tipo de objectivo (minimizar custos, minimizar distâncias entre hubs,
etc.) entre outras.

A necessidade de aproximar este tipo de problemas aos casos que se observam no mundo real
leva à inclusão de cada vez mais restrições dando origem a mais variantes do problema.

Neste trabalho, será abordado o problema de localização de hubs na variante single-Allocation,
com restrições de capacidade em relação ao fluxo que cada hub é capaz de processar. Para além
disso, considera-se fluxos relativos a mais do que um tipo de produto. Este problema é designado
por Problema Multi-produto de Localização de Hubs com Capacidade1.

Cada hub poderá ser dedicado a processar apenas um tipo de produto, poderá processar mais
do que um, ou mesmo todos. A rede de hubs é completa para cada produto mas, no entanto, se se
considerar a rede de hubs para todos os produtos, esta poderá não ser completa.

1Multi-Product Capacitated Single-Allocation Hub Location Problem (MP-CSAHLP), de acordo com Correia et
al. [17].



RESUMO

Como constatado em Correia et al. [17], no caso em que cada hub processa todos os tipos de
produto, resolver o problema multi-produto ao invés de se resolver vários problemas, um para cada
produto em separado, dá origem a melhores resultados.

A complexidade inerente a este tipo de problemas leva a que sejam classificados como problemas
NP-Hard pois não existem algoritmos que sejam capazes de os resolver em tempo polinomial. Por
esta razão faz sentido desenvolver algoritmos heuŕısticos de modo a se conseguir obter, em tempo
útil, soluções para instâncias maiores do problema .

Como referido em Meyer et al. [51], em problemas de localização de hubs, duas soluções
com valores objectivo muito semelhantes poderão ser estruturalmente muito diferentes, e portanto,
através um mecanismo de pesquisa local poderá ser muito dif́ıcil a passagem de uma boa solução
para outra melhor. Por esta razão, neste trabalho opta-se por uma heuŕıstica que se baseia num
método em que se constroem soluções repetidamente.

Para a construção das soluções, considerando que um processo de construção do tipo Greedy
poderia dar origem a um número limitado de soluções e que as componentes da solução que são
escolhidas por último são as piores, optou-se pelo desenvolvimento de um algoritmo de Ant Colony
Optimization (ACO).

Esta meta-heuŕıstica baseia-se no comportamento apresentado pelas formigas quando estas
procuram alimento. Quando uma formiga deixa a colónia em busca de alimento, no seu trajeto,
deposita um qúımico (feromona) que pode ser detectado por outras formigas. Quanto maior a
concentração de feromona, maior a atracão de cada formiga por esse trajeto e, portanto, os trajetos
com maiores concentrações de feromonas serão percorridos por mais formigas. Por outro lado, se
o caminho de ida e volta até ao alimento for mais curto, mais vezes será percorrido e maior será
a concentração de feromona nesse caminho. O resultado destes dois tipos de reforço positivo nas
concentrações de feromona nos trajetos percorridos pelas formigas, aliados ao facto de que existe
evaporação do qúımico (a concentração de feromona diminui nos caminhos menos percorridos ao
longo do tempo) dá origem aos “carreirinhos” de formigas que se podem observar na natureza e
que normalmente representam o caminho mais curto entre o alimento e a colónia de formigas.

Considere-se o problema em questão em que se tem n nodos e p produtos. Para a representação
das soluções, em vez de se considerar uma matriz binária n× n× p, onde o valor 1 representa uma
afectação, considerou-se uma matriz n× p, em que cada entrada representa, para cada produto, o
hub ao qual o nodo foi afecto. O caso em que um nodo é afecto a si mesmo indica que esse nodo
é hub para o produto correspondente. Este tipo de representação permite reduzir o tamanho da
matriz e diminuir o uso da memória computacional.

Antes da construção de uma solução, é aplicado um pré-processamento que vai evitar, com
base nas restrições do problema, que certas componentes da solução sejam consideradas durante o
processo de construção da solução. Deste modo, reduz-se o espaço de procura de soluções e algum
esforço computacional.

Para a construção de uma solução, escolhe-se o tamanho da colónia (o número de formigas
que pertencem à colónia) e cada formiga vai escolhendo, sucessivamente, componentes da solução
através de uma regra pseudo-aleatória onde algumas componentes da solução são escolhidas de um
modo greedy e outras são escolhidas através de roulette wheel selection. A cada componente da
solução é atribúıdo um valor inicial de feromona e, à medida que cada formiga vai adicionando
componentes à solução, o valor da feromona associado à componente adicionada vai decrescendo,
o que resulta na diminuição da probabilidade de que essa componente seja escolhida pela próxima
formiga, dando origem à diversificação do conjunto de soluções constrúıdo por cada colónia. No fim,
depois de todas as formigas terem constrúıdo uma solução, escolhe-se a melhor solução e reforça-se
a concentração de feromona na melhor solução constrúıda pela colónia. Se, por acaso, uma formiga
der origem a uma solução não admisśıvel, a solução constrúıda por essa formiga não é considerada.
Para mais detalhe em relação a este processo consultar Dorigo et al. [20].



Este tipo de algoritmo permite a inclusão de métodos de pesquisa local de modo a que a solução
obtida por cada colónia seja melhorada. Com o objectivo de obter um algoritmo mais eficiente,
escolheu-se incluir esta possibilidade e procedeu-se ao reforço da concentração de feromona após
feita uma pesquisa local.

Na pesquisa local efectuada, usaram-se três tipos de vizinhança. Um deles fecha os hubs dedi-
cados que só servem a si próprios e realoca-os a outros já abertos para esse mesmo produto. Outro,
escolhe aleatoriamente um nodo alocado a um hub dedicado para um dado produto e realoca-o a
outro hub dedicado ao mesmo produto. Um terceiro, escolhe um hub aleatoriamente e transforma-o
num nodo, realocando-o a outro hub dedicado ao mesmo tipo de produto.

De modo a obter soluções iniciais melhores, explora-se a possibilidade de atribuir valores iniciais
de feromona mais altos às componentes de solução pertencentes à solução da relaxação linear, na
proporção do valor correspondente no caso das variáveis 0-1. Uma outra variação explorada consiste
em fazer o reforço do valor de feromona às componentes da solução, apenas quando esta é a melhor
de todas encontrada até ao momento, permitindo que haja evaporação de certas componentes
de solução que poderão estar a ser escolhidas consecutivamente e permitindo que se escape mais
facilmente de óptimos locais.

Após implementação do algoritmo procede-se à fase dos testes computacionais em instâncias do
problema com 10, 20, 25 e 40 nodos, 1, 2 e 3 produtos e hubs que processam 1, 2 e 3 produtos.

As instâncias usadas nos testes computacionais pertencem ao Australian Post data set e foram
adaptados por Correia et al. [17] de modo a que se tivesse dados para mais do que um tipo de
produto.

Palavras-chave: Localização de hubs, Multi-produto, Ant colony optimization, Single-Allocation
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ABSTRACT

In this thesis, an heuristic procedure is proposed for the the multi-product capacitated single-
allocation hub location problem.

When addressing a problem in which it is necessary to determine the transportation of large
commodity flows between many origin-destination (O-D) pairs, instead of using direct links, it
becomes more efficient to design the networks in such a way that some of the nodes become con-
solidation centers or hubs. The Multi-Product Capacitated Single-Allocation Hub Location Problem
(MP-CSAHLP according to Correia et al. [17]), is a NP-Hard problem in which several types of
flow are considered, making it possible to consider the case when multiple types of products are
to be shipped between each O-D pair. It can be seen as an extension of the classical Capacitated
Single-Allocation Hub Location Problem.

In the problem investigated in this work, no more than one hub can be located in each node and
the hubs can be either dedicated (each hub can only handle one type of product) or non-dedicated
(one hub can handle more than one type product). The hubs have capacity limitations regarding the
incoming flow. Furthermore, the hub network is complete for each product but, when considering
the hub network as a whole, it does not necessarily have to be complete. The goal is to locate the
hubs in the network, allocate the non-hub nodes to the opened hubs and route the flow between
each O-D pair. The objective is to minimize the total flow routing cost plus the setup costs of the
hubs and costs of preparing the hubs to handle the different types of products.

In order to obtain feasible solutions to the above problem, an Ant Colony Optimization pro-
cedure is proposed, which is a constructive, population-based meta-heuristic based in the foraging
behavior of ants. Indirect communication between the ants through pheromones reflects the colony
search experience. High-quality solutions are found as an outcome of the global cooperation among
all the ants of the colony. A preprocessing procedure is also proposed in which some solution com-
ponents are forbidden based on the problems restrictions. Such preprocessing reduces the search
space and thus may reduce the computational effort.

The proposed heuristic uses a single ant colony, which simultaneously chooses the hubs and
allocates the nodes to the hubs. Once these solutions are found, the routing of the flow is computed
in a short amount of time, using the optimization models for the MP-CSAHLP in which some
variables (location and allocation) are fixed.

The results show that the proposed heuristic has the potential to find good quality solutions for
the MP-CSAHLP and that its performance can be improved with finer parameter tuning, longer
runs and more intense local search.

Keywords: Hub Location, Multi-Product, Ant Colony Optimization, Single-Allocation.
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CHAPTER 1

Introduction

Hubs can be defined as “central facilities which act as switching points in networks connecting a
set of interacting nodes” (see O’Kelly [54]). When addressing a problem in which it is necessary
to determine the transportation of large commodity flows (such as mail delivery systems, public
transportation systems telecommunications networks, etc.) between many origin-destination (O-D)
pairs, instead of using direct links, it becomes more efficient to design the networks in such a way
that some of the nodes become consolidation centers or hubs.

In such a network, the main goal is to decide which nodes are to be used as hubs and determine
the allocation of the other nodes (spokes) to the hubs, in order to route the flows between the O-D
pairs. This is called a Hub Location Problem (HLP).

It is usually assumed that the resulting hub network is a clique and that no direct connections
between non-hub nodes is allowed. This type of network, often called a hub-and-spoke network,
takes advantage of economies of scale by applying a discount factor (α) to the flows routed between
hubs.

Depending on how spokes are allocated to the hubs, two types of hub networks can be differen-
tiated: single-allocation and multiple-allocation. In single-allocation networks, the flow originated
and destined to each spoke is routed through only one hub. Therefore, each spoke can only be
allocated to one hub. In multiple-allocation, the incoming and outgoing flow to each spoke can be
routed through more than one hub and so it can be allocated to more than one hub.

Hub location problems can be of different types, depending on the objective function as well
as on the constraints. Regarding the objective, some examples are the p-Hub Median Problem
(pHMP), in which the number of hubs to be opened is fixed to a value p and the objective is to
minimize the total flow cost1, the p-Hub Center Problem (pHCP), a minimax type problem where
the objective can be to minimize the maximum cost of any O-D pair, any single link or of movement
between a hub and a origin or destination, as defined by Campbell [8]. Concerning the constraints
we can distinguish capacity restrictions of different types such as upper (and sometimes lower)
limits applied to the flow on each arc, capacity limits to the total/incoming/outgoing flow that
each hub can handle or, as already mentioned, defining the number of hubs to be opened a priori
to a fixed value p.

1Fixed costs of opening the hubs can be added to the objective function, resulting in a p-Hub Location Problem
with fixed costs.

1



Chapter 1: Introduction

More details on hub location problems can be found in Contreras [13], in Campbell [8], in
Alumur and Kara [3], in Campbell and O’Kelly [10] and in Farahani et al. [36]. Furthermore, some
other additional features can contribute to the existence of a wider range of types of hub location
problems such as the inclusion of stochastic elements, time restrictions, multi-period modeling and
many more (see Contreras [13]).

One of those additional features, was proposed by Correia et al. [17], which gave origin to
the Multi-Product Capacitated Single-Allocation Hub Location Problem (MP-CSAHLP). In this
extension, several types of flows are considered, making it possible to consider the case when
multiple types of products are to be shipped between the O-D pairs.

In the MP-CSAHLP, the hubs can be classified as dedicated (each hub handles only one type of
flow) or non-dedicated (the hubs can handle more than one product). There are capacity constraints
for the incoming flow to each hub. Moreover, the hub network is complete for each product although,
when considering the hub network as a whole, it does not necessarily have to be complete.

Even though an optimization model was proposed in Correia et al. [17], this is a NP-Hard
problem and so, the main focus of this thesis is develop a heuristic for finding feasible solutions to
the problem.

As referred by Meyer et al. [51], in hub location problems, two solutions with similar objective
values can be structurally very different and moving from good solutions to better solutions, when
using a local search mechanism, can be very difficult. For this reason, a heuristic that constructs
repeatedly solutions was chosen in the current work. Construction heuristics are often based in
a greedy mechanisms, often leading to a limited number of solutions with the disadvantage that
in the solution construction process, worse solution components are often chosen in the last steps
of the algorithm. In order to avoid this behaviour, Ant Colony Optimization (ACO, Dorigo et al.
[20, 21], Dorigo and Caro [22], Dorigo and Stützle [29, 30]) was chosen to find good quality solutions
to the problem.

ACO is based on the foraging behaviour of ants (when ants leave their colony in search for food)
and on stigmergic communication (indirect communication between the ants trough pheromones).
When an ant leaves the colony in search for food, it deposits a certain amount of pheromone in
the traversed path. Other ants can perceive the pheromone and tend to travel through the paths
that have higher pheromone concentration, also depositing pheromone in those paths, increasing
the pheromone concentration. On the other hand, the shortest the path to the food source and
back to the colony, the more times it will be traveled. This gives origin to a higher concentration
of pheromones in the shortest paths to food. These two positive feedback processes, plus the fact
that the pheromone evaporates over time (lowering the concentration of that chemical on the least
traveled paths) is the reason why a line of ants can often be observed in nature and normally
represents the shortest path between the food source and the ant colony.

ACO was first applied to the Traveling Salesman Problem (TSP) by Dorigo and Stützle [30]
and can be applied to the problem in a straightforward way. In the case of the MP-CSAHLP,
when considering a network with n nodes and p products, instead of considering a binary matrix
n×n× p as a solution representation (where each matrix entry xpij equal to 1 represents that node
i is affected to hub j for product p), an n× p matrix is considered, where each entry represents the
hub to which the node is allocated for each product (the case where a node is allocated to itself
indicates that the node is a hub). This kind of solution representation allows a reduction on the
size of the solution matrix by a factor of n resulting in a decrease in the memory usage for the
computational tests.

For the solution construction, the size of the colony (number of ants to be considered) is chosen
and then, each ant builds a solution by successively adding solution components to the solution
being built. Each component is chosen by using a pseudo-random proportional rule (Dorigo and
Gambardella [25], Dorigo and Stützle [30]) where some solution components are chosen in a greedy

2



fashion and others are chosen using roulette wheel selection.

To each solution component, an initial pheromone value is assigned and, every time an ant adds
a solution component, the pheromone value associated with that solution component decreases,
making that solution component less attractive to the next ant, resulting in a diversification of the
solution set built by each ant colony. After all ants in the colony have built a solution, the one with
the best objective value is chosen and the pheromone levels of each of the solution components of
that solution is increased. If a solution built by an ant is infeasible, it is not considered and the
ant is declared as a dead ant.

Before updating the pheromone levels of the best solution components, local search can be
applied in order to improve the solution quality, yielding a local optimum. Adding this feature
to the algorithm improves its performance and, since the neighbourhood used during the solution
construction is different than the one used in the local search phase, there is a high probability of
getting a better solution (Dorigo and Stützle [29]).

For the local search procedure three different neighbourhoods where explored, based on the local
search operators for the Capacitated Single-Allocation Hub Location Problem (CSAHLP) defined
by Ernst and Krishnamoorthy [35]. These neighbourhoods are:

1. CloseHub: Dedicated hubs that serve only themselves are made spokes and relocated to
another hub dedicated to handling the same product, if the hub only processes one type of
product, it is also closed as a hub;

2. CloseRandomHub: For a randomly chosen product p, a hub processing that product is
chosen also randomly, made spoke and relocated to another hub dedicated to handling the
same product. In this case, all spokes allocated to that closing hub are also relocated to other
hubs dedicated to the same product. If the hub only processes one type of product, it is also
closed as a hub;

3. RelocateNode: For some randomly chosen product p, a node is randomly chosen and relo-
cated to another hub handling p.

These moves are applied only if feasibility is maintained. If the solution has a better objective
value, the change in the solution is carried out.

Some variations to the ACO algorithm proposed are explored. One uses stronger pheromone
initial values for the solution components that belong to the linear relaxation solution (the increase
in the values is done proportionally to the value of the solution obtained for components associated
with 0-1 decision variables). Another variation tested is based on Elitist Ant System investigated
by Dorigo et al. [27, 28] where, instead of providing a pheromone reinforcement on the solution
components of the best solution found by each colony, a choice is made on increasing the pheromone
values on the solution components, only if it is the best solution found so far. This allows pheromone
evaporation on the solution components that are being successively chosen but are not part of a
good solution, making it easier to escape from local optima.

After the implementation of the algorithm, a series of computational tests is run on instances
with 10, 20, 25 and 40 nodes for 1, 2 and 3 types of products and considering all possibilities for the
maximum number of products that a hub can handle. The instances used belong to the Australian
Post data set and, in order to consider more than one type of flow, the data were adapted by
Correia et al. [17].

The remainder of this thesis is organized as follows. In the next chapter, hub location problems
are described and a literature review is done regarding this class of problems, that includes heuristic
approaches that have been proposed and the application of ACO heuristics to some problems. In
Chapter 3 the MP-CSAHLP is described in detail and a MILP formulation existing in the literature

3



Chapter 1: Introduction

is revisited. In Chapter 4, some basic knowledge on the ACO meta-heuristic is provided and some
existing algorithms are presented. Chapter 5 is dedicated to the description of the algorithm used to
find the feasible solutions for the problem and also some results are reported and discussed. Finally,
in Chapter 6 the performance of the algorithm is discussed and some conclusions are drawn.

4



CHAPTER 2

Literature Review

In order to take advantage of economies of scale, in a network where flows must be routed between
many origin-destination pairs, it is better to choose some of the nodes to act as switching, trans-
shipment and sorting points. This idea was first explored in 1969, by Goldman [39] and later, in
1986, by O’Kelly [53, 54]. Since then, much work has been done by many researchers on different
classes of Hub Location Problems with regard to new formulations and development of exact and
heuristic algorithms for tackling such complex problems.

The reaminder of this Chapter is organized as follows. In Section 2.1 some problems and
techniques more closely related to the problem to be solved, the MP-CSAHLP, are revisited and
in Section 2.2 some heuristic approaches for tackling similar problems are presented. Finally, in in
Section 2.3 some conclusions are discussed.

2.1 Hub Location and Hub Median Problems

In 1987, O’Kelly [55] proposed a quadratic integer programming formulation for a hub location
problem within the context of airline passenger networks. According to Alumur and Kara [3] this
was the first mathematical formulation for this type of problems.

Consider a network where flows must be routed between origin-destination pairs, there are no
capacity constraints and the number of hubs to be opened, p, is defined a priori. The problem
studied by O’Kelly [55] consists of locating p hubs, allocating the nodes to the hubs (each node can
only be allocated to one hub) and routing the flows through the hub network in order to minimize
the flow routing costs. This problem is known as the Uncapacitated Single Allocation p-Hub Median
Problem.

Denoting by N the set of nodes in the network, the decision variables are defined as follows:

Xik =

{
1, if node i ∈ N is linked to a hub at k ∈ N ,
0, otherwise.

Xii =

{
1, if node i ∈ N is a hub,
0, otherwise.

Next, we introduce some notation, in order to present the model:
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Wij : number of units of flow between nodes i and j (i, j ∈ N , Wii = 0 by assumption);

Cij : transportation cost of a unit of flow between node i and node j (i, j ∈ N , Cii = 0
by assumption);

p : total number of hubs to be constructed;

n : total number of cities to be interconnected, i. e., n = |N |;

α : discount factor applied to inter-hub connections (in order to take in to account the
economies of scale, α ≤ 1).

The hub location problem studied by O’Kelly can then be formulated as:

QP :

minimize
∑
i∈N

∑
j∈N

Wij

(∑
k∈N

XikCik +
∑
m∈N

XjmCjm + α
∑
k∈N

∑
m∈N

XikXjmCkm

)
, (2.1)

subject to : (n− p− 1)Xjj −
∑
i∈N

Xij ≥ 0, for all j ∈ N, (2.2)∑
j∈N

Xij = 1, for all i ∈ N, (2.3)

∑
j∈N

Xjj = p, (2.4)

Xij ∈ {0, 1}, for all i , j ∈ N. (2.5)

In the above model, the objective function (2.1) quantifies the total flow routing cost, constraints
(2.2) ensure that nodes are only allocated to hubs1, constraints (2.3) guarantee that each node can
only be allocated to one hub; constraints (2.4) state that the number of hubs to be opened is p and
finally, constraints (2.5) define the domain of the decision variables.

In 1992, in order to extend his formulation, O’Kelly [56] added fixed costs to the objective
function, i.e., the cost term

∑
j∈N Xjjfj was added, where fj represents the fixed cost of opening

a hub. Even though these formulations contain few variables, the quadratic non-convex nature of
the objective function makes the problem difficult to solve.

The quadratic integer programming formulation of O’Kelly was linearized by Campbell [8, 9],
Aykin [4], Skorin-Kapov et al. [68] and Ernst and Krishnamoorthy [33]. The first four works
considered 4-indexed variables; the latter reduced the problem size by decreasing the number of
indices to three.

Campbell [8] starts by presenting a formulation for the p-Hub Median Problem where the fol-
lowing decision variables are considered:

Yijkm : fraction of flow from location (origin) i to location (destination) j that is routed via
hubs at locations k and m in that order (i, j, k, m ∈ N);

Zk =

{
1, if location k ∈ N is a hub,
0, otherwise;

1Xjj = 1 means that node j is a hub, therefore, any node can be allocated to j and at most n− p + 1 nodes can
be allocated to j (including the allocation of hub j to itself). On the other hand, Xjj = 0 means that node j is not
a hub and, for that reason, no nodes can be allocated to j (

∑
i∈N = 0, for all j ∈ N).
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Also, the following parameters are considered:

cij : standard cost from location i to location j;

Cijkm = cik + cmj + αckm.

And the problem is formulated as:

p−HM
minimize

∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

WijYijkmCijkm, (2.6)

subject to :
∑
k∈N

Zk = p, (2.7)∑
k∈N

∑
m∈N

Yijkm = 1, for all i, j ∈ N, (2.8)

Yijkm ≤ Zk, for all i, j, k,m ∈ N, (2.9)

Yijkm ≤ Zm, for all i, j, k,m ∈ N, (2.10)

0 ≤ Yijkm ≤ 1, for all i, j, k,m ∈ N. (2.11)

Zk ∈ {0, 1}, for all k ∈ N, (2.12)

In the above model, N , Wij and p have the meaning already presented before. The objective
function (2.6) aims to minimize the total transportation costs, constraints (2.7) establish that the
number of hubs to be opened must be equal to p, constraints (2.8) assure that the flow for every
O-D pair is routed via at least one hub, constraints (2.9) and (2.10) allow allocation only to hubs.
Constraints (2.12), (2.11) define the domain of the decision variables. The variables Yijkm, as
defined lead to the Multiple-Allocation version of the problem but if set to be integer, lead to the
Single-Allocation version.

Next, Campbell [8] introduces the idea of flow thresholds and fixed costs for the links connecting
hubs to spokes. The flow thresholds Tik defines the minimum flow value allowing service on the
link between spoke i ∈ N and hub k ∈ N . If the flow on that link is greater than zero then, a cost
Sik is incurred. The larger these values, the lower the number of hub-spoke links that will emerge
in the solution. When Tik =

∑
j∈N (Wij + Wji), the threshold reaches the maximum value, and

each demand point is allocated to a single hub, resulting in a single allocation problem.

The resulting linearization of the Uncapacitated Single Allocation p-Hub Median Problem (US-
ApHMP) can be formulated considering the variables Yijkm and Zk introduced before and the
variables Xik defined as follows:

Xik =

{
1, if location i is allocated to the hub at location k (i, j ∈ N),
0, otherwise;

The linear formulation of the of the USApHMP presented by Campbell [8] is then:

Constraints (2.13) define that, if Xik is equal to one, all the flow originated and destined to
node i must go through hub k (Single-Allocation) and constraints (2.14) only allow connections
from node i to node k, if node k is a hub. Constraints (2.12), (2.11) and (2.15) define the solution
variables domain.
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p−HM − 1L
minimize (2.6),

subject to : (2.7), (2.12), (2.11), (2.8);∑
j∈N

∑
m∈N

(
WijYijkm +WjiYjimk

)
=
∑
j∈N

(Wij +Wji)Xik, for all i, k ∈ N. (2.13)

Xik ≤ Zk, for all i, k; (2.14)

0 ≤ Xik ≤ 1, and integer for all i, k ∈ N. (2.15)

In this work, Campbell also presents a formulation for the Uncapacitated Hub Location Problem
where the the main difference resides in the fact that the number of hubs is not fixed and a fixed
cost (associated with each potential hub location) is added to the objective function. The p-hub
center problem and the a hub covering problem are formulated too. In the first center problem
the objective is to minimize the maximum distance between any O-D pair and and in the covering
problem, any O-D pair is covered by hubs k and m if the cost from i to j via k and m does not
exceed a specific value.

Skorin-Kapov et al. [68] observed that the linear relaxations of the previous model resulted in
highly fractional solutions and proposed a modification in which constraints (2.9) and (2.10) are
replaced by the following ones:

∑
m∈N

Yijkm = Xik, for all i, j, k ∈ N, and (2.16)

∑
k∈N

Yijkm = Xjm, for all i, j,m ∈ N. (2.17)

These constraints are stronger and yield tighter linear relaxation bounds with integer solutions
in almost all instances tested by Skorin-Kapov et al. [68].

Ernst and Krishnamoorthy [33] proposed a three index mixed integer Linear Programming (LP)
formulation for the USApHMP with fewer constraints, reducing the size of the model. By treating
the inter-hub transfers as a multi-commodity flow problem, where each commodity represents the
traffic flow originating from a particular node, it is possible to remove the Yijkl variables.

Consider the following additional notation:

χ : discount factor applied to node-hub connections (collection);

δ : discount factor applied to hub-node connections (distribution);

Oi : traffic originated at node i (Oi =
∑

j∈N Wij for all i ∈ N);

Di : traffic destined to node i (Di =
∑

j∈N Wji for all i ∈ N);

Additionally, denote by Y i
kl a new decision variable representing the total amount of traffic

emanating from node i that is routed via hubs k and l.

The problem can now be written as follows:
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USApHMP −N
minimize

∑
i∈N

∑
k∈N

dikXik(χOi + δDi) +
∑
i∈N

∑
k∈N

∑
l∈N

αdklY
i
kl (2.18)

subject to :
∑
k∈N

Xkk = p, (2.19)∑
k∈N

Xik = 1, ∀i ∈ N, (2.20)

Xik ≤ Xkk, ∀i, k ∈ N, (2.21)∑
l∈N

Y i
kl −

∑
l∈N

Y i
lk = OiXik −

∑
j∈N

WijXjk, ∀i, k ∈ N, (2.22)

Xij ∈ {0, 1}, ∀i, k ∈ N, (2.23)

Y i
kl ≥ 0, ∀i, k, l ∈ N. (2.24)

In the objective function (2.18), not only the inter-hub discount factor is considered (α) but
the the discount factors for collection (χ) and distribution (δ) are considered. The objective is to
minimize the total transportation costs. Equation (2.19) defines the the total number of hubs to be
opened as p. Equations (2.20) and (2.21) impose that each node is allocated to only one hub and
equation (2.21) alone prevents allocations to non-hub nodes. Equations (2.22) are the divergence
equations for traffic flow emanating from node i to hub k. The domain constraints are given by
(2.23) and (2.24).

In 1998, Sohn and Park [70] tried to reduce the size of the model by reviewing the formulation
provided by Skorin-Kapov et al. [68], not by reducing the number indices in the variables but by
applying symmetry to the unit flow cost reducing the number of variables and constraints by more
than a half.

In the same year, Ernst and Krishnamoorthy [34] proposed a formulation for the Multiple-
Allocation p-Hub Median Problem based on the ideas of their previous work for the Single-Allocation
version of the problem and in 1999, the same authors [35] propose new formulations for the Capac-
itaded Single-Allocation Hub Location Problem (CSAHLP). In this work, the formulations are the
same as in USApHMP −N but constraint (2.19), which define the number of hubs to be opened as
p is removed. The fixed setup costs for the hubs are added to the objective function (

∑
k∈N FkXkk)

and capacity constraints limiting to Γk the incoming flow to each hub k ∈ N are added. These
constrains are defined as follows:∑

i inN

OiXik ≤ ΓkXkk, for all i, k ∈ N. (2.25)

The new model is called CSAHLP − N by the authors. In 2010, Correia et al. [16] noticed
that these formulations are incomplete and may not give a precise description of the set of feasible
solutions to the problem because variables Y i

kl are allowed to be different than zero when variables
Xik are zero. The following set of constraints was proposed:∑

l inN

Y i
kl ≤ OiXik, i, k ∈ N. (2.26)

The formulations for hub location problems have been enhanced and developed through the
years, sometimes coupled with heuristic algorithms with the aim of obtaining better results and
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reducing computational times. Some of that work is mentioned in the next section.

2.2 Heuristics for Hub Location and Hub Median Problems

Heuristic procedures have been proposed in order to help solving hub location problems by obtaining
upper or lower bounds as a starting points for exact algorithms or simply to find good feasible
solutions for problems that are too hard to solve to optimality.

Along with the first mathematical formulation for the Single Allocation p-Hub Median Problem,
O’Kelly [55] proposed two heuristics. These heuristics consider exhaustively all possible combi-
nations for the p hubs to be located in the network. In one case, the allocation of the spokes is
done to the nearest hub (HEUR1); in the other case, the allocation of the spokes is done to its
first or second nearest hub (HEUR2). Computational tests were performed using the CAB data
set and instances with up to 25 nodes were solved. The results showed that HEUR2 gives better
results but, as the discount factor on inter-hub connections decreases, the difference between the
two heuristics becomes smaller.

In 1992, Klincewicz [42] developed two heuristics for the p-Hub Location Problem based on Tabu
Search (TS) and Greedy Randomized Adaptive Search Procedure (GRASP). These approaches were
able to solve instances with up to 52 nodes.

Other authors have used TS obtain feasible solutions to hub location problems. This is the case
with Abdinnour-Helm [1], who proposed an hybrid algorithm (GATS) based on Genetic Algorithms
(GA) and Tabu Search (TS) to solve the Uncapacitated Single-Allocation Hub Location Problem
(USAHLP). In this heuristic, a GA is used to determine the number and location of the hubs as
well as the allocation of the spokes to the hubs. Afterwards, TS is used improve the allocation
of spokes to hubs. This heuristic outperformed a previous known GA heuristic for this problem
proposed by Abdinnour-Helm and Venkataramanan [2].

Other examples of the use of TS include the work by Marianov et al. [50], where the problem of
locating hubs in a competitive environment is investigated. In this type of problem, the possibility
of relocating hubs in an existing network with competitor hubs is studied. For instance, in air
passenger transportation systems, when the location of a new hub results in the decrease of the
cost for a costumer to go from its origin to its destination, the customer is captured by the new
hubs instead of using a competitor hub. The objective in such a problem is to capture as much
costumer traffic from the competitor as possible. Marianov et al. [50] proposed a formulation for
this problem (which would be later revisited by Wagner [76]) and a heuristic procedure based in a
one-opt heuristic modified with some TS. In 2009, the same problem was addressed by Eiselt and
Marianov [31] who extended the formulation proposed by Marianov et al. [50]. Also, a heuristic
concentration method2 is proposed where, in first phase, the number of candidate locations for the
hubs is reduced from the original n to some (much) smaller number by turning, one by one, the
hub nodes to non-hub nodes and, in the second phase, instead of moving one hub at a time, two
hubs are moved at a time from their current location to any pair of unused locations.

In 2001, Pamuk and Sepil [57] presented the first heuristic for the Single Allocation p-Hub Center
Problem [3]. A single-exchange heuristic procedure was proposed where the moves from solution
to solution are done by replacing a hub node by a non-hub node. This procedure is coupled with
TS in order to avoid getting trapped too early in a “valley” associated with a local optimum.

Marianov and Serra [49] propose a heuristic based on TS for the problem of locating airline
hubs with the incoming flow to the hubs behaving according to M/D/c queues. In this work, the
problem is modeled considering the congestion effects that arise in hub airports due to the higher

2A two-phase metaheuristic combining exact and heuristic methods first proposed by Rosing and ReVelle [63] and
applied to the p-median problem by Rosing et al. [64] .
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traffic flows. Among other reasons, the probabilistic nature of this model makes it very complex
and hard to solve. Hence, the authors propose a heuristic procedure where a greedy ADD heuristic
is used to find the initial set of p locations to establish as hubs and a one-opt exchange heuristic
coupled with TS is then used to improve the initial solution.

A different type of problem was addressed by Yaman and Carello [78] in 2005. The authors
consider a hub location problem where the cost of using an edge is stepwise and the traffic transiting
through the hub has some limit, as often observed in the design of telecommunication networks.
The heuristic presented is based on a local search approach where the problem is decomposed into
two subproblems: the location subproblem and the allocation subproblem. TS is applied to the
location subproblem part in order to find the best set of hubs and then, the allocation is done using
a greedy algorithm.

In 2007, Chen [11] proposed a hybrid heuristic (SATLUHLP) for the Capacitated Single Allo-
cation Hub Location Problem (CSAHLP) combining Simulated Annealing (SA) and TS in order to
avoid returning to previous visited solutions. This heuristic outperformed the results obtained by
Topcuoglu et al. [75] where a GA based heuristic and a SA heuristic has been proposed to solve
the same problem.

Later, in 2009, Silva and Cunha [66] also propose heuristic methods based on TS in order to
solve the CSAHLP. The authors propose three variants of a simple and efficient multi-start TS
heuristic in order to explore several different initial solutions. Also, a two-stage integrated TS
heuristic is proposed to improve the location and the allocation components of a solution to the
problem.

One of the assumptions often done in hub location problems is that the hub level network is
complete. This is not the case in the work presented by Calık et al. [7]. Not only do the authors
not only introduce a tabu-based heuristic for the Single Allocation Hub Covering Problem Over
Incomplete Hub Networks but also they propose an integer programming formulation for it.

Besides presenting the formulation for the USApHMP (this formulation is in the previous sec-
tion, in 9), in 1996, Ernst and Krishnamoorthy [33] also proposed a heuristic algorithm based on
SA in order to use the results in a LP-based branch-and-bound solution method. Later, in 1999, the
same authors also proposed two heuristic algorithms for the CSAHLP [35] based on SA and random
descent (RD) also with the same purpose. In 2008, Chen [12] presents a heuristic (SATLCHLP)
based in TS and SA for the same problem.

Kratica el al. [44] proposed two genetic algorithms (GAHUB1 and GAHUB2) in order to solve
the USApHMP. The authors used specific representation and modified genetic operators in order
to keep the feasibility of individuals. Instances with up to 200 nodes and 20 hubs were tackled. In
the same year, Cunha and Silva [18] proposed an algorithm based on GA for the USAHLP. They
did not consider the discount factor on inter-hub connections as a constant but as a function of
the total flow between each hub (the greater the flow, the smaller the discount factor). In this
algorithm, GA is combined with local search heuristics in each iteration. GA is used to determine
the location of the hubs and the initial allocation of each spoke to the hubs. Then, local search is
applied in order to improve the allocation of the nodes to the hubs3.

The above mentioned papers are only some proposing the use of GA based procedures for
HLPs. Nevertheless, other authors have proposed this type of approaches within the context of
hub location. This is the case with Takano And Arai [73], Kratica et al. [43, 45], Stanimirović [71],
Lin et al. [46], Lüer-Villagra [48].

In 2011, Mohamadi et al. [52], proposed an algorithm to solve a Hub Covering Location Problem
(With Crowdness) with stochasticity4 In this work, hubs, which are the most crowded parts of

3This combination of genetic algorithms with local search heuristics is sometimes referred to as hybrid genetic
algorithm or memetic algorithm.

4Constraints and random variables are considered such as the transportation time and rate of arrived trucks.
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network, are looked at as M/M/c queuing systems. The algorithm is based on GA and Imperialist
Competitive Algorithm (ICA)5.

In 1996, Campbell [9] proposed a greedy heuristic for the SApHMP where the hubs are added
according to their contribution to the transportation cost in a non decreasing way. After the
solution is constructed, a hub interchanges location with a non hub repeatedly while the result is
a decrease in the transportation cost.

In 2005, Bollapragada et al. [5] studied a fixed-wireless network-planning problem with a two
phase planning horizon and a different budget for each phase. There are different hub types (with
regard to cost and capacity) and demand is stochastic. An optimization model was proposed for
the problem as well as a greedy algorithm in order to maximize the expected demand covered. The
greedy heuristic chooses the hub locations in each phase according to the ratio of increase in flow
divided by the cost of achieving this increase.

In 2014, Peiró et al. [58] presented a GRASP algorithm for an extension of the pHMP where
every node is allocated to r of the p selected hubs (r ≤ p). The problem was initially introduced
by Yaman [77]. In the algorithm presented by Peiró et al. [58], first the hubs are selected, then the
nodes are allocated to the hubs and finally the traffic is routed from origin to destination through
the selected hubs. Lists of candidate solution components for each phase of the algorithm are
created and ordered in a greedy fashion and then, the solution components are randomly chosen
from the lists until a feasible solution is produced.

Smith et al. [69], in 1996, solved the USApHMP by mapping the problem onto a modified6

Hopfield neural network. The Hopfield neural network is a mathematical model of the brain which
can be implemented in electronic hardware and can be used to solve optimization problems with
binary variables. In order to use a smaller formulation, the authors used the quadratic integer
programming formulation of the problem proposed by O’Kelly[55]. The network was simulated
but much faster results would have been achieved if the network was implemented in electronic
hardware. The results were compared with the SA heuristic proposed by Ernst and Krishnamoorthy
[33] and a commercial solver package designed to minimize convex functions (note that the used
formulation has a non-convex objective function). The authors found that the Hopfield neural
network approach is able to compete effectively with the SA and mentioned that the performance
of the solver was inferior to both approaches.

In the same year, Skorin-Kapov et al. [68], as already stated before, proposed tighter LP
formulations for the pHMP that resulted in tighter linear relaxations with integer solutions in
almost all instances. In this work, the authors also developed a linkage between optimal and
heuristic solutions in order to solve the problems in which the linear relaxation solutions were
fractional. The best known heuristic solutions found by Skorin-Kapov and Skorin-Kapov [67], in
conjunction with the solutions to the LP relaxation, were used as guidance for branching strategy
and lead to the optimal solutions of the problem.

Pirkul and Schilling [59] applied Lagrangean Relaxation to the tight LP introduced by Skorin-
Kapov et al. [68]. Three sets of constraints were relaxed and the main problem was restructured
into two sub-problems. This approach led to very small gaps and short computation times.

In 1999, Sasaki et al. [65] considered the 1-stop p-Hub Median Problem, a special case of the
pHMP where each route in the network is allowed to use only one hub. The authors presented a
formulation for this problem and proposed an implicit enumeration branch-and-bound algorithm

5“Imperialist Competitive Algorithm (ICA) uses socio-political evolution of human as a source of inspiration for
developing a strong optimization strategy. Imperialism is the policy of extending the power and rule of a government
beyond its own boundaries. A country may attempt to dominate others by direct rule or by less obvious means such
as a control of markets for goods or raw materials.” (Mohammadi et al. [52])

6The unmodified version of the network often ended in the first local optimum and so a modification was made in
order to escape from local optima.
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that uses Lagrangean Relaxation by dualizing the constraint on the number of hubs. Computational
results show in that their algorithm, the CPU time increases rapidly with the size of the problem
and, for this reason, a greedy-type approach (that can be seen as a generalization of the greedy
heuristic proposed by Campbell [9]) is suggested.

Other researchers have also proposed Lagrangean Relaxation based algorithms such as Contreras
et al. [14, 15] to obtain tight upper and lower bounds for the CSAHLP, solving instances with up
to 200 nodes, and Lu and Ting [47] for the CSApHMP.

Rodŕıguez-Mart́ın and Salazar-González [61], in 2006, proposed a heuristic for the Capacitated
Hub Problem (CHP) in a telecommunications network with capacity constraints on the hubs and
arcs and where the graph connecting the hubs is not assumed to be complete. The proposed heuristic
makes use of a linear programming relaxation in an Iterated Local Search scheme where the aim is to
create a random walk in the space of local optima defined by the output of a local search procedure.
The computational experiments on random instances show that the heuristic method provides
good feasible solutions for large CHP instances in a reasonable amount of time. Two years later,
these authors proposed a LP-based heuristic using a local search based on Variable Neighbourhood
Search (Rodŕıguez-Mart́ın and Salazar-González [62]). The Variable Neighbourhood Search (VNS)
method consists of starting from a given solution and applying iteratively two procedures (the
neighbourhood is changed in these two procedures): a shaking procedure with the intent of getting
a good initial solution, and a local search in order to improve the initial solution until a local
optimum is reached. This process is repeated until some stopping criterion is met. The heuristic
proposed gave better results when applying only one operator for performing the shaking procedure
(simultaneously closing an open hub and opening a closed one) and also only one operator for
performing the local search procedure (closing a hub opened in the current solution).

Ilić et al. [41] proposed two General VNS (GVNS) heuristics based on three neighbourhood
structures (Allocate, Alternate and Locate) for the USApHMP. The paper presents results in which
instances with up to 400 nodes are solved in less computational time when compared with some
existing algorithms.

In 2009, Ernst et al. [32] developed new mathematical formulations for the Uncapacitated p-
Hub Center Problems with either Single-Allocation or Multiple-Allocation. They also proposed
a shortest path based branch-and-bound algorithm to solve the multiple allocation case and the
numerical results showed that the proposed method is extremely efficient for solving the problem.
Instances with up to 200 nodes are solved.

Filipović [37], proposed an electromagnetism (EM) meta-heuristic for the Uncapacitated Multiple-
Allocation Hub Location Problem (UMAHLP). The EM method is a population based algorithm in
which a charge is associated to each electromagnetic point (potential solutions to the problem) in
the solution set. The charge for each point is calculated as a function of its objective function and all
the other points objective functions. The algorithm is based in an attraction-repulsion mechanism
and so, as in electromagnetic interaction, all points interact with each other and the interaction
depends on the charge that each point has. The interactions can be described by Coulombs Law
meaning that the power of connection between two points will be proportional to the product of
charges and reciprocal to the distance between them (points with a higher charge will attract more
strongly and the best EM point will stay unchanged). This interaction between particles results in
moving the particles towards the optimum solution. Instances up with to 200 nodes were solved
and the optimum or a best known solution was reached in 27 of the 28 instances tested.

In 2008, Randall [60] proposed an Ant Colony Optimization (ACO) algorithm to solve the
CSAHLP. In this paper, four variations of the the Ant Colony System (ACS) technique7 are de-
veloped. ACS is a construction meta-heuristic and the difference between these four variations is

7A population based technique designed to simulate the ability of ant colonies to determine shortest paths to food.
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in the way the ant colonies construct the solutions. Prepossessing is also used in order to reduce
the search space. After each iteration, a local search procedure consisting of six local search oper-
ators is applied, in order to improve the constructed solution. The results reveal that each of the
approaches can return optimal solutions very fast. Instances with up to 50 nodes were solved to
optimality.

In 2009, Meyer et al. [51] also propose an algorithm that uses ACO to solve the Single Allocation
p-Hub Center Problem. In this paper, a hybrid 2-phase algorithm is introduced where, in the first
phase, a heuristic algorithm based in ACO is used to get a good upper bound for a shortest path
based branch-and-bound where a set of optimal hub combinations is computed and in the second
phase, allocation is done using a reduced size formulation. A purely based ACO algorithm was also
proposed where two different ant colonies were used: one to find the hub locations and the other
to perform the spoke allocations to each hub. Preprocessing is also used based on a upper bound
applied to the path length between any O-D pair. Instances with up to 400 nodes and 5 hubs were
solved to optimality by the ACO algorithm alone and the two-phase algorithm.

2.3 Conclusions

As shown in this chapter, many heuristic approaches have been proposed for hub location prob-
lems. Concerning genetic algorithms, there are several studies in the literature describing how to
encode solutions and apply the crossover and mutation operators. However, this is done mainly
for uncapacitated problems and thus, this heuristic approach was not considered as a candidate
for tackling the MP-CSAHLP because the encoding and crossover operator might not preserve the
best features of the parents to the offspring.

Also, as referred in Meyer et al. [51], it can be very difficult to move from a good solution to
a better one using a local search mechanism, due to the solution structure and the local search
neighbourhoods defined.

These aspects motivate the work to be done using a construction mechanism, namely the the
ACO algorithm.

Recently, Contreras et al. [13] presented an overview on Hub Location that reviews not only
some of the topics presented in this Chapter but also focuses on other types of problems not
addressed here and on exact methods for solving this class of problems.
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CHAPTER 3

The Multi-Product Capacitated Single Allocation Hub Location Problem

In this chapter, the work presented by Correia et al. [17] is revisited. The Multi-product Capac-
itated Single-Allocation Hub Location Problem (MP-CSAHLP) is defined and the model used for
evaluating the quality of the heuristic approach proposed in chapter 5 is presented.

The MP-CSAHLP is an extension of the CSAHLP where the main difference is that different
types of commodities (products) are to be shipped between the O-D pairs. The problem was first
introduced by Correia et al. [17], who assume that no more than one hub can be located in each
node and the hubs can be either dedicated (each hub can only handle one type of product) or non-
dedicated (one hub can handle more than one type product). Capacities on the hubs are considered
with regard to the non-processed incoming flow to the hubs. The hub network is assumed to be
complete for each product but, when considering the hub level network as a whole, that might not
be the case. The objective is to minimize the total cost, which includes the flow routing cost, the
setup costs of the hubs, and the fixed costs of preparing the hubs to handle the different types of
products.

Correia et al. [17] proposed a unified modeling framework for this problem, based on existing
formulations for the CSAHLP, covering simultaneously both the variations presented (dedicated
hubs and non-dedicated hubs). Also, some enhancements are proposed in order to reduce the gap
of the linear relaxation bound.

The remainder of the chapter is organized as follows. In the next section, the formulations
for the MP-CSAHLP are presented; in section 3.2 the model enhancements are presented and in
section 3.3 some computational results are discussed and conclusions are presented.

3.1 Proposed Models

Before presenting formulations for the MP-CSAHLP, let us first summarize some of the special
features introduced earlier and also introduce some notation.

Regarding the special features of the problem, as defined by Correia et al. [17], we have the
following:

1. There are several products (flow categories/types) to be shipped through the network.
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2. For each node (potential hub) there is a limit on the number of product types that can be
handled by a hub located at that node. By doing so, a unified modeling framework can be
proposed which has as particular cases the situations in which:

i) all hubs are dedicated and

ii) all hubs handle all products.

All the cases in between these two extremes are possible.

3. Single-allocation is considered for each product. Accordingly, for each product, each node
must be allocated to one and only one hub, but a node can be allocated to different hubs for
different products.

4. Hubs are capacitated that is, in each hub a limit is considered for the flow of each product
that can be handled by the hub.

5. For each product, all the flow must be collected, transferred and distributed using only hubs
that handle the product.

6. For each product, the hub level network is a clique (complete graph).

The following notation, as introduced by Correia et al. [17] is now presented:

N Set of nodes;

P Set of products;

dij Distance between nodes i and j (i, j ∈ N);

wpij Flow of product p to be sent from node i to node j (i, j ∈ N, p ∈ P );

Opi =
∑

j∈N w
p
ij Total flow of product p originated at node i (i ∈ N, p ∈ P );

Dp
i =

∑
j∈N w

p
ji Total flow of product p destined to node i (i ∈ N, p ∈ P ).

The distance matrix [dij ]i,j∈N is assumed to be symmetric and also, it is assumed that the
distance from any node to itself is zero, dii = 0 (i ∈ N). This assumption does not imply that for
each product p ∈ P , the flow matrix [wpij ]i,j∈N will have a null diagonal. Additionally, it is assumed
that the distances satisfy the triangle inequality. Accordingly, since the hub level structure for each
product is a clique, all the flow between every O-D pair traverses at most two hubs.

Correia et al. [17] also define:

Γpk Capacity of a hub installed at node k for handling product p (k ∈ N, p ∈ P )

Lk Maximum number of product types that can be handled by a hub located at
k (k ∈ N)

Regarding the costs the same authors consider:

χp Cost per unit of flow of product p and per unit of distance between a non-hub
node and a hub (p ∈ P );

δp Cost per unit of flow of product p and per unit of distance between a hub and
a non-hub node (p ∈ P );
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αp Cost per unit of flow of product p and per unit of distance between hubs
(p ∈ P );

cpijkl Total cost for sending one unit of flow of product p from node i to node j
through hubs k and l. This concerns the flow following the path i→ k → l→
j. We have cpijkl = χpdik + αpdkl + δpdlj , (i, j, k, l ∈ N, p ∈ P );

gk Fixed cost for installing a hub at node k independently from the products that
the hub will handle (k ∈ N);

fpk Fixed cost for preparing a hub at node k for handling product p (k ∈ N, p ∈
P ).

The decisions to be made are:

• which nodes should become hubs;

• which products should be handled by each hub;

• and the flow that will be routed through the hubs for each O-D pair and for each product.

The following decision variables were proposed by Correia et al. [17]:

xpik =

{
1, if the flow of product p originated at i is handled by hub k,
0, otherwise.

(i, k ∈ N, p ∈ P )

xpkk = 1 indicates that node k is a hub and handles product p (k ∈ N , p ∈ P ).

zk =

{
1, if a hub is installed at node k,
0, otherwise.

(k ∈ N)

ypijkl = Fraction of the flow of product p originated at node i and destined to node j which is
routed via hubs k and l by this order (i, j, k, l ∈ N, p ∈ P )

As seen in the previous chapter, several different formulations have been proposed for hub
location problems. As mentioned in the previous chapter, Campbell [8] proposed the first linear in-
teger programming formulation for the USAHLP. Based on that formulation and using the decision
variables presented, the first proposal for the extended problem emerges as follows:

PC

minimize
∑
p∈P

∑
i∈N

∑
k∈N

∑
l∈N

∑
j∈N

wpijc
p
ijkly

p
ijkl +

∑
k∈N

gkzk +
∑
p∈P

∑
k∈N

fpkx
p
kk, (3.1)

(3.2)

subject to
∑
k∈N

∑
l∈N

ypijkl = 1, i, j ∈ N, p ∈ P, (3.3)∑
j∈J

∑
l∈N

(wpijy
p
ijkl + wpjiy

p
jilk) = (Opi +Dp

i )x
p
ik , i, k ∈ N, p ∈ P, (3.4)

xpik ≤ x
p
kk , i, k ∈ N, p ∈ P, (3.5)∑

i∈N
Opi x

p
ik ≤ Γpkx

p
kk , k ∈ N, p ∈ P, (3.6)∑

p∈P
xpkk ≤ Lkzk , k ∈ N, (3.7)
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xpik ∈ {0, 1}, i, k ∈ N, p ∈ P, (3.8)

ypijkl ≥ 0, i, j, k, l ∈ N, p ∈ P, (3.9)

zk ∈ {0, 1}, k ∈ N, (3.10)

The objective function (3.1) aims to minimize the total cost which is expressed as the sum of
the flow routing costs, the cost of opening the hubs and the cost of dedicating the hubs to the
products. Constraints (3.3) assure that all the flow between each O-D pair, for each product is
shipped. Constraints (3.4) determine that if a node is allocated to hub k for product p, all the
flow of product p originated and destined to node i must go through that hub. Constraints (3.5)
ensure that each node i is allocated to hub k for product p if the hub is open and handles product
p. Constraints (3.6) are the capacity constraints limiting the incoming flow to hub k for product p.
Constraints (3.7) limit the number of products that each hub can handle. Constraints (3.8)-(3.10)
define the domain of the decision variables.

As referred in the previous chapter, Skorin-Kapov et al. [68] proposed an improvement to the
formulations presented by Campbell [8] resulting in tighter lower bounds for the linear relaxation
of the model. The same can be done for the MP-SAHLP resulting in another formulation in which
constraints (3.4) are replaced by∑

l∈N
ypijkl = xpik , i, j, k ∈ N, p ∈ P, (3.11)

and ∑
k∈N

ypijkl = xpjl , i, j, l ∈ N, p ∈ P. (3.12)

The new model is denoted by (PSK).
Another linearization of the CSAHLP resulted in a three-index formulation proposed by Ernst

and Krishnamoorthy [35] thus reducing the size of the formulation. This formulation can be ex-
tended to the multi-product version of the problem we are investigating by changing the flow
variables and leaving the rest unchanged.

The flow variables can now be defined as:

ypikl = Flow of product p originated at i that is routed via hubs k and l by this order (i, k, l ∈
N, p ∈ P ).

The resulting model is then:

PEK

minimize
∑
p∈P

∑
i∈N

∑
k∈N

dik (χpOpi + δpDp
i )x

p
ik +

∑
p∈P

∑
i∈N

∑
k∈N

∑
l∈N

αpdkly
p
ikl

+
∑
k∈N

gkzk +
∑
p∈P

∑
k∈N

fpkx
p
kk , (3.13)

(3.14)subject to (3.5), (3.6), (3.7), (3.8), (3.10),∑
k∈N

xpik = 1, i ∈ N, p ∈ P, (3.15)∑
l∈N

ypikl −
∑
l∈N

ypilk = Opi x
p
ik −

∑
j∈N

wpijx
p
jk , i, k ∈ N, p ∈ P, (3.16)
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3.2. Enhancements∑
l∈N

ypikl ≤ O
p
i x

p
ik , i, k ∈ N, p ∈ P, (3.17)

ypikl ≥ 0, i, k, l ∈ N, p ∈ P. (3.18)

In this model, constraints (3.15) define the single allocation for each product; constraints (3.16)
are the divergence equations for commodities (i, p) at node k which refer to flow conservation.
Constraints (3.17) only allow flow to go from node i to hub k if node i is allocated to hub k (more
precisely, flow variables ypikl can only be greater than zero if xpik is different from zero and the flow
sent through hub k is the same as the flow originated at i, Opi ). Constraints (3.18) define the
domain of variables ypikl. The objective function (3.13), to be minimized, quantifies the total cost.

It should be noted that constraints (3.17) do not appear in the original formulation presented
by Ernst and Krishnamoorthy [35]. As referred in the previous chapter, these constraints were
proposed later, by Correia et al. [16] and their presence in the model give a correct description of
the set of feasible solutions to the problem.

The three models presented can be reduced to the simple case in which only one type of product
is to be shipped through the network by making |P | = 1, thus becoming formulations for CSAHLP.
Also, if Lk = 1, k ∈ N , the models refer to the case where all hubs are dedicated. In the other
extreme, i.e., if Lk = |P |, k ∈ N , all hubs can handle all products.

The importance of using a multi-product formulation, as opposed to solving separately single-
product problems and then merging the solutions, resides in the fact that, as demonstrated by
Correia et al. [16] with a small example, the merged solutions lead to sub-optimal results.

3.2 Enhancements

With the goal of improving the polyhedral description of the feasibility set, Correia et al. [16]
proposed some enhancements to the models PC , PSK and PEK are suggested by the authors. In
this work, as will be explained in more detail in chapter 5, the values of variables xpik in the linear
relaxation are used as an input to the heuristic algorithm proposed. Only one of the enhancements
proposed is added to the formulation used to solve the linear relaxation. Such enhancement is
presented below.

Constraints on the Number of Facilities to Use

The goal is to find a lower bound on the number of hubs required for handling each product
(as usually done in capacitated facility location problems). Denote such bound by Rp, p ∈ P . The
following inequalities can be established:∑

k∈N
xpkk ≥ R

p, p ∈ P (3.19)

∑
k∈N

zk ≥ maxp∈P {Rp} (3.20)

Each value Rp (p ∈ P ) can be obtained as follows. Let Γp(1),Γ
p
(2), . . . ,Γ

p
(n) denote the capacities

Γp1,Γ
p
2, . . . ,Γ

p
n sorted in a non-increasing order. Rp is the value that satisfies

Rp−1∑
l=1

Γp(l) <
∑
i∈N

Opi ≤
Rp∑
l=1

Γp(l), p ∈ P (3.21)
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This means that the lower bound on the number of hubs, for each product p, is obtained as
the number of hubs whose summed capacities (in a non-increasing order) is above the total flow
originated at the nodes.

In the particular situation in which all hubs handle the same number of products, (Lk =

L, ∀k ∈ N), a lower bound for
∑

k∈N zk is
⌈∑

p∈P R
p

L

⌉
1. Accordingly, in this case, it is possible to

do better than (3.20), namely:

∑
k∈N

zk ≥ max

{
maxp∈P {Rp},

⌈∑
p∈P R

p

L

⌉}
(3.22)

3.3 A brief summary of Results and Conclusions

In this section we review some of the results and conclusions presented by Correia et al. [16]
regarding the work above revisited.

Correia et al. [16] generated instances for the MP-CSACHLP using the AP (Australian Post)
data set first introduced by Ernst and Krishnamoorthy [33]. Instances with 10, 20, 25 and 40 nodes
were adapted in order to obtain data for different types of products (the reader should refer to
please refer to Correia et al. [16] for further details). Instances were generated considering up to
three types of products and the maximum number of products handled by each hub was defined to
be the same for all hubs, with values ranging from 1 to the maximum number of products considered
in each instance.

The computational results presented by Correia et al. [16] show that the model PEK and its
enhancements is superior to the other models. With respect to the linear relaxation gap, again,
model PEK shows better performance than the other models. Other results led the authors to
conclude that models PC , and PSK and their improvements are not competitive when compared
with model PEK and its enhancements.

After a deeper analysis to model PEK and its enhancements, Correia et al. [16] concluded that:

• as expected, the time elapsed until the optimal solution is reached increases with the size of
the instances;

• interestingly, in terms of the linear relaxation gaps, the hardest instances are the ones with
25 nodes;

• the instances with fully non-dedicated hubs (|P | = 1 with Lk = 1, |P | = 2 with Lk = 2, and
|P | = 3 with Lk = 3) are easier to solve than the others. Furthermore, the instances with
fully dedicated hubs (|P | = 2 with Lk = 1, |P | = 3 with Lk = 1 are the hardest to solve, i.e.
, the more one goes towards dedicated hubs, the more difficult the problem;

• the enhancements proposed lead to more instances being solved and a better lower bound
provided by linear relaxation being obtained. Note that among all enhancements proposed
Correia et al. [16], the inequalities above presented, (3.19) and (3.22) are extremely easy to
derive).

In order to get even a better understanding of the problem (by studying how some characteristics
of the solutions change with the different instances considered), the solutions obtained2 were also
analyzed with focus on the optimal cost and the optimal number of hubs located. A simple graphical

1dae denotes the smallest integer greatest or equal than a.
2This discussion is restricted to the model which globally behaved better among all the models tested: PEK +

(3.19) + (3.22).
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analysis lead the authors to conclude that the the optimal cost decreases as we move from instances
in which all hubs are dedicated to instances in which all hubs can handle all products and that
the gain is higher in larger instances (40 nodes). Also, regarding the number of hubs, the authors
conclude that the number of hubs decreases when moving from instances with dedicated hubs
towards instances with non-dedicated hubs. These conclusions show that the presence of non
dedicated hubs in the network allow different types of products to share hubs, leading to a decrease
in the number of hubs needed to consolidate the flows and consequently to a smaller total cost.

The results presented by Correia et al. [16], led to choose as the best performing model PEK
+ (3.19) + (3.22). This will be the model used later in this thesis for evaluating the quality of
the heuristic approach proposed in chapter 5. Also, the same model is used when computing the
linear relaxation solutions to be used as input in the algorithm and when solving the traffic routing
problem defining the variables xpik and zk as fixed using the heuristic solution values, as later will
be described in chapter 5.
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CHAPTER 4

Ant Colony Optimization

Ant Colony Optimization is a meta-heuristic that is inspired on the foraging1 behaviour of ants
and on stigmergic communication.

In this chapter, the ant Colony Optimization meta-heuristic is presented and some ACO based
algorithms and ACO features are described.

Stigmergic communication is a form of indirect communication based on alterations on the
environment that large colonies of insects use in order to achieve self organization. In the case of
ants, stigmergic communication is based on chemicals produced by the ants (pheromones) that are
deposited on the ground increasing the probability that other ants will follow the same path. Paths
that are shorter tend to have higher concentration of pheromone because they are traversed more
often, thus, attracting more ants to that path, which, in turn, deposit pheromones, increasing even
more the pheromone concentration on those paths. This positive feedback mechanism plus the fact
that the pheromone evaporates over time (giving origin to a increasingly lower concentration of
that chemical on the least traveled paths) is the reason why ants are capable of finding the shortest
paths between food and the colony by simply following the most intense pheromone trail.

One of the experiments designed to observe the ants behaviour is the double bridge experiment
(see Deneubourg et al. [19] and Goss et al. [40]). In this experiment, a double bridge is used to
connect a colony of ants to a food source and several trials are conducted in order to examine the
ants behaviour when the ratio between the length of the two bridge branches is changed (see Figure
4.1a). When the ratio is set to be 1, the authors observe that, over time, all the ants start to use the
same branch. When one of the branches is set to be longer than the other, most of the ants chose
the shortest branch. Another variation of this experiment is explored in which the bridge has only
one long branch and 30 minutes later the short branch is added. As a result of this variation, the
ants were observed to choose the shortest branch only occasionally, leaving the rest of the colony
transversing through the longest path. These different results are explained using the concepts of
pheromone concentration and pheromone evaporation. In this work, a simple stochastic model is
proposed in order to describe the dynamics of the ant colony as observed in the experiment.

In order to simulate the ants behaviour, based on the double bridge experiment, Dorigo and
Stützle [29] propose a mathematical model in which artificial ants move through a graph that
represents the experimental setup of the double bridge experiment (Figure 4.1b).

1foraging: to wander in search of food or provisions.
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(a) Double Bridge Experiment
Setup.

(b) Double Bridge Experiment
Graph.

Figure 4.1: Double Bridge Experiment.

The graph has two nodes (1 represents the food and 2 represents the colony nest) connected
by a short, s, and a long, l, arc with an integer ratio r between the two arcs. Time is assumed to
be discrete and, at each time step, ants add one unit of pheromone to the arcs they use. When in
a node, each ant chooses which arc to travel, with a certain probability pia(t) which is a function
of the pheromone concentration ϕia that the ant in node i (i ∈ {1, 2}) encounters on the branch
a, (a ∈ {s, l}). The resulting discrete time model is based on the average behaviour of the system
and is the following:

pis(t) =
[ϕis(t)]

α

[ϕis(t)]α + [ϕil(t)]α
, pil(t) =

[ϕil(t)]
α

[ϕis(t)]α + [ϕil(t)]α
. (4.1)

The pheromone update on the two branches is performed as follows:

ϕis(t) = ϕis(t− 1)mi(t− 1) + pjs(t− 1)mj(t− 1), (i = 1, j = 2; i = 2, j = 1) (4.2)

ϕil(t) = ϕil(t− 1)mi(t− 1) + pjl(t− r)mj(t− r), (i = 1, j = 2; i = 2, j = 1) (4.3)

where mi(t) denotes the number of ants at node i in time t and is given by:

mi(t) = pjs(t− 1)mj(t− 1) + pjl(t− r)mj(t− r), (i = 1, j = 2; i = 2, j = 1) (4.4)

The remainder of this chapter is organized as follows. In the section 4.1, some ACO based
algorithms namely Ant System and its extensions are defined in Section 4.2, the effects of coupling
ACO with local search are described, and in Section 4.3 some other applications of ACO are also
described.

4.1 The ACO Metaheuristic and Optimization Problems

The ACO meta-heuristic has been proposed as a common framework for the existing applications
and algorithmic variants of a variety of ant algorithms (Dorigo and Stützle [29]).

The objective of ACO algorithms is to establishing a parallelism between the behaviour of real
ants and artificial ants where, in a finite-size colony of artificial ants, each member cooperates with
the others using indirect communication trough artificial pheromones, in order to find good-quality
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solutions for combinatorial optimization problems. Each ant iteratively adds solution components,
with probabilities based on the artificial pheromone level of each solution component, until a feasible
solution is reached. The amount of pheromone existing in each solution component is changed by
each ant and reflects the colony search experience. High-quality solutions are found as an outcome
of the global cooperation among all the ants of the colony.

In order relate the shortest paths created by real ants with shortest paths created by artificial
ants, a complete graph representing the problem Gc = (C,L) is defined where C is the set of
solution components and L is the set of arcs linking the solution components.

The solution components, ci ∈ C, and the connections between the solution components, lij ∈ L,
can have associated a pheromone trail τ (τi if associated with components, and τij if associated
with connections), and a heuristic visibility information value η (ηi and ηij respectively). The
pheromone trail is a numeric representation of the colony search experience, and is updated by
the ants themselves. Differently, the heuristic visibility information value, is an estimate of how
good is adding a solution component to the solution under construction and can be computed using
information about the problem. In many cases η is the cost, or an estimate of the cost resulting
from of adding the component or connection to the solution under construction.

The objective of the colony is to exploit the construction graph Gc = (C,L) in search of
the optimal solution of the problem. By performing random walks on the construction graph
Gc, ants build solutions by choosing probabilistically the next node to move among those in the
neighbourhood of the node in which they are located. The probabilistic choice is biased by the
existing pheromone concentration on each arc, resulting from the previously deposited pheromones
by other ants. The neighbourhood of each node is defined as the set of available solution components
that satisfy the constraints of the problem in a hard way, so that ants always construct feasible
solutions, or in a soft way, in which infeasible solutions are penalized as a function of their degree
of infeasibility.

The ants can deposit artificial pheromones in the arcs they traversed2. The better the quality of
the solution, the more pheromone is deposited, hence leading future ants towards better solutions.
Also, pheromone evaporation is carried out in order to avoid premature convergence to a local
optimum.

Concerning the solution construction, there are two possibilities for implementing it: parallel
and sequential. In the parallel implementation, at each construction step all the ants move from
their current solution component to the next one, while in the sequential implementation an ant
builds a complete solution before the next one starts to build another one.

In order to strengthen the solution quality, ACO can be coupled with some Daemon Actions
that cannot be performed by the ants such as local optimization procedure or the use of collected
global information in order to decide if adding additional pheromone is useful or not.

The ACO meta-heuristic, as proposed by Dorigo et al. [23], is presented in Algorithm 4.1.

In this pseudo-algorithm, the activities can be scheduled and synchronized freely by the algo-
rithm designer.

ACO was first applied to the Traveling Salesman Problem (TSP) by Dorigo et al. [26] and
can be applied to the problem in a straightforward way as the construction graph Gc = (C,L) is
identical to the problem graph. Several different versions of the ACO algorithm have been proposed
for the TSP, which are briefly described in the following sub-sections.

2The decisions about when the ants should release pheromone and how much pheromone should be deposited
depend on the characteristics of the problem and on the design of the implementation. Ants can release pheromone
while building the solution, or after a solution has been built. The reader can refer to Dorigo et al. [23] for further
details.
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Algorithm 4.1 ACOMetaHeuristic()

1: while termination_criterion_not_satisfied do
2: ScheduleActivities
3: ConstructAntsSolutions
4: UpdatePheromones
5: DaemonActions . Optional
6: EndScheduleActivities
7: end while

4.1.1 Ant System

Dorigo et al. [28] developed an ACO based algorithm, Ant System (AS), a “new general-purpose
heuristic algorithm which can be used to solve different combinatorial optimization problems”, as
decribed by the authors. The TSP was used as benchmark due to the easiness in relating the
problem structure with the construction graph, as stated above.

The AS algorithm is divided in two main phases: the solution construction and the pheromone
update. The pheromone trails are initialized to some value τ0, a value slightly higher than the
expected amount of pheromone deposited by the ants in one iteration, so that the initial tours do
not bias the search leading to a poor exploration of the search space3.

In the construction procedure of the solutions (tours) for the TSP, artificial ants are put on
randomly chosen cities. At each construction step, ant k currently at city i, chooses to go to city
j with a probability given by:

pkij =
[τij ]

α[ηij ]
β∑

l∈N ki
[τil]α[ηil]β

, if j ∈ N k
i , (4.5)

where N k
i denotes the set of cities not visited yet (i.e., the feasible neighbourhood of city i).

Equation (4.5) is a probabilistic action choice rule, called random proportional rule. The probability
pkij depends on the pheromone concentration, τij , and heuristic visibility information, ηij , associated
to arc (i, j). The heuristic visibility information is an estimate of how good traveling to j from i
is. In the TSP, it can be defined as ηij = 1/dij (where dij is the distance between cities i and j).
This allows an influence on the ants behaviour based on the knowledge of the problem structure.

The parameters α and β are used to define the relative importance of the pheromone concen-
tration and heuristic visibility information balancing exploration and exploitation (see Dorigo et
al. [21] for additional details). The larger the value of α, the larger the exploitation of the search
experience.

Additionally, each ant k keeps track of the cities already visited, in the order they were visited.
This memory is used to define the feasible neighborhood N k

i and allows ant k both to compute the
length of the tour, T k, it generated and to retrace the path to deposit pheromone.

At the end of the solution construction performed by all ants, the pheromone values are updated.
This process has two steps:

1. the pheromone values on each arc (i, j) are lowered:

τij ← (1− ρ)τij , ∀(i, j) ∈ L; (4.6)

3Conversely, if the initial pheromone values are too high, then many iterations are lost waiting until pheromone
evaporation reduces enough pheromone values, so that pheromone added by ants can start to bias the search.
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2. pheromone is added to the arcs traversed by the ants:

τij ← τij +

m∑
k=1

∆τkij . ∀(i, j) ∈ L (4.7)

The evaporation procedure, represented by equation (4.6), is performed using a constant factor
ρ where 0 < ρ < 1 is the pheromone evaporation rate. Pheromone evaporation is done in order to
avoid unlimited accumulation of the pheromone on the arcs. This allows the algorithm to escape
from the situation where the same solutions are repeatedly chosen, thus avoiding stagnation in a
sub-optimal solution and favoring the exploration of other areas in the search space.

In equation (4.7), ∆τkij is the amount of pheromone that ant k deposits on the arcs and it is
defined as:

∆τkij =

{
1/Ck, if arc (i, j) belongs to T k;
0, otherwise,

(4.8)

where Ck is computed as the sum of the lengths of the arcs belonging to T k (the tour built by ant
k).

4.1.2 Elitist Ant System

One of the improvements done to the AS gave origin to the Elitist Ant System (EAS). This method is
called elitist because it resembles the elitist strategy used in genetic algorithms (Dorigo et al. [27]),
where certain individuals (elite individuals) may go directly into the next generation, preserving
the best characteristics from past generations.

In the case of the TSP, this improvement provides additional pheromone reinforcement to the
arcs belonging to the best tour found since the start of the algorithm (denoted as T bs, the best-so-
far tour). By considering this additional feedback, the following ants will have a higher probability
of choosing the arcs belonging to the best-so-far tour. This is an example of a daemon action of
the ACO meta-heuristic where collected global information is used in order to decide if adding
additional pheromone is useful or not.

In an elitist ant system, the pheromone update rule (4.7) is modified by adding a quantity e∆τ bsij
to the the best-so-far tour (in the case of the TSP), leading to:

τij ← τij +

m∑
k=1

∆τkij + e∆τ bsij , (4.9)

where e is a parameter that defines the weight given to the best-so-far tour T bs. ∆τkij is defined as

in equation (4.8) and ∆τ bsij is defined as follows:

∆τ bsij =

{
1/Cbs if arc(i, j) belongs to T bs;
0 otherwise,

(4.10)

where Cbs is the best-so-far tour length. The pheromone evaporation, is defined by equation (4.6)
as in an AS.

Computational results presented in Dorigo et al. [27] suggest that, in the case of the TSP, the use
of the elitist strategy, with a proper value for parameter e, results in better tours discovered and/or
in the best tour being discovered earlier, but, if care is not taken when choosing the parameter
value, the algorithm may be forcing the ants to explore sub-optimal tours in the early stage of the
search, resulting in a poor performance of the algorithm due to early stagnation.
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4.1.3 Other Improvements on Ant System

Some other improved versions of an AS have been suggested where the main difference between
them is in the way that the pheromones are updated. One example is the Rank-Based Ant System
ASrank, proposed by Bullnheimer et al. [6]. In this approach, each ant deposits an amount of
pheromone that decreases with its rank.

Taking the TSP as an example, the ants are sorted by non-decreasing order of their tour length.
Only ω ants are considered and the pheromone levels in the arcs belonging to the tours constructed
by the ω − 1 best-ranked ants are increased according to the rank of the ants (the r-th best ant
of the colony contributes to the pheromone update with a weight given by max{0, ω − r}). The
pheromone levels of the best-so-far tour are also increased (with weight ω). The pheromone update
is then given by:

τij ← τij +

ω−1∑
r=1

(ω − r)∆τ rij + ω∆τ bsij , (4.11)

where ∆τ rij = 1/Cr and Cr is the length of the tour of the r-th ant. ∆τ bsij is given by equation
(4.10).

The results obtained by Bullnheimer et al. [6] suggest that ASrank preforms slightly better than
EAS and significantly better than AS in the case of the TSP.

Another example is the MAX -MIN Ant System (MMAS) introduced by Stützle and Hoos
[72]. In this work, only the iteration best ant or the best-so-far ant is allowed to update the
pheromone trails but, in order to avoid early stagnation due to excessive growth of pheromone trails,
an explicit maximum, τmax, and minimum, τmin, value for the pheromone trails are introduced.
The pheromone trails are initiated to τmax and after each iteration, evaporation is applied as before
(equation (4.6)). Also, the pheromone trails are increased in all arcs (i, j) using the trail-smoothing
mechanism (given by equation (4.12)) when no improved tour has been generated for a certain
number of consecutive iterations.

τij ← τmax − τij (4.12)

4.1.4 Ant Colony System

The Ant Colony System (ACS) algorithm was first proposed by Dorigo and Gambardella [24, 25]
as an extension of AS with the goal of improving efficiency when applied to the TSP. The main
differences between ACS and AS are (i) in the action choice rule used for ants to transit from one
city to the other, (ii) in the fact that the pheromone update is done to the best-so-far ant or the
iteration best ant and (iii) in the way that the pheromone evaporation is done.

Regarding the action choice rule, the ant, when in city i, chooses the next city to visit j using
the pseudo-random proportional rule, given by

j =

{
argmaxl∈N ki

{τil[ηil]β}, if q ≤ q0;
J, otherwise.

(4.13)

J = R

(
τil[ηil]

β∑
m∈Nk

i
τim[ηim]β

, if l ∈ N k
i ;

0, otherwise.

)
(4.14)

where N k
i in the feasible neighbourhood of city i, τij is the pheromone concentration on arc (i, j)

and, ηij is the heuristic visibility information associated to arc (i, j) (an estimate of how good
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traveling to j from i is). The parameter β is used to define the relative importance of the heuristic
visibility information and R(.) is the roulette wheel selection function.

Before applying this rule, a random variable, q, with distribution U [0, 1] is generated and
compared with a parameter chosen a priori, q0 (0 ≤ q0 ≤ 1). With probability q0 the city, j, chosen
to be the next solution component is chosen by using a greedy rule (the upper branch of (4.13)), in
the sense that the best combination of pheromone and heuristic visibility information is chosen (in
this case, the ant is exploiting the learned knowledge). With probability 1 − q0, the the selection
is made using function R(.) to perform roulette wheel selection so that the ant performs a biased
exploration of the arcs. Tuning the parameter q0 allows choosing the degree of exploration as well
as whether to concentrate the search of the system around the best-so-far solution or to explore
other tours.

After all tours are constructed by the ants, at the end of each iteration, the amount of pheromone
deposited on each arc is increased. The increase is ruled by equation (4.15), the global pheromone
update rule.

τij ← (1− γ)τij + γ∆τ bsij , ∀(i, j) ∈ T bs, (4.15)

where, again, ∆τ bsij = 1/Cbs and the parameter γ represents the global pheromone update parameter
(0 < γ < 1). Here, the deposited pheromone is discounted by a factor γ resulting in the new
pheromone trail being a weighted average between the old pheromone value and the amount of
pheromone deposited. Note that the pheromone level is increased only by the best-so-far ant
(meaning that the pheromone levels are only increased in the best-so-far tours).

Additionally, the ants reduce the amount of pheromone deposited on each arc (i, j) immediately
after having crossed it during the tour construction. They apply a local pheromone update rule,
which is given by:

τij ← (1− ρ)τij + ρτ0, (4.16)

where the parameter ρ represents the local pheromone evaporation rate (as ρ in equation (4.6))
and τ0 is set to be the same as the initial value for the pheromone trails mentioned in subsection
4.1.1. As stated by Dorigo and Gambardella [25], the local pheromone updating rule decreases the
pheromone levels of the tours already explored, decreasing the probability that the next ants will
explore the same paths explored by previous ants, increasing the exploration of arcs that have not
been visited yet and avoiding premature convergence to local optima.

When comparing the AS with its extensions, Dorigo and Stützle [29], noted that, for the TSP,
“ACS is the most aggressive of the ACO algorithms and returns the best solution quality for very
short computation times”.

4.2 ACO coupled with Local Search

In an ACO algorithm, after the solution construction procedure is finished, the solution can then
be improved by application of local search. This is an example of the Daemon Actions that can
be implemented in an ACO algorithm as seen in Algorithm 4.1. After the solution improvement
done by local search, the pheromone values on the arcs belonging to the best solution found are
updated.

The neighborhood used in the solution construction phase is based in the pheromone values and
heuristic visibility information but the neighborhood in which local search is based can be different.
This gives more chance to improvements of the solution in the local search phase (see Dorigo and
Stützle [29] for additional details).
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The algorithm can also by applied without local search, relying only on the heuristic visibil-
ity information in order to construct good solutions from the beginning, based on the problem
characteristics. Since the heuristic visibility information is often calculated as an estimate of the
real value, it might be very hard or impossible to compute. Luckily, using an ACO algorithm
incorporating local search may be enough to achieve good results.

4.3 Other applications of ACO

The ACO metaheuristic has a very wide applicability: it can be applied to any combinatorial
optimization problem for which a solution construction procedure can be conceived, since it is
based on a generic problem representation on a construction graph.

Besides being used for the TSP, some ACO algorithms have been improved and modified in
order to be able to be applied to other types of problems (Dorigo et al. [23]), such as, job-shop
scheduling, vehicle routing, sequential ordering, graph coloring or quadratic assignment problems
(Gambardella et al. [38]). As seen in Chapter 2, ACO can also be applied to hub location problems
(Meyer et al. [51], Randall [60]) with the outcome of getting efficient results quickly. ACO has
also been used in more complex problems (see Dorigo and Stützle [29]) such as dynamic problems
(where the instance data may change while solving the problem), stochastic problems (where some
part of the information on the problem is probabilistic) or multiple objective problems (where the
objective is to optimize two or more objective functions that can be in conflict with each other).
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CHAPTER 5

An Ant Colony System for the The MP-CSAHLP

In this chapter, the proposed heuristic for the MP-CSAHLP is proposed. The proposed heuristic
is based in Ant Colony System (ACS), an ACO based algorithm referred in the previous chapter.

The remainder of this chapter is organized as follows. In Section 5.1, we introduce some ideas
used in the algorithm, in Section 5.2 the solution representation and data structures are presented,
in Section 5.3 algorithm is described and in Section 5.4 the results are presented and discussed.

5.1 Preliminaries

Since ACS is one of the improvements done to AS that often returns the best solution quality
within acceptable computational time (Dorigo and Stützle [29]) and has shown to return good
quality solutions for the CSAHLP (Randall [60]), it has been chosen as the proposed heuristic for
the MP-CSAHLP.

This constructive, population-based algorithm uses a single colony of ants to simultaneously
determine the location of the hubs and the allocation of the nodes to the hubs. As a daemon
action, a local search procedure is applied after each solution is constructed in order to improve the
solution quality. Another type of daemon action used to improve the quality of the first solution
constructed, consists of making the initial pheromone values on each solution component biased by
the linear relaxation solution. By doing this, better initial solutions can be obtained before local
search is applied. Initial solution components having high pheromone values due to this action,
when chosen to be a part of the solution, have their pheromone levels gradually decreased by
pheromone evaporation. This mechanism avoids unlimited accumulation of pheromones and the
decreased of pheromone concentration on a solution component that very rarely (or never) receives
additional pheromone.

Preprocessing can help reducing the search space by making unavailable solution components
that will always lead to infeasible solutions. The preprocessing performed in the case of the MP-
CSAHLP uses some ideas proposed by Ernst and Krishnamoorthy [35] for the CSAHLP:

1. Capacity: If for some i, j ∈ N , Opi > Γpj − O
p
j , then the variable xpij can be fixed to zero.

In other words, if for a particular node i and its potential hub j the capacity of the hub is
insufficient to process the inflow from node i, then i cannot be allocated to j.
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2. Fixed cost: If for some node i and its potential hub j we have Oi < Γi and dij(χ
pOi+δDi) >

Fi +αpdij(Oi +Di− 2wpii), then xpij can be fixed at zero. This is because it would be cheaper
to make node i a hub and transfer all of the flow to hub node j than to allocate i to j and
then pay the collection and distribution costs.

3. Inference: ... Similarly, if xpjj = 0 for some j, then xpij = 0 for all i ∈ N , i 6= j. ...

When the location and allocation variables are fixed, routing of the flow can be easily computed,
using the formulations PEK for the MP-CSAHLP proposed by Correia et al. [17].

5.2 Solution Representation and Data Structures

A construction graph is designed to represent the problem Gc = (C,L) (where C is the set of
solution components and L is the set of arcs linking the solution components, as referred in section
4.1). Instead of representing the solution components according to variables xpij , as represented in
the problem formulation (section 3.1), we propose that solution components are now represented
by xpi with

xpi =

{
j if the flow of product p originated at i is handled by hub j,
0 otherwise.

(i, k ∈ N, p ∈ P )

This representation reduces the size of the solution matrix by a factor of n.

The solution components that refer to the opened hubs are unnecessary in the solution repre-
sentation, because xpj = j means that the hub j is open and handles product p and so zj , as defined
in section 3.1, can be inferred using this solution representation.

When moving through the construction graph, the arcs linking the solution components repre-
sent the possibility of moving from one solution component to the other one. For that reason, a
3-dimensional vector of binary parameters can be used for identifying feasible moves in graph Gc:

apij =

{
1 if the flow of product p originated at i can be handled by hub j,
0 otherwise.

(i, k ∈ N, p ∈ P )

Not only can these values be computed and updated during the execution of the algorithm
but also they can be computed in advance by preprocessing the data. The 3-dimensional vector,
[apij ]i,j∈N,p∈P is used to define the feasible neighborhood N k

ijp of each solution component.

The pheromones, τpi (j), are deposited on each solution component and are updated using the
global pheromone update rule (5.1) to increase the pheromone level on the best iteration solutions.

τpi (j)← (1− γ)τpi (j) + γ∆τpi (j), ∀(i, j, p) ∈ Sbest, (5.1)

where, ∆τpi (j) = 1/Cbest, Cbest is the best iteration cost, Sbest is the set of the solution components
belonging to the best iteration solution and and γ is the global pheromone update parameter
(0 < γ < 1).

Just after adding a solution component to the solution under construction, the local pheromone
update rule (5.2) is used to reduce the pheromone level on that component.

τpi (j)← (1− ρ)τpi (j) + ρT pi (j), (5.2)
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where the parameter ρ is the local pheromone decay parameter (0 < ρ < 1) and T pi (j) represent
the initial pheromone levels in solution component xpi = j.

The initial pheromone levels T pi (j) are biased proportionally by the solution values, x̂pij , of the
linear relaxation of the model PEK introduced by Correia et al. [17] and revisited in Chapter 3
according to the following expression:

T pi (j) =

{
τ0 + x̂pij × cτ , if x̂pij > 0;

τ0, otherwise;
i, j ∈ N, p ∈ P (5.3)

where τ0 (τ0 > 0) is the initial pheromone value and cτ > 0 is a constant that is used to decide
how much importance is given to the solution components that are part of the linear relaxation
solution.

Since it is not straightforward to estimate how good is to add a solution component to the so-
lution under construction is not straightforward, heuristic visibility information, ηpj , is only applied
to the hubs in order to influence the choice of which hubs to open and what type of products they
should handle. The fixed costs, F pj , and an estimate of the total flow cost, Kp

j (Randall [60]) are
used as stated below. For computing the total flow cost, each hub is considered a single hub in a
star network trough which all flow is directed. These costs are computed as follows:

F pj = fpj + gj , j ∈ N, p ∈ P, (5.4)

Kp
j =

N∑
j=1

N∑
l=1

wpij(χ
pdji + δpdil), j ∈ N, p ∈ P. (5.5)

The heuristic visibility information values, ηpj , are computed taking in to consideration the
3-dimensional vector, [apij ]i,j∈N,p∈P , above introduced.

ηpj =

{
apijcη

F pj K
p
j
, if i = j,

apij , otherwise.
(5.6)

In this expression, cη is a constant used to make the heuristic visibility information computed
values larger than 1 and is computed as the sum of the hub fixed costs multiplied by the total flow
costs (cη =

∑
j∈N

∑
p∈P F

p
j K

p
j ).

5.3 The Algorithm

The main tasks considered while designing the algorithm concern (i) reading the instance data, (ii)
initialization of the data structures and parameters, (iii) construction of the solution, (iv) managing
the the pheromones, and (v) defining the local search procedure. The ACS algorithm is generically
presented in Algorithm 5.1.

After the ReadData procedure, the Linear Relaxation of the problem is solved in order to
get the values x̂pij for computing the initial pheromone levels according to equation(5.3). The
data is then submitted to the “capacity” preprocessing procedure already mentioned in order to
forbid connections of nodes to hubs that only have enough capacity to handle their own flow.
Mathematically, we have

apij =

{
0, if Opi > Γpj −O

p
j and i 6= j

1, otherwise
(i, k ∈ N, p ∈ P ) (5.7)

33



Chapter 5: An Ant Colony System for the The MP-CSAHLP

Algorithm 5.1 ACS_MP-CSAHLP()

1: ReadData
2: ComputeLR
3: PreProcessing
4: InitializeParameters
5: InitializeDataSructures
6: while termination_criterion_not_satisfied do . Iteration Loop
7: ResetAntStructures
8: for each ant do . Ant Colony Loop
9: ConstructAntSolution

10: end for
11: ant← GetBestAnt
12: if ant not dead then
13: LocalSearch
14: GlobalPheromoneUpdate
15: if solution.cost < best.cost then
16: GetSolution
17: end if
18: end if
19: end while
20: RouteF lows

In the InitializeParameters function, all the parameters used in the algorithm are initialized
such as:

• the number of ants in the colony;

• the parameter q0 to be used in the pseudo-random-proportional rule ((5.8) and (5.9));

• the parameters α and β to be used in equation (5.9) for computing the probabilities of choosing
the solution components when using the roulette wheel;

• ρ to be used in the local pheromone update rule (5.2);

• γ for the global pheromone update rule (5.1).

In the InitializeDataStructures function, the heuristic visibility information is computed using
expression (5.6), the initial pheromone levels (T pi (j)) are computed using expression (5.3) and τpi (j)
is set equal to T pi (j) for all i, j ∈ N, p ∈ P . Finally, the iteration structures are initialized (such as
the iteration best solution, the iteration cost, etc.) . Just before the beginning of the Ant Colony
Loop, the ResetAntStructures function resets all the ant structures (such as the ant solution
components, the ants costs, the feasibility set, etc.) in order to start the new solution construction.

In the ConstructAntSolution function, each ant constructs a solution, according to Algorithm
5.2.

An ant builds a complete solution before the next one starts to build another one. Thus, the
solutions are constructed using a sequential solution construction.

Next, each function of Algorithm 5.2 is defined, in order to explain how an ant builds a solution.

The PseudoRandomProportionalRule is used to choose a solution component using the fol-
lowing equation:
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Algorithm 5.2 ConstructAntSolution

1: while nr_available_solutions>0 do
2: (i, j, p) = PseudoRandomProportionalRule
3: if apij > 0 and AvailableCapacityjp > Oip then
4: choose (i, j, p) as the next solution component
5: else
6: declare ant as dead and break . Finish Algorithm 5.2 for this ant.
7: end if
8: if ant is not dead then
9: AddSolutionComponent

10: apij = 0
11: LocalPheromoneUpdate
12: ApplySingleAllocationRules
13: if i=j then
14: ApplyLkRules
15: end if
16: UpdateAvailableCapacities
17: if i 6= j then
18: DedicateHub
19: end if
20: end if
21: nr_available_solutions= ComputeNrAvailableSolutions
22: nr_remaining_solutions= ComputeNrRemainingSolutions
23: if nr_available_solutions=0 and nr_remaining_solutions>0 then
24: declare ant as dead and break . Finish Algorithm 5.2 for this ant.
25: end if
26: end while
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(i, j, p) =

{
argmax(i,j,p)∈N kijp

{τpi (j)[ηpj ]
β}, if q ≤ q0,

(I, J, P ), otherwise.
(5.8)

(I, J, P ) = R

(
τpi (j)[η

p
j ]
β∑

(r,s,t)∈Nk
ijp

τ tr(s)[η
t
s]
β , if (i, j, p) ∈ N k

ijp,

0, otherwise.

)
(5.9)

where N k
ijp is the set of feasible solution components for ant k and is defined as the solution

components that have apij > 0 and the hub j has enough available capacity to handle the flow
originated at node i (AvailableCapacitypj > Opi ).

In the AddSolutionComponent function, xpi is set equal to j, if adding this solution component
does not make the solution infeasible. Immediately after, the LocalPheromoneUpdate function
decreases the pheromone level on that component using the Local Pheromone Update Rule (5.2).

After the solution component is chosen and the pheromone level on that component updated,
the feasibility set N k

ijp is updated by making some solution components unavailable. Since this
is is a Single-Allocation problem, if the solution component is referent to the allocation of node i
to hub j for product p and i 6= j, the ApplySingleAllocationRules function does not allow any
connections from node i to any other nodes for product p (5.10) and, since node i will not become
a hub, all connections from all the other nodes to node i for product p are also forbidden (5.11).

apil ← 0, ∀l ∈ N, (5.10)

apli ← 0, ∀l ∈ N. (5.11)

On the other hand, if the solution component refers to dedicating hub j for product p (i = j),
the ApplySingleAllocationRules function does not allow any connections from hub j to any other
nodes (5.10) (these solution components are only defining the location of the hubs and the allocation
of the nodes to the hubs and not the inter-hub connections1.

Additionally, when the hubs are not allowed to handle all products, if dedicating hub j to prod-
uct p means that the hub has reached the limit of products it can handle, the solution components
that allow the hub to handle more products have to be forbidden also:

aplj ← 0, ∀l ∈ N, ∀p ∈ P , (5.12)

where P is the set of products that the hub j is not handling, i. e., P = {p : xpj 6= j}.
After applying the rules that update the feasibility set (N k

ijp), the UpdateAvailableCapacities
function is used to update the available capacity of the hub chosen. If i 6= j the hub j is dedicated
to product p by applying the function DedicateHub according to Algorithm 5.3.

After all ants in the colony have constructed a solution, the best solution produced is chosen
and a LocalSearch procedure is applied in order to further improve its quality. Three different
neighborhoods are defined, as follows:

• Close Hub: A hub that is dedicated to product p and only handles its own flow is made a
non-hub node and allocated to another hub, chosen randomly, handling the same product. If
the hub only handles that product, it is closed;

1The GetSolution function does that.
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Algorithm 5.3 DedicateHub

1: if xpi 6= j and apij > 0 then
2: xpj = j
3: apjj = 0
4: ApplySingleAllocationRules
5: ApplyLkRules
6: LocalPheromoneUpdate
7: UpdateAvailableCapacities
8: end if

• Close Random Hub: A hub dedicated to product p is chosen randomly and is made non-
hub. All the nodes allocated to that hub for product p and the hub itself are allocated to
another hub handling the same product. The first node to be reallocated is the ex-hub and
it is allocated to the available hub with the higher available capacity. The remainder of the
nodes are allocated to the available hubs in a decreasing order of the flow emanating from
them to the hubs with the higher available capacity. If the hub only handles that product, it
is closed;

• Relocate Node: A product is chosen randomly and, in the hub-and-spoke network regarding
that product, a node is chosen randomly and allocated to another hub.

These moves are applied only if they produce a feasible solution. The search stops as soon as
the change in the solution yields an improvement of the cost.

After applying the local search procedure, the pheromone concentration is updated by making
the pheromone levels stronger in the components of the solution constructed (GlobalPheromoneUpdate).
The global pheromone update rule is given by expression (5.1).

If the solution found is better than the best solution found so far, the GetSolution procedure
saves the best solution.

At the end, the variables ypikl are computed using the PEK formulations presented in section
3.1 with the variables xpij and zj fixed and using the general solver IBM ILOG CPLEX 12.3 in the
RouteF lows function.

5.4 Computational Tests

In this section, the computational tests are reported. The algorithm described in the previous
section was coded in C++, using Microsoft Visual C++ 2010 Express Edition together with IBM
ILOG Concert Technology 2.9 and the experimental tests were run on a Intel(R) Core(TM) i7-4770
CPU, 3.4GHz, 16 GB RAM. The model PEK , proposed by Correia et al. [17], was used to compute
the linear relaxation of the problem and to solve the problem to optimality (when possible), in
order to have a measure of the effectiveness of the proposed heuristic.

5.4.1 Test Data

In hub location research three data sets are usually considered:

• the CAB data set, introduced for hub location by O’Kelly [53] is based on the airline passenger
interactions between 25 US cities in 1970 evaluated by the Civil Aeronautics Board (CAB);

• the AP (Australian Post) data set was introduced by Ernst and Krishnamoorthy [33] and
refers to postal (ground) operations between 200 locations in metropolitan Sydney, Australia;
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• the Turkey data set, introduced by Tan and Kara [74], refers to ground transportation between
81 cities in Turkey.

The CAB data set cannot be used in capacitated hub location problems because the data set
does not include either capacity constraints or fixed costs for the hubs. On the other hand, the AP
dataset includes capacity constraints and fixed costs making it suitable to be used for the problem
investigated in this work. As mentioned, in Section 3.3, Correia et al. [17] generated test instances
for the MP-CSAHLP using the AP data set.

Each instance name has a suffix composed of two letters both chosen in the set {T, L}, with
T standing for tight and L for loose. The first letter on the suffix is associated with the costs.
The second letter refers to the tightness of the capacity constrains with T meaning tighter capacity
constraints and L meaning loose capacity constraints.

Following the two letters, each instance has two numbers: the first concerning the different
types of product flows in the network and the second regards the number of products that each
hub can handle. The reader should refer to Correia et al. [17] for further details. Networks with
10, 20, 25 and 40 nodes are considered; 1, 2, and 3 types of products are assumed. The number of
products that each hub can handle depends on the number of products considered, ranging from 1
to the maximum number of products considered.

5.4.2 Preliminary Tests

In some preliminary computational tests, the Fixed cost preprocessing procedure introduced above
was considered. However, analyzing the small decrease in the number of solution components
available and the little effect this preprocessing had on the solutions quality, it was decided not to
used it. The Capacity preprocessing coupled with the Inference preprocessing led to a lowering
in the number of infeasible solutions found and thus, it was considered in the more extensive tests
performed later.

A change in the global pheromone update rule was performed because the solution cost was not
converging fast enough to lower values. A scaling parameter SP was added in order to speed up
convergence so, the the global pheromone update rule was changed to

τpi (j)← (1− γ)τpi (j) + γSP∆τpi (j), ∀(i, j) ∈ Sbest, (5.13)

Initially, SP was considered as the sum of all fixed costs multiplied by a constant cSP . Never-
theless, this turned out not to be very efficient so it was changed to the solution cost of the linear
relaxation again multiplied by a constant cSP .

Another change made is related with the estimated costs to be associated with each solution
component. In an early stage, the only costs considered were the fixed costs of opening a hub, gj ,
and dedicating a hub, fpj , plus the collection and distribution costs computed as follows:

dij(χ
pOpi + δpDp

i ). (5.14)

In addition to these costs, after each ant finishes constructing a solution, an estimate of the inter-
hub flow routing costs was added. Constraints (3.17) were taken into consideration for estimating
the inter-hub flow routing costs as follows:∑

p∈P

∑
i∈N

∑
k∈N

αpOpi x
p
ik

(∑
l∈N

dkl

)
(5.15)

After constructing a solution, the inter-hub connections were taken into account in order to add
these costs to the costs computed so far.
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Instead of using the term (
∑

l∈N dkl) in the previous expression, the average of all inter-hub

distances (
∑
l∈N dkl

nconnections
, where nconnections is the total number of inter-hub connections) gave origin

to better results and was used instead.

5.4.3 Parameter Tuning

After some limited experimentation, several parameters were set. The number of ants, nants, was
set equal to 10; the maximum number of iterations, niter, was set equal to 5000; the algorithm was
set to stop after 180 CPU seconds or if a better solution was not found after niter/10 iterations
(stopping criteria). The pheromone update parameters were set to be ρ = γ = 0.5, and p0 fixed
to 0.1 in the pseudo-random-proportional rule (5.8) in order to add more randomness by using the
roulette wheel procedure to choose the solution components more often.

In order to set the constant (cSP ) for computing the scaling parameter, some graphical analysis
was performed using one of the 25-node instances (AP25LL 3 2). No heuristic visibility information
was computed, the initial pheromone values were all set to be the same τ0 = 10 and no local search
was used. This way, it was possible to analyze the behavior of the algorithm as a pure ACS
algorithm.

After some trial and error, the algorithm was run three times using cSP = 5×107, cSP = 1×108

and cSP = 5× 108. The solution costs are plotted as can be seen in Figure 5.1.
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Figure 5.1: cSP tuning (cSP = 5× 107, cSP = 1× 108 and cSP = 5× 108).

The plot has all the data from the three runs. From zero to roughly 1000 iterations cSP = 5×107,
from that point to the peak between 2000 and 3000 iterations cSP = 1× 108 and from there until
the end, cSP = 5× 108. This illustrates the importance of the scaling parameter If too low, there
is no early convergence to a minimum; if too high, it quickly converges to a low cost solution. In
between, there is convergence but good solutions quickly evaporate and the quality of the solutions
decrease. In the first run, the gap is 94.96%, in the second, the gap is 48.18% and in the third, the
gap is 17.36%.
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In order to analyze the influence of the local and global pheromone update parameters, ρ and
γ, cSP was set to 5× 108 (the value that, in the previous runs led to a lower gap (17.36%) and ran
for more iterations before stopping) and, three trials were made for γ = 0.5 and ρ = {0.1, 0.5, 0.9}
(Figure 5.2) ρ = 0.5 and and another three trials were made for γ = {0.1, 0.5, 0.9} (Figure 5.3).
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Figure 5.2: γ = 0.5 and ρ = {0.1, 0.5, 0.9}.

Graphical analysis on the variations in the value of ρ show that the higher this value, the more
evaporation occurs when using the local pheromone update rule (5.2) and more oscillations occur
in the solutions cost leading to a slower convergence (to good quality solutions).
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Figure 5.3: ρ = 0.5 and γ = {0.1, 0.5, 0.9}.
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Concerning γ, the bigger its value, the more importance is given to better solutions when the
global pheromone values are updated (5.1),which leads to better solutions.

After this graphical analysis, the parameters were chosen to be ρ = γ = 0.5. This allows a bal-
ance between evaporation (exploration) and the importance given to better solutions (exploitation).
The parameter cSP was set to 5× 108 for the following tests.

Another possibility explored, was the possibility of applying the global pheromone update only
when a better solution arises, in order to allow more exploration of the solutions space. The results
showed that no convergence was achieved and that idea was abandoned.

In order to decide whether to use or not the heuristic visibility information, since it is only being
used as an estimate for how good it is to open a hub, again, a graphical analysis was performed
in order to better understand how the solutions change. The parameter β used in the pseudo-
random-proportional rule equations (5.8) and (5.9) was set to 1. The algorithm was run using five
different combinations: (i) no heuristic visibility information was used, (ii) the heuristic visibility
information was used, (iii) the Close Hub neighborhood was used in the local search procedure,
(iv) all neighborhoods defined were used in the local search procedure and finally, (v) the algorithm
was run without using the heuristic visibility information but using the local search procedure in
all neighborhoods.
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Figure 5.4: Different strategies for evaluating impact of the heuristic visibility information on the
algorithm.

The resulting costs can be observed in Figure 5.4. Each peak represents the beginning of a
new run (five peaks correspond to the five different combinations explained earlier, by that order).
Using the heuristic visibility information leads to worse initial solutions as can be seen in the height
difference between the first two peaks and the last two peaks in Figure 5.4. This is because the
heuristic visibility information (see expression (5.6)) is only being considered for the hubs, resulting
in more expensive initial solutions because more hubs are being opened. When coupled with local
search, the solutions improve their quality (third and fourth peaks) and the more neighbourhoods
are used in the local search, the better the solution quality (the fourth peak is lower than the third).

Finally, the biasing of the initial pheromone values, using (5.3) is introduced with τ0 = 10 and,
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after some trial and error, cτ = 1000, in order to really influence the initial solutions. Since the
algorithm parameters have been changed, the constant (cSP ) for computing the scaling parameter
is reset to 5× 108 2.

5.4.4 Computational Results

The optimal solutions resulting of the application of model PEK proposed by Correia et al. [17]
to the 96 instances tested are reported in Table 5.1 and in Table 5.2. In these tables, the costs
(optimal or the best known values when the algorithm exceeds the time limit, which was set to
21600 CPU seconds), the CPU time (in seconds), and the Linear Relaxation gap is reported.

The gap LR(%) is computed according to:

100× vopt − vlr
vopt

, (5.16)

where vopt is the optimal value and vlr is the optimal value of the linear relaxation.

Instance Name	

 Cost	

 CPU	

 gap LR (%)	

  	

  	

 Instance Name	

 Cost	

 CPU	

 gap LR (%)	


AP10TT_1_1	

 373305.73	

 0.44	

 1.13	

  	

 AP20TT_1_1  	

 454585.44	

 1.27	

 3.35	


AP10TT_2_1	

 802460.72	

 0.47	

 1.33	

  	

 AP20TT_2_1  	

 1031543.51	

 34.22	

 5.69	


AP10TT_2_2	

 669140.22	

 0.66	

 1.41	

  	

 AP20TT_2_2  	

 812319.78	

 13.91	

 5.49	


AP10TT_3_1	

 1324903.17	

 0.97	

 2.29	

  	

 AP20TT_3_1  	

 1698037.43	

 10199.02	

 7.13	


AP10TT_3_2	

 1072251.82	

 1.16	

 3.67	

  	

 AP20TT_3_2  	

 1320147.80	

 1006.41	

 6.26	


AP10TT_3_3	

 988190.15	

 0.48	

 1.69	

  	

 AP20TT_3_3  	

 1174193.95	

 64.47	

 5.68	


AP10TL_1_1	

 360542.31	

 0.42	

 0.48	

  	

 AP20TL_1_1  	

 372396.86	

 2.38	

 1.14	


AP10TL_2_1	

 759238.22	

 0.56	

 1.39	

  	

 AP20TL_2_1  	

 868492.64	

 46.06	

 5.60	


AP10TL_2_2	

 651090.71	

 0.36	

 1.68	

  	

 AP20TL_2_2  	

 652470.36	

 2.02	

 1.54	


AP10TL_3_1	

 1248820.32	

 1.19	

 1.96	

  	

 AP20TL_3_1  	

 1423219.92	

 5311.23	

 5.87	


AP10TL_3_2	

 1032840.89	

 1.14	

 3.49	

  	

 AP20TL_3_2  	

 1118691.35	

 258.55	

 7.63	


AP10TL_3_3	

 951846.09	

 0.56	

 1.20	

  	

 AP20TL_3_3  	

 958396.80	

 6.61	

 2.13	


AP10LL_1_1	

 328309.70	

 0.08	

 0.00	

  	

 AP20LL_1_1  	

 325977.47	

 0.30	

 0.00	


AP10LL_2_1	

 680443.07	

 0.14	

 0.00	

  	

 AP20LL_2_1  	

 704259.25	

 4.22	

 1.53	


AP10LL_2_2	

 597717.67	

 0.53	

 0.23	

  	

 AP20LL_2_2  	

 610566.20	

 1.30	

 0.07	


AP10LL_3_1	

 1080545.91	

 0.36	

 0.00	

  	

 AP20LL_3_1  	

 1120000.64	

 38.75	

 2.53	


AP10LL_3_2	

 965614.24	

 2.08	

 2.51	

  	

 AP20LL_3_2  	

 983010.81	

 11.16	

 2.85	


AP10LL_3_3	

 868749.91	

 0.56	

 0.25	

  	

 AP20LL_3_3  	

 887390.16	

 2.14	

 0.07	


AP10LT_1_1	

 330606.63	

 0.06	

 0.00	

  	

 AP20LT_1_1  	

 335041.45	

 0.28	

 0.00	


AP10LT_2_1	

 735440.65	

 0.11	

 0.00	

  	

 AP20LT_2_1  	

 753599.77	

 2.61	

 1.61	


AP10LT_2_2	

 631761.86	

 0.09	

 0.00	

  	

 AP20LT_2_2  	

 636292.45	

 0.53	

 0.00	


AP10LT_3_1	

 1173705.80	

 0.30	

 0.00	

  	

 AP20LT_3_1  	

 1205800.85	

 6.45	

 1.19	


AP10LT_3_2	

 1050473.57	

 1.72	

 3.91	

  	

 AP20LT_3_2  	

 1081202.66	

 37.34	

 5.70	


AP10LT_3_3	

 956319.65	

 0.23	

 0.00	

  	

 AP20LT_3_3  	

 959935.38	

 0.91	

 0.00	



Table 5.1: Results for model PEK for n=10 and n=20.

2The instance is run ten times for cSP = 1× 106, cSP = 5× 106, cSP = 1× 107, cSP = 5× 107, cSP = 1× 108 and
the parameter setting that resulted in a smaller mean gap was chosen.
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Instance Name	

 Cost	

 CPU	

 gap LR (%)	

  	

  	

 Instance Name	

 Cost	

 CPU	

 gap LR (%)	


AP25TT_1_1  	

 577318.31	

 5.25	

 2.94	

  	

 AP40TT_1_1  	

 612664.89	

 71.00	

 6.64	


AP25TT_2_1  	

 1247408.79	

 104.97	

 3.08	

  	

 AP40TT_2_1  	

 1364597.72	

 4027.14	

 4.92	


AP25TT_2_2  	

 971393.52	

 48.25	

 2.63	

  	

 AP40TT_2_2  	

 1006896.99	

 259.44	

 4.77	


AP25TT_3_1  	

 2006562.93	

 5702.88	

 3.15	

  	

 AP40TT_3_1  	

 2301591.15	

 21600.52	

 5.10	


AP25TT_3_2  	

 1589773.98	

 5165.44	

 4.20	

  	

 AP40TT_3_2  	

 1738735.97	

 21600.77	

 9.49	


AP25TT_3_3  	

 1394724.32	

 125.70	

 2.87	

  	

 AP40TT_3_3  	

 1431168.52	

 2090.33	

 3.87	


AP25TL_1_1  	

 435894.81	

 3.88	

 2.54	

  	

 AP40TL_1_1  	

 434481.19	

 13.86	

 1.53	


AP25TL_2_1  	

 911486.56	

 50.73	

 2.80	

  	

 AP40TL_2_1  	

 930862.15	

 2632.98	

 3.30	


AP25TL_2_2  	

 740127.69	

 17.67	

 1.65	

  	

 AP40TL_2_2  	

 749877.33	

 81.39	

 2.50	


AP25TL_3_1  	

 1453956.36	

 748.19	

 3.54	

  	

 AP40TL_3_1  	

 1513020.42	

 21600.41	

 6.02	


AP25TL_3_2  	

 1196132.85	

 565.08	

 3.40	

  	

 AP40TL_3_2  	

 1240579.02	

 21600.67	

 5.84	


AP25TL_3_3  	

 1069550.51	

 74.08	

 1.83	

  	

 AP40TL_3_3  	

 1074257.17	

 470.53	

 2.18	


AP25LL_1_1  	

 358990.69	

 4.98	

 2.59	

  	

 AP40LL_1_1  	

 347298.69	

 6.39	

 0.17	


AP25LL_2_1  	

 742435.64	

 44.47	

 2.08	

  	

 AP40LL_2_1  	

 737969.08	

 92.22	

 0.88	


AP25LL_2_2  	

 621980.22	

 3.16	

 0.49	

  	

 AP40LL_2_2  	

 610494.06	

 18.88	

 0.20	


AP25LL_3_1  	

 1159701.17	

 359.64	

 2.33	

  	

 AP40LL_3_1  	

 1161202.48	

 1271.52	

 1.11	


AP25LL_3_2  	

 1025360.32	

 2574.88	

 5.66	

  	

 AP40LL_3_2  	

 987953.37	

 540.42	

 2.65	


AP25LL_3_3  	

 903161.79	

 6.44	

 0.31	

  	

 AP40LL_3_3  	

 894546.29	

 31.23	

 0.21	


AP25LT_1_1  	

 451019.52	

 3.20	

 6.60	

  	

 AP40LT_1_1  	

 425559.05	

 4.31	

 0.03	


AP25LT_2_1  	

 995526.01	

 84.42	

 9.16	

  	

 AP40LT_2_1  	

 924138.25	

 44.72	

 0.89	


AP25LT_2_2  	

 807650.76	

 5.98	

 3.51	

  	

 AP40LT_2_2  	

 751983.95	

 13.20	

 0.09	


AP25LT_3_1  	

 1607356.52	

 21601.52	

 8.66	

  	

 AP40LT_3_1  	

 1489401.00	

 464.72	

 1.33	


AP25LT_3_2  	

 1313391.47	

 664.70	

 5.68	

  	

 AP40LT_3_2  	

 1230197.58	

 125.50	

 3.23	


AP25LT_3_3  	

 1189573.44	

 13.81	

 2.63	

  	

 AP40LT_3_3  	

 1102584.51	

 20.88	

 0.11	



Table 5.2: Results for model PEK for n=25 and n=40.

As it can be observed in the tables, when solving instancesAP40TT 3 1, AP40TT 3 2, AP40TL 3 1
and AP40TL 3 2 the time limit was reached. Accordingly, the value reported might not be the
optimal value. The instances of the same nature (with tight costs, tight and loose capacities, 3
types of products and each hub handling 2 or 1 products — TX 3 x, X ∈ {T, L}, x ∈ {1, 2}) for
10, 20 and 25 nodes are the ones that require more computational time, which indicates that these
instances are harder to solve. We note that the time limit was also reached when solving instance
AP25LT 3 1 the time limit was reached. A deeper analysis of the results is out of the context of
this thesis and can be found in Correia et al. [17].

Using the parameter settings described in subsection 5.4.3, all instances were run 10 times. In
Tables 5.3 – 5.6 the results of applying the heuristic to the instances is presented. The minimum,
maximum and average gap (the first three columns) are reported. The CPU time (in seconds)
required when using model PEK is also reported (column “Opt”) in this table, for comparison with
the average of the total CPU run time (column “Heuristic”) and the average elapsed CPU (in
seconds) time until the best solution was found are reported (column “Heuristic Best”).

The gap(%) is computed according to:

100× vheur − vopt
vopt

, (5.17)

where vopt is the optimal value and vheur is the optimal value of the linear relaxation.

As can be seen in Table 5.3, for the 10-node instances, the optimum was reached for 19 out of
the 24 instances in some run (by analysis of the Min Gap (%) column). The instances where the
optimum solution was never reached are the ones with a high linear relaxation gap but that does
not happen for all such instances, e. g., instance AP10TT 3 1 has a gap of 2.21% and the optimum
solution was found. The instances with a 0% linear relaxation gap reach the optimal solutions in
all runs but generally, in a higher amount time than the time elapsed when using PEK .
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A

P25TT_1_1  	


0.71	



3.24	


19.77	



5.25	


9.34	



15.37	


A

P25TT_2_1  	


1.30	



5.25	


27.18	



104.97	


24.82	



33.30	


A

P25TT_2_2  	


1.24	



1.83	


2.70	



48.25	


19.49	



25.89	


A

P25TT_3_1  	


3.30	



9.14	


23.04	



5702.88	


41.24	



51.68	


A

P25TT_3_2  	


1.83	



4.21	


9.01	



5165.44	


34.63	



45.40	


A

P25TT_3_3  	


1.05	



4.18	


8.41	



125.70	


40.08	



50.91	


A

P25TL_1_1  	


0.00	



12.11	


34.44	



3.88	


7.78	



15.40	


A

P25TL_2_1  	


0.83	



7.65	


13.21	



50.73	


16.23	



25.76	


A

P25TL_2_2  	


0.68	



4.66	


15.01	



17.67	


23.31	



36.83	


A

P25TL_3_1  	


4.43	



9.68	


32.70	



748.19	


36.38	



50.82	


A

P25TL_3_2  	


1.63	



6.61	


11.99	



565.08	


36.21	



57.25	


A

P25TL_3_3  	


0.61	



4.98	


16.67	



74.08	


25.62	



37.30	


A

P25LL_1_1  	


2.37	



12.59	


76.19	



4.98	


3.24	



13.21	


A

P25LL_2_1  	


2.49	



7.51	


30.90	



44.47	


18.76	



26.70	


A

P25LL_2_2  	


0.00	



11.03	


41.28	



3.16	


12.50	



22.55	


A

P25LL_3_1  	


0.45	



14.89	


85.49	



359.64	


22.54	



37.46	


A

P25LL_3_2  	


0.94	



4.92	


13.95	



2574.88	


19.95	



36.01	


A

P25LL_3_3  	


0.00	



31.48	


79.82	



6.44	


12.81	



33.09	


A

P25LT_1_1  	


4.79	



5.58	


10.19	



3.20	


5.93	



14.93	


A

P25LT_2_1  	


0.25	



2.91	


11.90	



84.42	


18.84	



26.38	


A

P25LT_2_2  	


0.00	



0.00	


0.00	



5.98	


14.99	



22.33	


A

P25LT_3_1  	


1.29	



10.54	


31.27	



21601.52	


30.58	



41.44	


A

P25LT_3_2  	


0.44	



9.61	


61.51	



664.70	


28.38	



41.45	


A

P25LT_3_3  	


0.00	



4.98	


12.74	



13.81	


22.78	



33.60	
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For the instances with 20 nodes (Table 5.4), in 13 out of the 24 instances the optimum solution
was found. Only one instance with the linear relaxation gap of 0% reached the optimum value in
all runs. The worse behaviour was observed for instance AP20LL 2 1, where a solution with a gap
of 36.10% is found for 9 out of the 10 runs.

In Table 5.5 (instances with 25 nodes) the CPU time elapsed using the heuristic was generally
smaller than when using the model PEK . In 5 instances an optimal solution was found and in 12
the minimum gap is below 1%. Considering the average gap, 8 out of the 24 instances reached
gaps lower than 5%. Instance AP25LT 3 1 was not solved to an optimum by model PEK but
the best result by the heuristic reached a 1.29% gap. The worst gap was of 79.82%, for instance
AP25LL 3 3 but in other runs, an optimal solution was found for that instance.

Finally, for the instances with 40 nodes (Table 5.6) a solution better than the solution found
using the model PEK was found for instanceAP40TT 3 2 with a gap of−0.05%. Optimum solutions
were found for 2 instances and the minimum gap was lower than 1% for 14 out of the 24 instances.

Tot Nr It	

 Best It	

 vACO	

 tACO	

 totaltACO	

 gap (%)	



2269	

 2239	

 1751968.55	

 177.96	

 181.23	

 0.76	


812	

 310	

 1977792.12	

 41.77	

 78.14	

 13.75	



1816	

 1314	

 1740344.62	

 120.94	

 158.54	

 0.09	


982	

 480	

 1890740.68	

 53.72	

 90.22	

 8.74	



1345	

 843	

 1908190.98	

 91.52	

 129.50	

 9.75	


511	

 9	

 2268605.47	

 16.81	

 90.22	

 30.47	



1614	

 1429	

 1747049.70	

 165.92	

 181.44	

 0.48	


1412	

 1116	

 1880479.64	

 156.26	

 181.44	

 8.15	


1362	

 971	

 1766101.34	

 147.86	

 181.51	

 1.57	


1349	

 1255	

 1737932.42	

 165.19	

 181.51	

 -0.05	


897	

 652	

 1762083.35	

 47.27	

 83.36	

 1.34	



1877	

 1375	

 1954253.86	

 122.92	

 160.65	

 12.40	



Mean	

 1353.83	

 999.42	

 1865461.89	

 109.01	

 141.48	

 7.29	



Table 5.7: Computational results for 12 runs of the heuristic on instance AP40TT 3 2.

In Table 5.7, results for 12 runs of instance AP40TT 3 2 (after finding the best solution, the
algorithm ran two more times in order to see if a new best was observed). The table reports: the
total number of iterations (Tot Nr Iter), the number of iterations until the best solution was found
(Best It), the solution cost found by the algorithm (vACO), the time elapsed until the best solution
was found (tACO, in CPU seconds), the total run time (totaltACO, in CPU seconds) and the
gap between the solution cost found by the algorithm and the best found by applying the model
PEK. As can be seen in Table 5.73, the run that found the best gap was stopped because the time
limit imposed by the stopping criterion of 180 CPU seconds was reached and so, an even better
solution could have been found if the algorithm kept running. Overall, the CPU time elapsed using
the heuristic was generally smaller than when using the model PEK and the minimum gap found
averaged 1.99%.

3There are 96 of these tables regarding the results found for all instances but Tables 5.3 –5.3 are the only ones
presented in this thesis because they are enough to understand the results.
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N	

    	

 Gap (%)	

  	

  	

  	

 CPU (seconds)	

  	



 	

   Min	

 Average	

 Max	

  	

 Opt	

 Heuristic Best	

 Heuristic	



10	

 0.14	

 1.46	

 5.41	

 0.61	

 2.46	

 7.33	


20	

 1.44	

 7.24	

 20.50	

 710.51	

 14.53	

 30.67	


25	

 1.28	

 7.90	

 27.89	

 1582.47	

 21.93	

 33.13	


40	

 1.99	

 11.94	

 34.37	

 4111.79	

 79.93	

 112.10	



Table 5.8: Mean results found for 10, 20, 25 and 40 nodes.

In Table 5.8, the results obtained are aggregated by number of nodes and it can be seen that for
instances with more than 20 nodes, the heuristic proposed finds solutions faster than when using
the model PEK . The minimum gaps never exceed 2% but, on average, the gaps exceed the 2%.
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CHAPTER 6

Conclusions

In this chapter the work done is summarized and some conclusions are drawn. Finally, some ideas
on how to improve the work done are presented.

6.1 Summary and Conclusions

In this work, a heuristic was proposed for tackling the MP-CSAHLP, which is anNP-Hard problem.
The new heuristic is based on Ant Colony System, a population based constructive heuristic that
is based on the foraging behaviour of ants. Local search was used in the algorithm as a daemon
action and the solution components of the linear relaxation solved using model PEK proposed by
Correia et al. [17] were used to bias the initial pheromone values on each solution component.

In preliminary computational tests, the algorithm parameters were set using one of the instances
and a graphical analysis.

In some cases the optimal solution was found and in one case, a solution better than the one
found using the model PEK was obtained in a shorter amount of time. This best solution was found
for one of the hardest instances to solve (with tight costs and tight capacity constraints, three types
of products flowing through the network and the hubs not being allowed to handle more than 2
products). This is an indication that the algorithm can be better tuned to solve the problem and
find better solutions than the ones found using the model in a smaller amount of time, even for the
hardest instances. In this particular case, the algorithm stopped because it reached the time limit
defined as a stopping criterion and so, again there is an indication that the parameters defined for
the algorithm to stop, if better tuned, can help improve the performance of the algorithm.

The local search procedure applied was chosen to be very simple in order to reduce the com-
putational time. It stops once a better solution is found and explores only three different types of
neighborhoods.

Additionally, cτ = 1000 is a high value that leads to good initial solutions but perhaps biasing
too much the initial pheromone levels.

In conclusion the results show that the proposed heuristic has the potential to have a better
performance with finer parameter tuning, longer runs and more intense local search.
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6.2 Overview and Future Work

In a work like the one presented in this thesis, several improvements can be performed which emerge
in the sequel of all the tests performed. The improvements proposed are described as follows.

• Parameter Tuning

In order to improve the performance of the algorithm, more intensive computational tests will
have to be carried out in order to set the parameters. These parameters should have been set
using a more fine parameter tuning by running all instances for the a given number of nodes.

The algorithm has to be run more times, in order to use the average results associated with
the graphical analysis.

The number of iterations on each run has to be higher and more time has to be allowed for
the algorithm to find better results.

The algorithm was shown to be sensible to the scaling parameter since better results were
obtained when the scaling parameter, SP ,changed from considering the fixed costs to consid-
ering the linear relaxation solution cost. The scaling parameter should be redefined in order
for it not to depend on the constant cSP .

Also, a good idea is to study the evolution of the pheromone values in order to better un-
derstand how to decide the pheromone update parameters ρ and γ and a better estimate of
the solution cost has to be defined in order to increase the pheromone levels, in the global
pheromone update more efficiently.

• Local Search

A more intensive local search should be implemented by defining additional neighborhoods
in order to improve the solution quality. This might result in longer computational time used
when running the algorithm thus, a compromise between the computational effort put into
the local search and the run time of the algorithm will have to be defined.

• Larger Instances

The algorithm should be used to solve larger instances of the MP-CSAHLP and the upper
bound provided by the heuristic used an an upper cut off to be used in CPLEX.
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