23 research outputs found

    Strong Isomorphism in Eisert-Wilkens-Lewenstein Type Quantum Games

    Get PDF
    The aim of this paper is to bring together the notions of quantum game and game isomorphism. The work is intended as an attempt to introduce a new criterion for quantum game schemes. The generally accepted requirement forces a quantum scheme to generate the classical game in a particular case. Now, given a quantum game scheme and two isomorphic classical games, we additionally require the resulting quantum games to be isomorphic as well. We are concerned with the Eisert-Wilkens-Lewenstein quantum game scheme and the strong isomorphism between games in strategic form

    Nash Equilibria in Quantum Games

    Get PDF
    When the players in a game G can communicate with a referee via quantum technology (e.g. by sending emails composed on a quantum computer), their strategy sets naturally expand to include quantum superpositions of pure strategies. These superpositions lead to probability distributions among payoffs that would be impossible if players were restricted to classical mixed strategies. Thus the game G is replaced by a much larger “quantum game” GQ. When G is a 2 x 2 game, the strategy spaces of GQ are copies of the threedimensional sphere S3; therefore a mixed strategy is an arbitrary probability distribution on S3. These strategy spaces are so large that Nash equilibria can be difficult to compute or even to describe. The present paper largely overcomes this difficulty by classifying all mixed-strategy Nash equilibria in games of the form GQ. One result is that we can confine our attention to probability distributions supported on at most four points of S3; another is that these points must lie in one of several very restrictive geometric configurations. A stand-alone Appendix summarizes the relevant background from quantum mechanics and quantum game theory.

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    The Quantum Frontier

    Full text link
    The success of the abstract model of computation, in terms of bits, logical operations, programming language constructs, and the like, makes it easy to forget that computation is a physical process. Our cherished notions of computation and information are grounded in classical mechanics, but the physics underlying our world is quantum. In the early 80s researchers began to ask how computation would change if we adopted a quantum mechanical, instead of a classical mechanical, view of computation. Slowly, a new picture of computation arose, one that gave rise to a variety of faster algorithms, novel cryptographic mechanisms, and alternative methods of communication. Small quantum information processing devices have been built, and efforts are underway to build larger ones. Even apart from the existence of these devices, the quantum view on information processing has provided significant insight into the nature of computation and information, and a deeper understanding of the physics of our universe and its connections with computation. We start by describing aspects of quantum mechanics that are at the heart of a quantum view of information processing. We give our own idiosyncratic view of a number of these topics in the hopes of correcting common misconceptions and highlighting aspects that are often overlooked. A number of the phenomena described were initially viewed as oddities of quantum mechanics. It was quantum information processing, first quantum cryptography and then, more dramatically, quantum computing, that turned the tables and showed that these oddities could be put to practical effect. It is these application we describe next. We conclude with a section describing some of the many questions left for future work, especially the mysteries surrounding where the power of quantum information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information Technology to Advance Society to be published by CRC Press. Concepts clarified and style made more uniform in version 2. Many thanks to the referees for their suggestions for improvement

    The Intrinsic Quantum Nature of Nash Equilibrium Mixtures

    Get PDF
    Every undergraduate textbook in game theory has a chapter discussing the difficulty to interpret the mixed Nash equilibrium strategies. Unlike the usual suggested interpretations made in those textbooks, here we prove that these randomised strategies neither imply that players use some coin flips to make their decisions, nor that the mixtures represent the uncertainty of each player about the others' actions.Instead, the paper demonstrates a fundamental connection between the Nash equilibrium 'randomised' or 'mixed' strategies of classical game theory and the pure quantum states of quantum theory in physics. This link has some key consequences for the meaning of randomised strategies:In the main theorem, I prove that in every mixed Nash equilibrium, each player state of knowledge about his/her own future rational choices is represented by a pure quantum state. This indicates that prior making his/her actual choice, each player must be in a quantum superposition over her/his possible rational choices (in the support of his probability measure). This result notably permits to show that the famous 'indifference condition' that must be satisfied by each player in an equilibrium is actually the condition that ensures each player is in a 'rational epistemic state of ignorance' about her/his own future choice of an action

    Multi-photon entanglement and applications in quantum information

    Get PDF
    Since the awareness of entanglement was raised by Einstein, Podolski, Rosen and Schrödinger in the beginning of the last century, it took almost 55 years until entanglement entered the laboratories as a new resource. Meanwhile, entangled states of various quantum systems have been investigated. Sofar, their biggest variety was observed in photonic qubit systems. Thereby, the setups of today's experiments on multi-photon entanglement can all be structured in the following way: They consist of a photon source, a linear optics network by which the photons are processed and the conditional detection of the photons at the output of the network. In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. The workhorse of multi-photon quantum information, spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type II spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to demonstrate a new method for the experimental discrimination of different multi-partite entangled states. Although theoretical classifications of four-qubit entangled states exist, sofar there was no experimental tool to easily assign an observed state to the one or the other class. The new tool presented here is based on operators which are formed by the correlations between local measurement settings that are typical for the respective quantum state.Fast 55 Jahre vergingen bis die Entdeckung des Phänomens der Verschränkung durch Einstein, Podolski, Rosen und Schrödinger Ende des zwanzigsten Jahrhunderts Einzug in die Labore hielt. Mittlerweile wurde eine Vielfalt von verschränkten Zuständen untersucht; die größte davon in Systemen photonischer Qubits. Alle modernen Experimente zu viel-Photonen Verschränkung lassen sich in drei wesentliche Bestandteile untergliedern: Eine Photonenquelle, ein Netzwerk aus linearen optischen Komponenten welches die Photonen verarbeitet, und eine bedingte Detektion der Photonen am Ausgang des Netzwerks. Die vorliegende Arbeit führt zwei neue Netzwerke ein und präsentiert deren Anwendungen in verschiedenen Problemstellungen der Quanteninformation. Als Photonenquelle dient hierbei der Prozeß der spontanen parametrischen Fluoreszenz in unterschiedlichen Konfigurationen. Das erste Netzwerk ist ein neuartiges Kontroll-Phasengatter das sich gegenüber früheren Realisierungen vor allem durch seine hohe Stabilität auszeichnet. Wie anhand mehrerer Beispiele gezeigt wird, eignet es sich besonders für den Einsatz in mehr-Photonen Experimenten. Mit Hilfe des Gatters werden alle vier Bell Zustände in einem Teleportations- und "entanglement swapping" Experiment unterschieden. Ein ähnlicher experimenteller Aufbau erlaubt ferner die direkte Messung der Verschränkung zweier Kopien eines Zustands in Form der "Concurrence". Ausgehend von zwei Bell Zuständen wird das Gatter darüberhinaus zur Beobachtung eines Vier-Photonen "Cluster Zustands" verwendet. Die Analyse der Ergebnisse konzentriert sich dabei auf die Hauptanwendung von Cluster Zuständen, das meßbasierte Quantenrechnen. Das zweite Netzwerk bildet, zusammen mit der Emission zweiter Ordnung der parametrischen Fluoreszenz als Input, eine einstellbare Quelle verschiedenster Zustände. Während die Beobachtung eines Zustands bisher einen individuell maßgeschneiderten Versuchsaufbau benötigte, können mit dem neuen Netzwerk viele verschiedene Zustände innerhalb desselben Aufbaus beobachtet werden. Dies erfordert lediglich die Veränderung eines einzelnen, leicht zugänglichen experimentellen Parameters. Die so erzeugten Zustände besitzen eine Reihe nützlicher Eigenschaften und spielen eine zentrale Rolle in vielen Anwendungen. Hier werden sie zur Lösung eines vier-Parteien Quanten "Minority" Spiels verwendet. Es wird gezeigt, dass die Quanten Version des Spiels durch den Einsatz von vier-Qubit Verschränkung sein klassisches Pendant an Möglichkeiten deutlich übertrifft. Mit Hilfe experimenteller Daten beider Netzwerke wird eine neue Methode der Unterscheidung vier-Qubit verschränkter Zustände vorgestellt. Obwohl theoretische Klassifizierungen verschränkter Zustände existieren, gab es bisher keine einfache experimentelle Methode einen beobachteten Zustand der einen oder anderen Klasse zuzuordnen. Das hier vorgestellte Konzept ermöglicht eine experimentelle Klassifizierung basierend auf Operatoren die aus zustandsabhängigen Korrelationsmessungen bestimmt werden

    Entanglement Theory and the Quantum Simulation of Many-Body Physics

    Get PDF
    In this thesis we present new results relevant to two important problems in quantum information science: the development of a theory of entanglement and the exploration of the use of controlled quantum systems to the simulation of quantum many-body phenomena. In the first part we introduce a new approach to the study of entanglement by considering its manipulation under operations not capable of generating entanglement and show there is a total order for multipartite quantum states in this framework. We also present new results on hypothesis testing of correlated sources and give further evidence on the existence of NPPT bound entanglement. In the second part, we study the potential as well as the limitations of a quantum computer for calculating properties of many-body systems. First we analyse the usefulness of quantum computation to calculate additive approximations to partition functions and spectral densities of local Hamiltonians. We then show that the determination of ground state energies of local Hamiltonians with an inverse polynomial spectral gap is QCMA-hard. In the third and last part, we approach the problem of quantum simulating many-body systems from a more pragmatic point of view. We analyze the realization of paradigmatic condensed matter Hamiltonians in arrays of coupled microcavities, such as the Bose-Hubbard and the anisotropic Heisenberg models, and discuss the feasibility of an experimental realization with state-of-the-art current technology.Comment: 230 pages. PhD thesis, Imperial College London. Chapters 6, 7 and 8 contain unpublished materia
    corecore