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Abstract

When the players in a game G can communicate with a referee via quantum technology

(e.g. by sending emails composed on a quantum computer), their strategy sets naturally

expand to include quantum superpositions of pure strategies. These superpositions lead to

probability distributions among payoffs that would be impossible if players were restricted

to classical mixed strategies. Thus the game G is replaced by a much larger “quantum

game” GQ. When G is a 2 x 2 game, the strategy spaces of GQ are copies of the three-

dimensional sphere S3; therefore a mixed strategy is an arbitrary probability distribution

on S3. These strategy spaces are so large that Nash equilibria can be difficult to compute

or even to describe.

The present paper largely overcomes this difficulty by classifying all mixed-strategy

Nash equilibria in games of the form GQ. One result is that we can confine our attention

to probability distributions supported on at most four points of S3; another is that these

points must lie in one of several very restrictive geometric configurations.

A stand-alone Appendix summarizes the relevant background from quantum mechan-

ics and quantum game theory.
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In classical (i.e. “ordinary”) game theory, an n-person game is characterized by n

strategy spaces Si and n payoff functions

Pi : S1 × · · · × Sn → R

Nothing in this formulation attempts to model the process by which the payoffs are actually

computed, though in applications there is usually some story to be told about, say, a market

mechanism or a referee who observes the strategies and calculates the payoffs.

When the real world imposes limits on what referees can observe and calculate, we

can incorporate those limits in the model by restricting the allowable strategy spaces and

payoff functions. To take an entirely trivial example, consider a game where each player

is required to play one of two pure strategies, say “cooperate” (C) and “defect” (D).1 No

mixed strategies are allowed. Although such games make perfect sense in the abstract, it’s

hard to see how they could ever be implemented. Player One announces “I cooperate!”

How is the referee to know whether Player One arrived at this strategy through a legal

deterministic process or an illegal random one?

So to bring our model more in line with reality, we replace the game with a larger game,

1 I am using the words “cooperate” and “defect” as generic names for alternative strate-

gies. I do not mean to imply that the strategy “cooperate” has anything to do with

cooperation.
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abandoning the two- point strategy space {C,D} for the space of all convex combinations

of C and D, while extending the payoff function in the obvious way.

Quantum game theory2 begins with the observation that the technology of the near

future is likely to dictate that much communication will occur through quantum channels,

that is, through the interactions of very small particles. For example, players might com-

municate their strategies to the referee via email composed on quantum computers. Such

communication automatically expands the player’s strategy spaces in ways that cannot be

prohibited. Instead of declaring either “I cooperate” or “I defect”, a prisoner can send a

message that is in some quantum superposition of the states “I cooperate” and “I defect”.

(In Section One, I will be entirely explicit about what this means; for now, I will merely

note that a superposition is not in general equivalent to playing a mixed strategy.) In

the quantum context, there is no way for the referee to detect this kind of “cheating” and

hence no way to rule it out.

We can deal with the possibility of quantum strategies just as we deal with the pos-

sibility of mixed strategies—by imbedding the original game in a larger one. So for each

game we have an associated quantum game—the game that results when players’ strat-

egy spaces are expanded to include quantum superpositions, and the payoff function is

extended accordingly. (Eventually, we will want to allow for mixed quantum strategies,

which will require us to expand the strategy spaces still further.) There are in fact sev-

eral different ways to convert a classical game to a quantum game, depending on exactly

how one models the communication between players and referees. In Section One, I will

2 The idea of using quantum strategies in game theory was introduced by the physicist

David Meyer in [M].
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introduce one such model, essentially identical to the model used by Eisert, Wilkens and

Lewenstein ([EW], [EWL]) for studying the quantum version of the Prisoner’s Dilemma.

The purpose of this model is to motivate the definition of the quantum game associated to

a given classical game. Sufficiently self-motivated readers can skip directly to Definition

(2.3). For readers without the requisite background in physics who want a deeper sort of

motivation, I’ve included, as Appendix A, a primer on quantum mechanics for economists.

Section Two gives a formal definition of the quantum game GQ associated with a

given classical game G. Strictly speaking, GQ should be called the maximally entangled

quantum game associated to G; there are other quantum games that result from alternative

assumptions about the communication mechanism. Those other games will play no role

in this paper. The definition invokes basic facts about quaternions; those basic facts are

summarized in Appendix B.

In Section Three, I will recount the results of ([EL] and [EWL]) on the quantum

version of the Prisoner’s Dilemma. The punch line is that with quantum strategies, there

is a Nash equilibrium that Pareto dominates the usual bad equilibrium (but is still Pareto

suboptimal).

The class of quantum strategies, and all the moreso the class of mixed quantum

strategies, is so huge as to appear intractable. In Section Four, we show that in fact

mixed quantum strategies, and Nash equilibria involving mixed quantum strategies, fall

naturally into large equivalence classes, which greatly simplifies the classification problem.

Following some quick technical preliminaries in Section Five, Sections Six and Seven

contains this paper’s main contribution: A complete classification of mixed strategy Nash
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equilibria in two by two quantum games, in a form that facilitates actual computations.

The most powerful theorem is stated in Section Six, with the proof deferred to Section

Seven.

Section Eight contains some easy applications of earlier results; the most striking is

that in any mixed strategy quantum equilibrium of any two-by-two zero-sum game, each

player earns exactly the average of the four possible payoffs.

1. Quantum Games: Physical Description

Consider a classical two by two game where players communicate their strategies as

follows: A referee hands each player a penny, say heads up. The player either returns

the penny unchanged to indicate a play of strategy C or flips it over to indicate a play of

strategy D. The referee examines each penny, infers the players’ strategies, and makes

appropriate payoffs.

A quantum penny (and any sufficiently small penny is a quantum penny) need not be

either flipped or unflipped; it can, for example, be in a state where it has a 1/4 probability

of appearing flipped and a 3/4 probability of appearing unflipped. Immediately upon

being observed, the penny becomes either flipped or unflipped, destroying all evidence that

it was ever in the intermediate state.

Submitting a penny in such a state implements a mixed strategy. Of course, there

are plenty of other ways to implement a mixed strategy. So far, then, there’s nothing new

for game theory.

When players choose mixed strategies, there is an induced probability distribution on

the four possible outcomes of the game. But not every probability distribution is possible.
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For example, no matter what mixed strategies the players choose, they can never achieve

the probability distribution

Prob(unflipped,unflipped ) = 1/2 Prob(unflipped,flipped) = 0
Prob(flipped,unflipped) = 0 Prob(flipped,flipped) = 1/2

}
(1.1)

Quantum mechanics eliminates this restriction. If the pennies are appropriately

entangled—a physical condition that is easy to arrange—then physical manipulations of

the pennies can achieve any probability distribution whatsoever over outcomes, including,

for example, distribution (1.1). In fact, more is true: Taking Player One’s behavior

as given, Player Two can, by manipulating only his own penny, achieve any probability

distribution whatsoever among outcomes. (And likewise, of course, with the players

reversed.)

Exactly how this comes about is explained (insofar as explanation is possible) in the

appendix to this paper. Credulous readers can take this and the next section on faith

and skip the appendix.

Starting with a two-by-two game G, I will define a new two-player game GQ, called

the quantum game associated to G. The motivating picture is that GQ is the same game

as G, except that players communicate their strategies by manipulating entangled pennies.

Thus in the game GQ, each player’s strategy set is equal to the set of all possible physical

manipulations of a penny. Given the players’ choices, one gets a probability distribution

over the four possible outcomes of the original game G; the expected payoffs in G are the

payoffs in GQ.

In the next section, I’ll make this picture precise.
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2. Quantum Games: Mathematical Description

Start with an ordinary two-by-two game G represented in matrix form as

Player Two

Player One

C D

C (X1, Y1) (X2, Y2)

D (X3, Y3) (X4, Y4)

(2.1)

where each player chooses a strategy ( C or D), and the pairs (Xi, Yi) represent payoffs

to Players One and Two.

Following a few paragraphs of motivation, I will (in Definition (2.3)) define the asso-

ciated quantum game GQ.

First, each player’s strategy space should consist of the set of all possible physical

manipulations of a penny. According to quantum mechanics (see the appendix for more

detail), those manipulations are in a natural one-one correspondence with the unit quater-

nions. (The basic facts about quaternions are summarized in Appendix B.) Therefore,

in the game GQ, each player’s strategy space consists of the unit quaternions.

Suppose that Player One chooses the unit quaternion p and Player Two chooses the

unit quaternion q. Write the product pq as

pq = π1(pq) + π2(pq)i+ π3(pq)j + π4(pq)k (2.2)

where the πi(pq) are real numbers. Then according to the laws of physics (see Appendix

A for more details) the pennies will appear to be flipped or unflipped according to the
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following probabilities:

Prob(unflipped,unflipped ) = π1(pq)2 Prob(unflipped,flipped) = π2(pq)2

Prob(flipped,unflipped) = π3(pq)2 Prob(flipped,flipped) = π4(pq)2
}

(2.3)

Thus we are led to the following definition:

Definition 2.4. Let G be the game depicted in (2.1). Then the associated quantum

game (or quantization) GQ is the two- person game in which each player’s strategy space

is the unit quaternions, and the payoff functions for Players 1 and 2 are defined as follows:

P1(p,q) =
4∑

t=1

πt(pq)2Xt (2.4.1)

P2(p,q) =
4∑

α=1

πt(pq)2Yt (2.4.2)

3. Example: The Prisoner’s Dilemma

Eisert and Wilkins [EW] analyze the quantum version of the following Prisoner’s

Dilemma game:
Player Two

Player One

C D

C (3, 3) (0, 5)

D (5, 0) (1, 1)

(3.1)

which has the following Nash equilibrium in mixed quantum strategies:

Player 1 plays the quaternions 1 and k, each with probability 1/2.
Player 2 plays the quaternions i and j, each with probability 1/2.

}
(3.2)

Proposition 3.3 (3.2) is a Nash equilibrium.
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Proof. I’ll give this proof in some detail so the reader can check his understanding

of Definition (2.4).

Take Player 1’s strategy as given. Suppose Player 2 plays the quaternion q = α +

βi+ γj + δk. Then Player 2’s expected payoff is

1
2
P2(1,q) +

1
2
P2(k,q) =

1
2

4∑
t=1

πt(q)2Yt +
1
2

4∑
t=1

πt(kq)2Yt

=
1
2

4∑
t=1

[
πt(α+ βi+ γj + δk)

]2
Yt +

1
2

4∑
t=1

[
πt(−δ − γi+ βj + αk)

]2
Yt

=
1
2
(
3α2 + 5β2 + δ2

)
+

1
2
(
3δ2 + 5γ2 + α2

)
= 2α2 +

5
2
β2 +

5
2
γ2 + 2δ2 (3.3.1)

Player 2’s problem is to maximize (3.3.1) subject to the constraint that q must be a unit

quaternion; i.e.

α2 + β2 + γ2 + δ2 = 1

Clearly, then, Player 2’s optimal response is to choose q such that α = δ = 0; for example,

q = i and q = j are optimal responses.

In the same way, one verifies that if Player 2’s strategy as given in (3.2), then p = 1

and p = k are optimal responses for Player 1.

Proposition 3.4. In the Nash equilibrium (3.2), each player has an expected payoff

of 5/2.

Proof. Consider the following chart:

8



Player 1’s Player 2’s Player 1’s Player 2’s
Probability Strategy(p) Strategy(q) pq Payoff Payoff

1/4 1 i i 0 5

1/4 1 j j 5 0

1/4 k i j 5 0

1/4 k j -i 0 5

Note in particular that the mixed strategy quantum equilibrium (3.2) is Pareto supe-

rior to the unique classical equilibrium in which each player earns a payoff of 1.

4. Notions of Equivalence.

We want to classify mixed-strategy Nash equilibria in quantum games. A mixed

strategy is a probability distribution on the space of pure strategies, which in turn is a

three-dimensional manifold. Thus the space of mixed strategies is huge and potentially

intractable. In this section I will show that in fact mixed strategies fall naturally into

equivalence classes with particularly simple representatives.

The definition of equivalent strategies is in (4.2), the main theorem about equivalence

classes is (4.6), and the definition of equivalent equilibria is in (4.11).

Definition 4.1. A (pure) quantum strategy is a strategy in the game GQ, i.e. a

unit quaternion. We will identify the unit quaternions with the unit ball S3 ⊂ R4. If p

and q are quantum strategies chosen by Players One and Two, we write both Pi(p,q) and

Pi(pq) for the payoff to player i; thus Pi is a function of either one or two (quaternionic)

variables depending on context.

Definition and Notation 4.2. A mixed quantum strategy (or just mixed strategy
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when the context is clear) is a probability distribution µ on the space of unit quaternions.

If ν and µ are mixed quantum strategies chosen by Players 1 and 2, we write

Pi(ν, µ) =
∫
Pi(pq)dν(p)dµ(q)

for Player i’s expected payoff. We will identify the pure strategy pwith the mixed strategy

νp which is concentrated at p; thus we will write Pi(p, µ) for Pi(νp, µ).

Definition 4.3. Let µ and µ′ be mixed strategies. We will say that µ and µ′ are

equivalent if ∫
πα(pq)dµ(q) =

∫
πα(p,q)dµ′(q)

for all p and for α = 1, 2, 3, 4, where the πα are the coordinate functions defined in (2.2).

In other words, µ and µ′ are equivalent if for for every quantum game and for every

quantum strategy p, P1(p, µ) = P1(p, µ′) and P2(µ) = P2(µ′).

Proposition 4.4. The mixed strategies µ and µ′ are equivalent if and only if

Pi(µ,q) = Pi(µ′,q)

for all q and for i = 1, 2.

Proposition 4.5. The pure strategy p is equivalent to the pure strategy −p and to

no other pure strategy.

Theorem 4.6. Every mixed strategy is equivalent to a mixed strategy supported

on (at most) four points. Those four points can be taken to form an orthonormal basis

for R4.
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Proof. First, choose any orthonormal basis {q1,q2,q3,q4} for R4. For any quater-

nion p, write (uniquely)

p =
4∑

α=1

Aα(p)qα

where the Aα(p) are real numbers.

Define a probability measure ν supported on the four points qα by

ν(qα) =
∫
S3
Aα(q)2dµ(q)

For any two quaternions p and q, define

X(p,q) =
4∑

α=1

πα(p)πα(q)Xi (4.6.1)

Then for any p we have

P (p, µ) =
∫
S3
P (pq)dµ(q)

=
∫

S3
P

(
4∑

α=1

Aα(q)pqα

)
dµ(q)

=
4∑

α=1

P (pqα)
∫

S3
Aα(q)2dµ(q) + 2

∑
α6=β

X(pqα,pqβ)
∫
S3
Aα(q)Aβ(q)dµ(q)

= P (p, ν) + 2
∑
α6=β

X(pqα,pqβ)
∫
S3
Aα(q)Aβ(q)dµ(q)

To conclude that µ is equivalent to ν it is sufficient (and necessary) to choose the qα

so that for each α 6= β we have

∫
S3
Aα(q)Aβ(q)dµ(q) = 0

For this, consider the function B : R4 ×R4 → R defined by

B(a,b) =
∫
S3
π1(aq)π1(bq)dµ(q)
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B is a bilinear symmetric form and so can be diagonalized; take the qα to be an orthonormal

basis with respect to which B is diagonal. Then we have (for α 6= β)∫
S3
Aα(q)Aβ(q)dµ(q) =

∫
S3
π1(qαq)π1(qβq)dµ(q)

= B(qα,qβ) = 0

Definition (4.3), together with Theorem (4.6), will be our primary tool for dividing

Nash equilibria into equivalence classes. In the remainder of this section we develop a

secondary tool:

Definition 4.7. Let ν be a mixed quantum strategy and let u be a unit quaternion.

The right translate of ν by u is the measure νu defined by

(νu)(A) = ν(Au)

(Here A is a subset of the unit quaternions and Au = {xu|x ∈ A}.) Similarly, the left

translate of ν by u is the measure uν defined by

(uν)(A) = ν(uA)

Definition 4.8. A mixed strategy equilibrium is exactly what you think it is,

namely a pair of mixed strategies (ν, µ) such that ν maximizes P1(ν, µ) and µ maximizes

P2(ν, µ). If u is a unit quaternion and (ν, µ) is a mixed strategy equilibrium, then clearly

so is

u∗(ν, µ) = (νu,u−1µ) (4.8.1)

We call (4.8.1) the u- translate of the equilibrium (ν, µ).

Clearly u-translating an equilibrium does not change either player’s payoff.
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Proposition 4.9. There exists at least one mixed strategy equilibrium.

Proof. This is proven, using standard methods, in [LJ]. However, there’s an even

easier argument: Let µ be the uniform probability distribution on the unit quaternions

(thought of as the 3-dimensional unit sphere in R4). Then it’s clear that (µ, µ) is an

equilibrium.

Remarks 4.10. In view of (4.8) and (4.9), mixed strategy equilibria not only

exist; they tend to exist in great profusion: Given an equilibrium (ν, µ), we can always

u- translate it to get another. Alternatively, we can replace ν (or µ) with an equivalent

strategy (in the sense of (4.3) and get still another equilibrium. This leads to the following

definition:

Definition 4.11. Two equilibria (ν, µ) and (ν′, µ′) are equivalent if there exists a

unit quaternion u such that ν′ is equivalent to νu and µ′ is equivalent to u−1µ.

Remarks 4.12. There is one additional set of symmetries we can exploit. Let G be

the game (2.1), let σ be any permutation of (1, 2, 3, 4), and let Gσ be the game that results

when the payoff pairs (Xt, Yt) are permuted via σ. In general, the games G and Gσ are

not isomorphic, but the corresponding quantum games are always isomorphic. On strategy

spaces, the isomorphism permutes the strategies 1, i, j, k, at least up to equivalence. (For

a full description of the isomorphism see Appendix B.)

Thus, given a Nash equilibrium in GQ, we can “permute 1, i, j and k” to get a Nash

equilibrium in GQ
σ , which means that when we classify equilibria we can classify them up

to such permutations. This is what we will do in Section 7. Sometimes the results are
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clearer when we only allow permutations of i, j, k but not 1; this is what we will do in

Section 6.

5. Classifying Equilibria: Preliminaries

Remarks 5.1. We want to classify all mixed strategy Nash equilbria (ν, µ) in the

game GQ associated to the general two by two game (2.1).

By (4.6) we can assume that µ is supported on four points q, uq, u′q, and uu′q with

u2 = (u′)2 = −1 and uu′ + u′u = 0. That is, we can assume that Player Two plays:
q with probabilty α
uq with probability β
u′q with probability γ
u′uq with probability δ

(6.1.1)

where α+ β + γ + δ = 1.

(We can also assume, up to a q-translation, that q = 1, but for now it will be

convenient to allow q to be arbitrary.)

Theorem 5.2. Taking Player 2’s (mixed) strategy µ as given, Player 1’s optimal

response set is equal to the intersection of S3 with a linear subspace of R4.

(Recall that we identify the unit quaternions with the three-sphere S3.)

Proof. Player One’s problem is to choose p ∈ S3 to maximize

P1(p, µ) =
∫
P1(pq)dµ(q) (5.2.1)

Expression (5.2.1) is a (real) quadratic form in the coefficients πi(p) and hence is max-

imized (over S3) on the intersection of S3 with the real linear subspace of R4 corresponding

to the maximum eigenvalue of that form.
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Definition 5.3. We define the function

K : S3 → R

by

K(A+Bi+ Cj +Dk) = ABCD

Thus in particular K(p) = 0 if and only if p is a linear combination of at most three of

the fundamental units {1, i, j, k}.

Theorem 5.4. Let p be an optimal response to the strategy µ. Suppose it is not

the case that X1 = X2 = X3 = X4. Then p must satisfy:

(α− β)(α− γ)(α− δ)K(pq)

+(β − α)(β − δ)(β − γ)K(puq)

+(γ − α)(γ − β)(γ − δ)K(pu′q)

+(δ − α)(δ − β)(δ − γ)K(pu′uq) = 0

(5.4.1)

Proof. Consider the function

P : S3 ×R4 → R
(p,x) 7→

∑4
n=1 p2

nxndµ(q)

where pn = πn(p) (that is, pn is defined by p = p1 + p2i+ p3j + p4k).

In particular, if we let X = (X1, X2, X3, X4) then P(p, X) = P1(p, µ).

The function P is quadratic in p and linear in x; explicitly we can write

P(p,x) =
∑
i,j,k

tijkpipjxk

for some real numbers tijk.

15



Set

Mij(x) =
4∑

k=1

tijkxk

Nij(p) =
4∑

k=1

tikjpj

so that

M(x) ·


p1

p2

p3

p4

 = N(p) ·


x1

x2

x3

x4

 (5.4.2)

If p is an optimal response to the strategy µ, then (p1,p2,p3,p4)T must be an eigen-

vector of M(X), say with associated eigenvalue λ. From this and (5.4.2) we conclude

that

N(p) ·


X1

X2

X3

X4

 = λ ·


p1

p2

p3

p4

 = N(p) ·


λ
λ
λ
λ


where the second equality holds by an easy calculation.

Thus N(p) must be singular. But it follows from a somewhat less easy calculation

that the determinant of N(p)/2 is given by the left side of (5.4.1).

6. Classifying Equilibria: Results.

In this section I will state the classification for Nash equilibria in generic games (to

be defined below). The proof follows from the detailed results in Section 7, which also

classify Nash equilibria in non-generic games.

All results are to be interpreted “up to a permutation of i, j, k” as described in (4.12).

Definition 6.1. The game G (2.1) is a generic game if

a) the Xi are all distinct
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b) X1 +X2 6= X3 +X4, and similarly for any permutation of 1, 2, 3, 4.

c) the analogues of a) and b) hold for the Yt as well as the Xt.

Here is the main theorem of this section; italicized words will be defined in 6.3, 6.4

and 6.7.

Theorem 6.2. For a generic game G, every Nash equilibrium in GQ is either

induced , intertwined , or special .

Proof. Theorem 6.2 follows immediately from the more general results of Section 7,

which classify Nash equilibria in both generic and non-generic games.

Herewith the definitions:

Definition 6.3. A mixed-strategy Nash equilibrium in the quantum game GQ (2.4)

is induced if both players’s strategies are supported on the four-point set {1, i, j, k}. It is

easy to check that any induced equilibrium is already an equilibrium in the 4 by 4 subgame

where each player’s strategy set is restricted to {1, i, j, k}. Thus finding induced equilibria

in GQ is no harder than finding equilibria in 4 by 4 games.

Definition 6.4. A mixed-strategy equilibrium in the quantum game GQ (2.4) is

special if (up to permuting i, j, k) one of the following holds:

i) Player Two plays two strategies 1 and v, each with probability 1/2, and Player

One plays two strategies p and pv, each with probability 1/2.

ii) Player Two’s strategy is supported on {1, i} and Player One’s strategy is sup-

ported on three orthogonal points in the linear span of {1, i, j}, each played with

probability 1/3.
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Notation 6.5. To define intertwined equilibria, we need some notation. First,

it will be convenient to denote the unit quaternion A + Bi + Cj + Dk by the 4-tuple

(A,B,C,D), thought of as an element of the unit 3-sphere S3. Square roots of −1 are

represented by unit quaternions of the form (0, B,C,D) ∈ S2 ⊂ S3. (That is, S2 is the

unit 2-sphere, thought of as the equator in S3.)

If (X,Y, Z,W ) is any non-zero 4-tuple of real numbers, I will write p ∼ (X,Y, Z,W )

to mean that p is a unit quaternion and a scalar multiple of (X,Y, Z,W ); this uniquely

determines p up to a sign.

If p and q are orthogonal unit quaternions, I will write < p,q > for the circle of unit

quaternions they generate; i.e.

< p,q >= {cos(θ)p + sin(θ)q | θ ∈ (0, 2π)}

Remarks 6.6. Next I will define intertwined equilibria. Because the definition

itself has several parts, I will start by explaining the main idea. First, in an intertwined

equilibrium, each player’s strategy is supported on at most two points. More specifically,

Player Two’s strategy is supported on {1,u} and Player One’s strategy is supported on

{p,pv} where p,v, and u are unit quaternions satisfyinng

u2 = v2 = −1 (6.5.1)

The triple (p,v,u) is required to satisfy one of ten quite restrictive conditions, listed in

(6.6).

I will elaborate on the phrase “quite restrictive”: The triples (p,v,u) satisfying (6.5.1)

constitute a seven dimensional manifold S3×S2×S2. Each of the ten intertwining condi-

tions picks out a subset of dimension at most 4. In nine out of ten cases, the condition is
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easy to describe. In those nine cases, there is no difficulty determining whether a given

triple (p,v,u) satisfies the condition. The tenth condition is more mysterious, but it

applies only to a one- dimensional set of triples. Thus there is a very strong sense in

which almost all intertwined equilibria are easy to describe.

Definition 6.7. A mixed-strategy Nash equilibrium in GQ is intertwined if Player

Two’s strategy is supported on a two-point set {1,u} and Player One’s strategy is sup-

ported on a two-point set {p,v} where u2 = v2 = 0 and at least one of the following ten

conditions holds (up to permuting i, j and k):

i) u = v ⊥ p ⊥ 1 or u = v ⊥ ip ⊥ 1

ii) u = i v ∈< i,pip > ∪{pjp,pkp}

ii′) v = pip u ∈< i,pip > ∪{j, k}

iii) p ∈< 1, j >< 1, i >, u = i, v ∈ p < i, k > p

iii′) p ∈< 1, i >< 1, j >, v = pip, u ∈< i, k >

iv) u = i and v is (uniquely) determined by one of the following three conditions:

pv ∼
(
−A(C2 +D2),−B(C2 +D2), C(A2 +B2), D(A2 +B2)

)
pv ∼

(
− C(BC +AD), D(BC +AD), B(AC −BD), A(AC −BD)

)
pv ∼

(
D(AC −BD), C(AC −BD),−A(BC +AD), B(BC +AD)

)
where p = (A,B,C,D)

iv′) v = pip and u is uniquely determined by one of the following three conditions:

pu ∼
(
−A(C2 +D2),−B(C2 +D2), C(A2 +B2), D(A2 +B2)

)
pu ∼

(
−D(BD +AC), C(BD +AC), A(AD −BC), B(AD −BC)

)
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pu ∼
(
C(AD −BC), D(AD −BC),−B(BD +AC), A(BD +AC)

)
where p = (A,B,C,D)

v) p ∈< 1, i > ∪ < j, k > u,v ∈ {i}∪ < j, k >

vi) p ∈< i, j >< 1,v >, u = v ∈< i, j >

vii) For some (A,B,C) with A2 +B2 + C2 = 1 we have:

p ∼ (A,A, 0, 2C) or p ∼ (A,−A,−2B, 0)

and u,v determined by one of the following conditions:

u ∼ (0, C −B,A,−A) and v ∼ (0, A2 + 2BC,A(B − C), A(C −B))

or u ∼ (0,−B − C,A,A) and v ∼ (0, A2 − 2BC,A(B + C), A(B + C)))

viii) p,u,v are of the form:

u = (0, X, Y,±Y ) v (0, 2ABX − Y, 2B2X,±2B2X)

p = (0, A,B,±B) orp = (AY − 2BX, 0, BY,∓BY )

ix) u = (j ± k)/
√

2 p ∈< 1, iu > ∪ < i, iu > v = i

ix′) v = (j ± k)/
√

2 p ∈< 1, iv > ∪ < i, iv > u = pip

x) (p,v,u) is a real point on a certain one- dimensional subvariety of S3 × S2 × S2

7. Classifying Equilibria: More Results

Remarks, Definitions, and Conventions 7.0. In view of Theorem 5.2, we can

classify all mixed strategy equilibria in terms of the dimensions of the players’ optimal

response sets, each of which is a sphere of dimension 0, 1, 2 or 3.
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We can assume without loss of generality that Player One’s optimal response set has

at least the same dimension as Player Two’s. Thus we say that an equilibrium is of

Type (m,n) (0 ≤ n ≤ m ≤ 3) if Player One’s optimal response set has dimension m and

Player Two’s optimal response set has dimension n. Up to renaming the players, every

equilibrium is of one of these ten types.

We will classify equilibria up to equivalence (defined in (4.11)) and up to permutations

of 1, i, j, k (as described in (4.12)). From Theorem (4.6), we can assume that Player One’s

strategy is supported on m+ 1 orthogonal points and Player Two’s strategy is supported

on n+ 1 orthogonal points. We can also assume that the quaternion 1 is in the support

of Player Two’s strategy. (Take any q in the support of Player Two’s strategy and apply

a q- transformation.)

Note that the strategy p is always equivalent to the strategy −p. I will therefore

often abuse notation by writing p = q to mean p = ±q.

Classification 7.1: Equilibria of Type (0,0). Clearly an equilibrium of type

(0,0) occurs when and only when there is a t ∈ {1, 2, 3, 4} that uniquely maximizes both

Xt and Yt. We can assume t = 1 and each player plays the quaternion 1.

Classification 7.2: Equilibria of Type (1,0). Up to equivalence, every equilib-

rium of Type (1,0) is of the following sort:

a) Player Two plays the pure strategy 1.

b) Player Two plays the strategies 1 and i with some probabilities φ and ψ = 1−ψ.

c) φ 6= 1/2

Proof. By the remarks in (7.0) we can assume (a). It is clear that Player One’s
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optimal response set is spanned by exactly two of 1, i, j, k; we can assume it is spanned by

1 and i. By the remarks in (7.0) we can assume Player One’s strategy ν is supported on

two quaternions of the form A+Bi, −B +Ai, played with some probabilities φ, ψ.

We have

P2(ν,A−Bi) = φY1 + ψY2

P2(ν,B +Ai) = ψY2 + φY1

and it is clear that at least one of these is as least as great as

P2(ν, 1) = (φA2 + ψB2)Y1 + (φB2 + ψA2)Y2

The unique optimality of Player Two’s response then implies that 1 = A−Bi or 1 = B+Ai;

we can assume the former, so that B +Ai = i, giving b).

If φ = 1/2 = ψ then i is also an optimal response for Player Two, violating the

uniqueness assumption, so we have φ 6= 1/2, establishing (c).

Classification 7.3: Equilibria of Type (2,0). Up to equivalence, every equilib-

rium of type (2,0) is of the following sort:

a) Player Two plays the pure strategy 1.

b) Player One plays a strategy supported on three mutual orthogonal quaternions

p1,p2,p3 played with some probabilities φ, ψ, ξ.

c) Each pt is a linear combination of 1, i, j (but not k).

d) If Y1, . . . , Y4 are all distinct, then either p1 = 1 or φ = ψ = ξ = 1/3.

e) If Y1, . . . , Y4 are all distinct and φ, ψ, ξ are all distinct, then p1 = 1, p2 = i and

p3 = j.

22



Proof. We can assume X1 = X2 = X3 > X4; a), b) and c) follow from this and the

generalities of (7.0).

Now suppose the Yt are all distinct. Write

p1 = A+Bi+ Cj

p2 = D + Ei+ Fj

p3 = G+Hi+ Ij

Evaluating the first order conditions for Player Two’s maximization problem and setting

them equal to zero at his optimal strategy 1 gives:

(φAB + ψDE + ξGH)(Y1 − Y2) = 0 (7.3.1a)

(φAC + ψDF + ξGI)(Y1 − Y3) = 0 (7.3.1b)

(φBC + ψEF + ξHI)(Y2 − Y3) = 0 (7.3.1c)

Because the Yt are distinct, we can writeAB DE GH
AC DF GI
BC EF HI

 φ
ψ
ξ

 =

 0
0
0

 =

AB DE GH
AC DF GI
BC EF HI

 1
1
1

 (7.3.2)

Unless φ = ψ = ξ = 1/3, it follows that the matrixAB DE GH
AC DF GI
BC EF HI


has rank at most one while the matrix

O =

A B C
D E F
G H I
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is orthogonal. From this it follows that O contains a row with two zeros. We can

permute rows and columns to get

O =

 1 0 0
0 E F
0 −F E


which establishes d). Moreover, if ψ 6= ξ then (7.3.2) now implies EF = 0, establishing (e).

Classification 7.4: Equilibria of Type (3,0). Clearly such an equilibrium

requires X1 = X2 = X3 = X4. Player One’s strategy ν is supported on four mutually

orthogonal quaternions p,pv,pv′ and pvv′ where vv′ + v′v = 0. These cannot be

played equiprobably. (Otherwise P2(ν,v) = P2(ν, 1) so Player Two’s response would not

be unique.)

Classification 7.5: Equilibria of Type (1,1). Every equilibrium of Type (1,1)

is either induced, special or intertwined (as defined in Section 6).

Proof. We can assume the strategies are

Player One Player Two
Strategy (ν) Probability

p φ
pv ψ

Strategy (µ) Probability
1 α 6= 0
u β

with u2 = v2 = −1.

Proof. First assume β = 0. Then exactly two of the X’s are maximal; we can

assume X1 = X2 > X3, X4. It follows that we can write p = A+Bi and v = i. Because

1 is an optimal response by Player Two, the first order condition

AB(φ− ψ)(Y1 − Y2) (7.5.1)

must hold. If AB = 0, the equilibrium is induced. Otherwise it follows from (7.5.1) that
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P2(ν, i) = P2(ν, 1) so that i is an optimal response for Player Two; thus u = i. Therefore

the equilibrium is intertwined by condition (6.7v).

This completes the proof when β = 0; by symmetry we can assume αβφψ 6= 0.

Next suppose α 6= β and φ 6= ψ. Then (5.4.1) reduces to

α2K(p) = β2K(pu) (7.5.2)

For any real number θ, (5.2) implies that

p(θ) = cos(θ)p + sin(θ)pv

is an optimal response for Player One; therefore we can replace p with p(θ) in (7.5.2).

That is, the equation

α2K(cos(θ)p + sin(θ)pv) = β2K(cos(θ)pu + sin(θ)pvu) (7.5.3)

must hold identically in θ. In [I], I define the quadruple (p,pv,pu,pvu) to be intertwined

if (7.5.3) holds identically in θ for some fixed nonzero α and β. Thus (p,pv,pu,pvu)

is intertwined, and, by reversing the players, so is (p,pu,pv,pvu). When both of these

quadruples are intertwined I say that (p,pv,pu,pvu) is fully intertwined. The main

theorem of [I] shows that all fully intertwined quadruples fit into (at least) one of the

families listed in (6.7), so that the equilibrium in question is intertwined.

It remains to consider the case α = β = 1/2 (a similar argument applies when φ =

ψ = 1/2). In this case

P1(pu, µ) =
1
2
P1(pu) +

1
2
P1(p) = P1(p, µ)
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so that the optimality of p implies the optimality of u, whence v = u. If φ = ψ = 1/2,

we can conclude that the equilibrium is special, so assume φ 6= 1/2. Then as before

(p,pu,pv,pvu) is intertwined, and, because u = v, it is fully intertwined. Hence the

argument of the preceding paragraph applies.

Classification 7.6: Equilibria of Type (2,1). A Type (2,1) equilibrium is

described (up to equivalence) by

Player One (ν) Player Two (µ)
Strategy Probability

p1 φ
p2 ψ
p3 ξ

Strategy Probability
1 α
u β

where u2 = −1. We have:

a) α 6= 1/2

b) u = i

c) The linear span of p1,p2,p3 is equal to the linear span of 1, i, j.

d) At least one of the following is true:

i) φ = ψ = ξ = 1/3

ii) {p1,p2,p3} = {1, i, j}

iii) {p1,p2,p3}∩ {1, i, j} 6= ∅ and the payoffs Yt are equal in pairs (e.g. Y1 = Y2 and

Y3 = Y4).

Proof. On dimensional grounds, Player One’s optimal response set overlaps Player

Two’s optimal response set nonvacuously. That is, Player One has an optimal response of

the form p = A+Bu. Then

P1(p, µ) = A2P1(1, µ) +B2P1(u, µ)
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so that 1 and u must be optimal responses for Player One. Therefore Player One’s optimal

response set is spanned by 1, u and v for some v such that v2 = −1 and uv + vu = 0.

Claim: α 6= 1/2. Proof: Otherwise, P1(vu, µ) = P1(v, µ), making vu an optimal

response for Player One. But 1,v,u,vu span all of S3, contradicting the 2-dimensionality

of Player One’s optimal response set. This proves the claim and establishes a).

Now let X and Y be any real numbers and let p(X,Y ) = p + Xu + Y v. Then

p(X,Y )/||p(X,Y )|| is an optimal response for Player One. Thus by (5.4) (with γ = δ = 0)

we have

α2K(1 +Xu + Y v) = β2(u−X + Y vu) (7.6.1)

Write u = Pi+Qj +Rk. Then, setting Y = 0, (7.6.1) becomes

α2PQRX3 = −β2PQRX

which must hold indentically in X. Thus PQR = 0 and we can assume R = 0.

The orthogonality of u and v implies that v is of the form −SQi+SPj+T . Equating

coefficients in (7.6.1) first on XY , then on X2Y , and then on XY 2, we deduce

PQS = PQT = (P 2 −Q2)ST = 0

Together with the requirement that u and v have length one (i.e. P 2 +Q2 = S2 +T 2 = 1)

this implies PQ = ST = −0. Without loss of generality, Q = T = 0 so u = i and v = j,

which establishes b) and c).

Now we can write
p1 = A+Bi+ Cj

p2 = D + Ei+ Fj

p3 = G+Hi+ Ik
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The first order conditions for Player Two’s maximization problem must be satisfied

at both 1 and i. This gives five equations

(φAB + ψDE + ξGH)(Y1 − Y2) = 0 (7.6.2a)

(φAC + ψDF + ξGI)(Y1 − Y3) = 0 (7.6.2b)

(φBC + ψEF + ξHI)(Y2 − Y3) = 0 (7.6.2c)

(φAC + ψDF + ξGI)(Y2 − Y4) = 0 (7.6.2d)

(φBC + ψEF + ξHI)(Y1 − Y4) = 0 (7.6.2e)

(Note that (7.6.2a-c) are identical to (7.3.1a-c).)

Claim: We cannot simultaneously have Y1 = Y3 and Y2 = Y4. Proof: Other-

wise P2(ν, j) = P2(ν, 1), contradicting the suboptimality of j as a response for Player 2.

Similarly, we cannot simultaneously have Y1 = Y4 and Y2 = Y3.

From this and equations (7.6.2a-e) we conclude that

(
AC DF GI
BC EF HI

) φ
ψ
ξ

 =

 0
0
0

 =
(
AC DF GI
BC EF HI

) 1
1
1


so that if condition di) fails, then the matrix

(
AC DF GI
BC EF HI

)

has rank one. Together with the orthogonality of

O =

A B C
D E F
G H I
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this implies that O has at least one row with two zeros. That is, {p1,p2,p3}∩{1, i, j} 6= ∅.

We can assume p1 = 1.

Finally, we assume that di) and diii) both fail and establish dii). If Y1 6= Y2, then di)

follows from the preceding paragraph just as in the proof of 7.3). Thus we can assume

Y1 = Y2 and consequently Y3 6= Y4.

From P2(ν, 1) = P2(ν, i) and Y1 = Y2 we conclude

(φC2 + ψF 2 + ξI2)(Y3 − Y4) = 0

whence φC2+ψF 2+ξI2 = 0. From p1 = 1 we have C = 0. We can assume φ 6= 1 (oth-

erwise p2 and p3 can be replaced with i and j), so at least one of F and I is zero. This (to-

gether with B = C = 0) implies that the orthogonal matrix O is in fact a permutation ma-

trix, which is condition dii).

Classification 7.7: Equilibria of Type (3, 1). Player Two plays

Strategy Probability
1 α
u β

where (up to permuting i, j, k) one of the following must hold:

a) X1 = X2 = X3 = X4

b) α = β = 1/2, u = i, X1 +X2 = X3 +X4

c) α = β = 1/2, u ∈< i, j >, X1 = X4, X2 = X3

Proof. Let p = (X,Y, Z,W ) be an arbitrary unit quaternion. Taking Player Two’s

strategy as given, Player One’s payoff is a quadratic form in X,Y, Z,W that must be

constant on the unit sphere. Equating the coefficients on the terms X2, Y 2, Z2 and W 2,

while setting the coefficients on the various cross terms equal to zero, gives the solutions

listed.
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Classification 7.8: Equilibria of Type (2,2). A Type (2,2) equilibrium is

described (up to equivalence) by

Player One (ν) Player Two (µ)
Strategy Probability

p1 φ
p2 ψ
p3 ξ

Strategy Probability
1 α
u β
w γ

where u2 = w2 = −1 and uw + wu = 0. If αβγ = 0 then the results of (7.6) hold (by

the exact same proof). Otherwise, suppose that α, β, γ all differ from zero, from 1/2 and

from each other. Then we have:

a) u = i and v = j

b) The linear span of p1,p2,p3 is equal either to the linear span of 1, i, j or 1, i, k.

c) At least one of the following is true:

i) φ = ψ = ξ = 1/3

ii) {p1,p2,p3} = {1, i, j}

iii) {p1,p2,p3} = {1, i, k}

iv) {p1,p2,p3} ∩ {1, i, j, k} 6= ∅ and the payoffs Yt are equal in pairs.

Proof. Let p be any optimal response by Player One. From (5.4.1) with δ = 0 and

u′ = w we get an equation

σ1K1 + σ2K2 + σ3K3 + σ4K4 = 0 (7.8.1)

where σ1 = (α− β)(α− γ)α, K1 = K(p), etc.

After applying a u− or w− translation as needed, we can assume that α lies strictly

between β and γ. Thus

σ1, σ4 < 0 and σ2, σ3 > 0 (7.8.2)
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Claim One: Player One’s optimal response set contains at least two of 1,u,w,uw.

Proof of Claim: On dimensional grounds, Player One’s optimal response set contains

quaternions of the form Q+Ru and Sw+Tuw. Applying (7.8.1) to the case p = Q+Ru

and noting that K(pw) = K(puw) = 0, we get

QR(σ1R
2 − σ2Q

2)K(1 + u) = 0

and similarly

ST (σ3S
2 − σ4T

2)K(1 + u) = 0

Together with (7.8.2), this implies either QR = 0 = ST = 0, in which case the claim

follows, or K(1 + u) = 0. So we can assume K(1 + u) = 0 and similarly K(1 + w) = 0.

From this and the orthogonality of u and w, it follows that at least one of u,w,uw

is equal to i, j or k. Suppose first thtat w = i. Then we can calculate

P1(Q+Ru, µ) = Q2P1(1, µ) +R2P1(u, µ)

P1(Sw + Tuw) = S2P1(1, µ) + T 2P1(u, µ)

Since both responses are optimal, we have either QR = ST = 0 or P1(1, µ) = P1(u, µ),

and in the latter case we can reset Q = S = 0. Either way we have proved the claim.

Following an appropriate translation, we can now assume that Player One’s optimal

response set contains either 1 and u or 1 and uw. We assume the former, and indicate

at the end how to modify the proof in case of the latter. Player One’s optimal response

set is generated by 1, u and some v ⊥ u with v2 = −1. Apply (5.4.1) to the case δ = 0,

q = 1, u′ = w and p = 1+Xu+Y v where p is a scalar multiple of some optimal response
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by Player One. Write the resulting polynomial as

σ1K1 + σ2K2 + σ3K3 + σ4K4 (7.8.3)

and note that the assumptions on α, β, γ imply that the σi are all nonzero, as are σ1 + σ2

and σ3 + σ4.

Note that K3 and K4 are both divisible by Y . Thus we can set Y = 0 in (7.8.3) to

get

σ1K(1 +Xu) = σ2(X − u)

The left side is cubic in X and the right side is linear in X; hence both sides are zero.

This shows that u is in the linear span of at most two of i, j, k; without loss of generality

write u = Ai+Bj. Then, because v and w are orthogonal to u, we can write

v = Rku + Ck w = Sku +D

for some real numbers R,C, S,D.

Inserting all this into equation (7.8.3) and examining the coefficients on X3Y and Y

gives

ABDS
[
σ3D(CD +RS)− σ4S(CS −DR)

]
= 0

ABDS
[
σ3S(CD +RS)− σ4D(CS −DR)

]
= 0

Because D2 + S2 = 1, this gives

ABDS(CD +RS) = ABDS(CS −DR) = 0

Now (CD +RS)2 + (CS −DR)2 = 1 so

ABDS = 0
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I claim that AB = 0. If not, then either D = 0 (so S = 1) or S = 0 (so D = 1). If

D = 0 examine the coefficients in (7.8.3) on X2Y and XY to get

(σ1 + σ4)ABC = (σ2 + σ3)ABR = 0

Because C2 + R2 = 1 this gives AB = 0. If S = 0, the same argument works. This

establishes the claim and establishes that u ∈ {i, j}; without loss of generality u = i.

Now examine the coefficient in (7.8.3) on Y 2 to get

(CS −DR)(CD +RS)DS = 0 (7.8.4)

Thus either DS = 0 or (CS − DR)(CD + RS) = 0; either way, the coefficient on X2Y

reveals that CR = 0 so v ∈ {j, k}. Now with CR = 0 the left side of (7.8.4) becomes

±D2S2 so DS = 0 and w ∈ {j, k} also.

We have proven (as always, up to equivalence):

u = i and v,w ∈ {j, k} (7.8.5)

As noted earlier, the proof of (7.8.5) relied on the assumption that u is in Player One’s

optimal response set, whereas it is possible that uw is in Player One’s optimal response

set instead. But in that case, (7.8.5) still holds, by essentially the same proof: First show

that uw = Ai + Bj, then write u = Rkuw + Ck, w = Skuw +Dk. All the remaining

calculations work out exactly the same as above. Thus (7.8.5) is proven.

After an appropriate permutation, (7.8.5) implies a) and b). Condition c) then

follows exactly as in the proof of (7.6).
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Remarks 7.8.6. The results of (7.8.6) assume that α, β, γ all differ from zero, from

1/2 and from each other. The motivated reader will have no difficulty modifying the

results to cover most of the remaining cases. Suppose, for example that α = β. Then we

can conclude that Player One’s response set contains at least one of 1,u,w,uw.

Proof. On dimensional grounds, there are real numbers σ, τ such that σw + τuw is

an optimal response for Player One. In the following calculation, X is the function defined

in (4.6.1):

P1(v, µ) = αP1(v) + αP1(vu) + γP1(vuw)

= αP1(σw + τuw) + αP1(−σuw + τw) + γP1(−σ − τu)

= α
(
σ2P1(w) + τ2P1(uw) + 2στX(w,uw)

)
+ α

(
σ2P1(uw) + τ2P1(w) + 2στX(−uw,w)

)
+ γ
(
σ2P1(1) + τ2P1(u)

)
= αP1(w) + αP1(uw) + γσ2P1(1) + γτ2P1(u) (7.8.6.4)

where we’ve used the facts that X(w,uw) = −X(−w,uw) and X(1,u) = 0 (which follows

from u2 = −1).

It’s clear that (7.8.6.4) is maximized at an extreme value where either σ = 1 (so that

v = w) or τ = 1 (so that v = uw).

Classification 7.9: Equilibria of Type (3,2). Player Two plays
Strategy Probability

1 α
u β
w γ
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and one of the following must hold (for exactly the same reasons as in 7.7):

a) X1 = X2 = X3 = X4

a) X1 = X2 = X3 = X4

b) α = β = 1/2, γ = 0, u = i, X1 +X2 = X3 +X4

c) α = β = 1/2, γ = 0, u ∈< i, j >, X1 = X4, X2 = X3

Classification 7.10: Equilibria of Type (3,3). Player Two plays a mixed

strategy:
Strategy Probability

1 α
u β
w γ
uw δ

where, up to permuting i, j, k and relabeling u,w,uw, one of the following must hold:

a) X1 = X2 = X3 = X4

b) u = i, α = β, γ = δ X1 +X2 = X3 +X4

c) u ∈< i, j >, α = β, γ = δ, X1 = X4, X2 = X3

Player One plays a mixed strategy satisfying the analogous conditions.

The proof is as in 7.7 and 7.9.

8. Minimal Payoffs and Zero-Sum Games.

We close by noting some properties shared by all mixed-strategy Nash equilibria.

Theorem 8.1. Consider the game (2.1). In any mixed strategy quantum equilib-

rium, Player One earns a payoff of at least (X1 +X2 +X3 +X4)/4 and Player Two earns

a payoff of at least (Y1 + Y2 + Y3 + Y4)/4.

Proof. Let µ be Player Two’s strategy. Then Player One maximizes the quadratic

form (5.2.1) over S3. This quadratic form has traceX1+X2+X3+X4 and hence maximum
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eigenvalue at least (X1+X2+X3+X4)/4, so Player One is guaranteed a payoff at least that

large. Similarly, of course, for Player Two.

Corollary 8.2. In any game, there exists a mixed strategy quantum equilibrium

that is Pareto inferior to any other mixed strategy quantum equilibrium.

Proof. The uniform equilibrium always exists.

Corollary 8.3. If the game (2.1) is zero sum, then in any mixed strategy quantum

equilibrium, Player One earns exactly (X1+X2+X3+X4)/4 and Player Two earns exactly

(Y1 + Y2 + Y3 + Y4)/4.
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Appendix A:

A Primer on Quantum Mechanics for Economists

This primer is filled with lies. The first lie is that a complex structure (namely

a penny) can be treated as a simple quantum particle. Another lie is that observable

properties like color take only two values, so that every penny must be either red or green.

And so forth. Some lies are owned up to and corrected shortly after they are told. Every

intentional lie is there only to ease the exposition. If there are any unintentional lies, I

want to know about them.

For the most part, I’ve sought to cover just enough quantum mechanics to motivate

quantum game theory. I’ve included a few brief excursions into topics like the uncertainty

principle and Bell’s theorem which are not strictly necessary for the applications to game

theory but seemed like too much fun to omit.

1. States. A classical penny is in one of two states: heads (which we denote H)

or tails (which we denote T). (We ignore the possibility that a penny might stand on end.)

I’ll use the word orientation to refer to this property. (E.g. “What’s the orientation of

that penny you just flipped?” “Its orientation is heads.”)

A quantum penny can be in any state of the form

αH + βT (1.1)

where α and β are arbitrary complex numbers, not both zero. State (1.1) is called

a superposition of the states H and T; “superposition” means the same thing as “linear

combination”.

State (1.1) is considered indistinguishable from the state

λαH + λβT (1.2)

where λ is an arbitrary nonzero complex number. That is, (1.1) and (1.2) are two

different names for the same state.

(Warning: We will abuse language by using the expression (1.1) to represent both

a vector and the associated state. Note that if λ 6= 1, the vectors (1.1) and (1.2) are

clearly different whereas the states (1.1) and (1.2) are the same.)
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Given a penny in state (1.1), one can perform an observation to determine whether

the penny is heads-up or tails-up. The act of observation knocks the penny into one of

the pure states H or T, with probabilities proportional to |α|2 and |β|2. The observation

yields a result of “heads” or “tails” depending on which of the two states the penny jumps

into.1

1.3. Examples. Consider three pennies in the states

2H + 3T (1.3a)

4H + 6T (1.3b)

2H− 3T (1.3c)

If you observe the orientation of any of these pennies, it will jump to state H (heads) with

probability 4/13 and to state T (tails) with probability 9/13. However, pennies (1.3a)

and (1.3b) are identical (i.e. in the same state) while penny (1.3c) is not. The physical

significance of that difference will emerge in what follows.

2. Additional Properties. There is a one-to-one correspondence between states

and the values of observable physical properties. For example, the state H corresponds

to the value heads of the observable property “orientation”. The state T correspond to

the value tails of the same observable property.

In the same way, the states

R = 2H + T (2.1a)

G = −H + 2T (2.1b)

might correspond to the two values red and green of the observable property “color”.

1 Given a complex number α = a + bi, we define the conjugate α = a − bi. The

modulus |α| is the unique positive real number satisfying

|α|2 = αα = a2 + b2
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(We assume for simplicity that color, like orientation, has only two possible values,

namely red and green.)

2.2. Computing Probabilities. Color works just like orientation: A penny in

the state

αR + βG

if examined for color, will either jump into state R and appear red or jump into state G

and appear green, with probabilities proportional to |α|2 and |β|2.

Remarks 2.3. The correspondence between states and observable values must

satisfy certain properties which are best described in terms of the inner product on a

complex vector space. Given two vectors

s = αH + βT and t = γH + δT

we define the inner product

< s, t >= αγ + βδ

We say that s and t are orthogonal if < s, t >= 0.

Now we have the following requirements:

2.3a. Two states are orthogonal (or, in more precise language, represented by

orthogonal vectors) if and only if they correspond to two opposing values of the same

observable property. Note, for example that H is orthogonal to T (heads and tails are

opposing values of the observable property “orientation”) and that R is orthogonal to G

(red and green are opposing values of the observable property “color”).

2.3b. Suppose A and B are orthogonal vectors associated, say, with the values

“bright” and “dull” of the observable property shininess. A penny in state

s = αA + βB

if examined for shininess will jump into the shiny state A or the dull state B with proba-

bilities proportional to
|α|2

< A,A >
and

|β|2

< B,B >
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In case < A,A >=< B,B > we can ignore the denominators and say that the probabilities

are proportional to

|α|2 and |β|2 (2.3.b1)

which is exactly what we did in (2.2), where < R,R >=< G,G >= 5.

Throughout the sequel, whenever we choose two orthogonal vectors A and B, we will

always choose them so that < A,A >=< B,B > so that we can use (2.3.b1) to compute

probabilities.

2.3c. By (2.3a), “red” and “green” must be represented by orthogonal vectors. But

why the particular orthogonal vectors of (2.1a) and (2.1b)? Physics provides guidelines

for determining exactly which states are associated with exactly which observable proper-

ties. Here we are ignoring that issue completely and simply taking it as given that R and

G, as defined by the equations (2.1a) and (2.1b), represent red and green.

Example 2.4. Suppose you’ve just observed a penny’s orientation and found it to

be heads. Then you know that your observation has knocked the penny into state H.

From (2.1a) and (2.1b) we have

H = 2R−G

(This is because 2R −G = 5H, which represents the same state as H.) Therefore an

observation of color will come out red with probability 4/5 and green with probability

1/5.

Note that it is not possible to observe color and orientation simultaneously. An

observation of color must knock the penny into one of the two states R or G, while

an observation of orientation must knock the penny into one of the two states H or T.

Because a penny can only be in one state at a time, it follows that the two observations

cannot be simultaneous.

2.5. More on States and Observable Properties. In the above and in

everything that follows, we have assumed that all observable properties of interest have

only two values. To study three-valued physical properties, we would introduce a three-

dimensional complex vector space. To study infinite- valued physical properties (like

location or momentum), we would introduce an infinite-dimensional complex vector space.
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2.6. The Uncertainty Principle. To each observable property P (such as

orientation or color), there is a complementary observable property Q defined as follows:

Represent the values of P by orthogonal vectors Aand B with < A,A >=< B,B >.

Then Q is the observable property whose values are represented by the orthogonal vectors

C = A + B and D = A−B.

Suppose we are given a penny in state

s = αA + βB = γC + δD

where γ = α+ β and δ = α− β. If the penny is examined for property P , it will be found

in state A with probability

p =
|α|2

|α|2 + |β|2

We define the uncertainty associated with this observation to be p(1 − p), so that the

uncertainty is zero when p = 0 or 1, and is at a maximum when p = 1/2. (Note that the

uncertainty is a function both of the penny’s state s and of the property P which is to

be observed.)

If the penny is examined for property Q, it will be found in state C with probability

q =
|γ|2

|γ|2 + |δ|2

and the associated uncertainty is q(1 − q). It is an easy exercise in algebra to verify the

uncertainty principle:

p(1− p) + q(1− q) ≥ 1/4

That is, the sum of the uncertainties of complementary properties is bounded below by

1/4.

2.7. Metaphysics. Consider a penny in the state R = 2H+T. If you observe this

penny’s orientation, it has a 4/5 chance of being heads and a 1/5 chance of being tails.

What exactly do these probabilities mean? Do they describe the limits of our

knowledge about the penny or do they describe intrinsic features of the penny itself?

Consider two alternative interpretations:
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1) Every penny at every moment is either heads or tails. Among pennies in state R,

4/5 are heads and 1/5 are tails. The only way to find out the orientation of a particular

penny is to observe that orientation.

2) A penny in state R is neither heads nor tails until its orientation is observed. At

that moment, the orientation becomes heads with probability 4/5 and tails with probability

1/5.

Theories of the form 1) are called hidden variable theories; they suggest that there

is a variable (i.e. orientation) which exists, but whose value is sometimes hidden from

us. We will see in Section (4.4) that no hidden variable theory can be consistent with the

predictions of quantum mechanics; worse yet (worse for the proponents of hidden variable

theories, that is), no hidden variable theory can be consistent with the observed outcomes

of actual experiments.

Thus we are left with interpretation 2). The quantum state is a full description of

the penny. There is no additional, unobservable “truth”. A penny in state R simply

has no orientation. It acquires an orientation (and loses its color) when the orientation

is observed.

Similarly for any observable property including, for example, location. Quantum

pennies have quantum states instead of locations. For a penny in a general quantum

state, it makes exactly as much sense to ask “where is the penny?” as it does to ask “what

is the penny’s favorite movie?”. Location, like cinematic taste, is simply a concept that

does not apply to quantum entities.

3. Physical Operations. Pennies move from one state to another for any of three

reasons. First, as we have seen, an observation can (and usually will) knock a penny into

a new state. Second, states evolve naturally over time subject to constraints imposed by

the Schrodinger equation, which is a second order differential equation that the time-path

of the state must satisfy. Such evolution will play no role in what follows; we assume that

every penny is always on a constant time-path so that its state does not evolve. Third,

the penny might be acted on by a force: Someone might spin it, or heat it up, or dip it

in paint. In quantum mechanics, each of these physical operations is represented by a
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special unitary matrix, that is, a matrix of the form(
A B
−B A

)
(3.1)

where A and B are complex numbers such that

|A|2 + |B|2 = 1

Start with a penny in state αH+βT and perform the physical operation represented by

the special unitary matrix (3.1). To find the the result, perform the matrix multiplication(
A B
−B A

)
·
(
α
β

)
=
(
γ
δ

)
Then the penny is transformed into the state γH + δT.

Examples 3.2. Consider the physical operation “flip the penny over”. Physics

provides guidelines for constructing the corresponding special unitary matrix; here, let’s

just suppose that the matrix is (
0 η
−η 0

)
(3.2.1)

where η = exp(iπ/4). Then we can compute what happens to various pennies when they

are flipped over.

For a penny in state H, we have(
0 η
−η 0

)
·
(

1
0

)
=
(

0
−η

)
(3.2.2)

so a penny in state H is transformed to a penny in state −ηT, which is the same as state

T.

For a penny in state T, we have(
0 η
−η 0

)
·
(

0
1

)
=
(
η
0

)
(3.2.3)

so a penny in state T is transformed into state H. The calculations (3.2.2) and (3.2.3)

justify the decision to associate the matrix (3.2.1) with the “flipping over” operation.

For a penny in state R = 2H + T, we have(
0 η
−η 0

)
·
(

2
1

)
=
(

η
−2η

)
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so that a red penny, when flipped over, is transformed into the state W = ηH−2ηT which

is the same thing (after multiplying by η) as H − 2iT. This state, like any state, must

be associated with some physical property; suppose that property is warm (as opposed

to cold). Then a red penny, when flipped over, becomes a warm penny. If you

measure the temperature of that warm penny, you’ll find that it’s warm. If you measure

its orientation, you’ll find that it’s either heads or tails with probabilities proportional to

1 = |1|2 and 4 = | − 2i|2. If you measure its color, then you can compute probabilities by

first calculating that

W = H− 2iT = (2− 2i)R + (−1− 4i)G

so that the measurement yields either red or green with probabilities proportional to

|2− 2i|2 = 8 and | − 1− 4i|2 = 17.

4. Entanglement. Here comes the cool part.

When two pennies interact with each other, they become permanently entangled,

which means that they no longer have their own individual quantum states. Instead the

pair of pennies has a single quantum state, represented by a non-zero complex vector of

the form

α(H⊗H) + β(H⊗T) + γ(T⊗H) + δ(T⊗T) (4.1)

Upon having their orientation observed, a pair of pennies will fall into one of the four pure

states with probabilities proportional to |α|2, |β|2, |γ|2 and |δ|2.

Example 4.2 (Spooky Action at a Distance). Consider a pair of pennies in the

state

H⊗H + T⊗T (4.2.1)

These pennies have probability 1/2 of being observed (heads,heads), probability 1/2 of

being observed (tails,tails), and probability zero of being observed either (heads,tails) or

(tails,heads). Thus an observation on either penny individually is equally likely to yield

a measurement of heads or tails. But the instant that observation is made, the outcome

of a subsequent observation on the other penny is determined with certainty.

Prior to the first observation, neither penny is either “heads” or “tails”. But an

observation of either penny instantaneously knocks both pennies into either the “heads”
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state or the “tails” state. This effect does not diminish with time or distance; even if the

pennies last interacted a millenium ago and one of the pennies has since been transported

to another solar system, the outcome of the first observation has immediate consequences

for the outcome of the second.

This is the “spooky action at a distance” that so famously distressed Albert Ein-

stein and led Einstein, Podolsky and Rosen [EPR] to argue (fallaciously) that quantum

mechanics must ultimately be supplemented by some version of a hidden variable theory.

According to [EPR], the phenomenon of entanglement can be explained only by assuming

that the pennies acquire identical orientations at the moment of interaction and retain

those orientations until they are observed. That way, there’s no mystery about how the

orientations come to be identical. This is in contrast to the quantum mechanical view that

the orientations do not exist until the pennies are observed. It seemed to Einstein and

his co-authors that the quantum mechanical view renders the effects of entanglement com-

pletely inexplicable. Be that as it may, we shall see in Section (4.4) that no theory of the

type that [EPR] envisioned can be consistent with the predictions of quantum mechanics

(this is Bell’s Theorem). Worse yet for the [EPR] program, the relevant predictions of

quantum mechanics have been verified by experiment. Thus not only are [EPR] type

theories inconsistent with quantum mechanics; they are inconsistent with reality.

4.3. Tensor Products More Generally. If s = αH + βT and t = γH + δT are

states for single pennies, then we define the tensor product state

s⊗ t = αγ(H⊗H) + αδ(H⊗T) + βγ(T⊗H) + βδ(T⊗T)

If two pennies are in a tensor product state then observations of the two pennies are are

statistically independent, so that (for example)

Prob
(
First penny is heads

∣∣∣ Second penny is heads
)

= Prob
(
First penny is heads

)
But most states (e.g. (4.2.1) are not tensor product states. In fact, the state space for a

pair of entangled pennies is three-dimensional (four dimensions for the four basis vectors

minus one for the fact that scalar multiples are considered identical) whereas the tensor

product states form only a two-dimensional subspace.
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Pennies in a tensor product state can be modeled as unentangled. When players

in a game are issued unentangled pennies, a quantum strategy is equivalent to a classical

mixed strategy. Otherwise (in particular when they are in the maximally entangled state

(4.1.2)), a quantum strategy is something far more general, as we shall see.

4.4. Bell’s Theorem. We’ve alluded in (2.7) and (4.2) to the expectation of

Einstein and others that quantum states describe not the full truth about pennies, but

only the full truth about experimenter’s knowledge of the pennies. According to such

hidden variable theories, the pennies themselves have properties that are not fully reflected

in the quantum state.

Bell’s Theorem [B] says that under extremely general and plausible hypotheses, there

can be no hidden variable theory that is consistent with the predictions of quantum me-

chanics. Experiments performed after [B] was written confirm the relevant predictions of

quantum mechanics far beyond any reasonable doubt. Thus under the broad hypotheses

of Bell’s Theorem, no hidden variable theory can be consistent with reality. To illustrate

the theorem, consider a single special case involving the states “red”, “green”, “shiny” and

“dull” represented by the vectors:

R = 2H + T

G = −H + 2T

S = H + 2T

D = 2H−T

Now use the distributive law to verify that

(H⊗H) + (T⊗T) = (H⊗ S) + 2(T⊗ S) + 2(H⊗D)− (T⊗D) (4.5.1)

= 2(R⊗H)− (G⊗H) + (R⊗T) + 2(G⊗T) (4.5.2)

= 4(R⊗ S) + 3(R⊗D) + 3(G⊗ S)− 4(G⊗D) (4.5.3)

Given a pair of pennies in the entangled state (H⊗H)+(T⊗T), we can use equations

(4.5.1)-(4.5.3) to predict the outcomes of the following four experiments:
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Experiment A. Observe the orientations of both pennies. From the left side of

(4.5.1) one sees that the probabilities of the various outcomes are:

(heads,heads) 1/2

(heads,tails) 0

(tails,heads) 0

(tails,tails) 1/2

Experiment B. Observe the orientations of the first penny and the sheen of the

second. From the right side of (4.5.1) one sees that the probabilities of the various

outcomes are:
(heads,shiny) 1/ 10

(heads,dull) 2/5

(tails,shiny) 2/5

(tails,dull) 1/10

Experiment C. Observe the color of the first penny and the orientation of the

second. From (4.5.2) one sees that the probabilities of the various outcomes are:

(red,heads) 2/5

(green,heads) 1/10

(red,tails) 1/10

(green,tails) 2/5

Experiment D. Observe the color of the first penny and the sheen of the second.

From (4.5.3) one sees that the probabilities of the various outcomes are:

(red,shiny) 8/25

(red,dull) 9/50

(green,shiny) 9/50

(green,dull) 8/25

All of these predictions have been confirmed by experiment. Bell’s Theorem says

in essence that the predictions are not consistent with any model where pennies have

properties before those properties are observed.

Here’s the proof. If pennies do have properties such as orientation, color and sheen,

then it makes sense, using the results of Experiments B, C and D, to compute the following
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conditional proabilities:

Prob
(
second penny dull

∣∣∣ first penny heads
)
) = 4/5 (4.5.4)

Prob
(
first penny red

∣∣∣ second penny heads
)

= 4/5 (4.5.5)

Prob
(
second penny dull and first penny red

)
= 9/50 (4.5.6)

Moreover, from Experiment A, we know that “first penny heads” and “second penny

heads” are both equivalent to “both pennies heads”, an event we will denote HH. Thus

we can rewrite the last three equations as

Prob
(
second penny dull

∣∣∣ HH
)
=4/ 5 (4.5.4′)

Prob
(
first penny red | HH

)
= 4/5 (4.5.5′)

Prob
(
second penny dull and first penny red

)
= 9/50 (4.5.6′)

Now from elementary probability theory:

Prob
(
second penny dull and first penny red

∣∣∣ HH
)

≥ Prob
(
second penny dull

∣∣∣ HH
)

+ Prob
(
first penny red

∣∣∣ HH
)
− 1

=
4
5

+
4
5
− 1 =

3
5

and finally

9
50

= Prob
(
second penny dull and first penny red

)
≥ Prob

(
second penny dull and first penny red

∣∣∣ HH
)
· Prob

(
HH

)
≥
(

3
5

)
·
(

1
2

)
=

3
10

which is false.

The contradiction demonstrates that it never made sense to calculate the conditional

probabilities (4.5.4)- (4.5.6) to begin with; that is, it never made sense to talk about the

properties of orientation, color and sheen as if they existed independent of observations.
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5. Physical Operations on Entangled Pennies. Consider a pair of entangled

pennies in the state s ⊗ t. Suppose someone performs a physical operation on the first

penny, where said operation is represented by the special unitary matrix

U =
(

A B
−B A

)
Then the pair of pennies is transformed into the state

(Us)⊗ t

If instead the same operation is performed on the second penny, then the pair is

transformed to the state

s⊗ (Ut)

More generally, if the pennies start in state

k∑
i=1

si ⊗ ti

they are transformed to state
k∑

i=1

(Usi)⊗ ti (5.1a)

or
k∑

i=1

si ⊗ (Uti) (5.1b)

when the physical operation represented by U is performed on the first or second penny.

Example 5.2. Suppose that a pair of pennies starts in the entangled state

H⊗H + T⊗T (5.2.1)

The pennies are handed to two individuals, named Player One and Player Two.

Each Player sends one of two messages, C or D. (In the context of game theory,

C and D are strategies, such as “I cooperate” or “I defect”.) To send the message C,

the player returns the penny untouched; to send the message D he flips the penny over.

These are physical operations and hence represented by special unitary matrices. Leaving
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the penny untouched is represented by the two-by-two identity matrix. Flipping it over

is represented by the matrix (
0 η
−η 0

)
as in (3.2).

Then applying rules (5.1a) and (5.1b), we see that the pennies end up in one of four

states:

CC = H⊗H + T⊗T (5.2.2a)

CD = −ηH⊗T + ηT⊗H (5.2.2b)

DC = ηH⊗T− ηT⊗H (5.2.2c)

DD = iH⊗H− iT⊗T (5.2.2d)

6. Quantum Game Theory. Consider a two-by-two classical game in which each

player must choose between two strategies, C or D. The game is implemented as in

Section (5.2): A referee starts with two pennies in the maximally entangled state (5.2.1)

and hands one to each player. The players return the pennies untouched to indicate a

play of C, or return the pennies flipped over to indicate a play of D. Depending on the

players’ choices, the pennies end up in one of the four states (5.2.2a)-(5.2.2d).

If the referee examines the orientations of the pennies, it is in general impossible to

make appropriate payoffs. For example, if both players choose strategy C, then by

(5.2.2a) the pennies are certain to be found in identical orientations, but equally likely to

be (heads, heads) or (tails, tails). If both players choose strategy D, then by (5.2.2d)

the exact same statement is true. So it would be impossible to assign different payoffs to

the strategy pairs ( C,C) and ( D, D).

Similarly, the plays ( C, D) and ( D, C) both lead to states in which the pennies

must have opposite orientations, with (heads, tails) and (tails, heads) equally likely.

So the referee does not observe orientation. Instead he observes some other physical

property whose four possible values correspond to the states CC, CD, DC, and DD. Such

a property must exist because these four vectors are mutually orthogonal. If the property

is, for example, “taste”, then the referee tastes the pennies and is certain to register one of
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the four values (sweet, sweet), (sweet, salty), (salty, sweet) or (salty, salty) depending on

which of the four states the pennies have ended up in. Now the referee knows the state,

hence knows the player’s strategies, and hence can make appropriate payoffs.

6.1. Quantum Strategies.

The above analysis assumes that players follow the rules and return their pennies

either unchanged or flipped over, as opposed to, say, dipped in paint or coated with salt.

But suppose one or both of the players does something to his penny other than flip it

over. This form of “cheating” is completely undetectable by the referee, whose observation

of taste will knock the pair of pennies into one of the four states (5.2.2a)-(5.2.2d), thereby

destroying all evidence that anybody ever placed them in any other state.

So we must allow the players to perform any physical operations whatsoever, which

means they can apply any special unitary matrices whatsoever. Explicitly, assume the

players perform physical operations represented by the matrices(
A B
−B A

)
and

(
P Q
−Q P

)
(6.2)

where AA+BB = PP +QQ = 1.

The initial state (5.2.1) is then transformed to

(AH−BT)⊗ (PH−QT) + (BH +AT)⊗ (QH + PT)

= S(H⊗H) + T (H⊗T)− T (T⊗H) + S(T⊗T)

= (S + S)CC− (Tη + Tη)CD + i(Tη − Tη)DC + i(S − S)DD (6.3)

where S, T , and α are defined by the equation(
S T
−T S

)
=
(

A B
−B A

)
·
(
P Q
−Q P

)T

(6.4)

The probabilities of outcomes CC, CD, DC and DD are then proportional to the

squared moduli of the coefficients in expression (6.3).

6.5. Quaternions. Player One’s strategy is described by his choice of a pair of

complex numbers (A,B) where AA + BB = 1, or equivalently by the unit quaternion

p = A+Bηj. Likewise, Player Two’s strategy is defined by his choice of a unit quaternion

q = P − ηjQ.

51



From (6.4) we have

S + Tηj = pq

and from (6.3) we see that the final state of the pair of pennies is

π1CC + π2CD + π3DC + π4DD

where the πi are real numbers proportional to the coefficients of

S + Tηj

If we switch the names of i and k, then the associated probability distribution is

Prob(CC) = π1(pq)2 Prob(CD) = π2(pq)2

Prob(DC) = π3(pq)2 Prob(DD) = π4(pq)2

Note that this is exactly the probability distribution given in (2.2) of the main paper,

which in turn motivates Definition (2.3) for the associated quantum game.
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Appendix B: Quaternions

A quaternion is an expression of the form

p1 + p2i+ p3j + p4k

where the pi are real numbers. The real number p1 can be identified with the quaternion

p1 + 0i + 0j + 0k. The complex number p1 + p2i can be identified with the quaternion

p1 + p2i+ 0j + 0k.

Quaternions are added according to the simple rule

(p1+p2i+p3j+p4k)+(q1+q2i+q3j+q4k) = (p1+q1)+(p2+q2)i+(p3+q+3)j+(p4+q4)k

Multiplication is defined by the rules

i2 = j2 = k2 = −1

ij = −ji = k jk = −kj = i ki = −ik = j

together with the distributive property.

For example

(1 + 2i) · (3i+ 4j) = 1 · 3i+ 1 · 4j + 2i · 3i+ 2i · 4j

= 3i+ 4j + 6i2 + 8ij

= 3i+ 4j − 6 + 8k

= −6 + 3i+ 4j + 8k

The quaternion p1 + p2i+ p3j + p4k is a unit quaternion if
∑4

i=1 p
2
i = 1. Thus unit

quaternions can be identified with four-vectors of length 1; that is, the unit quaternions

are the points of the unit (three dimensional) sphere in R4. If p = p1 + p2i+ p3j + p4k is

a quaternion, we write πi(p) = pi, for i = 1, . . . , 4.

I will often have occasions to write expressions of the form πi(p)2. This means

(πi(p))2, not πi(p2). It is not difficult to prove the following facts:

1) The product of two unit quaternions is a unit quaternion.
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2) Multiplication of quaternions is associative, so that if p, q and r are quaternions,

then

(pq)r = p(qr)

3) For every quaternion p 6= 0 there is a quaternion p−1 such that pp−1 = p−1p = 1.

4) If p is a unit quaternion, then so is p−1.

5) A unit quaternion is a square root of −1 if and only if it is a linear combination

of i, j and k.

6) If u and v are square roots of −1, then u is perpendicular to v (as vectors in R4)

if and only if uv + vu = 0.

Finally, we provide the isomorphisms alluded to in (4.12). For {α, β, γ} = {i, j, k} the

map

p 7→ −α+ βpα+ β/2

interchanges α and β while mapping γ to −γ. Composing these maps, we can construct

an isomorphism of the quaternions (and hence of the unit quaternions) that effects any

permutation of i, j, k up to the insertion of appropriate signs.

If G and Gσ are the games described in (4.12) then an isomorphism from G to Gσ

is described (on the level of strategy spaces) as follows: By switching the names of one

or both players’ strategies, we can assume that σ(1) = 1. Then use the isomorphisms of

the preceding paragraph.
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