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The aim of this paper is to bring together the notions of quantum game and game isomorphism.The work is intended as an attempt
to introduce a new criterion for quantum game schemes.The generally accepted requirement forces a quantum scheme to generate
the classical game in a particular case. Now, given a quantum game scheme and two isomorphic classical games, we additionally
require the resulting quantum games to be isomorphic as well. We are concerned with the Eisert-Wilkens-Lewenstein quantum
game scheme and the strong isomorphism between games in strategic form.

1. Introduction

Sixteen years of research on quantum games have given us
many ideas of how quantum games could be described. For
example, we have learned from [1] that players who are
allowed to use some specific unitary operators may gain an
advantage over the players who use only classical strategies.
The schemes introduced in [2, 3] give us two different ways of
describing quantum 2 × 2 games. Paper [4], in turn, provides
us with a quantum scheme for the Cournot duopoly game.
What connects these protocols is the capability to obtain
the classical game. This appears to be a generally accepted
necessary condition imposed on a quantum scheme. One can
also find other and more subjective guidelines for quantum
game schemes. Paper [5] shows how to generalize the scheme
introduced in [3] by assuming that the new model should
output the classical game (up to the order of players’ strate-
gies) if the initial state is one of the computational basis states.
In addition, the work of Bleiler [6] distinguishes between
proper andmore strict complete quantization. Roughly speak-
ing, the first notion concerns quantum schemes where the
counterparts of classical pure strategies can be found in pure
quantum strategies. The second one requires the quantum
strategy set to include the counterparts of the mixed classical
strategies. With these notions the Marinatto-Weber (MW)
[3] scheme turns out to be not even a proper quantization.

The Eisert-Wilkens-Lewenstein (EWL) [2] scheme, in turn,
is a complete quantization, and this is the case as long as
the players’ quantum strategies include the one-parameter
unitary operators 𝑈(𝜃, 0, 0) (see formula (10)). In particular,
we can find a lot of paperswhere the EWL schemewas studied
with the two-parameter unitary strategies [7–10]. However, as
it was noted in [11] the set {𝑈(𝜃, 𝛼, 0)} appears not to reflect
any reasonable physical constraint as this set is not closed
under composition.Moreover, [12] showed that different two-
parameter strategy spaces in the EWL scheme imply different
sets of Nash equilibria. In this paper we explain why the set
of two-parameter unitary operators may not be reasonable
from the game theory viewpoint. Our criterion is formulated
in terms of isomorphic games. If we assume that both classical
games are the samewith respect to game-theoretical tools, we
require the corresponding quantumgames to be equivalent in
the same way. It is worth noting that quantum game schemes
introduced in [2, 3] and the refined MW scheme defined
in [13] preserve the so-called strategic equivalence. We recall
what this means. The following definition can be found in
[14]. See Preliminaries for the definition of strategic form
game (𝑁, (𝑆

𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) and its components.

Definition 1. Two games in strategic form (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

)

and (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (V
𝑖
)
𝑖∈𝑁

) with the same set of players and the
same sets of pure strategies are strategically equivalent if

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2016, Article ID 4180864, 8 pages
http://dx.doi.org/10.1155/2016/4180864



2 Advances in Mathematical Physics

for each player 𝑖 ∈ 𝑁 the function V
𝑖
is a positive affine

transformation of the function 𝑢
𝑖
. In other words, there exist

𝛼
𝑖
> 0 and 𝛽

𝑖
∈ R such that

V
𝑖 (
𝑠) = 𝛼

𝑖
𝑢
𝑖 (
𝑠) + 𝛽

𝑖
, for each 𝑠 ∈ ∏

𝑖∈𝑁

𝑆
𝑖
. (1)

It is clear that, given two strategically equivalent games
Γ and Γ

󸀠, the player 𝑖’s payoff operators 𝑀
𝑖
and 𝑀

󸀠

𝑖
in the

quantum games are connected by equation 𝑀
󸀠

𝑖
= 𝛼
𝑖
𝑀
𝑖
+ 𝛽
𝑖
.

Then, by linearity of trace, the quantum payoff functions
satisfy (1); that is, tr(𝜌fin𝑀

󸀠

𝑖
) = 𝛼

𝑖
tr(𝜌fin𝑀𝑖) + 𝛽

𝑖
. Virtually,

strategically equivalent games Γ and Γ
󸀠 describe the same

game-theoretical problem. In particular, every equilibrium
(pure or mixed) of the game Γ is an equilibrium of the game
Γ
󸀠.
The strategy equivalence can be extended to take into

account different orders of players’ strategies. This type of
equivalence is included in the definition of strong isomor-
phism. Clearly, if, for example, two bimatrix games differ only
in the order of a player’s strategies we still have the games
that describe the same problem from the game-theoretical
viewpoint. Given a quantum scheme, it appears reasonable
to assume that the resulting quantum game will not depend
on the numbering of players’ strategies in the classical game.
As a result, if there is a strong isomorphism between games,
we require that the quantum counterparts of these games are
also isomorphic.

2. Preliminaries

In order to make our paper self-contained we give the impor-
tant preliminaries from game theory and quantum game
theory.

2.1. Strong Isomorphism. First we recall the definition of
strategic form game [14].

Definition 2. A game in strategic form is a triple Γ =

(𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) in which

(i) 𝑁 = {1, 2, . . . , 𝑛} is a finite set of players;
(ii) 𝑆
𝑖
is the set of strategies of player 𝑖, for each player

𝑖 ∈ 𝑁;
(iii) 𝑢

𝑖
: 𝑆
1
×𝑆
2
×⋅ ⋅ ⋅×𝑆

𝑛
→ R is a function associating each

vector of strategies 𝑠 = (𝑠
𝑖
)
𝑖∈𝑁

with the payoff 𝑢
𝑖
(𝑠) to

player 𝑖, for every player 𝑖 ∈ 𝑁.

The notion of strong isomorphism defines classes of
games that are the same up to numbering of the players and
the order of players’ strategies. The following definitions are
taken from [15] (see also [16–18]). The first one defines a
mapping that associates players and their actions in one game
with players and their actions in the other game.

Definition 3. Given Γ = (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) and Γ
󸀠
= (𝑁,

(𝑆
󸀠

𝑖
)
𝑖∈𝑁

, (𝑢
󸀠

𝑖
)
𝑖∈𝑁

), a game mapping 𝑓 from Γ to Γ
󸀠 is a tuple

𝑓 = (𝜂, (𝜑
𝑖
)
𝑖∈𝑁

), where 𝜂 is a bijection from 𝑁 to 𝑁, and for
any 𝑖 ∈ 𝑁, 𝜑

𝑖
is a bijection from 𝑆

𝑖
to 𝑆
𝜂(𝑖)

.

Example 4. Let us consider two bimatrix games:

𝑡

𝑏

𝑙

(

(𝑎
00
, 𝑏
00
)

(𝑎
10
, 𝑏
10
)

𝑟

(𝑎
01
, 𝑏
01
)

(𝑎
11
, 𝑏
11
)

)

,

𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑎
󸀠

00
, 𝑏
󸀠

00
)

(𝑎
󸀠

10
, 𝑏
󸀠

10
)

𝑟
󸀠

(𝑎
󸀠

01
, 𝑏
󸀠

01
)

(𝑎
󸀠

11
, 𝑏
󸀠

11
)

)

.

(2)

Then, 𝑁 = {1, 2} and 𝑆
1

= {𝑡, 𝑏}, 𝑆
2

= {𝑙, 𝑟}, 𝑆󸀠
1

= {𝑡
󸀠
, 𝑏
󸀠
},

and 𝑆
󸀠

2
= {𝑙
󸀠
, 𝑟
󸀠
}. As an example of a game mapping let 𝑓 =

(𝜂, 𝜑
1
, 𝜑
2
),

𝜂 = (1 󳨀→ 2, 2 󳨀→ 1) ,

𝜑
1
= (𝑡 󳨀→ 𝑙

󸀠
, 𝑏 󳨀→ 𝑟

󸀠
) ,

𝜑
2
= (𝑙 󳨀→ 𝑏

󸀠
, 𝑟 󳨀→ 𝑡

󸀠
) .

(3)

Since 𝜑
1
: 𝑆
1
→ 𝑆
󸀠

2
and 𝜑

2
: 𝑆
2
→ 𝑆
󸀠

1
, it follows that 𝑓 maps

(𝑠
1
, 𝑠
2
) ∈ 𝑆
1
×𝑆
2
to (𝜑
2
(𝑠
2
), 𝜑
1
(𝑠
1
)). From (3) we conclude that

𝑓 = ((𝑡, 𝑙) 󳨀→ (𝑏
󸀠
, 𝑙
󸀠
) , (𝑡, 𝑟) 󳨀→ (𝑡

󸀠
, 𝑙
󸀠
) , (𝑏, 𝑙)

󳨀→ (𝑏
󸀠
, 𝑟
󸀠
) , (𝑏, 𝑟) 󳨀→ (𝑡

󸀠
, 𝑟
󸀠
)) .

(4)

In general case, mapping 𝑓 from (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) to
(𝑁, (𝑆

󸀠

𝑖
)
𝑖∈𝑁

, (𝑢
󸀠

𝑖
)
𝑖∈𝑁

) identifies player 𝑖 ∈ 𝑁 with player
𝜂(𝑖) and maps 𝑆

𝑖
to 𝑆
𝜂(𝑖)

. This means that strategy profile
(𝑠
1
, . . . , 𝑠

𝑛
) ∈ 𝑆
1
× ⋅ ⋅ ⋅ × 𝑆

𝑛
is mapped into profile (𝑠

󸀠

1
, . . . , 𝑠

󸀠

𝑛
)

that satisfies equation 𝑠
󸀠

𝜂(𝑖)
= 𝜑
𝑖
(𝑠
𝑖
) for 𝑖 ∈ 𝑁.

The notion of game mapping is a basis for definition of
game isomorphism. Depending on how rich structure of the
game is to be preserved we can distinguish various types
of game isomorphism. One that preserves the players’ pay-
off functions is called the strong isomorphism. The formal
definition is as follows.

Definition 5. Given two strategic games Γ = (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

,

(𝑢
𝑖
)
𝑖∈𝑁

) and Γ
󸀠
= (𝑁, (𝑆

󸀠

𝑖
)
𝑖∈𝑁

, (𝑢
󸀠

𝑖
)
𝑖∈𝑁

), a game mapping 𝑓 =

(𝜂, (𝜑
𝑖
)
𝑖∈𝑁

) is called a strong isomorphism if relation 𝑢
𝑖
(𝑠) =

𝑢
󸀠

𝜂(𝑖)
(𝑓(𝑠)) holds for each 𝑖 ∈ 𝑁 and each strategy profile

𝑠 ∈ 𝑆
1
× ⋅ ⋅ ⋅ × 𝑆

𝑛
.

From the above definition it may be concluded that if
there is a strong isomorphism between games Γ and Γ

󸀠, they
may differ merely by the numbering of players and the order
of their strategies.



Advances in Mathematical Physics 3

Example 6. Let 𝑓 be a game mapping defined in Example 4.
By definition,𝑓becomes the strong isomorphism if condition
𝑢
𝑖
(𝑠) = 𝑢

󸀠

𝜂(𝑖)
(𝑓(𝑠)) is imposed on the payoffs in (2). This gives

𝑎
00

= 𝑏
󸀠

10
,

𝑎
01

= 𝑏
󸀠

00
,

𝑎
10

= 𝑏
󸀠

11
,

𝑎
11

= 𝑏
󸀠

01
,

𝑏
00

= 𝑎
󸀠

10
,

𝑏
01

= 𝑎
󸀠

00
,

𝑏
10

= 𝑎
󸀠

11
,

𝑏
11

= 𝑎
󸀠

01
,

(5)

where, for instance, 𝑎
01

= 𝑏
󸀠

00
follows from equation 𝑢

1
((𝑡,

𝑟)) = 𝑢
󸀠

2
((𝑡
󸀠
, 𝑙
󸀠
)). Substituting (5) into (2) we conclude that

games

𝑡

𝑏

𝑙

(

(𝑎
00
, 𝑏
00
)

(𝑎
10
, 𝑏
10
)

𝑟

(𝑎
01
, 𝑏
01
)

(𝑎
11
, 𝑏
11
)

)

,

𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑏
01
, 𝑎
01
)

(𝑏
00
, 𝑎
00
)

𝑟
󸀠

(𝑏
11
, 𝑎
11
)

(𝑏
10
, 𝑎
10
)

)

(6)

are isomorphic. In this case, the games differ by the num-
bering of players and the order of strategies of player 2.
Indeed, in the second game of (6) players 1 and 2 choose now
between columns and rows, respectively. Moreover, player 1’s
first (second) strategy still guarantees the payoff 𝑎

00
or 𝑎
01
(𝑎
10

or 𝑎
11
) whereas player 2’s strategies are interchanged: the first

one implies now the payoff 𝑏
01
or 𝑏
11
.

Relabeling players or their strategies does not affect a
game with regard to Nash equilibria. If 𝑓 is a strong isomor-
phism between games Γ and Γ

󸀠, onemay expect that the Nash
equilibria in Γ map to ones in Γ

󸀠 under 𝑓. We will prove the
following lemma as it is needed throughout the paper.

Lemma 7. Let 𝑓 be a strong isomorphism between games Γ
and Γ

󸀠. Strategy profile 𝑠
∗

= (𝑠
∗

1
, . . . , 𝑠

∗

𝑛
) ∈ 𝑆
1
× ⋅ ⋅ ⋅ × 𝑆

𝑛
is a

Nash equilibrium in game Γ if and only if 𝑓(𝑠∗) ∈ 𝑆
󸀠

1
× ⋅ ⋅ ⋅ × 𝑆

󸀠

𝑛

is a Nash equilibrium in Γ
󸀠.

Proof. The proof is based on the following observation. Since
𝑓((𝑠
1
, . . . , 𝑠

𝑛
)) = (𝑠

󸀠

1
, . . . , 𝑠

󸀠

𝑛
), where 𝑠

󸀠

𝜂(𝑖)
= 𝜑
𝑖
(𝑠
𝑖
), it follows

that 𝑓((𝑠
𝑖
, 𝑠
−𝑖
)) may be written as (𝑠

󸀠

𝜂(𝑖)
, 𝑠
󸀠

−𝜂(𝑖)
). As 𝑓 is an

isomorphism, we have 𝑢
𝑖
(𝑠) = 𝑢

󸀠

𝜂(𝑖)
(𝑓(𝑠)) for each strategy

profile 𝑠. Thus

𝑢
𝑖
(𝑠
∗
) = 𝑢
󸀠

𝜂(𝑖)
(𝑠
∗
󸀠

1
, . . . , 𝑠

∗
󸀠

𝑛
) ,

𝑢
𝑖
(𝑠
𝑖
, 𝑠
∗

−𝑖
) = 𝑢
󸀠

𝜂(𝑖)
(𝑓 (𝑠
𝑖
, 𝑠
∗

−𝑖
)) = 𝑢

󸀠

𝜂(𝑖)
(𝑠
󸀠

𝜂(𝑖)
, 𝑠
∗
󸀠

−𝜂(𝑖)
) .

(7)

This allows us to conclude that the inequality

𝑢
𝑖
(𝑠
∗
) ≥ 𝑢
𝑖
(𝑠
𝑖
, 𝑠
∗

−𝑖
) (8)

holds for each 𝑖 ∈ 𝑁 and each strategy 𝑠
𝑖
∈ 𝑆
𝑖
if and only if

𝑢
󸀠

𝜂(𝑖)
(𝑠
∗
󸀠

1
, . . . , 𝑠

∗
󸀠

𝑛
) ≥ 𝑢
󸀠

𝜂(𝑖)
(𝑠
󸀠

𝜋(𝑖)
, 𝑠
∗
󸀠

−𝜂(𝑖)
) (9)

for each 𝜂(𝑖) ∈ 𝑁 and each strategy 𝑠
󸀠

𝑖
∈ 𝑆
󸀠

𝑖
. This finishes the

proof.

2.2. Eisert-Wilkens-Lewenstein Scheme. Let us consider a
strategic game Γ = (𝑁, (𝑆

𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) with 𝑆
𝑖

= {𝑠
𝑖

0
, 𝑠
𝑖

1
}

for each 𝑖 ∈ 𝑁. The generalized Eisert-Wilkens-Lewenstein
approach to game Γ is defined by triple ΓEWL = (𝑁, (𝐷

𝑖
)
𝑖∈𝑁

,

(𝑀
𝑖
)
𝑖∈𝑁

), where one has the following:

(i) 𝐷
𝑖
is a set of unitary operators from SU(2). The com-

monly used parametrization for 𝑈 ∈ SU(2) is given
by

𝑈(𝜃, 𝛼, 𝛽) = (

𝑒
𝑖𝛼 cos 𝜃

2

𝑖𝑒
𝑖𝛽 sin 𝜃

2

𝑖𝑒
−𝑖𝛽 sin 𝜃

2

𝑒
−𝑖𝛼 cos 𝜃

2

) ,

𝜃 ∈ [0, 𝜋] , 𝛼, 𝛽 ∈ [0, 2𝜋) .

(10)

Then 𝐷
𝑖
is assumed to include set {𝑈(𝜃, 0, 0) :

𝜃 ∈ [0, 𝜋]}. Elements 𝑈
𝑖

∈ 𝐷
𝑖
play the role of

player 𝑖’s strategies. The players, by choosing 𝑈
𝑖

∈

𝐷
𝑖
, determine the final state |Ψ⟩ according to the

following formula:

|Ψ⟩ = 𝐽
†
(

𝑛

⨂

𝑖=1

𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
)) 𝐽 |0⟩

⊗𝑛
,

where 𝐽 =

1

√2

(1
⊗𝑛

+ 𝑖𝜎
⊗𝑛

𝑥
)

(11)

(1 is the identity matrix of size 2 and 𝜎
𝑥
is the Pauli

matrix𝑋).

(ii) 𝑀
𝑖
is an observable defined by the formula

𝑀
𝑖
= ∑

𝑗
1
,...,𝑗
𝑛
∈{0,1}

𝑎
𝑖

𝑗
1
,...,𝑗
𝑛

󵄨
󵄨
󵄨
󵄨
𝑗
1
, . . . , 𝑗

𝑛
⟩ ⟨𝑗
1
, . . . , 𝑗

𝑛

󵄨
󵄨
󵄨
󵄨
. (12)

Thenumbers 𝑎𝑖
𝑗
1
,...,𝑗
𝑛

are player 𝑖’s payoffs in Γ such that
𝑎
𝑖

𝑗
1
,...,𝑗
𝑛

= 𝑢
𝑖
(𝑠
𝑖

𝑗
1

, . . . , 𝑠
𝑖

𝑗
𝑛

). Player 𝑖’s payoff 𝑢
𝑖
in ΓEWL is

defined as the average value of measurement𝑀
𝑖
; that

is,

𝑢
𝑖
(

𝑛

⨂

𝑖=1

𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
)) fl ⟨Ψ|𝑀𝑖 |

Ψ⟩ . (13)
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3. Strong Isomorphism in
Eisert-Wilkens-Lewenstein
Quantum Games

Having specified the notion of strong isomorphism and the
generalized Eisert-Wilkens-Lewenstein scheme we will now
check if the isomorphism between the classically played
gamesmakes the corresponding quantum games isomorphic.
We first examine the case when the players’ unitary strategies
depend on two parameters. The quantum game ΓEWL with

𝐷
𝑖
= {𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 0) : 𝜃

𝑖
∈ [0, 𝜋] , 𝛼

𝑖
∈ [0, 2𝜋)} (14)

is particularly interested. That setting was used to introduce
the EWL scheme [2] and has been widely studied in recent
years (see, e.g., [7–10]). We begin with an example of
isomorphic games that describe the Prisoner’s Dilemma.

Example 8. The generalized Prisoner’s Dilemma game and
one of its isomorphic counterparts may be given by the fol-
lowing bimatrices:

Γ:
𝑡

𝑏

𝑙

(

(𝑅, 𝑅)

(𝑇, 𝑆)

𝑟

(𝑆, 𝑇)

(𝑃, 𝑃)

)

,

Γ
󸀠:

𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑆, 𝑇)

(𝑃, 𝑃)

𝑟
󸀠

(𝑅, 𝑅)

(𝑇, 𝑆)

)

,

(15)

where 𝑇 > 𝑅 > 𝑃 > 𝑆. Note that the games are the same up
to the order of player 2’s strategies. Let us now examine the
EWL approach to Γ and Γ

󸀠 defined by triples

ΓEWL = ({1, 2} , ({𝑈𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 0)})
𝑖∈{1,2}

, (𝑀
𝑖
)
𝑖∈{1,2}

) ,

Γ
󸀠

EWL = ({1, 2} , ({𝑈
󸀠

𝑖
(𝜃
󸀠

𝑖
, 𝛼
󸀠

𝑖
, 0)})
𝑖∈{1,2}

, (𝑀
󸀠

𝑖
)
𝑖∈{1,2}

) ,

(16)

where

(𝑀
1
,𝑀
2
) = (𝑅, 𝑅) |00⟩ ⟨00| + (𝑆, 𝑇) |01⟩ ⟨01|

+ (𝑇, 𝑆) |10⟩ ⟨10| + (𝑃, 𝑃) |11⟩ ⟨11| ,

(𝑀
󸀠

1
,𝑀
󸀠

2
) = (𝑆, 𝑇) |00⟩ ⟨00| + (𝑅, 𝑅) |01⟩ ⟨01|

+ (𝑃, 𝑃) |10⟩ ⟨10| + (𝑇, 𝑆) |11⟩ ⟨11| .

(17)

We first compare the sets of Nash equilibria in ΓEWL and Γ
󸀠

EWL
to check if the games may be isomorphic. We recall from
[2] that there is the unique Nash equilibrium 𝑈

1
(0, 𝜋/2, 0) ⊗

𝑈
2
(0, 𝜋/2, 0) in ΓEWL that determines the payoff profile (𝑅, 𝑅).

When it comes to Γ
󸀠

EWL, we set 𝑛 = 2 in (11) and replace (12)
by𝑀
󸀠

1
and𝑀

󸀠

2
from (17). Then we can rewrite (13) as

(𝑢
󸀠

1
, 𝑢
󸀠

2
) (𝑈
1
(𝜃
󸀠

1
, 𝛼
󸀠

1
, 0) ⊗ 𝑈

2
(𝜃
󸀠

2
, 𝛼
󸀠

2
, 0)) = (𝑆, 𝑇)

⋅ (cos (𝛼󸀠
1
+ 𝛼
󸀠

2
) cos

𝜃
󸀠

1

2

cos
𝜃
󸀠

2

2

)

2

+ (𝑅, 𝑅)

⋅ (cos𝛼󸀠
1
cos

𝜃
󸀠

1

2

sin
𝜃
󸀠

2

2

+ sin𝛼
󸀠

2
sin

𝜃
󸀠

1

2

cos
𝜃
󸀠

2

2

)

2

+ (𝑃, 𝑃)

⋅ (sin𝛼
󸀠

1
cos

𝜃
󸀠

1

2

sin
𝜃
󸀠

2

2

+ cos𝛼󸀠
2
sin

𝜃
󸀠

1

2

cos
𝜃
󸀠

2

2

)

2

+ (𝑇, 𝑆)

⋅ (sin (𝛼
󸀠

1
+ 𝛼
󸀠

2
) cos

𝜃
󸀠

1

2

cos
𝜃
󸀠

2

2

− sin
𝜃
󸀠

1

2

sin
𝜃
󸀠

2

2

)

2

.

(18)

Let 𝑈󸀠
2
(𝜃
󸀠

2
, 𝛼
󸀠

2
, 0) be an arbitrary but fixed strategy of player 2.

Then it follows from (18) that strategy 𝑈
󸀠

1
(𝜃
󸀠

1
, 𝛼
󸀠

1
, 0) specified

by equation

𝑈
󸀠

1
(𝜃
󸀠

1
, 𝛼
󸀠

1
, 0)

=

{
{
{

{
{
{

{

𝑈
󸀠

1
(𝜃
󸀠

2
,

3𝜋

2

− 𝛼
󸀠

2
, 0) if 𝛼󸀠

2
∈ [0,

3𝜋

2

] ,

𝑈
󸀠

1
(𝜃
󸀠

2
,

7𝜋

2

− 𝛼
󸀠

2
, 0) if 𝛼󸀠

2
∈ (

3𝜋

2

, 2𝜋)

(19)

is player 1’s best reply to 𝑈
󸀠

2
(𝜃
󸀠

2
, 𝛼
󸀠

2
, 0) as it yields player 1’s

payoff 𝑇. Hence, a possible Nash equilibrium would generate
the maximal payoff for player 1. On the other hand, given
a fixed player 1’s strategy 𝑈

󸀠

1
(𝜃
󸀠

1
, 𝛼
󸀠

1
, 0), player 2 can obtain a

payoff that is strictly higher than 𝑆 by choosing, for example,
𝑈
2
(𝜃
󸀠

2
, 𝛼
󸀠

2
, 0)with 𝜃

󸀠

2
= 0,𝛼󸀠

2
= 2𝜋−𝛼

󸀠

1
.Thismeans that player 1

would obtain strictly less than𝑇. Hence, there is no pureNash
equilibrium in the game determined by Γ

󸀠

EWL. As a result, we
can conclude by Lemma 7 that games (16) are not strongly
isomorphic.

The example given above shows that the EWL approach
with the two-parameter unitary strategies may output dif-
ferent Nash equilibria depending on the order of players’
strategies in the classical game. This appears to be a strange
feature since games (15) represent the same decision problem
from a game-theoretical point of view.

One way to make games (16) isomorphic is to replace
player 𝑖’s strategy set (14) with the alternative two-parameter
strategy space

𝐹
𝑖
= {𝑈
𝑖
(𝜃
𝑖
, 0, 𝛽
𝑖
) : 𝜃
𝑖
∈ [0, 𝜋] , 𝛽

𝑖
∈ [0, 2𝜋)} (20)
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every time player 𝑖’s strategies are switched in the classical
game. In the case of games (16) this means that quantum
games

ΓEWL = ({1, 2} , (𝐷1
, 𝐷
2
) , (𝑀

𝑖
)
𝑖∈{1,2}

) ,

Γ
󸀠

EWL = ({1, 2} , (𝐷
󸀠

1
, 𝐹
󸀠

2
) , (𝑀

󸀠

𝑖
)
𝑖∈{1,2}

)

(21)

are isomorphic. Indeed, define a game map ̃
𝑓 = (𝜂, 𝜑̃

1
, 𝜑̃
2
)

with 𝜂(𝑖) = 𝑖 for 𝑖 = 1, 2 and bijections 𝜑̃
1
: 𝐷
1
→ 𝐷
󸀠

1
and

𝜑̃
2
: 𝐷
2
→ 𝐹
󸀠

2
satisfying

𝜑̃
1
(𝑈
1
(𝜃
1
, 𝛼
1
, 0)) = 𝑈

󸀠

1
(𝜃
1
, 𝛼
1
, 0) ,

𝜑̃
2
(𝑈
2
(𝜃
1
, 𝛼
1
, 0)) = 𝑈

󸀠

2
(𝜋 − 𝜃

2
, 0, 𝜋 − 𝛼

2
) .

(22)

The map 𝜑̃
2
should actually distinguish cases 𝛼

2
∈ [0, 𝜋) and

𝛼
2

∈ [𝜋, 2𝜋) to be a well-defined bijection as it was done
in (19). To simplify the proof we stick to the form (22)
throughout the paper bearing inmind that for𝜋−𝛼

2
∉ [0, 2𝜋)

we can always find the equivalent angle 3𝜋−𝛼
2
∈ [0, 2𝜋). We

have to show for games (21) that

𝑢
𝑖
(𝑈
1
⊗ 𝑈
2
) = ⟨Ψ|𝑀𝑖 |

Ψ⟩ = ⟨Ψ
󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑀
󸀠

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩

= 𝑢
󸀠

𝑖
(
̃
𝑓 (𝑈
1
⊗ 𝑈
2
))

(23)

for 𝑖 = 1, 2, where |Ψ⟩ = 𝐽
†
(𝑈
1
⊗ 𝑈
2
)𝐽|00⟩ and |Ψ

󸀠
⟩ =

𝐽
†
(
̃
𝑓(𝑈
1
⊗ 𝑈
2
))𝐽|00⟩. First, note that 𝑈󸀠

2
(𝜋 − 𝜃

2
, 0, 𝜋 − 𝛼

2
) =

𝑖𝜎
𝑥
𝑈
󸀠

2
(𝜃
2
, 𝛼
2
, 0). Hence, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = 𝐽
†̃
𝑓 (𝑈
1
(𝜃
1
, 𝛼
1
, 0) ⊗ 𝑈

2
(𝜃
2
, 𝛼
2
, 0)) 𝐽 |00⟩

= 𝐽
†
(𝑈
󸀠

1
(𝜃
1
, 𝛼
1
, 0) ⊗ 𝑈

2
(𝜋 − 𝜃

2
, 0, 𝜋 − 𝛼

2
)) 𝐽 |00⟩

= (1 ⊗ (−𝑖𝜎
𝑥
)) 𝐽
†
(𝑈
󸀠

1
(𝜃
1
, 𝛼
1
, 0) ⊗ 𝑈

󸀠

2
(𝜃
2
, 𝛼
2
, 0))

⋅ 𝐽 |00⟩ = (1 ⊗ (−𝑖𝜎
𝑥
)) |Ψ⟩ .

(24)

Application of (24) finally yields

⟨Ψ
󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑀
󸀠

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = ⟨Ψ| (1 ⊗ 𝑖𝜎

𝑥
)𝑀
󸀠

𝑖
(1 ⊗ (−𝑖𝜎

𝑥
)) |Ψ⟩

= ⟨Ψ|𝑀1 |
Ψ⟩ .

(25)

In similar way we can prove amore general fact. Namely, if 𝐹
2

is player 2’s strategy set in one of games (16) and 𝐷
2
is in the

the other one then games (16) become strongly isomorphic.
This observation suggests that the EWL scheme is robust
with respect to changing the order of players’ strategies in the
classical game if the players can use strategies from 𝐷

𝑖
∪ 𝐹
𝑖

or equivalently from the set SU(2). Before stating the general
result we study a specific example.

Example 9. Let us consider the following three-person
games:

V
𝑡

𝑏

𝑙

(

(𝑎
000

, 𝑏
000

, 𝑐
000

)

(𝑎
100

, 𝑏
100

, 𝑐
100

)

𝑟

(𝑎
010

, 𝑏
010

, 𝑐
010

)

(𝑎
110

, 𝑏
110

, 𝑐
110

)

)

,

𝑤

𝑡

𝑏

𝑙

(

(𝑎
001

, 𝑏
001

, 𝑐
001

)

(𝑎
101

, 𝑏
101

, 𝑐
101

)

𝑟

(𝑎
011

, 𝑏
011

, 𝑐
011

)

(𝑎
111

, 𝑏
111

, 𝑐
111

)

)

,

V󸀠
𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑐
011

, 𝑎
011

, 𝑏
011

)

(𝑐
010

, 𝑎
010

, 𝑏
010

)

𝑟
󸀠

(𝑐
111

, 𝑎
111

, 𝑏
111

)

(𝑐
110

, 𝑎
110

, 𝑏
110

)

)

,

𝑤
󸀠

𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑐
001

, 𝑎
001

, 𝑏
001

)

(𝑐
000

, 𝑎
000

, 𝑏
000

)

𝑟
󸀠

(𝑐
101

, 𝑎
101

, 𝑏
101

)

(𝑐
100

, 𝑎
100

, 𝑏
100

)

)

.

(26)

The games are (strongly) isomorphic via game mapping 𝑓 =

(𝜂, 𝜑
1
, 𝜑
2
, 𝜑
3
) such that

𝜂 = (1 󳨀→ 2, 2 󳨀→ 3, 3 󳨀→ 1) ,

𝜑
1
= (𝑡 󳨀→ 𝑙

󸀠
, 𝑏 󳨀→ 𝑟

󸀠
) ,

𝜑
2
= (𝑙 󳨀→ 𝑤

󸀠
, 𝑟 󳨀→ V󸀠) ,

𝜑
3
= (V 󳨀→ 𝑏

󸀠
, 𝑤 󳨀→ 𝑡

󸀠
) .

(27)

We see from (27) that the isomorphismmaps strategy profiles
as follows:

𝑓 (𝑡, 𝑙, V) = (𝑏
󸀠
, 𝑙
󸀠
, 𝑤
󸀠
) ,

𝑓 (𝑡, 𝑟, V) = (𝑏
󸀠
, 𝑙
󸀠
, V󸀠) ,

𝑓 (𝑏, 𝑙, V) = (𝑏
󸀠
, 𝑟
󸀠
, 𝑤
󸀠
) ,

𝑓 (𝑏, 𝑟, V) = (𝑏
󸀠
, 𝑟
󸀠
, V󸀠) ,

𝑓 (𝑡, 𝑙, 𝑤) = (𝑡
󸀠
, 𝑙
󸀠
, 𝑤
󸀠
) ,

𝑓 (𝑡, 𝑟, 𝑤) = (𝑡
󸀠
, 𝑙
󸀠
, V󸀠) ,

𝑓 (𝑏, 𝑙, 𝑤) = (𝑡
󸀠
, 𝑟
󸀠
, 𝑤
󸀠
) ,

𝑓 (𝑏, 𝑟, 𝑤) = (𝑡
󸀠
, 𝑟
󸀠
, V󸀠) .

(28)

Let us now define the EWL quantum extensions ΓEWL and
Γ
󸀠

EWL for the three-player game where we identify the players’
first and second strategies with values 0 and 1, respectively.
That is,

ΓEWL = (𝑁, (𝐷
𝑖
)
𝑖∈𝑁

, (𝑀
𝑖
)
𝑖∈𝑁

) ,

Γ
󸀠

EWL = (𝑁, (𝐷
󸀠

𝑖
)
𝑖∈𝑁

, (𝑀
󸀠

𝑖
)
𝑖∈𝑁

) ,

(29)
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where𝑁 = {1, 2, 3},𝐷
𝑖
= 𝐷
󸀠

𝑖
= SU(2) for each 𝑖 ∈ 𝑁,

(𝑀
1
,𝑀
2
,𝑀
3
)

= ∑

𝑗
1
,𝑗
2
,𝑗
3
=0,1

(𝑎
𝑗
1
𝑗
2
𝑗
3

, 𝑏
𝑗
1
𝑗
2
𝑗
3

, 𝑐
𝑗
1
𝑗
2
𝑗
3

) 𝑃
𝑗
1
𝑗
2
𝑗
3

,

(𝑀
󸀠

1
,𝑀
󸀠

2
,𝑀
󸀠

3
)

= ∑

𝑗
1
,𝑗
2
,𝑗
3
=0,1

(𝑐
𝑗
1
𝑗
2
𝑗
3

, 𝑎
𝑗
1
𝑗
2
𝑗
3

, 𝑏
𝑗
1
𝑗
2
𝑗
3

) 𝑃
𝑓(𝑗
1
𝑗
2
𝑗
3
)
,

(30)

where 𝑃
𝑗
1
𝑗
2
𝑗
3

= |𝑗
1
𝑗
2
𝑗
3
⟩⟨𝑗
1
𝑗
2
𝑗
3
|. Given 𝑓 = (𝜂, (𝜑

𝑖
)
𝑖∈𝑁

) let us
define a mapping ̃

𝑓 = (𝜂, (𝜑̃
𝑖
)
𝑖∈𝑁

) such that 𝜑̃
𝑖
: 𝐷
𝑖
→ 𝐷
󸀠

𝜂(𝑖)

for 𝑖 ∈ 𝑁 and

𝜑̃
1
(𝑈
1
(𝜃
1
, 𝛼
1
, 𝛽
1
)) = 𝑈

󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ,

𝜑̃
2
(𝑈
2
(𝜃
2
, 𝛼
2
, 𝛽
2
)) = 𝑈

󸀠

3
(𝜋 − 𝜃

2
, 2𝜋 − 𝛽

2
, 𝜋 − 𝛼

2
) ,

𝜑̃
3
(𝑈
3
(𝜃
3
, 𝛼
3
, 𝛽
3
)) = 𝑈

󸀠

1
(𝜋 − 𝜃

3
, 2𝜋 − 𝛽

3
, 𝜋 − 𝛼

3
) .

(31)

Then, ̃𝑓 induces a bijection from𝐷
1
⊗𝐷
2
⊗𝐷
3
to𝐷
󸀠

1
⊗𝐷
󸀠

2
⊗𝐷
󸀠

3

such that

̃
𝑓 (𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
)

= (𝜑̃
3
(𝑈
3
(𝜃
3
, 𝛼
3
, 𝛽
3
)) , 𝜑̃
1
(𝑈
1
(𝜃
1
, 𝛼
1
, 𝛽
1
))

⊗ 𝜑̃
2
(𝑈
2
(𝜃
2
, 𝛼
2
, 𝛽
2
))) = 𝑈

󸀠

1
(𝜋 − 𝜃

3
, 2𝜋 − 𝛽

3
, 𝜋

− 𝛼
3
) ⊗ 𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
󸀠

3
(𝜋 − 𝜃

2
, 2𝜋 − 𝛽

2
, 𝜋

− 𝛼
2
) .

(32)

According to the EWL scheme, the payoff functions for ΓEWL
and Γ
󸀠

EWL are as follows:

𝑢
𝑖
(𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
) = ⟨Ψ|𝑀𝑖 |

Ψ⟩ ,

where |Ψ⟩ = 𝐽
†
(𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
) 𝐽 |000⟩ ,

𝑢
󸀠

𝑖
(𝑈
󸀠

1
⊗ 𝑈
󸀠

2
⊗ 𝑈
󸀠

3
) = ⟨Ψ

󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑀
󸀠

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ ,

where 󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = 𝐽
†
(𝑈
󸀠

1
⊗ 𝑈
󸀠

2
⊗ 𝑈
󸀠

3
) 𝐽 |000⟩

(33)

for 𝑖 ∈ 𝑁. In order to prove that ΓEWL and Γ
󸀠

EWL are isomorphic
we have to check if

𝑢
𝑖
(𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
) = 𝑢
󸀠

𝜂(𝑖)
(
̃
𝑓 (𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
))

for 𝑖 ∈ 𝑁.

(34)

Without loss of generality we can assume that 𝑖 = 1. Let us
first evaluate state |Ψ󸀠⟩,

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = 𝐽
†
(𝑈
󸀠

1
(𝜋 − 𝜃

3
, 2𝜋 − 𝛽

3
, 𝜋 − 𝛼

3
)

⊗ 𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
󸀠

3
(𝜋 − 𝜃

2
, 2𝜋 − 𝛽

2
, 𝜋 − 𝛼

2
))

⋅ 𝐽 |000⟩ .

(35)

Note that

𝑈
󸀠

1
(𝜋 − 𝜃

3
, 2𝜋 − 𝛽

3
, 𝜋 − 𝛼

3
) ⊗ 𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
󸀠

3
(𝜋

− 𝜃
2
, 2𝜋 − 𝛽

2
, 𝜋 − 𝛼

2
) = (−𝜎

𝑥
⊗ 1 ⊗ 𝜎

𝑥
)

⋅ (𝑈
󸀠

1
(𝜃
3
, 𝛼
3
, 𝛽
3
) ⊗ 𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
)

⊗ 𝑈
󸀠

3
(𝜃
2
, 𝛽
2
, 𝛼
2
)) ,

𝑈
󸀠

1
(𝜃
3
, 𝛼
3
, 𝛽
3
) ⊗ 𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
󸀠

3
(𝜃
2
, 𝛼
2
, 𝛽
2
)

= 𝑆
𝜂
(𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
󸀠

3
(𝜃
2
, 𝛼
2
, 𝛽
2
)

⊗ 𝑈
󸀠

1
(𝜃
3
, 𝛼
3
, 𝛽
3
)) 𝑆
†

𝜂
,

(36)

where 𝑆
𝜂
is a permutation matrix that changes the order of

qubits according to 𝜂,

𝑆
𝜂
= |000⟩ ⟨000| + |001⟩ ⟨010| + |010⟩ ⟨100|

+ |011⟩ ⟨110| + |100⟩ ⟨001| + |101⟩ ⟨011|

+ |110⟩ ⟨101| + |111⟩ ⟨111| .

(37)

Using (36), the fact that

[𝐽
†
, −𝜎
𝑥
⊗ 1 ⊗ 𝜎

𝑥
] = [𝐽

†
, 𝑆
𝜂
] = [𝐽, 𝑆

𝜂
] = 0 (38)

and 𝑆
†

𝜂
|000⟩ = |000⟩ we may write |Ψ󸀠⟩ as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = − (𝜎

𝑥
⊗ 1 ⊗ 𝜎

𝑥
) 𝑆
𝜂
𝐽
†
(𝑈
󸀠

2
(𝜃
1
, 𝛼
1
, 𝛽
1
)

⊗ 𝑈
󸀠

3
(𝜃
2
, 𝛼
2
, 𝛽
2
) ⊗ 𝑈
󸀠

1
(𝜃
3
, 𝛼
3
, 𝛽
3
)) 𝐽 |000⟩ = − (𝜎

𝑥

⊗ 1 ⊗ 𝜎
𝑥
) 𝑆
𝜂 |
Ψ⟩ .

(39)

Note that ⟨𝑗
1
𝑗
2
𝑗
3
|𝑆
𝜂

= (𝑆
†

𝜂
|𝑗
1
𝑗
2
𝑗
3
⟩)
†. This means that 𝑆

𝜂

is the inverse operation when acting on dual vectors. This
observation together with the fact that𝑓 changes the strategy
order for players 1 and 3 leads us to conclusion that operator
±(𝜎
𝑥
⊗ 1 ⊗ 𝜎

𝑥
)𝑆
𝜂
can be viewed as 𝑓

−1 in the sense of the
following equality:

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑗
1
𝑗
2
𝑗
3

󵄨
󵄨
󵄨
󵄨
(−𝜎
𝑥
⊗ 1 ⊗ 𝜎

𝑥
) 𝑆
𝜂

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑓
−1

(𝑗
1
𝑗
2
𝑗
3
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
. (40)

Let us now consider term ⟨Ψ
󸀠
|𝑃
𝑓(𝑗
1
𝑗
2
𝑗
3
)
|Ψ
󸀠
⟩ for |Ψ󸀠⟩ given by

(35). From (39) and (40) it follows that

⟨Ψ
󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑃
𝑓(𝑗
1
𝑗
2
𝑗
3
)

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ =

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑓 (𝑗
1
𝑗
2
𝑗
3
)

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑓 (𝑗
1
𝑗
2
𝑗
3
)
󵄨
󵄨
󵄨
󵄨
(𝜎
𝑥
⊗ 1 ⊗ 𝜎

𝑥
) 𝑆
𝜂 |
Ψ⟩

󵄨
󵄨
󵄨
󵄨
󵄨

2

=
󵄨
󵄨
󵄨
󵄨
⟨𝑗
1
𝑗
2
𝑗
3 |
Ψ⟩

󵄨
󵄨
󵄨
󵄨

2
= ⟨Ψ| 𝑃𝑗

1
𝑗
2
𝑗
3

|Ψ⟩ .

(41)

Hence,

𝑢
𝜂(1)

(
̃
𝑓 (𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
)) = ⟨Ψ

󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑀
󸀠

𝜂(1)

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩

= ⟨Ψ|𝑀1 |
Ψ⟩ = 𝑢

1
(𝑈
1
⊗ 𝑈
2
⊗ 𝑈
3
) .

(42)

Similar reasoning applies to the case 𝑖 = 2, 3. We have thus
proved that games given by (29) are isomorphic.
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The same conclusion can be drawn for games with arbi-
trary but finite number𝑁 of players.

Proposition 10. Let Γ = (𝑁, (𝑆
𝑖
)
𝑖∈𝑁

, (𝑢
𝑖
)
𝑖∈𝑁

) and Γ
󸀠
= (𝑁,

(𝑆
󸀠

𝑖
)
𝑖∈𝑁

, (𝑢
󸀠

𝑖
)
𝑖∈𝑁

) be strongly isomorphic strategic form games
with |𝑆

𝑖
| = |𝑆

󸀠

𝑖
| = 2 and let ΓEWL = (𝑁, (𝐷

𝑖
)
𝑖∈𝑁

, (𝑀
𝑖
)
𝑖∈𝑁

)

and Γ
󸀠

EWL = (𝑁, (𝐷
󸀠

𝑖
)
𝑖∈𝑁

, (𝑀
󸀠

𝑖
)
𝑖∈𝑁

) with 𝐷
𝑖
= 𝐷
󸀠

𝑖
= SU(2)

be the corresponding quantum games. Then ΓEWL and Γ
󸀠

EWL are
strongly isomorphic.

Proof. Theproof follows by the samemethod as in Example 9.
Let 𝑓 = (𝜂, (𝜑

𝑖
)
𝑖∈𝑁

) be a strong isomorphism between Γ and
Γ
󸀠. Depending on 𝜑

𝑖
: 𝑆
𝑖
→ 𝑆
󸀠

𝜂(𝑖)
such that 𝜑

𝑖
(𝑠
𝑖

𝑘
) = 𝑠

𝜂(𝑖)

𝑙

for 𝐴
𝑖
= {𝑠
𝑖

0
, 𝑠
𝑖

1
} and 𝐴

𝜂(𝑖)
= {𝑠
𝜂(𝑖)

0
, 𝑠
𝜂(𝑖)

1
} we construct ̃

𝑓 =

(𝜂, (𝜑̃
𝑖
)
𝑖∈𝑁

), where

𝜑̃
𝑖
(𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
))

=

{
{

{
{

{

𝑈
󸀠

𝜂(𝑖)
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
) if 𝜑

𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘

𝑈
󸀠

𝜂(𝑖)
(𝜋 − 𝜃

𝑖
, 2𝜋 − 𝛽

𝑖
, 𝜋 − 𝛼

𝑖
) if 𝜑

𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘⊕
2
1
.

(43)

Then ̃
𝑓(⨂
𝑁

𝑖=1
𝑈
𝑖
) = ⨂

𝑁

𝑖=1
𝑈
󸀠

𝑖
, where 𝑈

󸀠

𝜂(𝑖)
= 𝜑̃
𝑖
(𝑈
𝑖
) for 𝑖 =

1, . . . , 𝑁. Since 𝜂 is a permutation and𝑈(𝜋−𝜃, 2𝜋−𝛽, 𝜋−𝛼) =

−𝑖𝜎
𝑥
𝑈(𝜃, 𝛼, 𝛽), we can write relation (43) as

𝜑̃
𝜂
−1
(𝑖)

(𝑈
𝜂
−1
(𝑖)

(𝜃
𝜂
−1
(𝑖)
, 𝛼
𝜂
−1
(𝑖)
, 𝛽
𝜂
−1
(𝑖)
))

=

{
{

{
{

{

𝑈
󸀠

𝑖
(𝜃
𝜂
−1
(𝑖)
, 𝛼
𝜂
−1
(𝑖)
, 𝛽
𝜂
−1
(𝑖)
) if 𝜑

𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘

−𝑖𝜎
𝑥
𝑈
󸀠

𝑖
(𝜃
𝜂
−1
(𝑖)
, 𝛼
𝜂
−1
(𝑖)
, 𝛽
𝜂
−1
(𝑖)
) if 𝜑

𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘⊕
2
1
.

(44)

As a result, ̃𝑓maps⨂𝑁
𝑖=1

𝑈
𝜂
−1
(𝑖)
onto⨂

𝑁

𝑖=1
𝑈
󸀠

𝑖
as follows:

̃
𝑓(

𝑁

⨂

𝑖=1

𝑈
𝑖
) =

𝑁

⨂

𝑖=1

𝑉
𝑖

𝑁

⨂

𝑖=1

𝑈
󸀠

𝑖
(𝜃
𝜂
−1
(𝑖)
, 𝛼
𝜂
−1
(𝑖)
, 𝛽
𝜂
−1
(𝑖)
) ,

𝑉
𝑖
=

{

{

{

1 if 𝜑
𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘

−𝑖𝜎
𝑥

if 𝜑
𝑖
(𝑠
𝑖

𝑘
) = 𝑠
𝜂(𝑖)

𝑘⊕
2
1
.

(45)

Let us now consider a permutation matrix 𝑆
𝜂

∈ 𝑀
2
𝑁 that

rearranges the order of basis states {|𝑗
𝑖
⟩} ∈ {|0⟩, |1⟩} in

the tensor product |𝑗
1
⟩|𝑗
2
⟩, . . . , |𝑗

𝑁
⟩. Since 𝑆

𝜂
permutes the

elements in a similar way as ̃𝑓, it is not difficult to see that

𝑆
𝜂

𝑁

⨂

𝑖=1

𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
) 𝑆
𝑇

𝜂

=

𝑁

⨂

𝑖=1

𝑈
𝑖
(𝜃
𝜂
−1
(𝑖)
, 𝛼
𝜂
−1
(𝑖)
, 𝛽
𝜂
−1
(𝑖)
) .

(46)

It is also clear that 𝜎⊗𝑁
𝑥

commutes with ⨂
𝑁

𝑖=1
𝑉
𝑖
and 𝑆

𝜂
and

so does 𝐽 = (1⊗𝑁 + 𝑖𝜎
⊗𝑁

𝑥
)/√2. Thus the final state |Ψ

󸀠
⟩ =

𝐽
†̃
𝑓(⨂
𝑁

𝑖=1
𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
))𝐽|0⟩

⊗𝑁 may be written as

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ =

𝑁

⨂

𝑖=1

𝑉
𝑖
𝑆
𝜂
𝐽
†
(

𝑁

⨂

𝑖=1

𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
)) 𝐽 |0⟩

⊗𝑁

=

𝑁

⨂

𝑖=1

𝑉
𝑖
𝑆
𝜂 |
Ψ⟩ .

(47)

Analysis similar to that in (40)–(42) shows that

𝑢
𝜂(𝑖)

(
̃
𝑓(

𝑁

⨂

𝑖=1

𝑈
𝑖
)) = 𝑢

𝑖
(

𝑁

⨂

𝑖=1

𝑈
𝑖
) , (48)

which is the desired conclusion.

As the following example shows, the converse is not true
in general.

Example 11. Let us consider two 2 × 2 bimatrix games that
differ only in the order of payoff profiles in the antidiagonal;
that is,

Γ:
𝑡

𝑏

𝑙

(

(𝑎
00
, 𝑏
00
)

(𝑎
10
, 𝑏
10
)

𝑟

(𝑎
01
, 𝑏
01
)

(𝑎
11
, 𝑏
11
)

)

,

Γ
󸀠:

𝑡
󸀠

𝑏
󸀠

𝑙
󸀠

(

(𝑎
00
, 𝑏
00
)

(𝑎
01
, 𝑏
01
)

𝑟
󸀠

(𝑎
10
, 𝑏
10
)

(𝑎
11
, 𝑏
11
)

)

.

(49)

The EWL quantum counterparts ΓEWL and Γ
󸀠

EWL for these
games are specified by triples (29), where in this case 𝑁 =

{1, 2},𝐷
𝑖
= 𝐷
󸀠

𝑖
= SU(2), and the measurement operators take

the form

(𝑀
1
,𝑀
2
) = ∑

𝑗
1
,𝑗
2
=0,1

(𝑎
𝑗
1
𝑗
2

, 𝑏
𝑗
1
𝑗
2

) 𝑃
𝑗
1
𝑗
2

,

(𝑀
󸀠

1
,𝑀
󸀠

2
) = ∑

𝑗
1
,𝑗
2
=0,1

(𝑎
𝑗
1
𝑗
2

, 𝑏
𝑗
1
𝑗
2

) 𝑃
𝑗
2
𝑗
1

,

(50)

where 𝑃
𝑗
1
𝑗
2

= |𝑗
1
𝑗
2
⟩⟨𝑗
1
𝑗
2
|. Let us set a mapping ̃

𝑓 = (𝜂, (𝜑̃
1
,

𝜑̃
2
)) with 𝜂(𝑖) = 𝑖 and 𝜑̃

𝑖
(𝑈
𝑖
(𝜃
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
) = 𝑈

󸀠

𝑖
(𝜋 − 𝜃

𝑖
, 𝜋/4 −

𝛽
𝑖
, 𝜋/4 − 𝛼

𝑖
)) for 𝑖 = 1, 2. An easy computation shows that

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = 𝐽
†̃
𝑓 (𝑈
1
⊗ 𝑈
2
) 𝐽 |00⟩

= 𝐽
†
(𝑈
1
(𝜋 − 𝜃

1
,

𝜋

4

− 𝛽
1
,

𝜋

4

− 𝛼
1
)

⊗ 𝑈
2
(𝜋 − 𝜃

2
,

𝜋

4

− 𝛽
2
,

𝜋

4

− 𝛼
2
)) 𝐽 |00⟩

= 𝑆𝐹𝐽
†
(𝑈
1
(𝜃
1
, 𝛼
1
, 𝛽
1
) ⊗ 𝑈
2
(𝜃
2
, 𝛼
2
, 𝛽
2
)) 𝐽 |00⟩

= 𝑆𝐹 |Ψ⟩ ,

(51)
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where 𝑆 has the outer product representation 𝑆 = |00⟩⟨00| +

|01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11| and 𝐹 = |00⟩⟨00| + |01⟩⟨10| +

|10⟩⟨01| − |11⟩⟨11|. Application of (51) gives

𝑢
󸀠

𝑖
(
̃
𝑓 (𝑈
1
⊗ 𝑈
2
)) = ⟨Ψ

󸀠󵄨󵄨
󵄨
󵄨
󵄨
𝑀
󸀠

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ
󸀠
⟩ = ⟨Ψ| 𝐹𝑆𝑀

󸀠

𝑖
𝑆𝐹 |Ψ⟩

= ⟨Ψ|𝑀𝑖 |
Ψ⟩ = 𝑢

𝑖
(𝑈
1
⊗ 𝑈
2
) .

(52)

As a result, games produced by ΓEWL and Γ
󸀠

EWL are strongly
isomorphic. This fact, however, is not sufficient to guarantee
the isomorphism between Γ and Γ

󸀠. Indeed, one can check
that there is no 𝑓 = (𝜂, (𝜑

1
, 𝜑
2
)) to satisfy 𝑢

𝑖
(𝑠) = 𝑢

󸀠

𝜂(𝑖)
(𝑓(𝑠))

for each 𝑠 ∈ {𝑡, 𝑏} × {𝑙, 𝑟} and 𝑖 = 1, 2. Alternatively, given
specific payoff profiles (𝑎

00
, 𝑏
00
) = (4, 4), (𝑎

01
, 𝑏
01
) = (1, 3),

(𝑎
10
, 𝑏
10
) = (3, 1), (𝑎

11
, 𝑏
11
) = (2, 2), we can find three Nash

equilibria in the game Γ and just one in the game Γ
󸀠. Hence,

by Lemma 7 games (49) are not isomorphic.

4. Conclusions

The theory of quantum games has no rigorous mathematical
structure.There are no formal axioms, definitions that would
give clear directions of how a quantum game ought to look
like. In fact, only one condition is taken into consideration.
It says that a quantum game ought to include the classical
way of playing the game. As a result, this allows us to define
a quantum game scheme in many different ways.The scheme
we have studied in the paper is definitely ingenious. It has
made a significant contribution to quantum game theory.
However, it leaves the freedom of choice of the players’ strat-
egy sets. Our criterion for quantum strategic game schemes
requires the quantummodel to preserve strong isomorphism.
This specifies the strategy sets to be SU(2). We have shown
that a proper subset of SU(2) in the EWL scheme may
imply different quantum counterparts of the same game-
theoretical problem. In that case, the resulting quantum game
(in particular, its Nash equilibria) depends on the order of
players’ strategies in the input bimatrix game. Hence, given a
classical game, for example, Prisoner’s Dilemma, we cannot
say anything about the properties of the EWL approach
with the two-parameter unitary strategies until we specify an
explicit bimatrix for that game.This is not the case in the EWL
scheme with SU(2) where, given a classical bimatrix game or
its isomorphic counterpart, we always obtain the same from
the game-theoretical point of view quantum game.
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