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Abstract In classical game theory the idea that players randomize between
their actions according to a particular optimal probability distribution has al-
ways been viewed as puzzling. In this paper, we establish a fundamental con-
nection between n-person normal form games and quantum mechanics (QM),
which eliminates the conceptual problems of these random strategies. While
the two theories have been regarded as distinct, our main theorem proves that
if we do not give any other piece of information to a player in a game, than the
payoff matrix—the axiom of “no-supplementary data” holds—then the state of
mind of a rational player is algebraically isomorphic to a pure quantum state.
The“no supplementary data”axiom is captured in a Lukasiewicz’s three-valued
Kripke semantics wherein statements about whether a strategy or a belief of
a player is rational are initially indeterminate i.e. neither true, nor false. As
a corollary, we show that in a mixed Nash equilibrium, the knowledge struc-
ture of a player implies that probabilities must verify the standard “Born rule”
postulate of QM. The puzzling “indifference condition” wherein each player
must be rationally indifferent between all the pure actions of the support of
his equilibrium strategy is resolved by his state of mind being described by a
“quantum superposition” prior a player is asked to make a definite choice in
a “measurement”. Finally, these results demonstrate that there is an intrinsic
limitation to the predictions of game theory, on a par with the “irreducible
randomness” of quantum physics.
Keywords: Modal logic· Non-cooperative games· Quantum state· Born rule·
Kripke models· Lukasiewicz’s three-valued-logic
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1 Introduction

The notion of mixed strategy, as originally introduced by von Neumann and
Morgenstern [1] is a basic ingredient of classical game theory. Yet, as pointed
out by von Neumann and Morgerstern themselves, the idea that a rational
player may have to use a randomizing device, such as a coin flip, to decide on
his actions poses some insuperable conceptual difficulties:
“This is certainly no maximization problem, but a peculiar and disconcerting mixture of

several conflicting maximum problems (...) we face here and now a really conceptual—and

not merely technical—difficulty. And it is this problem which the theory of “games of strat-

egy” is mainly devised to meet.” (von Neumann and Morgenstern [1])
As acknowledged in the subsequent game-theoretic literature (see, e.g. Au-
mann [2]), the introduction of the Nash equilibrium (Nash, [3]) has just ren-
dered this puzzle even more unpalatable. The very existence of a Nash equi-
librium relies on the use of such “randomized strategies”, which leads to the
following conundrum: In equilibrium, each player has to be completely indif-
ferent between the different actions of his mixed strategy. Moreover, the idea
that human behavior, under some conditions, must appear indeterminate in
order to be rational is rather troubling. Although many attempts to explain
the underpinnings of mixed strategies have been made, none has been unani-
mously accepted as satisfactory (see e.g. Aumann, [2]). 1 The main goal of this
paper is to give a complete characterization and a compelling interpretation
of mixtures in games. Surprisingly, we shall prove that probabilities arising
in any mixed Nash equilibrium are (necessarily) quantum-mechanical. From a
purely game-theoretic perspective, one of the main consequence of this result
is the elimination of all the aforementioned conceptual difficulties associated to
such randomized strategies. So this raises a key issue: How is this foundational
game-theoretic problem so connected to the apparently far removed field of
quantum physics?
Unlike classical physics, the most troubling aspect when moving to the mi-
croscopic world is that quantum theory prescribes only the probabilities with
which the various outcomes of an individual quantum system occur in an ex-
periment, and is silent about the outcomes themselves.2 However, apart from
their probabilistic nature, conventional wisdom is that probabilities arising in
game theory and QM have very different properties. In particular, there are
by now ample experimental evidences supporting the view that we cannot in-
terpret quantum probabilities as coming from certain statistical properties of
an ensemble of similarly prepared systems, but each individual particle (e.g.
a photon in the classic double-slit experiment) exhibits an irreducible random

1 The alternative foundation—the so-called mass action approach—avoids becoming en-
tangled in such philosophical issues. Rather than considering randomizations implemented
by individual players, it addresses the question of how evolutionary selection processes or
social learning allow to understand an equilibrium as an aggregate statistical behavior.

2 A standard textbook on QM is Sakurai [4].
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behavior. 3 The fact that quantum probabilities cannot be given a statistical
interpretation is also the consequence of a series of mathematical results (see
e.g. Kochen and Specker, [6]; Colbeck and Renner, [7, 8]).4 By contrast, in
the epistemic perspective of game theory, mixed strategies are usually inter-
preted as the expression of the players’ ignorance about the actions of their
opponents.5 Hence it seems that we can definitively rule out any structural
connection between the two theories: Unlike quantum probabilities, the stan-
dard view of mixtures in games is that probabilities are classical. Our main
result proves that such an interpretation does not hold if one explicitly in-
corporates the fact that the payoff matrix alone does not generally contain
enough information to decide which strategy constitutes a rational choice.
More precisely, our starting point is the observation that if we do not include
some extra variables e.g. some payoff-irrelevant signals or hierarchies of beliefs,
in the original description of the game, then a player has no other options than
“putting himself into the shoes of the other players” i.e. adopts the decision
problems of the other players, in order to determine his own rational choice.
It then becomes a mere internal consistency requirement that the same player
will have to determine an entire profile of beliefs (the choices for the others)
and choice that are mutually rational to each others. In other words, with-
out any supplementary data added to the game, any rational choice of one
player must therefore be part of a Nash equilibrium of the original game. 6

This paper aims at studying the implications of this one-person “ontological
foundation” of the Nash equilibrium concept on the interpretation of mixed
strategies. More specifically, the bulk of this paper consists in uncovering a
structural connection—an isomorphism—between the knowledge structure of
a single player facing a game without any other piece of information than the
payoff matrix on one hand, and the algebraic structure of an individual quan-
tum system, on the other hand.
The implications of the quantum nature of equilibrium mixtures for our un-
derstanding of players’ behavior in a game are manifold. First, the apparently
exotic mathematical tools of QM e.g. “wave function”—a unit vector of a com-
plex Hilbert space—solve the long-standing puzzling paradoxes of the classical
game model, such as the famous “mixing problem” i.e. the fact that in equilib-
rium each player is indifferent between all the pure strategies of his support. In
fact, the wave function of QM allows to give a clear-cut interpretation to the
famous “indifference condition” as the sign that a particular pure choice has
not yet been settled in the player’s mind prior he makes an actual choice. In
other words, a player’s state of mind is described by a quantum superposition

3 For an experimental evidence of the quantum nature of a single photon see e.g. Mandel
[5].

4 In short, Colbeck and Renner show that a subjective interpretation of the wave function
is untenable since quantum theory is maximally informative, which means that the quantum-
mechanical probability amplitudes of waves functions are real physical properties.

5 For a general overview of the epistemic analysis of games see Brandenburger [9, 10].
6 The intuition and the proof of this result—which has been thoroughly analyzed in a

separate paper (Pelosse, 2011)—is reproduced in the Appendix of this paper.
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before he makes an actual choice, because the “indifference condition” implies
that the linear combination of any two states of mind corresponding to the
choice of two pure actions must also be a possible state of mind. One of the
most important consequence is then to offer a fundamental theoretical expla-
nation for players to be indeterminate. This notably allows to understand why
the usual equilibrium probabilities (mixtures) cannot be construed in terms of
a randomization or as reflecting the ignorance of some outside observer.
Besides, it is well-known that these“wave functions”induce non-additive (quan-
tum) probabilities (see e.g. Feynman et al. [11]). Hence, our result indicates
that the classical game model generates non-additive (quantum) probabilities
in its own right. In a nutshell, the existence of non-additive probabilities is the
direct consequence of the player’s“self-interaction”: before the actual choice (of
a pure strategy), the equilibrium state of mind of a player is not fixed on a par-
ticular pure action, and this “rational blend of states of mind” generates some
“interference terms” as in QM. We note that this provides a sound theoreti-
cal justification to a growing number of probabilistic frameworks for modeling
decision-making that make use of the quantum formalism in cognitive situa-
tions (see e.g. Khrennikov [12]), to capture incompatibility and interference
effects that arise in human decisions.
A last series of results concern the structure of the informational states of a
rational player making a choice. 7 First, we prove that probabilities arising
in an equilibrium mixture automatically satisfy the Born rule of QM—one of
the key postulate of QM. This rule allows to uncover the informational men-
tal process of a rational player making a choice during concrete experiments.
Second, the salient difference between classical and quantum mechanics is the
transition from a classical event space, represented by the Boolean algebra of
(Borel) subsets of a phase space, to a non-Boolean algebra. Our results indeed
demonstrate that the algebra of epistemic states of a rational player making a
choice (in a Nash equilibrium) generates exactly the same non-Boolean struc-
ture.
So these results raise a key question: Where does such a structural connection
between classical game model and quantum mechanics come from?
As already hinted, the thread that connects the two theories can be traced
back from the initial under-determination of the game model i.e. the matrix
of a game does not generally contain enough information to make a rational
choice. By incorporating this initial structural lack of information—using the
Lukasiewicz’s three-valued logic [13]—, we are able to analyze the origin and
genesis of a rational choice of a player in a game. We remark that our main
result is consistent with the aforementioned series of well-known results in
QM—the so-called “no-go Theorems”. Briefly stated, these results suggest that

7 We use the term “informational state” rather than epistemic because under the quantum
nature of probabilities, the usual distinction between the “ontic” and “epistemic” state of
mind of a player breaks down. We discuss this conceptual distinction at length in Section
6.2.
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measurements do not reveal the pre-existing properties of a quantum system.8

For example, the Kochen-Specker Theorem [6] and the Conway-Kochen [14,
15] Theorems notably establish—modulo some technical requirements—that
the knowledge of a particle’s properties has nothing to do with measurement
disturbances, as it is just that there is no way to assign pre-existing values to
a particle prior a measurement in a consistent logical way.9 These results are
in line with the interpretations of Wheeler [16], or more recently Zurek [17]
and Gisin (2010) that interpret individual process in quantum mechanics as
an “an elementary act of creation.”10 In this paper we do not attempt to make
any claim about the interpretation of quantum mechanics itself. However we
note that our findings are at least consistent with these results. So, from a
purely game-theoretic perspective, the origin of the probabilities arising in the
classical game model is not epistemic i.e. arising from a property unknown to
the players or an outside observer—, but is ontic, on a par with the irreducible
indeterminism of single events of QM.11 In other words, mixed strategies are
not the reflection of what the other players (or any outside observer) know
about a player state of mind before his choice.12

Different streams of papers see e.g. Eisert et al. [19], have introduced formal
tools of QM in decision/game theory in both the physics and decision theory
communities where new strategies are “superpositions” of the underlying clas-
sical strategies. In short, strategies which are quantum-mechanical in nature
are added to the original game. This paper argues instead that classical game
theory is already quantum-mechanical in nature.
Only a few papers have tried to make a connection between classical game
theory and quantum mechanics. Pietarinen [20, 21] is the first to explicitly
raise the possibility of some fundamental connections between extensive form
games of imperfect information, quantum logic and quantum mechanics. He
notably points out the failure of the law of the excluded middle in games of
imperfect information and links it to quantum mechanics and remarks that
the truth-values of complex sentences make some games nondetermined. More

8 Briefly stated, the Kochen-Specker (KS) Theorem is a mathematical result about the
nature of Hilbert spaces (the special type of vector spaces that are the most general repre-
sentation of the state space for a quantum system). It says that, if properties are represented
as operators on a Hilbert space in a 1 − 1 fashion (i.e. each property is represented by a
unique operator), then these properties cannot all be said to simultaneously have values.

9 For example, a logical possible implication of Bell inequality, is that either the inputs
are not real, or the outcomes (or both). A loophole-free violation of Bell inequality would
prove the impossibility of “local realism” i.e. the facts that measurements does not reveal
pre-existing properties. On the other hand, the Kochen-Specker theorem [6] indicates that
“For any physical system, in any state, there exist a finite set of observables such that it is
impossible to pre-assign them non contextual values respecting the predictions of QM ”.
10 As explained by Zurek, the wave function |Ψ〉 is an informational real entity: “Thus, |Ψ〉

is in part information (as, indeed, Bohr thought), but also the obvious quantum object to
explain existence”.
11 To put it differently, “quantum events are not functions of space-time” (see Gisin (2010)

and [18]).
12 In particular, as argued by Gisin ((2010) and [18]) when discussing of quantum proba-

bilities: “One can’t simulate these probabilities on a classical computer”.
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recently, Brandenburger [22] establishes a formal connection between classical
game theory with the non-local correlations arising in QM: He proves that
adding quantum signals does not necessarily differ from the addition of clas-
sical signals. 13 This paper therefore responds and complements these papers
in several ways by proving that classical game theory is structurally quantum-
mechanical. In particular, in a separate paper (2014) we show how the quantum
nature of Nash equilibrium leads to an intrinsic one-person representation of
a game.
QM is not based on a generally accepted conceptual foundation (see e.g.
Zeilinger [23]). The field of quantum foundations seeks to determine the prin-
ciples that underlie quantum theory (see Hardy and Spekkens [24]). Thus, at
a broad level, there is a connection between this paper and the possibility
of deriving or interpreting some of the quantum formalism from decision or
information-theoretic axioms as explored in the physics community (see e.g.
Deutsch [25], Zeilinger [23]).14 A derivation of quantum theory is outside the
scope of this paper. We have done so in a separate paper (2012) by uncovering
the intrinsic game-theoretic structure of any individual quantum system.
The paper is organized as follows. The next section is an informal discussion
of the issues and results to follow. The formal treatment is in Sections 3–6.
Section 7 concludes. All the proofs have been relegated to an Appendix.

2 Previews of the main result

To fix ideas, consider the game of Figure 1. In this game, Ann chooses the row,
Bob chooses the column, Charlie chooses the matrix. Each player must (simul-
taneously and independently) choose to go to the North Pole or the South Pole.
For Ann and Bob, this is simply the “Battle of the Sexes”: their payoffs are
no affected by Charlie’s choice. Our main postulate is that Ann, Bob and
Charlie are all assumed to have no other piece of information than the matrix
game itself i.e. the game satisfies the axiom of “no-supplementary data”. We
shall give a formal definition of this postulate in the formal treatment. For the
sake of discussion, let us focus on the following Nash equilibrium of this game
( 2
3N⊕

1
3S,

1
3n⊕

2
3s, N). Consider the implication of formally incorporating the

aforementioned axiom of no-supplementary data on the behavior of each ra-
tional player. Let us focus our discussion on Ann.
First, note that if Ann is rational, but has no supplementary data to deter-
mine her choice than the matrix game, then she really has to adopt Bob and
Charlie’s decision problems in order to form her beliefs and compute her own
best response. In other words, she concretely has to“put herself into the shoes”
of Bob and Charlie and at the same time, consider her own decision problem.

13 Brandenburger (2010) offers an insightful discussion on the relations between the epis-
temic program in game theory and the under-determination of the classical game model as
initially envisioned by von Neumann.
14 In particular, note that Deutsch is the first to propose a decision-theoretic derivation of

the Born rule in a QM setup.
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Since Ann is rational, she must be rational in all the decision problems she
is simultaneously considering: In her own perspective (AA), as well as when
she is considering Bob and Charlie’s decision problems at perspective AB⊗C .
So Ann must simultaneously put herself, “in the shoes” of Bob and Charlie
(the meta-perspective AB⊗C) and in her own shoes (her own perspective AA).
Here is a visual way to grasp this situation more clearly.
Imagine that Ann is sitting simultaneously in two different transparent “cu-
bicles” (the term is taken from Kohlberg and Mertens [27, p.1005]) AA and
AB⊗C . Below, we illustrate the formal mental process occurring in the mind
of Ann when her beliefs over Bob and Charlie’s (independent) destinations are
initially non existent. Start by identifying the directed graph

AA

as describing the informational process “input-output” by which Ann can de-
termine her rational strategy (the output) given that she has determined her
beliefs over Bob and Charlie (the input). For short, let ( denote this mental
process. The converse process is Ann determining her beliefs i.e. a profile of a
mutually rational profile of strategies for Bob and Charlie. Hence, the “dual”
directed graph

AB⊗C

corresponds to Ann determining the truth value of the input of the first process.
For short, we represent this “dual” mental process by (()† i.e. the “dual”
directed graph, representing the converse direction, output-input. Note that †
is the operation which changes the direction of the mental process. At such,
it corresponds to an involution in the sense that (()†† = (. As shown in
Theorem 1, this “duality property” of the graph is not accidental; it is directly
linked to the dual algebraic structure between vector and co-vectors (or linear
mappings) of the Hilbert space structure of QM. Now note that the above
processes allow Ann to determine that the statement “ 1

3n⊕
2
3s is rational for

Bob and the South Pole is rational for Charlie” is true in her cubicle AB⊗C ,
because Ann can check—by taking a look at cubicle AA—that the statement
“ 2
3N⊕

1
3S is rational for Ann” is indeed true in the corresponding cubicle, AA,

relative to the statement that “ 2
3N⊕

1
3S is rational for Bob and the South Pole

is rational for Charlie” is true in cubicle AB⊗C , whose she knows to be true
by looking from her cubicle AA, and so on. This simple observation leads us
to conclude that the only possible process for Ann to determine a rational
strategy in her mind without any supplementary data is to combine the two
processes simultaneously,

AB⊗C AA.AB⊗C
∧

AA ≡

Moreover, since Ann is a single rational entity, she has to be rational in these
two processes, which immediately implies that the above process corresponds
to Ann determining a Nash equilibrium of the game of Fig. 1. As a result, the
determination of a rational strategy is equivalent to Ann “self-interacting” in a
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Table 1 Figure 1.

n s

N 2,1,0 0,0,0
S 0,0,0 1,2,0

N

n s

N 2,1,0 0,0,0
S 0,0,0 1,2,0

S

mixed Nash equilibrium of the game of Fig.1. The general proof of this result
is established in the appendix.15 Notice that Ann could arrive at a similar
result by sitting in the three distinct glass cubicles, AA, AB and AC , instead
of the big cubicle AB⊗C . However, in our main theorem we prove that models
of “introspection” with more than two perspectives are in fact not well-defined.
The reason is that these models would not induce Ann to play a well-defined
probability measure—her equilibrium mixture 2

3N ⊕
1
3S—in an experiment.

Alternatively, we can also examine the situation of Ann if she adopts (simulta-
neously) the perspectives of all players, AA⊗B⊗C . In this case, Ann is sitting
in her “big cubicle” in which she simultaneously assigns truth-values to state-
ments for all players. By definition, in this big glass cubicle she can only make
absolute statements about all players. But Ann is unable to check—by look-
ing through the windows of her cubicle—that a given meta-statement, i.e. a
profile of strategies, is indeed rational relative to itself. For this she needs the
perspective of another cubicle. Formally, Ann cannot check that a given profile
is indeed a fixed point of the combined best-response mapping.
To recap: Without the aid of any extra variables, Ann can only determine a
rational strategy by interacting with herself (self-interacting) in a Nash equi-
librium. What are the implications of this “self-interactive” rational process in
the interpretation of a mixed Nash equilibrium?
Consider the mixed-strategy equilibria in the game of Figure 1. In equilibrium,
Ann chooses the North Pole (N) with a probability 2

3 and the South Pole (S)
with probability 1

3 . Suppose that an outside observer can read in the mind
of Ann. What would he observe before Ann chooses a destination (before she
makes her actual choice)?
As argued above, without any supplementary data in her mind, Ann’s intro-
spection corresponds to the determination of a Nash equilibrium. By looking
simultaneously through the transparent walls of her two cubicles—during her
introspection—Ann therefore has been able to determine that:
(1)“Strategy 2

3N⊕
1
3S is rational for Ann” is true at AA and;

(2)“Strategy 2
3N⊕

1
3S is rational for Ann” is true at AB⊗C .

In other words, Ann thinks that strategy 2
3N⊕

1
3S is rational for her in each of

her two cubicles ((meta)-perspectives). Of course, this is just the usual defini-
tion of an equilibrium: The common belief of Bob and Charlie at AB⊗C meets
the mixed strategy of Ann. However, the above introspection now entails that
2
3N ⊕

1
3S is in fact Ann’s self-referential belief. As shown in the rest of this

15 A complete analysis of the foundation of Nash equilibrium has been carried out in a
separate paper (see Pelosse, 2011).
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paper, this is precisely the very existence of such self-referential beliefs that
are at the origin of players’ quantum states of mind in a game. To see this
here notice that Ann deems equally rational N and S if and only if the (com-
mon) belief she holds when determining the others’ player strategies matches
his own mixed strategy. Thus, by construction, Ann can hold 2

3N ⊕
1
3S as a

self-referential belief if and only if she has not already made-up her mind on N

or S. We shall now show that the algebraic characterization of this indifference
is given by a pure quantum state. To see this, let us first point out that Ann’s
state of mind should respect the following minimal reasonable properties:
[Indivisibility] Ann is a single player (she is in the flesh!);
[Independence] AA and AB⊗C are mutually independent perspectives (in
her mind, Ann determines simultaneously each statement in two different “cu-
bicles”). Moreover, at AA, Ann determines her mixed strategy, while she de-
termines the common belief of Bob and Charlie at AB⊗C ;
[Faithful] Operationally, if an outside observer runs an experiment with many
copies of Ann, the empirical frequencies of outcomes N and S must agree with
what each copy of Ann has determined in her mind as a rational strategy.
The axiom of Indivisibility is just the fact that in a measurement Ann has to
choose a unique action. Transported in the mind of Ann, this means that a
choice occurs if and only if the pole chosen by Ann at one of her two cubicles
matches the other. So we can visually describe a choice as the situation where
Ann picks a choice in each of her two cubicles, AA and AB⊗C , while looking
simultaneously through the windows of her cubicles.
The axiom of independence simply says that Ann remains seated in her two
cubicles, AA and AB⊗C . The last axiom requires that in a measurement i.e. a
pure choice, the empirical probability measure obtained by an observer reflects
exactly Ann’s equilibrium mixed strategy, 2

3N⊕
1
3S.

Now we return to the description of the state of mind of Ann. First, recall
that in (any) mixed equilibrium, Ann must be indifferent between going either
to the North Pole or to the South Pole. This a general result: If a strategy
profile, (σi)i∈N , is a Nash equilibrium, then every pure strategy in the support
of each strategy σi has to be a best reply to i’s belief σ−i. (see e.g. Osborne
and Rubinstein, [26]). Taken together, the axioms entail that Ann may think
in her two cubicles that the choice of the North Pole and the South Pole are
rational. The upshot is that the state of mind of Ann will be given by a 2× 2
matrix (see Figure 2), which is the simplest example of the so-called density
matrices of QM characterizing a pure quantum state (qubit). What are the
entries of this matrix?
The faithful property implies that the diagonal elements, (N, N) and (S, S), take
on values 2

3 and 1
3 , respectively, together with the property that the vector rep-

resenting Ann when she is in cubicle AA can be distinguished from her vector
representing her cubicle AB⊗C . Thus, by the axiom of independence, we con-
clude that complex vectors like, e.g. ( 1√

6
± i 1√

2
)N⊕ ( 1

2
√
3
± i 12 )S := z1N⊕ z2S

characterize the state of mind of Ann (her mixed strategy) when she is in
perspective AA, while its conjugate, ( 1√

6
∓ i 1√

2
)N⊕ ( 1

2
√
3
∓ i 12 )S := z1N⊕ z2S
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Table 2 Figure 2. Ann’s equilibrium state of mind

N S

N 2
3

z1z2
S z2z1

1
3

reflects her state of mind (the common belief of Bob and Charlie) at AB⊗C .
This emergence of complex numbers is a general result: As shown in the for-
mal treatment, a faithful algebraic characterization —an isomorphism—of a
pair of a player’s self-referential belief involves the complex field. How do we
interpret these vectors?
The matrix of Figure 2 represents the global structure of knowledge of Ann.
For example, the complex weight z1z2 assigned to entry (N, S) represents the
fact that Ann has not yet fixed her mind on N or S: When sitting in cubicle
AA she knows that going to the North Pole is rational but she simultaneously
knows at the other cubicle, AB⊗C , that the South pole is also rational. Thus,
the matrix of Figure 2 is the modal expression of Ann’s rational indifference
and hence“self-rational ignorance”of N or S prior she is asked to make a choice.
So the matrix of Figure 2 is nothing but the algebraic characterization of the
(self)-knowledge of Ann satisfying the (necessary and sufficient) “indifference
condition” required in a mixed Nash equilibrium. We can now answer the ques-
tion: What is the nature of equilibrium mixtures in games?
At a broad level, Ann’s mixed strategy, 2

3N ⊕
1
3S must be understood as the

link between the mental reality of Ann’s optimal strategy and the empirical
realization of this state of mind in an experiment. Since Ann is a single player,
there must be a perfect (physical) correlation across her perspectives during
a choice. Thus, these probabilities represent the weights with which both per-
spectives simultaneously think of the same (rational) destination.16

The upshot is that the epistemic characterization of the “indifference condi-
tion” given in the matrix of Figure 2 rules out the “classicality” of probabilities
arising in mixed Nash equilibria: Those probabilities cannot be interpreted
as reflecting a randomization from the part of the players, but as a quantum
superpositions of states of mind resulting from each player’s holding his be-
liefs about his own future choice or equivalently his own rational indifference
amongst different future alternatives Note also that the way a player chooses
a particular pure strategy is left outside the scope of the classical game model.
This is so since any notion of a “measurement” would require that we extend
the game model by incorporating the details of the interaction between a player
and its environment (or an outside observer).
The above Gedankenexperiment is the illustration of our main finding–that
each player is characterized by a quantum state of mind in a Nash equilib-

16 Note that a conceptual consequence of this story is that the equilibrium intrinsic state of
Ann is an epistemic state that is ontic as it describes complete knowledge i.e. the distinction
between an ontic state and an epistemic state breaks down.
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rium. Loosely stated, our result is as follows: (Theorem 1)17: Suppose we have
a finite n-person game in strategic form where each player is rational and has
no extra piece of information than the payoff matrix itself i.e. the axiom of
no-supplementary data holds. Then, in any mixed Nash equilibrium profile
(σi)i∈N of the game being played, each player i is described by a superposition
of states of mind over the pure strategies si in the support of σi i.e. a pure
quantum state representing the global state of mind of player i is given by an
orthogonal projector (or dyad) with complex off-diagonal terms and the empir-
ical probability of having a pure strategy si in an experiment is given by the
Born rule, as in QM.
This result offers a completely new way of looking at mixed Nash equilibria.
Recall that according to the classical view, a mixed strategy represents delib-
erate randomizations on the part of players. In this scenario a player commits
to a randomization device and delegates the play to a trustworthy party and
the actual choice is made by the random device. Hence, in the above example,
an observer would realize that Ann believes she will go to the North Pole with
probability 2

3 and to the South Pole with probability 1
3 .

The Bayesian approach would suggest a different answer. There, a mixed-
strategy equilibrium is interpreted as an expression of what each player believes
his opponent will do. So, in either of these interpretations, the “indifference
condition” amongst the different actions breaks down: Each player’s actual
choice has already been taken, which means that the state of reality is already
determined prior a player has been asked to make a choice.18

The presence of wave probability amplitudes allow to understand why equi-
librium mixtures have been so difficult to interpret; these probabilities reflect
the necessary physical “act of creation” of the future states of mind of a player
(with itself), while classical probabilities proceed from the mere ignorance of
the actual state of mind of the player.
Some readers may think that we could bypass the use of complex vectors.
However, the algebraic description of the mental states of the player during
his introspection requires that we distinguish between the two “flows of knowl-
edge” of the player with itself, which with the property of involution lead to
the complex algebra. One may also think of describing the dual mental state
of a player with the notion of “bi vector”from geometric algebra instead of
complex vectors. However, if possible, this mathematical alternative descrip-
tion of a player’s mental state would blur our connection with the standard
formulation of QM.19

Finally, notice that our connection between the mental state of a player and

17 This result could be extended to Euclidean games and some other classes of games with
infinite strategy spaces.
18 If a player does have the option of making a randomized choice, this can be added

to the (pure) strategy set. Of course a similar interpretation follows in the “mass-action”
interpretation of Nash [3], as a mixed-strategy profile is formally identical with a population
distribution over the pure strategies.
19 A bi-vector can be interpreted as a directed number which describes an oriented plane

segment, with the direction of the bi-vector representing the oriented plane and the magni-
tude of the bi vector measuring the area of the plane segment.
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the QM state-space is structural i.e. our use of a Kripke structure is sufficiently
general to guaranty the robustness of Theorem 1; the self-interaction of a single
player leads inevitably to a structure of knowledge—the graph-theoretic repre-
sentation of the Kripke framework modeling this structure of knowledge—that
is isomorphic to the dual algebraic structure of a complex Hilbert space.

2.1 A game-theoretic double-slit experiment

Let us now conclude the preview of our results by illustrating how non-additive
probabilities enter the picture of the classical game model. We consider the
following extension of the previous thought experiment. As before, Ann is still
playing the game illustrated by Table 1. But now we append an hypotheti-
cal experimental setup in which an experimentalist can read in the mind of
Ann before she makes a definite choice. More precisely, this “mind reading ma-
chine” translates Ann’s states of mind onto a fluorescent sphere representing
the Earth, so that each time Ann thinks she will go to one of the two poles,
her thought is registered as a flash of light on the sphere at one of the con-
tinents of the Hemisphere containing the pole chosen by Ann. For instance,
a flash light on the Europe is the signature that Ann has fixed her mind on
N.20 Note that if we force Ann to go to say, the South Pole, then we oblige
Ann to fix her mind on one of the continents of the Southern Hemisphere,
and we see one flash on one of the continents of this Hemisphere. That is,
we cannot observe a flash on the Europe. We suppose that the occurrence
of a flash on a particular continent lying in the Hemisphere is random. This
randomness has nothing to do with the choice of Ann in the game, it simply
reflects some additional characteristics of the players, like the nationality, or
the culture of Ann, not under the control of the experimentalist. From an
operational viewpoint, we can construct an empirical probability distribution
by counting up the number of flashes in a continent to obtain the fraction of
flashes that occur on this continent, when a large number of copies of Ann
plays the game. 21 Let PN(x) (resp. PS(y)) be the probability that we observe
a flash of light on a continent x ∈ {Europe, Africa, Asia, America} (resp.
y ∈ {Antartica, Australia, Africa, Asia, America}) of the Hemisphere when
Ann’s state of mind is fixed on the North Pole (resp. South Pole). Note that
we cannot directly observe the state of mind of Ann, because if we knew that
Ann’s state of mind is fixed on say, the North Pole, then this would imply that
Ann knows it either, which would mean that we have forced her to make-up
her mind in some way. Otherwise stated, the state of mind of Ann must be
treated as a latent variable. Now, note that if Ann had fixed her mind on one
of the two poles prior making a choice, we would observe for each copy of Ann

20 It might be worthwhile pointing out that this yet largely hypothetical experiment could
be performed in the future by using technologies like brain imaging.
21 Again, as already discussed, as in QM the use of copies of Ann is purely operational,

and the induced empirical distribution cannot be construed as reflecting the various char-
acteristics of players as in evolutionary game theory
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a single flash of light either on a region of the continent of the Northern Hemi-
sphere or the Southern Hemisphere. In this case, we would then expect that
the probability of observing a flash on a continent z overlapping the two Hemi-
spheres is, PNS(z) = PN(z) + PS(z), for z ∈ {Africa, Asia, South America},
in conformity with the classical probability calculus. So let us first determine
the formulae of these probabilities when Ann is asked to make a choice i.e. an
apparatus records the choice of Ann.
If Ann has fixed her mind on one of the poles during an experiment, this is
tantamount to saying that she has to pick the same destination d in her two
perspectives AA and AB⊗C . Let Ψd(z) for d = N, S, (resp. Ψd(z)) be the com-
plex weight (resp. its conjugate) assigned to the directed graph representing
the knowledge structure of Ann at perspective AA (resp. AB⊗C) when she
picks continent z, given that she knows that destination d is rational. The
case wherein Ann views the same destination d as rational, simultaneously, in
her two perspectives and picks a continent z is illustrated below.

ΨN(z)
AB⊗C

ΨN(z)
AA

∧
From the above illustration we can therefore conclude that if these weights
induce the probabilities that given a choice of d, Ann picks a continent z, then
Pd(z) = ΨN(z)ΨN(z) , which is the Born rule of QM, and the total probability
is such that

PNS(z) = |Ψd(z)|2 + |Ψd(z)|2 .

Now, we ask: What is the probability of a flash light on a continent z both in
the Southern and Northern Hemispheres, if we do not ask each copy of Ann to
choose one of the two poles in the game, so that we only observe the mental
state of mind of Ann determining her rational mixed strategy in the game?
In this case, we can only indirectly observe the state of mind of Ann via a
flash light on the sphere. According to Theorem 1, the state of mind of Ann
prior a measurement has to be described by a wave, as a consequence of the
“indifference condition”, since Ann’s state of mind is not yet settled. Formally,
this means that Ann knows simultaneously that N or S (the strategies of Ann,
when viewed from her own perspective) are rational at AA, on one hand,
and that N or S (recall that the strategies of Ann coincide with the beliefs
of Bob and Charlie when she contemplates the perspective of these players)
are rational at AA⊗B , on the other hand. Here is a visual way to derive the
probability formula in this situation, in the light of the knowledge structure
of Ann.

ΨS(z)
AB⊗C AA.

ΨN(z)
AB⊗C AA

∨ΨS(z)
AA

∨ ΨN(z)
AA

∧
This set of weighted directed graphs depicts the compositions of the different
parts of the knowledge structure of Ann. Here, the operation

∨
corresponds to
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the usual logical connective “or”; given a perspective, Ann can consider N or S.
The operation

∧
coincides with the logical connective “and”, since Ann has to

adopt the two perspectives AA and AA⊗B , simultaneously, as stated in Theo-
rem 1 (The details of the proof are given in Appendix). As already discussed,
we have to assign a complex number Ψd(z), for d = N, S to each directed graph
in order to have a faithful algebraic description of Ann’s knowledge structure
(an isomorphism). From this, we conclude that the total probability P (z) of a
flash light on a continent z both in the Southern and Northern Hemispheres is
given by P (z) = |ΨN(z) + ΨS(z)|2 , which coincides with the theory of interfer-
ence of waves. In fact, we have just derived the formulae used in the classical
double-slit experiment in physics. The first formula, PNS(z), corresponds to the
situation where the experimental set-up allows to monitor which slit the elec-
tron passed through (we force Ann to make a choice), while P (z) is the correct
formula when the experimentalist does not devise an experiment to determine
which slit an electron passes through (we do not oblige Ann to “make-up her
mind” on one of the two poles). The upshot is thus that as in this classical
physics experiment, the predictions on the future behavior of Ann, require the
use of non-additive probabilities since P (z) 6= PN(z) + PS(z). This inequality
is due to the interference term 2ΨS(z)ΨN(z). This non-zero additional term
is easily derived from the above picture and its meaning is crystal clear: In
addition to the cases of perfect correlation between the two perspectives of
Ann i.e. given that Ann considers the same pole, she picks the same continent
z, we must also add the cases where Ann picks the same continent z, while
she is considering N at one perspectives and S at the other. The twist is thus
that the seemingly exotic non-classical probability calculus of QM arises in the
classical game model as the consequence of the rationality of a player, via his
self-interaction in a Nash equilibrium.

3 Epistemic models of self-projection in games

3.1 Finite games

Let N = {1, ..., n} be a finite set of players with n ≥ 2. An n-person finite
normal-form game of complete information, interpreted as a one-shot game
is given by G =

〈
S1, ..., Sn;π1, ..., πn

〉
where each set Si consists of mi pure

strategies, with typical element, si, available to player i, and πi : Πn
i=1S

i → R
is i’s utility function. We adopt the convention that S = Πn

i=1S
i, S−i =

Πj 6=iS
j and SJ = Πj∈JS

j where J ⊂ N. The set of mixed strategies of player i
is thus the (mi−1)−dimensional unit simplex∆i =

{
σi ∈ Rmi

+ :
∑
si∈Si σi(si) = 1

}
and ∆ = ×Ni=1∆

i is the polyhedron of mixed-strategy combinations σ =
(σ1, ..., σn) in the game. We identify each pure strategy si ∈ Si with the
corresponding unit vector asi ∈ ∆i. When J ⊂ N , we set ∆J = ×j∈J∆j with
σ−J := (σk)k/∈J ∈ ∆J and as usual ∆−i := ∆N\{i}. We extend πi to ∆ in
the usual way: πi(σi, σ−i) =

∑
si∈Si

∑
s−i∈S−i σi(si)σ−i(s−i)πi(si, s−i) with

σ−i ∈ ∆−i. The mapping πJ : SJ → RJ gives the payoffs of pure strategy
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combinations of players j ∈ J , and its extension πJ : ∆J → RJ is defined in
the obvious manner. The support of some mixed strategy σi ∈ ∆i is denoted
by supp(σi) =

{
si ∈ Si : σi(si) > 0

}
.

Last, for each strategy combination σ ∈ ∆,

BRi(σ) =
{
σi ∈ ∆i : πi(σi, σ−i) ≥ πi(σ

′i, σ−i) ∀σ
′i ∈ ∆i

}
,

denotes the mixed best replies of player i ∈ N. In the rest of the paper we
always consider the mixed-strategy extension of G.

3.2 Self-projective Kripke frames

In game theory, the idea that players can shape their beliefs by putting them-
selves “into the shoes of others” is not new; Luce and Raiffa [28, p.306] were
among the earliest to suggest such a process. The Kripke structure defined
below aims at giving a formal content to the idea that a player in a game can
mentally simulate the choices of the other players by “self-projecting” himself
into their decision problems.
Given a game G =

〈
S1, ..., Sn;π1, ..., πn

〉
, a self-projective frame for player

i in G is the structure, F iG =
〈
W,W,Ri

〉
, where W =

{
wi1 , wi2 , ..., win

}
rep-

resents the (non-empty) set of the n atomic (informational) perspectives
corresponding to the n decision problems that can be considered by player i
in the game G. Each wij represents player i when he is mentally considering
the decision problem—the perspective—of player j.
As already stressed, we study a structure encompassing all the Kripke mod-
els that a player could possibly adopt in a game. So, we do not impose
any requirement on W i.e. player i may consider some “non-partitional” per-
spectives and W can be any class of m (nonempty) subsets of W whose
union is W.22 Thus, if player i has a frame F iG with m different perspec-
tives, then M = {Sl ⊆ N : l = 1, ...,m,

⋃m
l=1 Sl = N} represents the induced

class of subsets of N . It is therefore natural to refer to each non-singleton cell
wiJ :=

{
wij : j ∈ J ⊆M

}
∈ W as the meta-perspective J of player i in

G. Each cell wiJ ∈ W must be thought of as the viewpoint of player i when
he is simultaneously treating,(all) the decision problem(s) of player(s) j ∈ J
independently so that they are mutually rational. Hereafter, the generic term
“perspective” will be employed for an atomic or meta-perspective.23 The
above abstract structure captures all the possible combinations of viewpoints
that can be taken by a player in a game. Given a particular class M , we refer
to the resulting structure F iG as a M -frame. As a particular case, a M -frame
where M = {i,−i} formalizes the above Luce and Raiffa’s suggestion.

22 That M -frames must necessarily verify that
⋃m

l=1 Sl = N for each player i is obvious
for otherwise, some players’ decision problem(s) are not even considered by i.
23 Note however that in a pure rationalistic world it would be more natural to confine the

analysis to partitions of W so as to exclude frames wherein players hold some redundant
(overlapping) perspectives.
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The interpretation of a M -frame for a player i is straightforward: This for-
malizes the self-referential mentalizing of player i. That is, the fact that a
player might imagine himself determining what constitutes a rational strategy
when adopting the others’ decision problems in order to form some initially
nonexistent beliefs in a consistent way, with itself. So a M -frame has a purely
self-referential interpretation, which captures the aforementioned Luce and
Raiffa’s idea of introspection of a player in a game. Finally, note the implica-
tions of such a self-referential nature of a M -frame. When a (rational) player
i /∈ J adopts a M -frame with a perspective wiJ , he continues to be a rational
player. This means that player i has to be rational in the role of other players
J . This entails that the formation of the beliefs of player i at wiJ , coincides
with the determination of a rational strategy profile σJ , whose all components
will be mutually rational for players J or equivalently, for player i when he
adopts the decision problems of players J .
As usual, the“knowledge”of player i at perspective wiJ —we shall give a formal
definition of this term in due course—is represented by the binary accessibility
relation, RiJ ∈ Ri over the cells ofW i.e. RiJ ⊆ W×W. Each RiJ is assumed
to be a reflexive and antisymmetric accessibility relation.24 Note that the an-
tisymmetric property is consistent with the notion of perspective: If player i
is in perspective wiJ , then he cannot RiJ -access wiJ from another perspec-
tive wiK 6= wiJ . 25 Hereafter, each structure

〈
wiJ , RiJ

〉
, with wiJ ∈ W is

referred to as the J−frame of player i. Given the importance of the notion
of a self-projective frame in this paper, we record this notion in the following
definition.

Definition 1 We say that F iG =
〈
W,Ri

〉
is the M -self-projective frame of

player i in game G if each J-frame of i for J ∈M ,
〈
wiJ , RiJ

〉
, with wiJ ∈ W

is such that RiJ ∈ Ri is a reflexive and antisymmetric binary accessibility
relation over W.

We refer to the self-projective M -frame F iG =
〈
W,Ri

〉
with W =

{
wii , wi−i

}
as the canonical self-projective frame of player i. Hereafter, this frame
will be thought of as whole class of M -frames with two perspectives i.e. the
equivalence class of all frames with |M | = 2 such that S1

⋃
S2 = N.

4 The axiom of “no-supplementary data” and its logical-relational
semantics

This section aims at giving a formal content to the idea that a player has no
other information than the one contained in the payoff matrix of a game. i.e.
the axiom of no-supplementary data holds. With this notion in mind will
emerge the notion of relational truth-values attached to the several rational
alternatives of a rational player in a game.

24 A relation R ⊆ S × S on a set S is reflexive if ∀x ∈ S, xRx and antisymmetric in that
xRy and yRx imply x = y.
25 This is only a consistency requirement. It does not play a role in any of our results.
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4.1 The axiom of non-supplementary data

Given a game G, the decision problems solved by player i at perspective
wiJ ∈ W pertain to “rationalistic” statements on what constitutes a ratio-
nal strategy for each player j ∈ J in G. Hence, for each player j ∈ N , we
define a set of statements, Aj . Each element Aj ∈ Aj represents a statement
like Aj := “strategy σj is optimal in G”, without any reference to the strategies
of players k 6= j.26 We shall refer to statements Aj as the atomic statements
of player j in G. In the sequel, we set A = A1

⋃
A2, ...,

⋃
An. We shall use the

usual metalinguistic abbreviation: A ∧A′ for ¬(¬A ∨ ¬A′) with A,A
′ ∈ A.

[Axiom of no-supplementary data] Let Aj :=“strategy σj is rational for j
in G” where σj is neither a strongly dominant action, nor a never best reply.
We say that player i has no no-supplementary data if Aj is indeterminate
in the sense of the Lukasiewicz’s three value-logic i.e. if w(Aj) = i /∈ {0, 1}
where i denotes the absence of a truth value 0 or 1 (see Table 3 below).

The absence of a truth-value i formalizes the fact that the matrix game is
maximally informative: No other extra information added to the game would
induce a sharp-truth value to statement Aj . As illustrated in the Gedankenex-
periment, the axiom of no supplementary entails that the truth-value at one
perspective of a player will depend on the truth-value at another perspective
i.e. the truth-values have only a relational meaning.

4.2 Kripke relational valuations

A self-projective frame is a Kripke modal structure [29, 30] formalizing the
self-referential reasoning carried out by a player in a game. More specifically,
in such structures, player i simultaneously and independently handles the de-
cision problems of players j 6= i by considering the viewpoints of those players
with formulae A−i like “strategies σj, with j 6= i are mutually rational between
players j 6= i”, without any reference to strategy σi ∈ ∆i. Under the axiom
of no-supplementary data, we need to extend the usual notion of an abso-
lute valuation w by incorporating the possibility that its truth-values are
under-determinate i.e. w : Aj → {0, i, 1}. As a consequence, we are led to
formalize the idea that the truth-value of a statement made at one perspective
depends upon the the other truth-values assigned at the other perspectives.
The upshot is thus that instead of having a usual “absolute” valuation map-
ping, that assigns a sharp truth-value to any given statement, we have some
contextual relational valuations. The term “relational” captures the fact the
sharp-truth values at one perspective will depend on the truth-value assigned
by the player at his other perspectives. Contextuality refers to the fact that the
valuation mappings depend on the particular M -frame used by the player i.e.
on the number and the particular class of perspectivesW adopted by a player.

26 We use the term “optimal” and “rational” interchangeably.
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Table 3 [Lukasiewicz’ three-valued semantics]

∨ 1 i 0
1 1 1 1
i 1 i i

0 1 i 0

∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

→L 1 i 0
1 1 i 0
i 1 1 i

0 1 1 1

Thereafter, given a M -self-projective frame, we denote the set of formulae AL
considered at (meta)-perspective wiL ∈ W by A(wiL) and a statement AL by
A(wiL). Given a pair of (ordered) distinct perspectives (wiJ , wiK ) ∈ W ×W,

we write, A(wiJ , wiK ) := (A(w))w∈W\{wiJ ,wiK} ∈ ×w∈W\{wiJ ,wiK}A(w).

Definition 2 Let F iG =
〈
W,Ri

〉
be a self-projective frame for player i with

(wiJ , wiK ) a pair of (ordered) distinct perspective. A A(wiJ , wiK )−relational
valuation is a mapping,

VwiJ ,wiK (·, ·;A(wiJ , wiK )) : A(wiJ )× A(wiK )→ {0, i, 1} .

Relational valuations have a clear-cut interpretation. For example, in the case
of a canonical frame, Vwii ,wi−i (Aσ

i

, Aσ
−i

) gives the truth-value of statement

Aσ
i

when i considers his own decision problem at wii , given the truth-value
of statement Aσ

−i

that has been determined (or not) at wi−i , when he puts
himself into “the shoes of the others”.

Definition 3 Let Vr denote the class of all relational valuations. Given a self-
projective frame F iG for player i in G, we call a self-projective model for
player i the structure, Mi

G =
〈
F iG,Vr

〉
. In the special case where F iG is the

canonical frame, we say that Mi
G is the canonical self-projective model

of player i in G.

Thereafter we say that a statement A(wiJ ) ∈ A(wiJ ) is determined as being

A−J -relatively true in Mi
G at wiJ if VwiJ ,wiL (AJ , AL;A(wiJ , wiL)) = 1

holds for every (wiJ , wiL) ∈ W ×W with J 6= L.

4.3 Self-knowledge operators

The above self-projective Kripke model structure clearly calls for the definition
of a self-modal logic. Consider a M -self-projective frame F iG =

〈
W,Ri

〉
, or the

canonical self-referential frame of player i in a game G. Given the accessibility
relation RiJ , the possibility correspondence of player i in perspective wiJ is
defined as

PiJ (wiJ ) =
{
w
′
∈ W : wiJRiJw

′
}
.27

27 Conversely, given a possibility correspondence PiJ , the associated accessibility relation

RiJ is obtained as follows: ∀w′ ∈ W, wiJRiJw
′

iff w
′ ∈ PiJ (wiJ ).
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Given a frame F iG, we add a function, f : A→ 2W that associates with every
atomic statement A ∈ A, the set of perspectives where A is true. For every

formula F ∈ F, the truth set of F in Mi
G, denoted by ‖F‖M

i
G is defined

recursively as follows:

(1) If F = (A) where A is an atomic statement, then ‖A‖M
i
G = f(A);

(2) If ¬‖A‖M
i
G = ‖¬A‖M

i
G ;

(3) If
∥∥∥A ∨A′∥∥∥Mi

G

= ‖A‖M
i
G
⋃∥∥∥A′∥∥∥Mi

G

;

(4)
∥∥�iJA∥∥Mi

G =
{
w ∈ W : PiJ (w) ⊆ ‖A‖M

i
G

}
.

The intended interpretation of �iJA is“player i knows A at perspective wiJ .”If

w ∈ ‖F‖M
i
G we say that F is true inMi

G at perspective w. Thus, according to
(4), player i in perspective wiJ knows F if and only if F is true at every other
perspective(s) that i considers at wiJ . If E is the truth set of some formula

F ( that is E = ‖F‖M
i
G), and K : 2W → 2W is the knowledge operator,

then KiJE is the truth set of the formula �iJE, that is KiJE :=
∥∥�iJE∥∥Mi

G .
Henceforth, we say that player i in perspective wiJ knows event E ⊆ W (or
more precisely, the statement represented by event E) if wiJ ∈ KiJE. For
every event E,

K⊗J∈M iJE :=
⋂
J∈M

KiJE,

is the event that player i has self-knowledge of event E in his M -frame,
Mi

G. Thus an event E is (self)-known by player i = ⊗J∈M iJ if player i knows
E in each of his perspectives, wiJ ∈ W. We are now in a position to state
the equivalence result illustrated in the Gedankenexperiment: Given a game
G satisfying the axiom of no-supplementary data, player i assigns a (rela-
tional) sharp-truth value 1 to a rational strategy σi if and only if he assigns
a (relational) sharp-truth value 1 to a Nash equilibrium σ = (σ1, ..., σi, ..., σn)
of G. Formally:
Lemma 0 Consider a game G where the axiom of no-supplementary data

holds. Then, player i can determine σi as being a rational choice in G if
and only if i determines profile σ−i as being rational for players j 6= i with
(σi, σ−i) a Nash equilibrium of G in a frame, F iG, with at least two perspectives
i.e. |M | ≥ 2.
Proof. See the Appendix.
In the sequel we will use this result as the starting point of our derivation of
the quantum nature of mixed Nash equilibrium.

5 Algebraic representation of a self-projective model

Our aim in this section is to provide the preliminary definitions in order to
formally establish the isomorphism between the knowledge structure of a ra-
tional player as characterized in Theorem 1, and the primitives of the QM
formalism.
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5.1 Faithful representation of the (self)-knowledge structure of a player

We shall prove the main Theorem of this paper by characterizing the graph
representation of the Kripke model of Mi

G of a player i having determined
a rational strategy i.e. a player who has “computed” a Nash equilibrium in
his mind (see Theorem 1). More specifically, we shall observe that the frame
F iG =

〈
W,ROi

〉
induced in an equilibrium intrinsic state of i can be identified

by a finite weighted directed graph Γ iG. Formally, a weighted directed self-
projective graph for Mi

G is a tuple Γ iG = 〈W, E , Ω〉 where W corresponds
now to the (nonempty) set of vertices of the graph. E consists of all ordered
pairs of elements E = W × W. For each ordered pair (w,w

′
) ∈ E , ew,w′ =

(w,w
′
) ∈ E , is called an ordered edge with source w and target w

′
. To

every such edge we assign a weight, ω(w,w′ ) and Ω denotes the set of all

weights of Γ iG. When dealing with perspectives W of i, ωeJK
(si) denotes the

value of weight ωeJK
for edge eJK := (wiJ , wiK ) ∈ E for pure strategy si.

g = {ωeJK
: J 6= K, eJK ∈ E} ⊂ Ω represents the family of weights ωeJK

in Γ iG
where the source wiJ is different from the target wiK . The graph Γ iG represents
the knowledge (or mental) structure of a player deliberating about his own
strategies and beliefs. So, it should be clear that the directed weight vectors
of this graph will provide a purely algebraic representation of this epistemic
(self)-interactive structure. This is the gist of the following definition.

Definition 4 Fix a self-projective M -Krikpean model for player i in G,Mi
G,

where σi has been determined as being true at a wiL ∈ W. Let (Ri,∧) be a
set closed under a binary operation ∧ generated by Ri := ∪L∈MRiL in Mi

G,
and (g,∧) be a set closed under a binary operation ∧ generated by a family of
weights g over a field K = R or C. We say that a family of weights g ⊂ Ω of
Γ iG is a faithful representation of the knowledge structure (Ri,∧) of player
i in Γ iG if
1. ∀wiL ∈ W, ω(wiL ,wiL ) = σi ∈ Ω \ g;

2. there is an isomorphism, h : (Ri,∧) → (g,∧) with a pair (wiJ , wiK ) ∈
E , J 6= K, such that

h((wiJRiwiK ) ∧ (wiKRiwiJ ))(si) = ω(wiJ ,wiJ )(s
i),∀si.

Briefly stated, a faithful representation of the knowledge structure of player
i aims at constructing a one-to-one mapping h of the structure of knowledge
(Ri,∧) of i—as determined in Theorem 1—onto the algebraic structure (g,∧)
of the induced weighted directed graph, Γ iG preserving all the algebraic rela-
tions (the inverse function h−1 behaves likewise) of (g,∧). Alternatively put,
in a faithful representation, the structure of (g,∧) encodes the structure of
knowledge of a player determining a rational strategy from a purely algebraic
viewpoint. For obvious reasons, we shall refer to elements,

∣∣ωe−i,i

〉
∧
〈
ωe−i,i

∣∣
as the global equilibrium intrinsic state of player i and ωe−i,i

as his local
equilibrium intrinsic state.
As shown in Theorem 1, a faithful representation of the knowledge of player i
is necessary if one wants to have a genuine empirical model.
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5.2 Observable epistemic states and empirical self-projective model

The Born rule establishes a link between the state of a system prior a measure-
ment, and the state of the system after the measurement. So we also need to
have an epistemic characterization of the state of mind of a player when he is
making a definite choice during an experiment. The objective of this section is
therefore to extend our definition of a self-projective model in order to analyze
the observable implications of the players without any supplementary data
in an experiment, via our derivation of the Born rule. To do so, we need to
append to the set of mental perspectives, a set SOi of observable epistemic
states or observable mental states. More specifically, SOi will describe the
real state of mind of player i during his choice of a rational pure strategy, si,
in the support of his determined rational mixed strategy σi, in an experiment.
Thereafter, each element ws

i ∈ SOi is supposed to be in one-to-one correspon-
dence with a strategy si ∈ Si and it represents the epistemic state of player i
fixing his mind on the single action si ∈ Si.

Definition 5 LetMi
G be a self-projective model for i in G with a frame F iG.

The empirical self-projective model for i in G is a self-projective model
denoted, MiO

G , whose frame has been extended i.e. F iOG =
〈
Si,RiO

〉
where

Si =W
⋃
SOi such that Ri0J ∈ RiO is RiJ extended to Si × Si.

The following axiom gives a formal content to the fact that a player in a
game “fixes his mind” on a particular pure action (in the support of his mixed
strategy). It says that, given his M -frame, the choice si ∈ Si of a player i can

be observed at ws
i ∈ SOi if and only if each perspective of player i knows this

choice i.e. in an experiment, the player mentally fixes his mind on exactly the
same pure action at every of his perspectives.
[Indivisibility] Let As

i

be the atomic statement in Ai “pure strategy si is

optimal in G”. The statement As
i

is observed at ws
i ∈ SOi if and only if

ws
i ∈ K⊗J∈M iJE

si .
In other words, player i makes a definite choice si if and only if he has self-
knowledge that “si is a rational action” in each of his perspectives. Note that
this axiom will automatically imply the “wave-particle duality” principle of
QM; when player i is asked to make a definite choice, he has to be perfectly
correlated on the choice of a pure action across all his different perspectives,
while the indifference condition requires that he knows that all the pure actions
in the support of his mixed strategy are simultaneously rational. The perfect
correlation of the player with himself is therefore equivalent to the“wave packet
collapse” postulate of QM.
The following definition relates the epistemic or mental state of a player with
the probability that a pure action occurs in an experiment.

Definition 6 Let L
(
SOi ,∨,∧,∼

)
be the lattice induced by SOi . Fix an em-

pirical self-projective Krikpean model for player i in G, MiO
G , where σi has

been determined as being true. A probability measure

ei : L
(
SOi ,∨,∧,∼

)
→ [0, 1],



22 Yohan Pelosse

satisfying ei(ws
i

) = σi(si), ∀si ∈ Si, is called the empirical distribution for
the set of strategies Si of player i.

The intuition behind the definition of an empirical distribution is simple. It
says that if a player takes a particular pure action (in the support of his
mixed strategy), this implies that his state of mind is fixed on this particular
action during the measurement. In short, an empirical distribution translates
the observable mental states of a player to its probability of occurrence in an
experiment.
In QM, it is standard to study the logic of verifiable propositions of a physical
system through the algebra of the so-called “quantum logic” introduced by
Birkhoff and von Neumann [31]. In fact, it is well-known that an essential
feature of the structure of such elementary events called “yes no experiments”
is to generate a non-Boolean lattice (also called non-Boolean algebra) i.e. an
orthocomplemented lattice which is non-distributive. Lemma 1 below shows
that the same phenomenon occurs in the classical game model: The lattice
of observable mental states of a player, L

(
SOi ,∨,∧,∼

)
, exhibits the same

non-classical properties as the “yes no experiments” of the logic of verifiable
propositions of a physical system.

Lemma 1 Fix an empirical self-projective Krikpean model for player i in
G, MiO

G , where (σi, σ−i) has been determined as being true. Then, SOi ={
Ki(E

si ∧ Eσ−i

) : si ∈ supp(σi)
}

and L
(
SOi ,∨,∧,∼

)
is an orthocomplemented

non-distributive lattice.

Proof. See the Appendix.

5.3 Equivalence of the Axiom of Indivisibility and the projection postulate of
QM

As already hinted, the “wave packet collapse” or “projection postulate” of QM
arises automatically in the classical game model. Here are the formal details of
the proof. Given the unit vector asi ∈ ∆i, Πasi

:= |asi〉 〈asi | denotes the cor-
responding orthogonal projector expressed in terms of the Dirac notation. As
in QM, (see e.g. Birkhoff and von Neumann [31]), game-theoretic statements

like “upon measurement player i chooses a strategy in subset Ŝi ⊆ Si”, can be
represented by particular linear subspace of a Hilbert space H (or projection
operators Π).28

Lemma 2 Let P(H) be the lattice of all orthogonal projections (or closed
subspaces) on H generated by the set

{
Πasi

}
si∈Si . There exists a probabil-

ity measure µ : P(H)→ [0, 1] with µ(Πasi ) = f(Im(Πasi )) such that ei(ws
i

) =

µ(Πasi ), ∀wsi ∈ SOi .
28 In QM, Birkhoff and von Neumann [31], show that if one introduces the concept of

“operational proposition”and its representation in standard QM by an orthogonal projection
operator of the Hilbert space, then the set of “experimental propositions” does not form a
Boolean algebra, as it the case for the set of propositions of classical logic.
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Proof. See the Appendix.
Hence, the projection postulate of QM follows immediately from the Indivis-
ibility of a player (recall that in QM a quantum system is also an indivisible
entity in the physical sense), which implies that there is a perfect “coordina-
tion” on the pure strategy si ∈supp(σi) amongst all the perspectives of player
i. Intuitively, player i = ⊗mJ iJ makes a choice si ∈ Si if and only if every
perspective, wiK ,K = 1, ...,m, of player i has the same projection, Πasi

. The
upshot is thus that this perfect correlation implies that the probability that
the unit vector asi ∈ ∆i is actually chosen by player i corresponds to the prob-
ability of the orthogonal projection Πasi

of any vector (or ω†eKJ
when ωeKJ

is
a co-vector) ωeKJ

∈ g, eKJ ∈ E onto the one-dimensional subspace spanned by
asi i.e. Πasi

ωeKJ
,K 6= J.

6 Main result: Isomorphism between a pure quantum state and a
self-projective model

We are now in a position to build the isomorphism between the structure of
the binary relations of a self-projective graph and its family of weights and
the QM state-space. Our main result below provides a link between the self-
knowledge structure of a player deliberating about a rational choice and the
algebraic structure of quantum mechanics.
First some notations and definitions. For our purposes, it will be sufficient
to focus on finite-dimensional vector spaces Cn from linear algebra. These
spaces are Hilbert spaces in the usual inner product (w, v) =

∑n
k=1 wkvk. A

peculiarity of the linear algebra used in QM is the so-called Dirac notation
for vectors [32]. In this notation, the symbols | v〉 and 〈v| denote the vectors
in and the linear forms on Hilbert space, respectively. In QM, 〈v| is called a
“bra” vector and | v〉 a “ket”. Hence, if v := | v〉 is a vector in Hilbert space H
over a real or complex field K, then | v〉 is just another notation for v, and 〈v|
means the mapping u 7→ 〈v |u 〉, a linear form H→ K (where K = R or K = C)
defined using the Euclidean or Hermitian inner product 〈· | ·〉 on H. Given a
vector v, it is also convenient to consider 〈v| as a row vector v† in the dual
space of H, denoted H∗ and the superscript † means the usual conjugate-linear
operation: 〈v|† = | v〉, and z denotes the complex conjugate of z ∈ C. Finally,
a ray of H is a linear subspace consisting of all kets of the form α |ω〉, where
α is any complex number.
In the next result we exclude “exceptional” games having equilibrium strategy
profiles (σi)i∈N wherein supp(σi) is contained in the set of pure equilibrium
strategies of player i. We comment on this pathological situation in the next
section (see Corollary 1). We also exclude games where Nash equilibria exist
in strongly dominant strategies for some players. Hereafter we say that Mi

G

is the canonical self-projective model if it is a model with the set of
perspectives W =

{
wii , wi−i

}
(modulo the equivalence relation on M -frames

with |M | = 2).
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Theorem 1 Fix a game G =
〈
S1, ..., Sn;π1, ..., πn

〉
and assume the axiom of

no-supplementary data holds with (σi)i∈N a Nash equilibrium of G. Fix a
self-projective model for player i in G, MiO

G , where σi has been determined
as being a rational choice. If player i has more than two pure strategies i.e.
mi ≥ 3, the unique self-projective model of player i which admits an empirical
distribution is the canonical model (modulo the equivalence relation on M -self-
projective models with |M | = 2) where ei = ω(w′ ,w′ ) = σi ∈ Ω \ g, for w

′
=

wei,i , we−i,−i
, is derived from a faithful representation of player i’s knowledge

in Γ iG such that:
(1) the set (g,∧) is generated by the set

g =
{∣∣ωe−i,i

〉
, ωei,−i

:=
〈
ωe−i,i

∣∣}
over the complex field K = C, where

∣∣ωe−i,i

〉
is called a “wave function”;

(2) the set of all possible equilibrium local intrinsic states of player i like,
ω(wi−i ,wii ), (of a faithful representation g ⊂ Ω of Γ iG) forms a unit ray of Cmi ;

(3) the equilibrium global intrinsic state of player i
∣∣ωe−i,i

〉
∧
〈
ωe−i,i

∣∣ =
∣∣ωe−i,i

〉 〈
ωe−i,i

∣∣
is a projection operator;

(4) the empirical distribution is given by the Born rule i.e. ei(si) =
∣∣ω(w,w†)(s

i)
∣∣2 ,∀si.

Proof. See the Appendix
So, Theorem 1 provides a derivation of the complex Hilbert state-space struc-
ture of QM from the knowledge or mental structure of a rational player in the
classical game model. A sizable literature has sought to apply the quantum
formalism to explain various human decision processes. Theorem 1 provides
the converse direction. The main message of this result is thus that the basic
algebraic structure of QM describes the mental state-space structure of a ra-
tional player without any supplementary data. This theorem also relates the
vast literature on quantum and modal logic with classical game theory in a
clean way. This amounts to the construction of an isomorphism between the
only possible graph structure of a rational player and the QM formalism. In
fact, as proved in the Appendix, the mere existence of an empirical distribu-
tion requires a faithful representation of the self-projective graph: There exists
an empirical distribution for a self-projective model of a player if and only if
the representation of its graph is isomorphic to the QM formalism, which is
only possible for the canonical model with two perspectives. The underlying
quantum-mechanical structure of a game therefore arises from the epistemic
states of a player without any supplementary data deliberating about his ra-
tional actions. Formally, this derivation follows from two observations:
(i) The determination of a rational strategy, together with the existence of an
empirical self-projective model require exactly two vertices (perspectives) and;
(ii) The relational structure of such two-vertices weighted directed graphs is
captured via the algebraic duality between the strategy space of i at wii and
the belief space of wi−i .
Property (ii) has already been discussed above. So, let us consider (i). The
existence of a well-defined empirical model constraints the number of vertices
of the self-projective graph i.e. the player’s perspectives. As shown in Theorem



The Intrinsic Quantum Nature of Nash Equilibrium Mixtures 25

1, the determination of a rational behavior requires at least two perspectives.
This yields a lower bound. In addition, as demonstrated in the Appendix,
there cannot exist a well-defined empirical probability measure if the player
uses more than two perspectives during his introspection. This gives an upper
bound. From this we conclude that a player must have exactly two perspec-
tives. Hence, the graph will only have two directed edges representing the
binary relations Rii and Ri−i .
Also, notice that the axiom of indivisibility (the perfect correlation of the
player across his perspectives) ensures that the weights on the diagonal of the
projector form a well-defined probability measure corresponding to the deter-
mined rational mixed strategy σi. That is, the operator representing the state
of mind of a player must have a trace 1. Together with the axiom of indepen-
dence, this implies that a faithful algebraic representation of the self-projective
graph is given by a pair of dual unit weight vectors.
To recap, the sketch of the proof of Theorem 1 is as follows.
In a first step, we construct an isomorphism between the weighted directed
graph Γ iG of the canonical model of a player i having determined a ratio-
nal strategy. Theorem 1 implies that the accessibility relations Rii , Ri−i , (the
knowledge structure of player i) of this model verify wiiRiiwi−i and wi−iRi−iwii .
Hence, the graph representation of the canonical model, Γ iG, must have two
directed opposite edges, ei,−i and e−i,i if one wants to establish a one-to-
one relationship between the two structures. As proved in the Appendix, the
knowledge structure between (Ri,∧) and (g,∧) is preserved if and only if the
properties (2)-(4) of Theorem 1 are fulfilled.
The second step of the proof consists in showing that any non-canonical self-
projective model cannot induce a proper empirical distribution in an experi-
ment, which will single out the canonical model as the only possible one. We
do so by noting that a faithful representation of such graphs would lead to a
violation of Gleason’s Theorem [33].

6.1 Interpretation of the “Nash equilibrium mixtures”

The construction of the isomorphism of Theorem 1 already indicates that Nash
equilibrium mixtures must have an interpretation in terms of quantum super-
positions. However, the notion of a “mixture” as an expression of a classical
ignorance also exists in quantum mechanics. We therefore need to complete
the analysis in order to pinpoint the exact nature of the probabilities arising
in mixed strategies. We start with some preliminary definitions. In the previ-
ous section, we have shown that the notion of orthogonal projector allows to
describe the equilibrium state of mind of a player before his choice. In gen-
eral, however, as in QM, the widely used density matrices turn out to the
natural tools to describe the intrinsic state(s) of a player. First some general
definitions. Let H be a Hilbert space, {an}n∈N an orthonormal basis. We de-
fine the trace of an operator ρ by tr(ρ) =

∑
n∈N 〈an | ρan〉 . Hereafter, we set

tr(ρ) = 1. If further ρ is positive semi-definite, then ρ is said to be a den-
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sity matrix (operator). The set of density matrices on H is denoted by ρ(H).
The set of density matrices on the complex unit sphere S in Hilbert space H
corresponds to the convex hull of {|ω〉 〈ω| : |ω〉 ∈ S} .

Definition 7 Let {ω} be a family of unit vectors, {pω} a family of weights
forming a non degenerate probability distribution over the set of orthogo-
nal projectors, {Πω}. A density operator, ρM , is a statistical mixture or
a mixed state if ρM =

∑
ω pωΠω. A pure state is a density matrix where

{pω} forms a degenerate probability distribution i.e. ρM = Πω.

Theorem 1 shows that the pure equilibrium intrinsic states of a players are
the density matrices with a single term i.e. ρ = Πω. By contrast, the mixed
intrinsic state of a player is represented by a sum of such projectors upon
pure intrinsic states ω with associated statistical weights 0 ≤ pω ≤ 1, with∑
ω pω = 1.29 In order to drive the wedge between these different situations—

and in line with QM—we say that the equilibrium intrinsic state of a player
has the ignorance interpretation if and only if the equilibrium intrinsic
state of player i is really in one of the pure state Πω but the observer does not
know which one. In this interpretation, the probabilities {pω} are subjective
and merely reflect the degree of ignorance of the observer. In fact, it follows
from Theorem 1 that the interpretation of mixed-strategy Nash equilibria as
an expression of the ignorance of an outside observer (or player) is in general
impossible.30

Corollary 1 Fix a game G =
〈
S1, ..., Sn;π1, ..., πn

〉
with a generic mixed

Nash equilibrium strategy profile σ = (σ1, ..., σi, ..., σn). If the empirical distri-
bution is, ei = σi, then the global equilibrium intrinsic state of player i is pure
as it forms a coherent superposition of the pure actions si ∈ supp(σi).

Proof. See the Appendix.
This result states that if one takes the formal definition of the classical game
model, then the resulting axiom of no-supplementary data entails that we
can no longer interpret mixed strategies as the reflect of the ignorance of some
outside observer (or the other players). There is a simple reason for that: Such
an “epistemic interpretation” of probabilities would only be valid if the player
had fixed his mind on a particular pure action of the support before a mea-
surement. However, Corollary 1 shows that prior to making a definite choice
in an experiment, the mental state of a player is described by a wave function,
whose interference terms imply that the player has not yet fixed his mind on
a particular pure action. Again, this is just the modal characterization of the
usual “indifference condition”. The upshot is thus that probabilities cannot be

29 It is tempting to interpret the weights pω as probabilities, so that pω is the probability
that player i is in the equilibrium pure local intrinsic state ω. However, we should be cautious
here. It is indeed well-known that, in general, a density matrix admits uncountably many
decompositions into pure states.
30 Note that it is still possible to interpret σi as an expression of the ignorance of an outside

observer (or player) in the particular case where the whole support of a mixed strategy of
player i, σi, is included in the set of pure Nash strategy equilibria of player i.
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construed as a lack of knowledge that an outside observer (or another player)
would hold about which pure action of the support will be played in an experi-
ment. As in QM, the probabilities arising in a Nash equilibrium must therefore
be seen as an expression of an “irreducible” randomness and probabilities aris-
ing in equilibrium must be construed as “tendencies” or “dispositions” of the
players’ states of mind. Indeed, as in QM, these probabilities have an “ontolog-
ical status”—a player has not singled out a particular pure action in his mind
prior he is asked to do so—rather than reflecting the ignorance of an outside
observer—a player has already fixed his mind on a particular action, but the
other players cannot read in his mind.31 Also, note that these probabilities
reflect the fact that a pure choice is a real “future contingent” statement (an
unsettled event), as long as a player has not settled his mind on a particular
pure action: prior an experiment, the definite pure choice of the player is not
an actual state of affair, in the same way as the mixed strategy was initially
nonexistent in the mind of the player.
What about the interpretation of a mixed strategy as an explicit randomiza-
tion? This interpretation can also be ruled out, since in this view, the actual
choice is made by a “random device”, which is not part of the description of
the game model. 32 As an aside, note that the addition of such an artificial
device would not account for the behavior of the player, but of the device.
Alternatively put, we can also say that the description of the mental state
of a player as given by the QM formalism is maximally informative, in the
sense that the state of knowledge of the player in on a par with the state of
knowledge of an ideal observer. We complete this section by stating a result
which relates the general case of density matrices with the issue of multiple
Nash equilibria in games.

Corollary 2 Fix a game G =
〈
S1, ..., Sn;π1, ..., πn

〉
with a generic set of

mixed Nash equilibria strategy profiles, {σω} . Suppose player i has determined
one of these Nash equilibria in the canonical self-projective model. The empiri-
cal distribution is, ei =

∑
ω pωσ

i
ω, if and only if the global equilibrium intrinsic

state of player i, ρM =
∑
ω pωΠω, has the ignorance interpretation.

Proof. See the Appendix
This result states that we can partially recover a usual interpretation of prob-
abilities in games by embedding the existence of multiple Nash equilibria into
the analysis. By Theorem 1, this amounts to a player determining several ra-
tional strategies i.e. Nash equilibria—with a certain probability distribution
{pω} . Hence, in this case, the outside observer is uncertain in the usual sense
about which pure quantum state |w〉 i.e. Nash equilibrium, is really occurring
in the mind of the player. The intuition for the proof of this result is then
straightforward: Unlike in the case of a mixed Nash equilibrium, a player is no

31 This “propensity interpretation” of probabilities is defended by the so-called ontic ap-
proaches.
32 Note also that the“randomization interpretation”, would bring us back to the“epistemic”

interpretation, since in this case, the device would just be a surrogate of the player choosing
a pure action prior an experiment.
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longer indifferent between the several multiple Nash equilibria, which implies
that a player’s state of mind cannot be described as a quantum superposition
over the various equilibria of the game.

6.2 Mixed strategies as ontic-epistemic states of mind

Corollary 1 indicates that the nature of the probabilities appearing in games
take a much more delicate interpretation for they appear to take an ontic and
epistemic interpretation. To see this point more clearly, there is an instructive
visual story inspired by the previous game-theoretic Gedankenexperiment.
Think of the perspectives of Ann, AA and AB⊗C , as being two distinct persons.
Imagine that the atomic perspective of Ann AA has one head and the meta-
perspective AB⊗C is endowed of two heads (this is a meta-perspective made
up of two persons). Suppose that the two perspectives of Ann are sitting side
by side. We assume that each perspective of Ann is blindfold. There is an
urn containing three hats of different colors.33 Each perspective of Ann wears
the head(s) of the other by drawing a hat out of the urn. Perspective AA
wears the heads of AB⊗C by drawing two hats out of the urn, while AB⊗C
draws (simultaneously) one hat to wear the head of AA (still blindfold). In this
story, all statements like “The perspective of Ann AA wears a white hat” are
indeterminate before the drawing of the hats. This is the ontological part of
the story. The epistemic part of the story only begins once the hats have been
drawn out of the urn. Since each perspective of Ann draws a hat blindfold,
she cannot (trivially) infer the color of her hat(s) by watching the head of
the other. Similarly, in the process of determination of an equilibrium, Ann
herself does not know what will be her definite choice of a pure strategy in an
experiment.34 Thus, an outside observer reading in the mind of Ann, must be
in the same epistemic state on her choice, than Ann herself. Thus, we cannot
interpret the probabilities as measures of ignorance of an outside observer of
the actual unknown values of the player’s pure strategies.
The bottom line of this story is thus that in a mixed Nash equilibrium, the
state of mind of a player is a state of knowledge. This state is thus epistemic in
nature since it is only expressible in terms of the player’s knowledge. However,
this epistemic state is also ontic i.e. it is a state of reality, because it provides
the actual complete specification of all the properties of the player. Hence, the
critical difference between the usual definition of an epistemic state is that an
equilibrium mixture does not represent the relative likelihood that an outside
observer (or an another player) would assign to the choice of a player’s pure
strategy. Instead, the epistemic state of the observer coincides exactly with
the actual intrinsic state of the player.

33 The story is inspired from the well-known “three-hat puzzle”.
34 Formally, recall that this comes from the existence of off-diagonal terms.
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7 Concluding remarks

The difficulty of interpretation of mixed strategies is a well-known issue in
classical game theory (see e.g. Osborne and Rubinstein, [26]). To the best of
our knowledge, Pietarinen [20, 21] is the first to have studied the similarities
between the logic of games of imperfect information and quantum theory. In
this paper we have proven that the existence of such a connection is funda-
mentally related to the notion of mixed Nash equilibrium.
Our derivation of the state-space of quantum mechanics proceeds from the fol-
lowing reasoning: Without any supplementary data, the best response struc-
ture of a game does not generally contain enough information to make a ra-
tional choice. This leads each player to adopt the decision problems of the
other players, in order to determine his own rational choice. It then becomes a
mere internal consistency requirement that the same player will have to deter-
mine his own strategy by determining an entire profile of beliefs (the choices
and therefore beliefs for the others) that are mutually rational to each others,
thereby forming a Nash equilibrium. Thus, the above introspective reasoning
induces the famous “indifference condition” that must hold in any mixed Nash
equilibrium: A player deems equally rational all the alternatives contained in
the support of his own mixed strategy if and only if the (common) belief he
holds when determining the others’ player strategies matches his own mixed
strategy. This is precisely the very existence of such a self-referential belief
that is at the origin of the description of a player in terms of a quantum state
of mind. By construction, a player can hold such self-referential beliefs if and
only if he has really not made-up his mind on a pure choice. It turns out that
the algebraic characterization of this indifference property is indeed given by
a pure quantum state.

7.1 Historical note

In his dissertation, Nash [3] motivates his equilibrium concept as a methodol-
ogy to rationally predict the behavior of players:

By using the principles that a rational prediction should be unique, that the players should
be able to deduce and make use of it, and that such knowledge on the part of each player
of what to expect the others to do should not lead him to act out of conformity with the
prediction, one is led to the concept of a solution defined before.

[Nash, [3]].

It is well-known that von Neumann was not convinced by this methodology
(see Shubik [34, p.155]). Nash’s proposal seemed to be at odds with the “enor-
mous variety of observed stable social structures” [Wolfe, [35], p.25] that von
Neumann viewed as part of an “irreducible indeterminism”:

The discussion opened with a statement by von Neumann in justification of the enormous
variety of solutions which may obtain for n-person games. He pointed out that this was not
surprising in view of the correspondingly enormous variety of observed stable social
structures; many differing conventions can endure, existing today for no better reason than
that they were here yesterday.



30 Yohan Pelosse

[Wolfe, [35], p.25]

On the other hand, it seems also clear that von Neumann had perceived an
implicit connection between this inherent indeterministic nature of human be-
havior and the seemingly“irreducible probabilistic”nature of quantum physics:

Although...chance was eliminated from the games of strategy under consideration (by
introducing expected values and eliminating “draws”), it has now made a spontaneous
reappearance. Even if the rules of the game do not contain any elements of “hazard”(i.e. no
draws from urns) . . . in specifying the rules of behavior for the players it becomes
imperative to reconsider the element of “hazard”. The dependence on chance (the
“statistical” element) is such an intrinsic part of the game itself (if not of the world) that
there is no need to introduce it artificially by way of the rules of the game: Even if the
formal rules contain no trace of it, it still will assert itself.

(Von Neumann [36] p. 26, emphasis added)

As summarized by Leonard [37]:

(...) the prevailing probabilistic view of the world in physics was being reflected in von
Neumann’s theory of human interaction.

[37, p.734]

In the light of the results of this paper, the quantum-mechanical nature of
mixed Nash equilibria can thus be viewed—somewhat ironically—, as account-
ing for the von Neumann’s “philosophy of indeterminism” [the term is taken
from Brandenburger (2010)] in game theory. However, there does not seem to
be any evidence that von Neumann noticed a formal connection between these
two kinds of “indeterminism”.

7.2 Relation to the notions of indeterminism and free choice in physics

We note that the present results hint that quantum mechanics is not com-
patible with a deterministic world, as suggested by the branching space-time
framework of Belnap (see Belnap, [38]) and its connection to the existence of
indeterminate quantum phenomena (see e.g. Belnap et al. [39,40]). However,
the possibility of such a connection remains open.
We also remark that the present results echo the recent literature in physics
analyzing the consequence of the free choice postulate on the nature of the
quantum state (see e.g. Colbeck and Renner [7,8]).35 In this paper, the free
choice assumption can be related to the under-determination of the game ma-
trix and captured by our axiom of “no-supplementary data”.
Finally, this paper is also fundamentally related to the “free will theorem” of
Conway and Kochen [14,15] who argued that “if indeed we humans have free
will, then elementary particles already have their own small share of this valu-
able commodity.” (Conway and Kochen, [15], p. 226). This suggests that the
decisions of humans cannot be made a function of the past, in the same man-
ner as a “particle”s response is not determined by the entire previous history
of the universe” [Conway and Kochen p.1, [14]].

35 Colbeck and Renner considers a choice “A free if it is uncorrelated with any other
variables, except those that lie in the future of A in the chronological structure”.
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APPENDIX

Proof of Lemma 0. We shall prove the following statement: Consider a game
G where the axiom of no-supplementary data holds. Then, player i can de-
termine σi as being a rational choice in G if and only if i determines profile
σ−i as being rational for players j 6= i with (σi, σ−i) a Nash equilibrium of G
in a frame, F iG, with at least two perspectives i.e. |M | ≥ 2.
Proof. Let (AJ)J∈M represent the Nash equilibrium profile σ = (σiL)L∈M .
Sufficiency. Consider a model with aM -self-projective frame F iG =

〈
wiJ , RiJ

〉
J∈M

with |M | ≥ 2. Suppose that Eσ is common knowledge. Thus, we have the set of
binary relations, RiJ ∈ Ri such that wiJRiJwiK , for all J 6= K. We must also
have a profile of statements, (AL)L∈M , which has been determined as being
relatively true. That is, we have a system of relational valuation mappings,

AJ ∈ arg max
A′J∈AJ

VwiJ ,wiK (A
′J , AK ;A−J,−K),∀(wiJ , wiK ) ∈ W ×W, J 6= K,

whose solution, (AL)L∈M , corresponds to the Nash equilibrium profile of G,
σ = (σiL)L∈M . The solution of the above system of equations is guaranteed by
the standard existence theorem of a Nash equilibrium in finite games (Nash,
[3]). Hence, if Eσ is common knowledge in the canonical model, then we nec-

essarily have a Nash equilibrium with Mi
G,w

iK � Aσ
J

,∀wiK ∈ W. When this
is true for each i ∈ N, this implies that σ is a mixed Nash equilibrium (NE)
of the game being played.
Necessity. We first show that AJ is true in a M -self-projective model of i only if
i determines a Nash equilibrium. By definition, the self-projective model with
the single perspective wiN cannot yield the determination of a truth AN ∈ AN
when there is no strongly dominant actions. 36 Thus, we must pick a M -self-
projective model with at least two perspectives. Suppose that there exists an
arbitrary L ∈ M with RiL ∈ Ri such that wiL¬RiLwiK , for some L 6= K.
Then, by definition, ∅ ∈ arg maxA′L∈AL VwiL ,wiK (A

′L, AK ;A−L,−K), for L 6=
K, since VwiL ,wiK (A

′L, AK ;A−L,−K) = i whenever Mi
G, w

iL � ¬�iLAσK

.
Hence, we have that a statement is determined only if wiJRiJwiK ,∀J 6= K.
Notice that Eσ is a self-evident event to every perspective wiJ of player i i.e.

Eσ = KiJE
σ. This follows since, wiJ ∈

∥∥∥�iJAσ−J →L A
σ−J
∥∥∥Mi

G

. 37 Hence

wiJ ∈
∥∥∥�iJA(σi)i∈N

∥∥∥Mi
G

, for all wiJ ∈ W whenever the profile of propositions,

(AJ)mJ=1 is the solution of the above set of equations and corresponds, by con-
struction, to a Nash equilibrium of the game G. End of proof.
Proof of Lemma 1. We first characterize the elements of SOi . Fix an em-
pirical self-projective Krikpean model for player i in G, MiO

G , where σi has

36 Indeed, recall that in this case wiN (AN ) = i, ∀AN ∈ AN and there is no relational
valuations.
37 Recall that the binary relation RiJ is reflexive at every perspective J . Thus, we have

that ∀E ⊆ W, K⊗iJ∈M
E ⊆ E. which means that the truth axiom is satisfied for each player

i in F i
G.
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been determined as being true. By Theorem 1, the indifference condition holds
i.e. any si ∈ supp(σi) is necessarily a best reply to σ−i. Hence, when i is

making a rational choice, we must have ws
i ∈ SOi , such that MiO

G , ws
i

�
∧L∈M�iL(As

i ∧Aσ−i

). The indivisibility axiom requires that event Es
i ∧Eσ−i

is self-knowledge, which proves that Ki(E
si ∧ Eσ−i

) is an element of SOi .
Next, we verify that L

(
SOi ,∨,∧,∼

)
is an orthocomplemented non-distributive

lattice. By definition of a pure choice, we must have that ws
i ∧ ws

′i
= ∅,

∀wsi 6= ws
′i

. By definition of a lattice, ∨ and ∧ must be idempotent, commu-
tative, and associative operations such that a∨ (b∧ a) = a and a∧ (b∨ a) = a,
∀a ∈ L

(
SOi ,∨,∧,∼

)
. Idempotence and commutativity are obvious. We also

note that ws
i ∨ (ws

′i ∧wsi) = ws
i

since ws
′i ∧wsi = ∅ whenever ws

′i 6= ws
i

by

definition of a pure choice and ws
i ∧ (ws

i ∨ws
′i

) = ws
i

. That ∧ is associative

follows since ws
i ∧ (ws

′i ∧ws
′′i

) = (ws
i ∧ws

′i
)∧ws

′′i
= ∅ whenever ws

i 6= ws
′i

and ws
′i 6= ws

′′i
. Moreover, in equilibrium, the indifference condition implies

that any si ∈ supp(σi) is a best reply. Thus,
∨
si∈supp(σi) w

si = SOi so that

o := ∅ and 1 := SOi ∈ L
(
SOi ,∨,∧,∼

)
are the two identity elements with

a ∧ 1 = a and a ∨ o = a. Moreover, the lattice is orthocomplemented under
the set-theoretic complement, a∼ = SOi \ a,∀a ∈ L

(
SOi ,∨,∧,∼

)
such that

a ⊆ b ⇔ a∼ ⊆ (b)∼ and the partial ordering ⊆ corresponds to the material
implication “⇒”. That this lattice is non distributive38 follows by noting that

ws
i ∧ (ws

′i ∨ ws
′′i

) ⊆ ws
i 6= ∅ whenever si ∈ supp(σi). This implies that,

ws
i ∧ (ws

′i ∨ws
′′i

) 6= ∅ while (ws
i ∧ ws

′i
)∨ (ws

′i ∧ws
′′i

) = ∅ whenever si 6= s
′i

and s
′i 6= s

′′i. End of proof.
Proof of Theorem 1. We first construct the isomorphism between the com-
plex Hilbert space structure of QM together with its postulates and the self-
projective graph induced by a canonical model i.e. a model whose M -frame
has exactly two perspectives. Then, in a second step, we will use this result as
a lemma to show that any other model with more than two perspectives (i.e.
the M -frame is such that |M | > 2) does not induce a well-defined empirical
distribution ei in an experiment. From this we will conclude that the only pos-
sible self-projective model is the canonical model. The isomorphism between
the canonical model and the QM structure then terminates to demonstrate
that the mental state space of a rational player in the classical game model is
always isomorphic to the state-space structure of QM.
The derivation of the QM formalism of Theorem 1 builds on the following
result.

Proposition 1 Fix the canonical self-projective Krikpean model for player i
in G, MiO

G , where σi has been determined as being true at w†. There exists a
faithful representation g of the knowledge structure of player i in Γ iG if the set
(g,∧) is generated by the space

g =
{∣∣ωe−i,i

〉
, ωei,−i :=

〈
ωe−i,i

∣∣}
38 The distributive law states that a∧(b∨c) = (a∧b)∨(a∧c) and a∨(b∧c) = (a∨b)∧(a∧c).
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over the complex field K = C such that:
(1) ωeJ,−J

(si)ωe−J,J
(si) = ωeJ,J (si), ∀si ∈supp(σi);

(2)
〈
ωe−i,i

∣∣ ωe−i,i

〉
= 1 is the identity element i.e. a ∧ 1 = a,∀a ∈ (g,∧);

(3) The multiplicative operation ∧ is such that
〈
ωe−i,i

∣∣∧∣∣ωe−i,i

〉
=
〈
ωe−i,i

∣∣ ωe−i,i

〉
and

∣∣ωe−i,i

〉
∧
〈
ωe−i,i

∣∣ =
∣∣ωe−i,i

〉 〈
ωe−i,i

∣∣ is an orthogonal operator;

(4) σi(si) =
∣∣ω(w,w†)(s

i)
∣∣2 ,∀si (Born rule) with ω(w′ ,w′ ) = σi ∈ Ω \ g, for

w
′

= w,w†.

Proof. We first state the following lemma.

Lemma 3 Fix the empirical canonical self-projective Krikpean model for player
i in G,MiO

G , where σi has been determined as being true. Then the set (Ri,∧)
generated by the transitive closure of Ri := Rii

⋃
Ri−i must have the multi-

plicative operation ∧ :=”and” such that:
1. (wRiw) ∧ (wRiw) = (wRiw) (idempotence);
2. (w

′
Riw) ∧ (wRiw

′
)⇒ (w

′
Riw

′
) (transitivity).

Proof. We first check that any (w,w
′
) ∈ W × W lies in Ri. By Theorem

1, in equilibrium, there is common knowledge, Ki
∗E

σ =
{
wii , wi−i

}
, which

amounts to saying that the transitive closure Ri := Rii ∪ Ri−i = W × W.
Hence, by definition of the transitive closure, this implies that the set Ri is
equipped with the non-commutative operation ∧ : W ×W → W such that
(1)-(2) hold. End of proof.
The above lemma shows that any (w,w

′
) ∈ W ×W lies in Ri. Next, we prove

the existence of a faithful representation g together with its characterization.
We construct an isomorphism h for the canonical model with h : (Ri,∧) →
(g,∧) as follows. Let ω(w,w†) : Si → Cmi with h((wRiw†))(si) = ω(w,w†)(s

i),

∀si so that h((wRiw†)) = |w〉 , h((w†Riw)) = 〈w|, and the multiplicative
map ∧ over g is defined such that h((w†Riw) ∧ (wRiw†)) = h(w†Riw)) ∧
h((wRiw†)) = 〈w| |w〉 and h((wRiw†)∧(w†Riw)) = h(wRiw†))∧h((w†Riw)) =
|w〉 〈w| and we set h((w†Riw†)) = 1, which implies that h((wRiw)) = Πω

(w,w†)

is an orthogonal projector.
We check idempotence (1) as follows:

h((wRiw) ∧ (wRiw)) = |w〉 〈w| ∧ |w〉︸ ︷︷ ︸
1

〈w| = |w〉 〈w|

and h((w†Riw†) ∧ (w†Riw†)) = 〈w| |w〉 ∧ 〈w| |w〉 = 1 since 1 is the iden-
tity element. Thus, we have constructed an isomorphism that induces a set
g with: ω((w′ ,w)∧(w,w′ ))(s

i) = ω((w′ ,w))(s
i)ω((w,w′ ))(s

i),∀si, whenever w
′ 6= w,

where ω((w′ ,w))(s
i) is the complex conjugate of ω((w,w′ ))(s

i). The condition that

h((w†Riw†)) = 1 implies that ω((w,w†)) must lie in the complex unit sphere and

that the induced vectors, (ω((w′ ,w)∧(w,w′ ))(s
i))si∈Si = (ω((w′ ,w′ ))(s

i))si∈Si ,

are in the unit simplex ∆i, ∀w′ = w†, w. This means that the property
ω((w′ ,w′ )) := (ω((w′ ,w′ ))(s

i))si∈Si with ω((w′ ,w′ )) = σi, ∀w′ is met, which im-
mediately implies the Born rule (4). End of proof.
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Necessity of a faithful representation in the canonical model. Next,
we show that the existence of an empirical distribution ei in the canonical
model implies necessarily the faithful representation given in Proposition 2.
We first start with a Lemma which proves that the Indivisibility Axiom is
equivalent to the “Projection postulate” of QM.
Proof of Lemma 2. Given Ŝi ⊆ Si, let ΠŜi :=

∑
si∈Ŝi Πasi so that

HΠŜi =
{
Ψ ∈ H : ΠŜiΨ = Ψ

}
is a closed subspace of H which corresponds to statement Ŝi :=“Ŝi is a ra-
tional subset of strategies for player i”. It is well-known that a set of sub-
spaces like HΠŜi ordered by inclusion ⊆, with the complement ∼ defined
by orthocomplementation ⊥ and meet and join operations defined by inter-
section ∩ and direct sum + of subspaces forms an orthocomplemented and
non-distributive lattice. Hence, we can also identify the logical connectives of
the lattice L

(
SOi ,∨,∧,∼

)
in terms of the lattice of projectors, P(H), with

HΠŜi

⋂
HΠ

Ŝ
′i ←→ ΠŜi ∧ ΠŜ′i = ΠŜiΠŜ′i , HΠŜi ⊆ HΠ

Ŝ
′i ←→ ΠŜiΠŜ′i =

ΠŜ′iΠŜi = ΠŜi , HΠŜi + HΠ
Ŝ
′i ←→ ΠŜi + ΠŜ′i − ΠŜ′iΠŜ′i , (HΠŜi )⊥ ←→

Π(Ŝi)∼ = I −ΠŜi , Hence, there exists a one to one mapping,

g : P(H)→ L
(
SOi ,∨,∧,∼

)
, ΠŜi

g7→
∨
si∈Ŝi

Ki(E
si ∩ Eσ

−i

),

with ΠasiΠas
′i = o2, ∀si 6= s

′i, g(o2) = ∅, g(I) = SOi and
∑
si∈supp(σi)Πasi =

I. This implies the existence of a measure µ such that ei ◦ g(Πasi ) = µ(Πasi ).
End of proof.
Proof of Theorem 1 (1-2) We prove that the set of all equilibrium local
intrinsic states of player i, ω(wi−i ,wii ), in a faithful representation g of Γ iG are
in the complex unit sphere S and forms a ray. To see that every ω(wi−i ,wii ) ∈ g
lies in the unit sphere S of H = Cmi , it suffices to note that if i is in an intrinsic
equilibrium σ = (σi, σ−i), then a faithful representation of Γ iG implies that the
(co)-vectors of weights ω(w†,w†) and ω(w,w) must fulfill the equality,

ω(w†,w)(s
i)ω(w,w†)(s

i) = ω(w†,w†)(s
i),

with ω(w†,w†)(s
i) = σi(si). Together with the condition that σi is in the unit

simplex, conditions (i) and (ii) imply that
∑
si∈supp(σi) ω(w†,w)(s

i)ω(w,w†)(s
i) =

1 where ω(w,w†)(s
i) = ω(w†,w)(s

i) is the complex conjugate of ω(w†,w)(s
i). From

this last condition, we infer that ω(w,w†) is in S and ω(w†,w) is its co-vector.
This shows that in equilibrium, the intrinsic state space of i (at w) is in S. Fi-
nally, the fact that the set of vectors ω(w,w†) lying in g forms a one-dimensional
subspace of S follows easily from the Born rule. End of proof.
Proof of Theorem 1 (3) (orthogonal projector)
The analysis of the choice of player i in terms of a probability measure over a
set of projectors requires the following definitions.
First, we have to define a measure µ on the complex Hilbert space H = Cmi .
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Let P(H) be the set of orthogonal projectors of H. Consider a unit vector
asi and the associated one dimensional projector Πasi

. A measure is a map-
ping which assigns a non-negative real number µ(Πasi

) to each projector Πasi
.

Hence, we can identify an empirical model, ei(· |g ), as a mapping µ : P(H)→ R
by setting µ(Π) = f(Im(Π)). This mapping must be defined such that, if {asi}
are mutually orthogonal, then the measure of

∑
si∈Si Πasi

has to satisfy the
(sub-)additivity property µ(

∑
si∈Si Πasi

) =
∑
si∈Si µ(Πasi

). Any such mea-
sure is determined by its values on the one dimensional projections such that:
(1) If

{
Πasi

}
is a family of pairwise orthogonal projectors i.e. Πasi

Πa
si
′ = 0

for si 6= si
′

with
∑
si∈Si Πasi

= I, then
{
µ(Πasi

)
}

is summable with sum
µ(id).
(2) If

{
Πasi

}
is a family of pairwise orthogonal projectors i.e. Πasi

Πa
si
′ = 0

for si 6= si
′
, then

{
µ(Πasi

)
}

is summable with
∑
µ(Πasi

) = µ(
∑
Πasi

).
In this case µ is a measure on P(H).
Next, we will use Gleason’s Theorem in order to establish a contradiction,
namely that if we use a non canonical self-projective model, with a set of per-
spectives greater than two, then we cannot derive a well-defined probability
measure, ei.
Gleason’s Theorem [33]: In a Hilbert space of finite dimension d ≥ 3, any
bounded measure on the orthogonal projectors of H is such that Π → tr(AΠ)
where A is a linear Hermitian operator of H.
In the particular case where the measure is assumed to be a probability mea-
sure, Gleason’s Theorem implies that,

µ(Π) = tr(ρΠ),

where ρ is a density operator. We have the following lemma.

Lemma 4 Fix the empirical canonical Krikpean model for player i in G,MiO
G ,

where σi has been determined as being true at perspective wii . There exists an
empirical distribution ei(ws

i

) = tr(ρΠasi
) with ρ = Πωe−i,i

if and only if we

have the faithful representation with ρ ∈ (g,∧).

Proof. “Only if ”. We have the following lemmata:
lemmata Suppose an equilibrium σ of G has been determined as true in a
self-projective model, Mi

G. If player i has more than two pure strategies i.e.

mi ≥ 3, then, any empirical distribution ofMOi
G must be of the form, ei(ws

i

) =
tr(ρΠasi

) with ρ a self-adjoint endomorphism of trace 1 (a density matrix in-
deed).

Proof. By Lemma 2, ei(ws
i

) = µ(Πasi
),∀si with µ a bounded measure. By

Gleason’s Theorem [33] we have that µ(Πasi
) = tr(ρΠasi

) with ρ a self-adjoint
endomorphism. The necessity to have a trace 1 follows since we want a prob-
ability measure. End of proof.
The above results allow to conclude that the global intrinsic state of i is neces-
sarily ρ = h((w,w†))∧h((w†, w)) ∈ (g,∧). The fact that h((w,w†))∧h((w†, w))
is an orthogonal projector, Πω

(w,w†)
=
∣∣ω(w,w†)

〉 〈
ω(w,w†)

∣∣ , follows immediately
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from the fact that ω(w,w†) is a unit vector by property (1) of Theorem 1 above.
Proof of Theorem 1 (4) (Born rule)

By definition of an empirical distribution, we must have ei(ws
i

) = σi. If

we have a faithful representation g, proposition 2 implies that ei(ws
i

) =
h((w

′
, w))(si)h((w

′
, w))(si), ∀si, which can be rewritten as

ei(ws
i

) =
∣∣ω(w,w†)(s

i)
∣∣2 .

End of proof.
Lemma 5 establishes the existence of an empirical distribution in the canon-
ical model and states that we must have a faithful representation of the self-
projective graph to have an empirical distribution. We now give the proof that
an empirical distribution does not exist for self-projective models Mi

G with
more than two perspectives, whenever mi ≥ 3.
Before we embark in the proof of this result, we need some preliminary defi-
nitions.

Definition 8 Let M′i
G, and Mi

G, be two self-projective models for G with

W ′ ⊂ W. If Aσ
i

can be determined as being relatively true in both models,
then we say that Mi

G, is a reducible Krikpean model for G. When Mi
G, is

not reducible it is said to be irreducible.

We will refer to the irreducible self-projective model with W =
{
wii, w

i
−i
}

as
the canonical self-projective model for G.

Lemma 5 In a reducible self-projective model for a game G,Mi
G, with mi ≥ 3

if player i determines a rational strategy σi as being relatively true i.e. a mixed
NE profile (σi)i∈N , then Mi

G has no empirical distribution ei = σi.

Proof. Step 1. Every self-projective model of G, Mi
G, with a set of m > 2

perspectives, is reducible.
Consider a self-projective model of G, Mi

G, with its associated weighted di-
rected self-projective graph, Γ iG = 〈W, E , Ω〉 where W =

{
wiJ : J ∈M

}
is an

arbitrary class of subsets of W with a cardinality |W| > 2. This induces a
graph Γ iG with m > 2 vertices. Theorem 1 asserts that relative truth σi can
indeed be determined in any such a model. Hence, this immediately shows that
Mi

G is indeed reducible.
Step 2. We prove that any Mi

G that is reducible has no empirical distri-
bution ei. By step 1, any Mi

G that is reducible has a set of perspectives
of cardinality greater than 2. Next, our aim is to apply Gleason’s Theo-
rem [33] in order to show that ei cannot form a probability measure—hence
an empirical distribution—when the set of vertices of Γ iG is of cardinality
greater than 2. Let Π be projection operator Π on a Hilbert space H.39 Ex-
pand the unit vector of weights,

∣∣ω(wiK ,wiL )

〉
∈ Cmi in the standard basis,

{asi}si∈Si , as
∣∣ω(wiK ,wiL )

〉
=
∑
si∈Si

〈
asi | ω(wiK ,wiL )

〉
|asi〉 . Lemma 5 tells us

that ei(ws
i

) = µ(Πasi ). Hence, the empirical distribution must be a function

39 In other words, Π is an idempotent and self-adjoint operator.
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of Πasi
ω(wiK ,wiL ), for ω(wiK ,wiL ) ∈ H, with (wiK , wiL) ∈ E . Thus, there must

exist a function f such that: ei(ws
i

) = f(Πasi
ω(wiK ,wiL )),∀si. A direct ap-

plication of Gleason’s Theorem allows to conclude that the unique empirical
probability measure ei is of the form

ei(ws
i

) =
∥∥Πasi

ω(wiK ,wiL )

∥∥2 ∀si.
Next, we note that the Indivisibility axiom implies necessarily the Born rule in
the canonical model, without using Gleason’s Theorem. From this, we will be
able to show that the structure of the graph of any non canonical model does
not induce the Born rule, which allows to conclude that such model does not
induce a well-defined empirical distribution ei as a consequence of Gleason’s
Theorem.
The axiom of Indivisibility implies that the intrinsic state of player i is w0 ∈
Es

i

= Kii⊗i−iE
si iff we have Πasi

∣∣ω(w,w†)

〉
for i−i and Πasi

(〈
ω(w,w†)

∣∣)†
for ii. In the canonical self-projective model, this immediately implies that,

ei(ws
i

) =
∥∥Πasi

∣∣ω(w,w†)

〉∥∥2 , where ‖·‖ is the norm derived from the inner
product on Cmi . This by definition is the Born rule. This of course also requires
to have the faithful representation of the canonical graph given in Theorem 1.
Hence, Gleason’s Theorem and the axiom of Indivisibility allows to conclude
that the Born rule cannot be constructed from a self-projective graph with
more than two perspectives. This can be seen by noting that if Γ iG has more
than two vertices, then the empirical distribution is

ei(ws
i

) := µ(Πasi
), such that ei(ws

i

) 6=
∥∥Πasi

ω(wiK ,wiL )

∥∥2 .
This immediately implies that the graph must have a unique pair of weights
and hence Mi

G must be canonical i.e. irreducible. If not, either the indivisi-
bility axiom is not met, or Γ iG is not well-defined i.e. it does not assign some
weights at every edge, which entails that h does not form an isomorphism.
From this we conclude that ei never forms a well-defined probability measure
for any reducible self-projective models.
That a canonical model with a faithful representation induces necessarily an
empirical distribution is shown in the proof of Theorem 1 (3) below. End of
Proof.
Since any reducible model has no empirical distribution, the rest of the ap-
pendix is devoted to the study of canonical self-projective models. Henceforth
it is convenient to set wii := w† and wi−i := w.
Proof of Corollary 1 By Theorem 1, any global equilibrium intrinsic state

of player i is given by the density matrix
∣∣∣ω(wi−i ,wii )

〉〈
ω(wi−i ,wii )

∣∣∣ . This op-

erator can be rewritten as,∑
s′i∈supp(σi)

∣∣∣ω(wi−i ,wii )(s
′i)
∣∣∣2 | as′i〉 〈as′i |+ ∑

si∈supp(σi):si 6=s′i
ω(wi−i ,wii )(s

i)ω(wi−i ,wii )(s
′i) | asi〉 〈as′i | .

By the classical indifference condition, σi is an equilibrium strategy for player
i if and only if very si ∈ supp(σi) is a best reply. On the other hand, a faithful
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representation implies that in the empirical model, the event,∥∥∥�iiAsi ∧�i−iAs
′i
∥∥∥Mi

G

,

has a non-zero (complex) off-diagonal weight given by,

ω(wii ,wi−i )(s
i)ω(wi−i ,wii )(s

′i) 6= 0,

for all pair of pure actions, si, s
′i ∈ supp(σi). This proves the existence of

off-diagonal terms. End of proof
Proof of Corollary 2
Sufficiency. By Theorem 1, any mixed strategy σiω gets identified by an or-
thogonal projector, Πω, with complex off-diagonal terms. Hence, if player i
is in a pure intrinsic state Πω with a probability pω, we have an empirical
distribution of the form, ei =

∑
ω pωσ

i
ω.

Necessity. By contradiction. Suppose that the global intrinsic state of player
i cannot be expressed by

∑
ω pωΠω. This means that player i does not deter-

mine σiω as a rational strategy with a probability pω. By definition, this implies
that ei 6=

∑
ω pωσ

i
ω. End of proof.
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