1,906 research outputs found

    Weak order for the discretization of the stochastic heat equation

    Get PDF
    In this paper we study the approximation of the distribution of XtX_t Hilbert--valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as dXt+AXtdt=Q1/2dWt,X0=x∈H,t∈[0,T], dX_t+AX_t dt = Q^{1/2} d W_t, \quad X_0=x \in H, \quad t\in[0,T], driven by a Gaussian space time noise whose covariance operator QQ is given. We assume that A−αA^{-\alpha} is a finite trace operator for some α>0\alpha>0 and that QQ is bounded from HH into D(Aβ)D(A^\beta) for some β≥0\beta\geq 0. It is not required to be nuclear or to commute with AA. The discretization is achieved thanks to finite element methods in space (parameter h>0h>0) and implicit Euler schemes in time (parameter Δt=T/N\Delta t=T/N). We define a discrete solution XhnX^n_h and for suitable functions ϕ\phi defined on HH, we show that |\E \phi(X^N_h) - \E \phi(X_T) | = O(h^{2\gamma} + \Delta t^\gamma) \noindent where γ<1−α+β\gamma<1- \alpha + \beta. Let us note that as in the finite dimensional case the rate of convergence is twice the one for pathwise approximations

    Efficient white noise sampling and coupling for multilevel Monte Carlo with non-nested meshes

    Full text link
    When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise, the efficient sampling of white noise realizations can be challenging. Here, we present a new sampling technique that can be used to efficiently compute white noise samples in a finite element method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit the finite element matrix assembly procedure and factorize each local mass matrix independently, hence avoiding the factorization of a large matrix. Moreover, in a MLMC framework, the white noise samples must be coupled between subsequent levels. We show how our technique can be used to enforce this coupling even in the case of non-nested mesh hierarchies. We demonstrate the efficacy of our method with numerical experiments. We observe optimal convergence rates for the finite element solution of the elliptic SPDEs of interest in 2D and 3D and we show convergence of the sampled field covariances. In a MLMC setting, a good coupling is enforced and the telescoping sum is respected.Comment: 28 pages, 10 figure

    Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance

    Get PDF
    In this article, we propose a Milstein finite difference scheme for a stochastic partial differential equation (SPDE) describing a large particle system. We show, by means of Fourier analysis, that the discretisation on an unbounded domain is convergent of first order in the timestep and second order in the spatial grid size, and that the discretisation is stable with respect to boundary data. Numerical experiments clearly indicate that the same convergence order also holds for boundary-value problems. Multilevel path simulation, previously used for SDEs, is shown to give substantial complexity gains compared to a standard discretisation of the SPDE or direct simulation of the particle system. We derive complexity bounds and illustrate the results by an application to basket credit derivatives

    On the well-posedness of the stochastic Allen-Cahn equation in two dimensions

    Get PDF
    White noise-driven nonlinear stochastic partial differential equations (SPDEs) of parabolic type are frequently used to model physical and biological systems in space dimensions d = 1,2,3. Whereas existence and uniqueness of weak solutions to these equations are well established in one dimension, the situation is different for d \geq 2. Despite their popularity in the applied sciences, higher dimensional versions of these SPDE models are generally assumed to be ill-posed by the mathematics community. We study this discrepancy on the specific example of the two dimensional Allen-Cahn equation driven by additive white noise. Since it is unclear how to define the notion of a weak solution to this equation, we regularize the noise and introduce a family of approximations. Based on heuristic arguments and numerical experiments, we conjecture that these approximations exhibit divergent behavior in the continuum limit. The results strongly suggest that a series of published numerical studies are problematic: shrinking the mesh size in these simulations does not lead to the recovery of a physically meaningful limit.Comment: 21 pages, 4 figures; accepted by Journal of Computational Physics (Dec 2011

    Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise

    Get PDF
    The numerical approximation of the solution to a stochastic partial differential equation with additive spatial white noise on a bounded domain is considered. The differential operator is assumed to be a fractional power of an integer order elliptic differential operator. The solution is approximated by means of a finite element discretization in space and a quadrature approximation of an integral representation of the fractional inverse from the Dunford-Taylor calculus. For the resulting approximation, a concise analysis of the weak error is performed. Specifically, for the class of twice continuously Fr\'echet differentiable functionals with second derivatives of polynomial growth, an explicit rate of weak convergence is derived, and it is shown that the component of the convergence rate stemming from the stochasticity is doubled compared to the corresponding strong rate. Numerical experiments for different functionals validate the theoretical results.Comment: 22 pages, 1 figur
    • …
    corecore