26,453 research outputs found

    Multiobjective Robust Control with HIFOO 2.0

    Full text link
    Multiobjective control design is known to be a difficult problem both in theory and practice. Our approach is to search for locally optimal solutions of a nonsmooth optimization problem that is built to incorporate minimization objectives and constraints for multiple plants. We report on the success of this approach using our public-domain Matlab toolbox HIFOO 2.0, comparing our results with benchmarks in the literature

    D terms from D-branes, gauge invariance and moduli stabilization in flux compactifications

    Full text link
    We elucidate the structure of D terms in N=1 orientifold compactifications with fluxes. As a case study, we consider a simple orbifold of the type-IIA theory with D6-branes at angles, O6-planes and general NSNS, RR and Scherk-Schwarz geometrical fluxes. We examine in detail the emergence of D terms, in their standard supergravity form, from an appropriate limit of the D-brane action. We derive the consistency conditions on gauged symmetries and general fluxes coming from brane-localized Bianchi identities, and their relation with the Freed-Witten anomaly. We extend our results to other N=1 compactifications and to non-geometrical fluxes. Finally, we discuss the possible role of U(1) D terms in the stabilization of the untwisted moduli from the closed string sector.Comment: 1+31 pages, 1 figur

    Time evolution of non-Hermitian Hamiltonian systems

    Get PDF
    We provide time-evolution operators, gauge transformations and a perturbative treatment for non-Hermitian Hamiltonian systems, which are explicitly time-dependent. We determine various new equivalence pairs for Hermitian and non-Hermitian Hamiltonians, which are therefore pseudo-Hermitian and in addition in some cases also invariant under PT-symmetry. In particular, for the harmonic oscillator perturbed by a cubic non-Hermitian term, we evaluate explicitly various transition amplitudes, for the situation when these systems are exposed to a monochromatic linearly polarized electric field.Comment: 25 pages Latex, 1 eps figure, references adde

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: from the time-independent to the time dependent quantum mechanical formulation

    Get PDF
    We provide a reviewlike introduction into the quantum mechanical formalism related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting with the time-independent framework we explain how to determine an appropriate domain of a non-Hermitian Hamiltonian and pay particular attention to the role played by PT-symmetry and pseudo-Hermiticity. We discuss the time-evolution of such systems having in particular the question in mind of how to couple consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate the general formalism with three explicit examples: i) the generalized Swanson Hamiltonians, which constitute non-Hermitian extensions of anharmonic oscillators, ii) the spiked harmonic oscillator, which exhibits explicit supersymmetry and iii) the -x^4-potential, which serves as a toy model for the quantum field theoretical phi^4-theory.Comment: 14 pages, 3 figures, to appear in Laser Physics, minor typos correcte

    Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem

    Full text link
    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include
    corecore