47 research outputs found

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases

    Minimizing nfa's and regular expressions

    Get PDF
    AbstractWe show inapproximability results concerning minimization of nondeterministic finite automata (nfa's) as well as of regular expressions relative to given nfa's, regular expressions or deterministic finite automata (dfa's).We show that it is impossible to efficiently minimize a given nfa or regular expression with n states, transitions, respectively symbols within the factor o(n), unless P=PSPACE. For the unary case, we show that for any δ>0 it is impossible to efficiently construct an approximately minimal nfa or regular expression within the factor n1−δ, unless P=NP.Our inapproximability results for a given dfa with n states are based on cryptographic assumptions and we show that any efficient algorithm will have an approximation factor of at least npoly(logn). Our setup also allows us to analyze the minimum consistent dfa problem

    An Improved Algorithm for Finding the Shortest Synchronizing Words

    Get PDF
    A synchronizing word of a deterministic finite complete automaton is a word whose action maps every state to a single one. Finding a shortest or a short synchronizing word is a central computational problem in the theory of synchronizing automata and is applied in other areas such as model-based testing and the theory of codes. Because the problem of finding a shortest synchronizing word is computationally hard, among exact algorithms only exponential ones are known. We redesign the previously fastest known exact algorithm based on the bidirectional breadth-first search and improve it with respect to time and space in a practical sense. We develop new algorithmic enhancements and adapt the algorithm to multithreaded and GPU computing. Our experiments show that the new algorithm is multiple times faster than the previously fastest one and its advantage quickly grows with the hardness of the problem instance. Given a modest time limit, we compute the lengths of the shortest synchronizing words for random binary automata up to 570 states, significantly beating the previous record. We refine the experimental estimation of the average reset threshold of these automata. Finally, we develop a general computational package devoted to the problem, where an efficient and practical implementation of our algorithm is included, together with several well-known heuristics

    An Improved Algorithm for Finding the Shortest Synchronizing Words

    Get PDF
    A synchronizing word of a deterministic finite complete automaton is a word whose action maps every state to a single one. Finding a shortest or a short synchronizing word is a central computational problem in the theory of synchronizing automata and is applied in other areas such as model-based testing and the theory of codes. Because the problem of finding a shortest synchronizing word is computationally hard, among \emph{exact} algorithms only exponential ones are known. We redesign the previously fastest known exact algorithm based on the bidirectional breadth-first search and improve it with respect to time and space in a practical sense. We develop new algorithmic enhancements and adapt the algorithm to multithreaded and GPU computing. Our experiments show that the new algorithm is multiple times faster than the previously fastest one and its advantage quickly grows with the hardness of the problem instance. Given a modest time limit, we compute the lengths of the shortest synchronizing words for random binary automata up to 570 states, significantly beating the previous record. We refine the experimental estimation of the average reset threshold of these automata. Finally, we develop a general computational package devoted to the problem, where an efficient and practical implementation of our algorithm is included, together with several well-known heuristics.Comment: Full version of ESA 2022 pape

    Complexity of Preimage Problems for Deterministic Finite Automata

    Get PDF
    Given a subset of states S of a deterministic finite automaton and a word w, the preimage is the subset of all states that are mapped to a state from S by the action of w. We study the computational complexity of three problems related to the existence of words yielding certain preimages, which are especially motivated by the theory of synchronizing automata. The first problem is whether, for a given subset, there exists a word extending the subset (giving a larger preimage). The second problem is whether there exists a word totally extending the subset (giving the whole set of states) - it is equivalent to the problem whether there exists an avoiding word for the complementary subset. The third problem is whether there exists a word resizing the subset (giving a preimage of a different size). We also consider the variants of the problem where an upper bound on the length of the word is given in the input. Because in most cases our problems are computationally hard, we additionally consider parametrized complexity by the size of the given subset. We focus on the most interesting cases that are the subclasses of strongly connected, synchronizing, and binary automata

    Attainable Values of Reset Thresholds

    Get PDF
    An automaton is synchronizing if there exists a word that sends all states of the automaton to a single state. The reset threshold is the length of the shortest such word. We study the set RT_n of attainable reset thresholds by automata with n states. Relying on constructions of digraphs with known local exponents we show that the intervals [1, (n^2-3n+4)/2] and [(p-1)(q-1), p(q-2)+n-q+1], where 2 n, gcd(p,q)=1, belong to RT_n, even if restrict our attention to strongly connected automata. Moreover, we prove that in this case the smallest value that does not belong to RT_n is at least n^2 - O(n^{1.7625} log n / log log n). This value is increased further assuming certain conjectures about the gaps between consecutive prime numbers. We also show that any value smaller than n(n-1)/2 is attainable by an automaton with a sink state and any value smaller than n^2-O(n^{1.5}) is attainable in general case. Furthermore, we solve the problem of existence of slowly synchronizing automata over an arbitrarily large alphabet, by presenting for every fixed size of the alphabet an infinite series of irreducibly synchronizing automata with the reset threshold n^2-O(n)

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an nn-state synchronizing decoder has a reset word of length at most O(nlog3n)O(n \log^3 n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary nn-state decoder is at most O(nlogn)O(n \log n). We also show that for any non-unary alphabet there exist decoders whose reset threshold is in Θ(n)\varTheta(n). We prove the \v{C}ern\'{y} conjecture for nn-state automata with a letter of rank at most 6n63\sqrt[3]{6n-6}. In another corollary, based on the recent results of Nicaud, we show that the probability that the \v{C}ern\'y conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and also that the expected value of the reset threshold of an nn-state random synchronizing binary automaton is at most n3/2+o(1)n^{3/2+o(1)}. Moreover, reset words of lengths within all of our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata, such as (quasi-)one-cluster and (quasi-)Eulerian automata, for which our results can be applied.Comment: 18 pages, 2 figure

    Improvements in finite state machines

    Get PDF
    Finite State Machine (FSM) based testing methods have a history of over half a century, starting in 1956 with the works on machine identi cation. This was then followed by works checking the conformance of a given implementation to a given speci cation. When it is possible to identify the states of an FSM using an appropriate input sequence, it's been long known that it is possible to generate a Fault Detection Experiment with fault coverage with respect to a certain fault model in polynomial time. In this thesis, we investigate two notions of fault detection sequences; Checking Sequence (CS), Checking Experiment (CE). Since a fault detection sequence (either a CS or a CE) is constructed once but used many times, the importance of having short fault detection sequences is obvious and hence recent works in this eld aim to generate shorter fault detection sequences. In this thesis, we rst investigate a strategy and related problems to reduce the length of a CS. A CS consists several components such as Reset Sequences and State Identi - cation Sequences. All works assume that for a given FSM, a reset sequence and a state identi cation sequence are also given together with the speci cation FSM M. Using the given reset and state identi cation sequences, a CS is formed that gives full fault coverage under certain assumptions. In other words, any faulty implementation N can be identi ed by using this test sequence. In the literature, di erent methods for CS construction take di erent approaches to put these components together, with the aim of coming up with a shorter CS incorporating all of these components. One obvious way of keeping the CS short is to keep components short. As the reset sequence and the state identi cation sequence are the biggest components, having short reset and state identi cation sequences is very important as well. It was shown in 1991 that for a given FSM M, shortest reset sequence cannot be computed in polynomial time if P 6≠NP. Recently it was shown that when the FSM has particular type (\monotonic") of transition structure, constructing one of the shortest reset word is polynomial time solvable. However there has been no work on constructing one of the shortest reset word for a monotonic partially speci ed machines. In this thesis, we showed that this problem is NP-hard. On the other hand, in 1994 it was shown that one can check if M has special type of state identi cation sequence (known as an adaptive distinguishing sequence) in polynomial time. The same work also suggests a polynomial time algorithm to construct a state identi cation sequence when one exists. However, this algorithm generates a state identi cation sequence without any particular emphasis on generating a short one. There has been no work on the generation of state identi cation sequences for complete or partial machines after this work. In this thesis, we showed that construction of short state identi cation sequences is NP-complete and NP-hard to approximate. We propose methods of generating short state identi cation sequences and experimentally validate that such state identi cation sequences can reduce the length of fault detection sequences by 29:2% on the average. Another line of research, in this thesis, devoted for reducing the cost of checking experiments. A checking experiment consist of a set of input sequences each of which aim to test di erent properties of the implementation. As in the case of CSs, a large portion of these input sequences contain state identi cation sequences. There are several kinds of state identi cation sequences that are applicable in CEs. In this work, we propose a new kind of state identi cation sequence and show that construction of such sequences are PSPACE-complete. We propose a heuristic and we perform experiments on benchmark FSMs and experimentally show that the proposed notion of state identi cation sequence can reduce the cost of CEs by 65% in the extreme case. Testing distributed architectures is another interesting eld for FSM based fault detection sequence generation. The additional challenge when such distributed architectures are considered is to generate a fault detection sequence which does not pose controllability or observability problem. Although the existing methods again assume that a state identi cation sequence is given using which a fault detection sequence is constructed, there is no work on how to generate a state identi cation sequence which do not have controllability/observability problem itself. In this thesis we investigate the computational complexities to generate such state identi cation sequences and show that no polynomial time algorithm can construct a state identi cation sequence for a given distributed FSM
    corecore