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And

Beloved Kıtmir

III



Improvements in Finite State Machine Based Testing
Uraz Cengiz Türker

Computer Science and Engineering

Ph.D. Thesis, 2014

Thesis Supervisor: Assistant Prof. Hüsnü Yenigün
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ABSTRACT

Finite State Machine (FSM) based testing methods have a history of over half a cen-

tury, starting in 1956 with the works on machine identification. This was then followed

by works checking the conformance of a given implementation to a given specification.

When it is possible to identify the states of an FSM using an appropriate input sequence,

it’s been long known that it is possible to generate a Fault Detection Experiment with

fault coverage with respect to a certain fault model in polynomial time. In this thesis, we

investigate two notions of fault detection sequences; Checking Sequence (CS), Checking

Experiment (CE). Since a fault detection sequence (either a CS or a CE) is constructed

once but used many times, the importance of having short fault detection sequences

is obvious and hence recent works in this field aim to generate shorter fault detection

sequences.



In this thesis, we first investigate a strategy and related problems to reduce the length

of a CS. A CS consists several components such as Reset Sequences and State Identifi-

cation Sequences. All works assume that for a given FSM, a reset sequence and a state

identification sequence are also given together with the specification FSM M. Using the

given reset and state identification sequences, a CS is formed that gives full fault cov-

erage under certain assumptions. In other words, any faulty implementation N can be

identified by using this test sequence. In the literature, different methods for CS con-

struction take different approaches to put these components together, with the aim of

coming up with a shorter CS incorporating all of these components. One obvious way

of keeping the CS short is to keep components short. As the reset sequence and the

state identification sequence are the biggest components, having short reset and state

identification sequences is very important as well.

It was shown in 1991 that for a given FSM M, shortest reset sequence cannot be

computed in polynomial time if P 6= NP. Recently it was shown that when the FSM has

particular type (“monotonic”) of transition structure, constructing one of the shortest

reset word is polynomial time solvable. However there has been no work on constructing

one of the shortest reset word for a monotonic partially specified machines. In this

thesis, we showed that this problem is NP-hard.

On the other hand, in 1994 it was shown that one can check if M has special type

of state identification sequence (known as an adaptive distinguishing sequence) in poly-

nomial time. The same work also suggests a polynomial time algorithm to construct

a state identification sequence when one exists. However, this algorithm generates a

state identification sequence without any particular emphasis on generating a short one.

There has been no work on the generation of state identification sequences for com-

plete or partial machines after this work. In this thesis, we showed that construction

of short state identification sequences is NP-complete and NP-hard to approximate. We

propose methods of generating short state identification sequences and experimentally

validate that such state identification sequences can reduce the length of fault detection

sequences by 29.2% on the average.
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Another line of research, in this thesis, devoted for reducing the cost of checking

experiments. A checking experiment consist of a set of input sequences each of which aim

to test different properties of the implementation. As in the case of CSs, a large portion

of these input sequences contain state identification sequences. There are several kinds of

state identification sequences that are applicable in CEs. In this work, we propose a new

kind of state identification sequence and show that construction of such sequences are

PSPACE-complete. We propose a heuristic and we perform experiments on benchmark

FSMs and experimentally show that the proposed notion of state identification sequence

can reduce the cost of CEs by 65% in the extreme case.

Testing distributed architectures is another interesting field for FSM based fault detec-

tion sequence generation. The additional challenge when such distributed architectures

are considered is to generate a fault detection sequence which does not pose control-

lability or observability problem. Although the existing methods again assume that

a state identification sequence is given using which a fault detection sequence is con-

structed, there is no work on how to generate a state identification sequence which do

not have controllability/observability problem itself. In this thesis we investigate the

computational complexities to generate such state identification sequences and show

that no polynomial time algorithm can construct a state identification sequence for a

given distributed FSM.
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Özet

Sonlu durum makinelerine (SDM’e) dayalı sınama yöntemleri 1956 yılında makine

tanıma üzerine yapılan çalışmalar ile başlamış ve elli yılı aşkın bir süredir üzerinde

çalışılan bir konu olmuştur. Makine tanıma çalışmalarını takiben bir gerçekleştirmenin

bir spesifikasyona uygun olup olmadığının sınanması üzerine çalışmalar başlamış ve ver-

ilen SDM’nin durumları tanımlandığı ve belli bir hata kümesi göz önüne anlındığı zaman

verilen bir SDM için sınama dizilerinin üretilmesi için polinom zamana ihtiyaç duyulduğu

bilinmektedir. Bu tezde iki farklı sınama dizisi ele alınmıştır: Sınama Dizisi (SDi) ve

Sınama Deneyleri (SDe). Sınama dizileri ister SDi ister SDe olsun genelde belli bir pren-

sipte çalışır: bir kez üret ve çok kez kullan. Bu yüzden sınama dizilerinin boylarının kısa

olması sınama sırasında geçen yekün süreyi azaltacağı gerekçesi ile oldukça önemlidir.

Bu yüzden literatürde bu alanda çalışmalar yapılmaya başlanmıştır.



Bu tezde ilk önce SDi’lerin boylarını kısaltmayı amaçlayan stratejiler gösterilmiştir.

Bir SDi birden fazla, kendisinden ufak Sıralama Dizisi, Durum Tanıma Dizisi gibi

dizilerinden oluşur. Bu konu üzerine yapılan hemen hemen tüm çalışmalar bu dizilerin

SDM ile birlikte verildiğini tahmin etmişlerdir ve bu diziler ile oluşturulacak SDi’ler

belli bir hata kümesi göz önünde bulundurularak üretildiğinde bir spesifikasyonun hatalı

tüm gerçekleştirmelerini saptayacağı bilinmektedir. Bir başka değiş ile verilen hatalı bir

gerçekleştirme üretilen bir SDi tarafından belirlenebilir. Farklı SDi oluşturma yöntemleri

bu dizileri farklı şekilde bir araya getirerek SDi’leri daha kısa boyda oluşturmayı amaçlamışlardır.

Ancak sıralama ve durum tanıma dizileri bir SDi’nin en büyük parçaları olduğu bilgisi ile

hareket edersek bu dizilerin boylarının kısaltılması, oluşturulacak SDi’lerin boylarını’da

kısaltacağı düşünülmelidir.

1991’de verilen bir SDM’nin en kısa sıralama dizinin üretilmesinin NP != P eşitsizliği

var olduğu sürece polinom zamanda üretilemeyeceği ispat edilmiştir. Ancak yakın geçmişte

bir SDM’nin durumlar arası geçişlerinin özel bir türde olması ”monotonik” durumunda

en kısa sıralama dizisinin polinom zamanda üretileceği gösterilmiştir. Ancak kısmi

tanımlı bir monotonik SDM’nin en kısa sıralama dizisinin hesaplanma zorluğu açık bir

problemdi. Bu tezde bu problemin NP-Zor olduğunu gösterdik.

Öteyandan, 1994 yılında özellikli bir durum tanıma dizisinin (uyarlamalı ayrıştırma

dizisi (UAD)) polinom zamanda üretilebileceği gösterilmiştir. Aynı çalışmada yazarlar

bir SDM için bu diziyi polinom zamanda üretebilen bir algoritma da göstermişlerdir. An-

cak bu algoritma herhangi bir ayrıştırma dizisini büyüklüğüne bakmadan üretmektedir.

Bu çalışmadan başka tam tanımlı yada kısmi tanımlı SDM’ler için uyarlamalı ayrıştırma

dizisi üretebilen başka bir çalışma yoktur. Bu tezde kısa uyarlamalı ayrıştırma dizisi

üretmenin NP-TAM ve en kısa UAD’ye yaklaşmanın da NP-Zor olduğunu gösterdik.

Bunun yanında SDi’lerin boyunu ortalama %29.2 kadar kısaltabilmeye yarayan UAD’leri

retebilen sezgisel yöntemler sunduk.

Bu tezde SDe’lerin boyunu kısaltmayı hedefleyen çalışmalar yaptık. SDe’ler SDi’lerin

aksine birbiri ile birleşmeyen çok sayıda ufak sınama konuları içerir ve her bir sınama

konusu gerçekleştirmenin farklı bir yönünü sınar. Ancak SDi’ler de olduğu gibi bu sınama
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konularının büyük bir bölümü yine durum tanıma dizilerinden oluşur. SDe’ler için sınırlı

sayıda durum tanıma dizisi mevcuttur, bu tezde yeni bir durum tanıma dizisi sunduk ve

gösterdik ki bu yeni durum tanıma dizisinin oluşturulmasının zorluğu PSPACE-Tam. Bu

sonucu takiben bu dizileri üretmek için sezgisel yöntem ürettik ve endüstriden alınmış

SDM’ler üzerinde deneylar yaptık ve teklif edilen yöntem ile SDe’lerin boylarını %65’e

varan oranlarda kısaltılabileceğini gösterdik.

Dağıtık SDM’lerin (DSDM’lerin) sınanması SDM tabanlı sınama çalışmalarının il-

ginç bir ayağı olmaktadır. Sınama dizilerinin üretiminde yaşanan zorluklara ek olarak

dağıtık mimarilerin getirmiş olduğu kontrolledilebilirlik ve gözlemlenebilirlik problemleri

karşımıza çıkmaktadır. Her ne kadar mevcut SDi üretme yöntemlerinde durum tanıma

dizilerinin DSDM ile birlikte verildiği düşünülmüşsede kontroledilebir durum tanıma

disizin üretlimesine değinen bir çalışma yoktur. Bu tezde bu dizilerin üretilmesinin

zorluğunu araştırmış ve bu dizilerin polinom zamanda üretilemeyeceğini ispatlamş bu-

lunmaktayz.
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1. Introduction

Although the concept of Finite State Machines (FSMs) had been existed for so long,

its popularity today in the computer science and engineering fields can be attributed to

the pioneering efforts of George H. Mealy [1] and Edward Forrest Moore [2] performed

at Bell Labs and IBM around 1960s. After their efforts, finite state machines became

popular in computer science and engineering disciplines, remarkably due to the ability of

modelling systems such as sequential circuits [3], communication protocols [4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14], object-oriented systems [15], and web services [4, 16, 17, 18, 19, 20].

The operation of an FSM can be described as follows: the system is always in one

of the defined states. It reacts to an input by producing an output, and by changing

its state. For a Mealy machine, the output is generated by a transition. For a Moore

machine, an output is generated by a state. Due to this reactive behaviour, FMSs are

also called reactive systems. An input to an FSM may be a message, or a simple event

flag. Likewise, an output from an FSM may be a message interpreted by an observer,

or setting an event flag. Multiple transitions are allowed from one state to other states.

We refer [21, 22] for detailed information on FSMs. In this work we focus on Mealy

machines. However, Mealy and Moore machines are equivalent and can be converted to

each other [2].

When a system is modelled by an FSM, it is possible to generate a test from this

model. Here, by testing we refer to the Black Box Testing where the tester is only

allowed to observe outputs. The first paper in this field was given by Moore [2], where

Moore suggested to generate a machine identification sequence: a special input sequence

which is capable of distinguishing a copy of M from any other FSMs which have same
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number of input/output symbols and states as M .

In principle, testing FSM refers to a Fault Detection Experiment [22] which consists of

applying an experiment (derived from a specification FSM M ) to an implementation N

of M, observing the output sequence produced by N in response to the application of the

experiment, and comparing the output sequence to the expected output sequence. In

this thesis, we consider two notions of fault detection experiments: Checking Sequences

(CSs) [23] and Checking Experiments (CEs)[4]. If the applied experiment contains a

single input sequence then it is called a CS and if the applied experiment contains a set

of input sequences then it is called a CE. These fault detection experiments determine

whether System Under Test (SUT) N is a correct or faulty implementation of M [4, 21,

23]. After Moore, Arthur Gill [21] and Frederick C. Hennie [23, 24] present a line of

research on testing FSMs. As fault detection experiments (CSs/CEs) are used to test an

implementation, and the fact that a specification may have multiple implementations,

reducing the size of fault detection experiments is important. In [23], Hennie considers

the specification machine as the master plan, and he encodes the behaviour of this

master plan as a CS. Then based on this sequence he tests if the implementation has

the same behaviour. Due to this strategy; a CS refers to an input sequence that is

constructed from M and is guaranteed to distinguish a correct implementation from

any faulty implementation, which have the same input and output alphabets as M and

no more states than M . Following him, Charles R. Kime enhanced the methods given

by Hennie and lessen the lengths of the CS to some extend [25]. Following Kime and

Hennie another influential scientist Güney Gönenç proposed an algorithm that shortens

the length of such sequences considerably [26]. After this point researchers have been

working on to shorten the lengths of the CSs by putting the pieces that need to exist in

such a CS together in a better way [4, 17, 27, 28, 29, 30, 31, 32, 33].

In general, a CS consists of four different type of components. Reset Sequence is

a component in which the machine N is brought to the initial state regardless of the

current state of N and the output produced by N . State Verification component is

carried out by bringing N to a certain state s of M , checking if N is at state s by
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applying a state identification sequence for s and repeating this procedure until all the

states of M are recognised in N . The transition verification component is performed

for each transition of M in N . To verify a transition, one brings N to the state from

which the transition starts, applies the input that labels the transition (to check correct

implementation of the output of the transition) and then verifies the ending state by

using a state identification sequence. The final component is transfer sequences. Transfer

sequences are used to combine all the components to form the final CS.

When examining the structure of a CS, the motivation to study reset sequences be-

comes natural i.e. shorter reset sequences lead to shorter CSs. However for a given FSM

computing the shortest reset sequence is known to be NP-complete in general [34]. There-

fore, we investigated open problems and raise several problems related to constructing

reset sequences and try to draw the computational complexities for these problems.

State identification sequences are used many times in a CS and there are differ-

ent type of state identification sequences: Unique Input Output (UIO) sequences, or

Separating Family (also known as the Characterizing Set), or Distinguishing sequences

(DSs). A UIOs is a set of input sequences that verifies the states of an FSM. Since it

is PSPACE-complete to construct UIOs for an FSM [35], it may be impractical to use

UIOs for large FSMs [7, 13, 36, 37, 38, 39, 40, 41]. Separating family can also be used

to verify states and transitions of an FSM [4]. Although this method is strong in the

sense that every minimal FSM posseses a characterizing set and it is polynomial time

computable, it requires a reliable reset feature in the implementation or otherwise re-

sults in exponentially long CSs [4, 22, 21]. DSs are used to identify the current state

of N . Thanks to the efficient state identification capabilities, distinguishing sequences

simplify the problem of generating CSs. They do not require reliable reset, and by using

a distinguishing sequence, one can construct a CS of a length polynomial in the size

of the FSM and the distinguishing sequence1 [23, 29, 35, 42, 43, 44]. Therefore many

techniques for constructing CSs use DSs to resolve the state identification problem.

1That is, the FSM and its distinguishing sequence are considered as the inputs for such CS generation

algorithms.
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There are two types of distinguishing sequences, Preset Distinguishing Sequences, and

Adaptive Distinguishing Sequences (also known as Distinguishing Sets). As it was noted

before [35, 42], the use of ADS instead of PDS is also possible for these methods and

shown to yield polynomial length CSs [43]. There are numerous advantages of using

ADSs over PDSs. Lee and Yannakakis have reported that checking the existence and

computing a PDS is a PSPACE-complete problem whereas it is polynomial time solvable

in case of ADS [35]. They have also shown that an FSM which posses an ADS may

not have a PDS and not the other way around [35, 42]. Moreover, it is also known that

the shortest ADS for an FSM can not be longer than the shortest PDS of the same

FSM [35, 42, 24]. Furthermore, because during the distinguishing experiment the next

input is chosen according to the previous response of FSM, ADS based testing methods

is accepted as more powerful means of testing than the PDS based methods [45, chp.2].

Hierons et al.[43] reported that CSs are relatively shorter when designed by ADS.

All ADS based CS generation methods start with the assumption that an ADS is given.

The given ADS is repeatedly applied in state verification and transition verification

components of the CS. Thus, these ADS applications form a considerably large part of

the CS and hence, reducing the size of ADSs is a reasonable way to reduce the length

of the CSs.

Earlier ADS construction algorithms [21, 22, 23] are exhaustive and require expo-

nential space and time. The only polynomial time algorithm was proposed by Lee and

Yannakakis (LY Algorithm). Let us assume that p, n refers to the number of inputs

and number of states respectively then the LY algorithm can check if M has an ADS in

O(pn log n) time [35], and if one exists, we can construct an ADS in O(pn2) time [35].

Alur et al. show that checking the existence of an ADS for non-deterministic FSMs is

EXPTIME-complete [46]. Recently, Kushik et al. present an algorithm (KEY algorithm)

for constructing ADSs for non-deterministic observable FSMs [47]. We believe that

the KEY algorithm can also construct ADSs for deterministic FSMs, since the class of

deterministic FSMs is a sub-class of non-deterministic FSMs.

These ADS construction algorithms are not guaranteed to compute the minimum cost
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ADS for a given FSM. Moreover, to our knowledge, there is no work that analyses the

computational complexity of constructing minimum cost ADSs. In this thesis, we also

analyse the computational complexity of constructing minimum cost ADSs and devise

methods for computing such ADSs.

Although the existence of ADSs and PDSs are very useful, not all FSMs possess an

ADS or PDS. For such cases instead of CSs, another fault detection sequence Checking

Experiments (CEs) are constructed. The key difference between CSs and CEs is that a

CE can contain multiple test sequences (or test cases). A test sequence is simply an input

sequence that, when applied, the machine N has to produce expected output. Most of

the approaches use separating family, or an enhanced version called Harmonized State

Identifiers to identify the states [4, 21, 48, 49, 50, 51, 52]. We refer [53] for comparison of

such methods. In this thesis we to try to broaden the use of ADSs and PDSs on FSMs

that do not have one, by introducing Incomplete ADSs/PDSs and use these sequences

for constructing CEs.

As a matter of fact, most CS generation approaches2 assume that the SUT interacts

with a single tester (Figure 1.1a). However, many systems interact with their environ-

ment at multiple physically distributed interfaces, called ports (Figure 1.1b). Examples

include communications protocols, cloud systems, web services, and wireless sensor net-

works. In testing such a system, we might place a separate independent (local) tester at

each port. The ISO standardised distributed test architecture dictates that while testing

there is no global clock and testers do not synchronize during testing [55]. However,

sometimes, rather than using the distributed test architecture, we allow the testers to

exchange coordination messages through a network in order to synchronise their actions

(see, for example, [56, 57, 58]). However, this can make testing more expensive, since

it requires us to establish a network to connect the local testers, and may not be feasi-

ble where there are timing constraints. In addition, the message exchange may use the

same network as the SUT and so change the behaviour of the SUT. As a result, there

2Such as HEN method given in [23], UWZ method given in [30], HIU method given in [29], SP

method given in [33], and DY method given in [54].
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Figure 1.1.: Localized and Distributed Architectures

has been much interest in testing in the distributed test architecture (see, for example,

[59, 60, 61, 62, 63, 64, 65, 66, 67, 68]).

Early work, regarding the distributed test architecture, was motivated by protocol

conformance testing [62, 63, 68]. This work identified two problems introduced by dis-

tributed testing. First, there might be a controllability problem in which a local tester,

at a port p, cannot determine when to supply an input. Controllability problems lead to

non-determinism in testing and so there has been interest in the problem of generating

test sequences that do not cause controllability problems [59, 61, 64, 69, 70, 71, 72].

Observability problems refer to the fact that, since we only make local observations, we

may not be able to distinguish between two different behaviours (global traces). Observ-

ability problems can reduce the effectiveness of a test sequence and so there has been

interest in producing test sequences that do not suffer from such observability problems

[60, 63, 73, 74, 75].

British scientist Robert Hierons has shown that if we are testing from multi–port FSM

(MPFSM) M then it is undecidable whether there is a test case that is guaranteed to

move M to a particular state or to distinguish two states and these results hold even if
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M is deterministic [66]. In contrast, these problems can be solved in low order polyno-

mial time if we have a deterministic FSM M . If we restrict attention to controllable test

sequences3 then there are low-order polynomial time algorithms to decide whether there

is a separating sequence for two states [65] and to decide whether there is a controllable

sequence that forces M into a particular state [76]. However, as noted above, if we

use separating sequences then we require many test sequences to test a single transi-

tion. This motivates the final leg of this thesis: investigate computational complexity of

constructing PDSs and ADSs for distributed testing.

1.1. Contributions

The contributions of this thesis are manifold. However, we believe that all these contri-

butions aim to enhance FSM based testing by presenting new problems and investigating

their computational complexities, providing algorithms for the proposed problems and

introducing new problems.

The major contributions of our work can be summarized as follows:

1. We introduce several problems related to reset sequences: We investigate their

computational complexities.

2. We provide a rather unique way of reducing the length of checking sequences: We

propose several objective functions to minimize adaptive distinguishing sequences

and we show that constructing a minimum cost ADS is computationally hard

and hard to approximate. We provide two modifications on the existing ADS

construction algorithm that aim to construct minimum cost ADSs and provide

a new lookahead based algorithm to construct minimum cost ADSs. Finally,

we experimentally show that minimum cost ADSs can reduce the length of the

checking sequence by 29.20% on the average.

3. We show how the state identification capabilities of DSs can be utilized on FSMs

3Controllable test sequences are formally defined in Section 6.2.
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that do not have a DS: We introduce the notion of Incomplete DSs. We investigate

the computational complexity of constructing such incomplete DSs and we provide

a heuristic to compute incomplete DSs. We experimentally show that the use of

incomplete DSs reduce the cost of checking experiments.

4. We investigate computational complexities of constructing preset and adaptive dis-

tinguishing sequences for distributed testing: We show that constructing adaptive

and preset distinguishing sequences are computationally hard. We left the bounds

of ADSs and PDSs as open problems. We consider DSs with limited size and

provide computational complexities of constructing such DSs. We also provide a

sub–class of multi–port FSMs where the PDS construction is decidable.

1.2. Outline of the Thesis

The organization of this thesis is as follows: Chapter 2, introduces some basic notation

that are going to be used throughout the thesis. In Chapter 3, we examine the problems

related to reset sequences, focusing mainly on computational complexities of open and

introduced problems. In Chapter 4, we describe the computational complexity of con-

structing minimum cost ADSs provide methods to construct minimum cost ADSs and

experimentally show what we can earn by using minimum cost ADSs while constructing

CSs. In Chapter 5, we introduce the notion of incomplete ADSs/PDSs, give compu-

tational cost of constructing them, and experimentally show the effect of using such

ADSs/ PDSs while constructing CEs. The Chapter 6 is devoted for the contributions

related to the distributed testing and in Chapter 7 we conclude the thesis.

All the proofs for Lemmas, Propositions, and Theorems of Chapter 3, Chapter 4,

Chapter 5 and Chapter 6 are given in Appendix A, Appendix B, Appendix C and

Appendix D, respectively.
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2. Preliminaries

2.1. Finite State Machines

An FSM is formally defined as a 5-tuple M = (S, s0, X, Y, δ, λ) where:

• S is the finite set of states.

• X is the finite set of input symbols

• Y is the set of output symbols

• s0 is the initial state1

• δ is the transition function δ : S ×X → S

• λ is the output function λ : S ×X → Y

At any given time, M is at one of its states. If an input x ∈ X is applied when M is

at state s, M changes its state to δ(s, x) and during this transition, the output symbol

λ(s, x) is produced. It is assumed that only one input is applied at a time and similarly

only one output is produced at a time.

When δ and λ are described as functions as above, the FSM is called deterministic.

For an FSM which is not deterministic (in which case it is called non-deterministic), δ

and λ are defined as relations. In this thesis we will only be interested in deterministic

FSMs. To denote a transition from a state s to a state s′ with an input x and an output

y, we write (s, s′, x/y), where s′ = δ(s, x) and y = λ(s, x). We call x/y an input/output

1In this thesis we mostly omit the initial states from definitions of FSMs.
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pair. For a transition τ = (s, s′, x/y), we use start(τ), end(τ), input(τ), output(τ), and

label(τ) to refer to state s (the starting state of τ), state s′ (the ending state of τ),

input x (the input of τ), output y (the output of τ), and input/output pair x/y (the

input/output label of τ), respectively.

An FSM M can be by a directed graph with a set of vertices and a set of edges. Each

vertex represents one state and each edge represents one transition between the states

of the machine M.

s1

s2

s3a/1

b/
2

a/2

b/1

a/2
b/1

Figure 2.1.: An example FSM M1

Figure 2.1 is an example of a FSM. Where S = {s1, s2, s3}, X = {a, b} and Y = {1, 2}.

Throughout this thesis we will use juxtaposition to denote sequences (e.g. abba is

an input sequence where a and b are input symbols) and variables with bars to denote

variables with sequence values (e.g. x̄ ∈ X∗ to denote an input sequence). We use ε

to denote the empty sequence. We define extensions of transition and output functions

over sequences of inputs as follows:

• δ̄(s, ε) = s

• δ̄(s, xx̄) = δ̄(δ(s, x), x̄) where x ∈ X, x̄ ∈ X∗

• λ̄(s, ε) = ε

• λ̄(s, xx̄) = λ(s, x)λ̄(δ(s, x), x̄) where x ∈ X, x̄ ∈ X∗
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By abusing the notation, we will again use δ and λ instead of δ̄ and λ̄.

A walk in M is a sequence (s1, s2, x1/y1), . . . , (sm, sm+1, xm/ym) of consecutive transi-

tions. This walk has starting state s1, ending state sm+1, and label x1/y1, x2/y2, . . . , xm/ym.

Here x1/y1, x2/y2, . . . , xm/ym is an input/output sequence, also called a global trace, and

x1, x2, . . . , xm is the input portion and y1, y2, . . . , ym is the output portion of this global

trace. An example walk in M2 of Figure 2.1 is τ̄ = (s1, s2, b/2)(s2, s3, b/1), its starting

state is s1 and ending state is s3 its label is b/2 b/1, which has input portion bb and

output portion 2, 1.

An FSM M defines the language L(M) of labels of walks with starting state s0.

Likewise, LM(s) denotes the set of labels of walks of M with starting state s. For

example, L(M1) contains the global trace2 b/2, a/2 and LM1(s3) contains the global

trace b/1, b/2. Given S ′ ⊆ S we let LM(S ′) denote the set of labels of walks of M with

starting state in S ′ and so LM(S ′) = ∪s∈S′LM(s). Two states s, s′ are indistinguishable

or equivalent if LM(s) = LM(s′). Similarly, FSMs M and N are equivalent if L(M) =

L(N). An FSM M is said to be minimal if there is no equivalent FSM that has

fewer states. Assuming every state s of M is reachable we have that M is minimal if

and only if LM(s) 6= LM(s′) for all s, s′ ∈ S with s 6= s′. We write pre to denote a

function that takes a set of sequences and returns the set of prefixes of these, similarly

we write post to denote a function that returns the set of postfixes of these. Note that

if x1/y1, x2/y2, . . . , xm/ym is an input/output sequence then its prefixes are of the form

x1/y1, x2/y2, . . . , xn/yn for n ≤ m. Formal definitions for PDSs and ADSs (DSs) are

given respectively.

We use barred symbols to denote sequences and ε for the empty sequence. Suppose

that we are given a rooted tree K where the nodes and the edges are labeled. The term

internal node is used to refer to a node which is not a leaf. For two nodes p and q in

K, we say p is under q, if p is a node in the subtree rooted at node q. A node is by

definition under itself. Consider a node p in K. We use the notation p̄v (v for vertices)

to denote the sequence obtained by concatenating the node labels on the path from the

2Assume s1 is the initial state.
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root of K to p excluding the label of p. The notation pv is used to denote the label of

p itself. Similarly, p̄e (e for edges) denotes the sequence obtained by concatenating the

edge labels on the path from the root of K to p. If p is the root, p̄v and p̄e are both

considered ε. For a child p′ of p, if the label of the edge from p to p′ is l, then we call

p′ the l–successor of p. In this thesis, we will always have distinct labels for the edges

emanating from an internal node, hence l–successor of a node will always be unique.

Definition 1 Given FSM M = (S,X, Y, δ, λ) and S, input sequence x̄ is a Preset

Distinguishing Sequence (PDS) for S if for all s, s′ ∈ S with s 6= s′ we have that

λ(s, x̄) 6= λ(s′, x̄).

On the other hand, an ADS can be thought as a decision tree. The nodes of the tree

are labeled by input symbols, edges are labeled by output symbols providing that edges

emanating from a common node have different labels and leaves are labeled by state ids.

Definition 2 An Adaptive Distinguishing Sequence of an FSM M = (S,X, Y, δ, λ) with

n states is a rooted tree A with n leaves such that:

1. Each leaf of A is labeled by a distinct state s ∈ S.

2. Each internal node of A is labeled by an input symbol x ∈ X.

3. Each edge is labeled by an output symbol y ∈ Y .

4. If an internal node has two or more outgoing edges, these edges are labeled by

distinct output symbols.

5. For a leaf node p, λ(pv, p̄v) = p̄e (i.e. the state labeling a leaf node p produces the

output sequence labeling the path from the root to p to the input sequence labeling

the path from the root to p).

The use of ADS is straightforward: to identify the current state of the FSM apply

the input symbol that labels the current node of the tree, and select the outgoing edge

of the current node that is labeled by the output symbol produced by the FSM and read
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the label of the new node. If the label is a state id then the initial state of the FSM is

identified, otherwise repeat the procedure. Figure 2.2 is an example ADS for FSM M1

given in Figure 2.1. If an FSM M has an ADS, then M is minimal. However, a minimal

FSM may or may not have an ADS. An FSM may also have more than one ADS, e.g.

Figure 2.3 is another ADS for M1 of Figure 2.1. In this work, we write (DS) to refer to

PDSs and ADSs.

a

b

a

s3

2
s2

1

1

1
s1

2

Figure 2.2.: An ADS for M1

of Figure 2.1

b

b

s2

1
s3

2

1
s1

2

Figure 2.3.: Another ADS

for M1 of

Figure 2.1

For a set of states S ′, an input sequence x̄ and an output sequence ȳ, let S ′x̄/ȳ be

{s ∈ S ′|λ(s, x̄) = ȳ}. In other words, S ′x̄/ȳ is the set of states in S ′ which produce the

output sequence ȳ to the input sequence x̄. Followings are easy to see consequences of

definitions. Let A be an ADS for an FSM M = (S,X, Y, δ, λ).

Lemma 1 Let p be a leaf node in A and q be an internal node in A on the path from

the root to p. If p is under the y–successor of q, then λ(δ(pv, q̄v), qv) = y.

Lemma 2 Let p be a leaf node in A. For any state s 6= pv, λ(s, p̄v) 6= λ(pv, p̄v).

Lemma 3 For a node p in A, (i) if p is a leaf node, then |δ(Sp̄v/p̄e , p̄v)| = 1, and (ii) if

p is an internal node, then |δ(Sp̄v/p̄e , p̄v)| > 1.

Lemma 4 For an internal node p in A, pv is a valid input for the set of states δ(Sp̄v/p̄e , p̄v).

A Partial FSM (PSFSM) M is defined by tuple M = (S,X, Y, δ, λ,D) where S, X,

Y are finite sets of states, inputs and outputs respectively. D ⊂ S ×X is the domain,

13



δ : D → S is the transition function, and λ : D → Y is the output function. If (s, x) ∈ D

then x is defined at s. Given input sequence x̄ = x1x2 . . . xk and s ∈ S, x̄ is defined at

s if there exist s1, s2, . . . sk ∈ S such that s = s1 and for all 1 ≤ i ≤ k, xi is defined at

si and δ(si, xi) = si+1. The transition and output functions can be extended to input

sequences as described above. An example PSFSM M1 is given in Figure 2.4 where

X = {a, b}, Y = {0, 1} S = {s1, s2, s3}. Note that input a is not defined at state s3.

s1

s2

s3

a/0

b/
1

a/0

b/1

b/0

Figure 2.4.: PSFSM M1

Although DSs are important and useful on their own right, they are important for

another reason: they have been useful to solve fault detection problem.

Fault detection problem is referred to also as the machine verification or conformance

testing problem depending on the subject (i.e. it is refereed as conformance testing in

communication protocol spectra). Let us assume that we are given an FSM M with n

number of states, and a finite set φ(M) of all faulty FSMs such that each of which has

at most n number of states. Also let us assume that we are given an FSM N which

is known to be an implementation of M , the Fault Detection Problem is to decide if

N 6∈ φ(M). The Fault Detection Experiment is an experiment that solves the fault

14



detection problem. The underlying input sequence can be a CS or CE. A CS of M is an

input sequence starting at the initial state s0 of M that distinguishes M from any fault

implementation of M that is not isomorphic to M . (i.e., the output sequence produced

by any such N of φ(M) is different from the output sequence produced by M). Formally;

Definition 3 An input sequence x̄ is a checking sequence if and only if λ(sM , x̄) 6=

λ(sN , x̄) where N ∈ φ(M), and sM , sN are initial states of FSMs M and N respectively.

On the other hand, a CE contains a set of input sequences called test sequences. A

test sequence is simply an input sequence. In testing we will apply the inputs from a test

sequence in the order specified and compare the outputs produced with those specified.

Definition 4 Given FSM M = (S,X, Y, δ, λ, s0) and integer m, a test suite T ⊆ X∗ is

a checking experiment if, for every FSM N = (S ′, X, Y, δ′, λ′, s′0) that has the same input

alphabet as M and no more than m states, N produces expected output for T if and only

if ∀x̄ ∈ T we have that λ(s0, x̄) = λ(s′0, x̄).

2.1.1. Multi–port Finite State Machines

A multi-port finite state machine MPFSM is an FSM with a set P of ports at which

it interacts with its environment. The ports are physically distributed and each has its

own input/output alphabet. An input can only be applied at a specific port, and an

output can only be observed at a specific port. Therefore, for each port p ∈ P there is

a separate local tester that applies the inputs to p and observes the outputs produced

at p.

A deterministic MPFSM is defined by a tuple M = (P , S, s0, X, Y, δ, λ) where:

• P = {1, 2, . . . , k} is the set of ports.

• S is the finite set of states and s0 ∈ S is the initial state.

• X is the finite set of inputs and X = X1 ∪ X2 ∪ · · · ∪ Xk where Xp (1 ≤ p ≤ k)

is the input alphabet for port p. We assume that the input alphabets of the ports
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are disjoint: for all p, p′ ∈ P , such that p 6= p′, we have Xp ∩ Xp′ = ∅. For an

input x ∈ X, we use inport(x) to denote the port to which x belongs and so

inport(x) = p if x ∈ Xp. We consider the projection of an input onto a port and

defined it as πp(x) = x if x ∈ Xp, and πp(x) = ε if x 6∈ Xp. The symbol “ε” will

be used to denote an empty/null input or output and also the empty sequence.

• Y =
∏k

p=1(Yp ∪ {ε}) is the set of outputs where Yp is the output alphabet for port

p. We assume that the output alphabets of the ports are disjoint: for two ports

p, p′ ∈ P , such that p 6= p′, we have Yp ∩ Yp′ = ∅. An output y ∈ Y is a vector

〈o1, o2, . . . , ok〉 where op ∈ Yp ∪ {ε} for all 1 ≤ p ≤ k. We also assume that X is

disjoint from ∪1≤i≤kYk. The notation πp(y) is used to denote the projection of y

onto port p, which is simply the pth component of the output vector y. We define

outport(y) = {p ∈ P | πp(y) 6= ε}, which is the set of ports at which an output is

produced.

• δ is the state transfer function of type S ×X → S.

• During a state transition M also produces an output vector. The output function

λ : S ×X → Y gives the output vector produced in response to an input.

Let (s, s′, x/y) be a transition of M then we define inport(τ) = inport(x/y) =

inport(x) and we also define outport(τ) = outport(x/y) = outport(y) and finally we

define ports(τ) = ports(x/y) = {inport(x)}∪ outport(y) to denote the ports used in the

transition. Figure 2.5a gives an example of a 2-port MPFSM. The output and state

transfer functions can be extended to input sequences as usual.

Since we assume that the ports are physically distributed, no tester observes a global

trace: the tester connected to port p will observe only the inputs and outputs at p. We

use Σ to denote the set of global observations (inputs and outputs) that a hypothetical

global tester can observe and Σp to denote the set of observations that can be made at

port p. Thus, Σ = X ∪ Y contains inputs and vectors of outputs while Σp = Xp ∪ Yp
contains only inputs and outputs at p. Let σ ∈ Σ∗ be a global trace, then πp(σ) is the
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s1

s2

s3a/〈2, 4〉

b/
〈1,

3〉

a/〈2, 4〉

b/〈1, 3〉

a/〈1, ε〉
b/ 〈ε, 3〉

(a) Example MPFSMM1

s′1

s′2

s′3a/〈2, 4〉

b/
〈1,

3〉

a/〈2, 4〉

b/〈1, 3〉

a/〈ε, ε〉
b/ 〈1, 3〉

(b) Faulty implementation of machine M1

Figure 2.5.: Example MPFSMM1 and its faulty implementation M′1

local trace at p: a sequence of inputs and outputs at port p that is the projection of σ

at p. Here πp is defined by the following in which ε denotes the empty sequence.

πp(ε) = ε

πp((x/〈o1, o2, . . . , om〉)σ) = πp(σ) if x 6∈ Xp ∧ op = ε

πp((x/〈o1, o2, . . . , om〉)σ) = xπp(σ) if x ∈ Xp ∧ op = ε

πp((x/〈o1, o2, . . . , om〉)σ) = opπp(σ) if x 6∈ Xp ∧ op 6= ε

πp((x/〈o1, o2, . . . , om〉)σ) = xopπp(σ) if x ∈ Xp ∧ op 6= ε

Since the local testers observe only the local projections of global traces, these testers

can only distinguish two global traces if one or more of their local projections differ.

Thus, two global traces σ1, σ2 are indistinguishable, written σ1 ∼ σ2, if for all p ∈ P we

have that πp(σ1) = πp(σ2). For instance let us consider MPFSMM1 given in Figure 2.5,
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s1

s2

s3

x 1
/
〈a,
b〉,
x 2

/
〈ε,
b〉 x

1 /〈a, b〉, x
2 / 〈ε, b〉

x2/ 〈ε, b〉

x1/ 〈a, ε〉

Figure 2.6.: Example MPFSM M2

and global traces σ1 = b/〈1, 3〉, b/〈ε, 3〉, σ2 = b/〈ε, 3〉, b/〈1, 3〉, then π2(σ1) = 1, π1(σ1) =

b3b3, π2(σ2) = 1 and π1(σ2) = b3b3 and so σ1 ∼ σ2.

Recall that in distributed testing, the testers are physically distributed and they are

not capable of communicating between other testers. This reduced observational power

can lead to situations in which a traditional PDS or ADS fails to distinguish certain

states.

Example 1 Consider the FSM given in Figure 2.6. We have that x1x1 is a tradi-

tional PDS since it leads to different global traces from the states: from s1 we have

x1/〈a, b〉, x1/〈a, b〉; from s2 we have x1/〈a, b〉, x1/〈a, ε〉; and from s3 we have x1/〈a, ε〉, x1/〈a, b〉.

However, if we consider the local traces we find that x1x1 does not distinguish states s2

and s3 in distributed testing since in each case the project at port 1 is x1ax1a and the

projection at port 2 is b.

We can formalise this observation as follows.

Proposition 1 Given FSM M , a traditional PDS x̄ of M might fail to distinguish

some states of M when local observations are made.

Since PDS defines an ADS the result immediately follows to ADSs.

Proposition 2 Given FSM M , a traditional ADS x̄ of M might fail to distinguish

some states of M when local observations are made.
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Therefore the definitions supplied for PDSs and ADSs are slightly different when we

consider distributed architectures. We will present formal definitions for such sequences

in Chapter 6.

2.1.2. Finite Automata

A Deterministic Finite Automaton (or simply an automaton) is defined by a triple

A = (Q,Σ, δ) where,

• Q is a finite set of states.

• Σ is a finite set of input alphabet.

• δ : Q× Σ→ Q is a transition function.

If δ is a partial function, A is called a partially specified automaton (PSA). Otherwise,

when δ is a total function, A is called a completely specified automaton (CSA). The

transition function can be extended for a sequence of input symbols in the usual way.

Moreover, for a Q̄ ⊆ Q, we use δ(Q̄, x̄) to denote the set ∪q∈Q̄δ(q, x̄). For a PSA, a word

x̄ ∈ Σ? is said to be defined at a state q ∈ Q, if ∀x̄′, x̄′′ ∈ Σ?,∀x ∈ Σ such that x̄ = x̄′xx̄′′,

δ(δ(q, x̄′), x) is defined. Throughout this thesis, we use the term automaton to refer to

general automata (both PSA and CSA). We will specifically use PSA or CSA to refer

to the respective classes of automata.

A CSA A = (Q,Σ, δ) is synchronizable if there exists a word x̄ ∈ Σ? such that

|δ(Q, x̄)| = 1. A synchronizable CSA has a reset functionality, i.e. it can be reset to

a single state by reading a special word. In this case x̄ is called a reset word (or a

synchronizing sequence). Similarly, a PSA A = (Q,Σ, δ) is synchronizable if there exists

a word x̄ ∈ Σ? such that x̄ is defined at all states and |δ(Q, x̄)| = 1. Throughout this

thesis, we use terms reset word and synchronizing sequence interchangeably. It is known

that not all automata are synchronizing. We call such automata non–synchronizable

automata (NSA). A CSA is a monotonic CSA when states preserve a linear order <

under the transition function. In other words, a CSA A = (Q,Σ, δ) is monotonic if
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for all q, q′ ∈ Q where q < q′ then we have that δ(q, a) < δ(q′, a) or δ(q, a) = δ(q′, a).

Similarly, a PSA is a monotonic PSA3 when states preserve a linear order < under the

transition function when they are defined. Formally, a PSA A = (Q,Σ, δ) is monotonic

if for all q, q′ ∈ Q where q < q′ such that both δ(q, a) and δ(q′, a) are defined, then we

have δ(q, a) < δ(q′, a) or δ(q, a) = δ(q′, a).

3It is called Partially Monotonic in [77]
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3. Complexities of Some Problems

Related to Synchronizing,

Non-synchronizing and Monotonic

Automata

3.1. Introduction

A Reset Sequence / Reset Word, or a Synchronizing Sequence / Synchronizing Word of

an FSM M takes M to a specified state, regardless of the initial state of the M and

the output sequence produced by the M . As output sequence produced by M is not

important, the problem of constructing synchronizing sequence usually studied on finite

automata. Therefore in the rest of this chapter, we are going to consider finite automata.

As the need for reset operation is natural, synchronizing sequences are used in vari-

ous fields including automata theory, robotics, bio–computing, set theory, propositional

calculus and many more [4, 34, 38, 42, 48, 49, 78, 79, 80, 81, 82].

For instance, consider an automaton A = (Q,Σ, δ). The transition function introduces

functions on the set of states of the form fx : Q → Q for all x ∈ Σ, where fx(q) = q′

iff δ(q, x) = q′. Finding a synchronizing sequence can then be seen as the problem of

finding a composition g of the functions fx in the form g(q) = fx1(fx2(. . . fxk(q)))) such

that x1, x2, . . . , xk ∈ Σ and g is a constant function.

An other interesting example arises in bio–computing. In [80, 83] researchers use a set
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of automata (in work [83] authors mentioned the number of automata is 3∗1012/µ`, and

can perform a total of 6.6∗1013 transitions per second) made of synthetic molecules and

the task is to construct reset sequences, which is a synthetic DNA made of synthetic nu-

cleotides, in order to be able to re-use the automata. Moreover, in [84] authors propose

an automaton called MAYA, a molecular automaton that plays TIC-TAC-TOE against

human opponent. Such an automaton, after a game ends, requires a reset word to bring

the automaton to the “new game state”. For a survey of automata based bio-computing,

we direct the reader to [85]. In model based testing, the checking experiment construc-

tion requires a synchronizing sequence to bring the implementation to the specific state

at which the designed test sequence is to be applied (e.g. see [26, 30, 31]).

On the other hand, for NSAs instead of resetting all the states in Q into a single state,

one may consider restricted type of reset operations, such as resetting into a given set of

states F ⊂ Q, or resetting a certain number K of states into F . A word x̄ ∈ Σ? is called

K/F–reducing word for automata A = (Q,Σ, δ) if there exists a subset Q̄ of states such

that δ(Q̄, x̄) ⊆ F and |Q̄| = K. A word x̄ is called Max/F–reducing word for automata

A = (Q,Σ, δ) if x̄ is a K/F–reducing work for A and there does not exist x̄′ and K′ > K

such that x̄′ is a K′/F–reducing word for A. These problems are introduced in [86] and

solved negatively.

3.1.1. Problems

Consider an FSM M such that W : X → Z+ be a function assigning a cost to each input

symbol of machine M and we have a budget K ∈ Z>0. Our aim is to extract subset of

these inputs such that the total implementation of costs of these inputs are not higher

than the budget and we can still construct a synchronizing sequence for the FSM M .

Suprisingly this problem is also find practical application in robotics. In the seminal

work [79], Natarajan studied a practical problem of automated part orienting on an

assembly line. He, having some assumptions, converted the parts orienting problem to

the problem of constructing synchronizing sequences for deterministic finite automata

as follows: He considered an assembly line on which parts to be process are dropped in
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a random fashion. Therefore, the initial orientation of the parts are not known. The

next station that will process the parts, however, requires that parts have a particular

orientation. One can change the orientation of the parts on the assembly line by putting

some obstacles, or by using tilted surfaces. The task is to find a sequence of such orienting

steps such that no matter which orientation a part has at the beginning, it ends up in

a certain orientation after it passes through these orienting steps. Natarajan modelled

this problem as an automaton A as follows: he considers each orientation as a state and

orienting functions as input alphabet such that the reset word of A corresponds to a

sequence of orienting operations that brings these parts to unique orientation no matter

which orientation it started at. Following Natarajans analogy, we considered an assembly

line, a description of a part, and a set of tilt functions with implementation costs. Our

aim is to extract a subset of these tilt functions such that the total implementation

costs of these tilt functions are minimum and we can still rotate the part to a single

orientation.

A similar problem might appear in bio–computing. As discussed in [80, 83, 84] in

order to re-use automata one has to supply reset words (reset DNA’s) which made of

DNAs. As these DNA’s made of commercially obtained synthetic deoxyoligonucleotides,

it is sometimes possible, due to the lack of some nucleotides or due to the cost, for one

to construct reset DNA’s by the use of only a subset of nucleotides. That is, we want

to find the cheapest set of synthetic deoxyoligonucleotides to construct a synchroniz-

able subautomaton, knowing that we can construct reset DNA’s using the cheapest (or

available) synthetic deoxyoligonucleotides.

Now consider the automaton A = (Q,Σ, δ). Sub-automaton A|Σ̄ with respect to Σ̄

is defined in the following way: A|Σ̄ = (Q, Σ̄, δ′) where for two states s, s′ ∈ S and an

input x ∈ Σ̄, δ′(s, x) = s′ if δ(s, x) = s′. In other words, we simply keep the transitions

with the inputs in Σ̄ and delete the other transitions from A. If A is a CSA, then so is

A|Σ̄. However, for if A is a PSA, we may have A|Σ̄ as a PSA or a CSA.

We first formalize the problem for CSAs as follows:

Definition 5 Minimum Synchronizable Sub-Automaton Problem(MSS–Problem):
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Let A = (Q,Σ, δ) be a synchronizable CSA, W : Σ→ Z+ be a function assigning a cost

to each input symbol, and K ∈ Z+. Find a sub-automaton A|Σ̄ such that Σ̄ ⊆ Σ and∑
x∈Σ̄ W (x) ≤ K and A|Σ̄ is synchronizable.

We show that the MSS–Problem is an NP-complete problem, implying that the mini-

mization version of the MSS–Problem is NP-hard. We also show that the minimization

version is hard to approximate.

Having determined the complexity of the MSS–Problem for CSAs, we consider the

computational complexity of the MSS–Problem for PSAs. The primary motivation be-

hind to study PSAs is obvious; finite automata with partial transition function is a

generalization of completely specified finite automata; that is, partially specified au-

tomata can model a wider range of problems. The decision version of the MSS–Problem

for PSA is defined as follows:

Definition 6 Minimum Synchronizable Sub-Automaton Problem for PSA:

Let A = (Q,Σ, δ) be a synchronizable PSA, W : Σ→ Z+ be a function assigning a cost

to each input symbol, and K ∈ Z+. Find a sub-automaton A|Σ̄ such that Σ̄ ⊆ Σ and∑
x∈Σ̄ W (x) ≤ K and A|Σ̄ is synchronizable.

We show that finding such partially specified sub automaton is PSPACE-complete.

Consider an FSM M such that taking M to a specified state is very expensive from a

subset of state and we want to construct a synchronizing sequence that takes FSM to a

specified state if and only if the current state of the FSM is not in this set. That is let

M = (S1 ∪ S2, X, Y, δ, λ) is given and our aim is to construct a synchronizing sequence

x̄ such that δ(s, x̄) ∈ S̄ if and only if s ∈ S1, where S̄ ∈ S.

This problem might also appear in robotics, consider the Natarjans analogy again.

We are given an assembly line with a set of orienting functions and a set of parts. These

parts have identical shapes but they are made of different materials. The set of initial

positions of these parts are disjoint. Our aim is to find a sequence of tilt operations such

that we can orient a given part to predefined position where parts with different types

are guaranteed to be oriented at different positions. The problem is formally defined as

follows:
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Definition 7 Exclusive Synchronizing-Word Problem for Synchronizable Automata

(ESW–SA): Given a synchronizable automaton A = (Q,Σ, δ) and subsets of states

Q̄ ⊆ Q and F ⊂ Q. Is there a word x̄ such that δ(q, w) ⊆ F if and only if q ∈ Q̄?

We show that although the underlying automaton is synchronizable this problem is

PSPACE-complete and there exist a constant ε > 0 such that approximating the maxi-

mization version of the problem within ratio nε is PSPACE-hard.

In the second part of this work, we investigate the computational complexities of

problems related to monotonic automata. In particular we consider Partially Specified

Monotonic Automata (PSMA) and Non-Synchronizing Monotonic Automata (NSMA).

In [87], Martyugin showed that constructing a reset word for a PSA is PSPACE-complete.

Recall that there exist a complexity reduction for computing shortest synchronizing

sequences when monotonic automata are considered [78, 34]. Hence it is natural to ask

if we have a similar complexity reduction for computing a synchronizing sequence when

we consider a monotonic PSA. However, until now no work revealed the complexity of

computing a synchronizing sequence for a given PSMA.

Definition 8 Synchronizability Problem for PSMA: Given a monotonic PSA

A = (Q,Σ, δ), is A synchronizable ?

Definition 9 Synchronizing Word Problem for PSMA: Given a monotonic

PSA A = (Q,Σ, δ), find a synchronizing sequence for A.

Definition 10 Minimum Synchronizing Word Problem for PSMA: Given a

monotonic PSA A = (Q,Σ, δ), find a shortest synchronizing word for A.

Unfortunately we show that these problems are at least as hard as NP-complete prob-

lems.

In [86] K/F–reducing problem is introduced as follows: “Given a non-synchronizable

automata A, is there a reset word that can reset K states into a set of states F?” and

they proved that it is PSPACE-complete for the general automata. Again we investigate

if monotonicity reduces the complexity of the original problem. The formal definition of

the problem is given as follows:
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Definition 11 K/F−Reducing-Word Problem for Non-Synchronizable Monotonic

Automata (KFW–NSMA): Given a non-synchronizable monotonic automaton A =

(Q,Σ, δ), a constant K ∈ Z+, and a subset of states F ⊂ Q, find a K/F−reducing word

for automaton A.

We also study the maximization version of the problem.

Definition 12 Max/F Reducing-Word Problem for Non-Synchronizable Monotonic

Automata (MFW–NSMA): Given a non-synchronizable monotonic automaton A =

(Q,Σ, δ) and a subset of states F ⊆ Q, find a Max/F–reducing word for automaton A.

Although the underlying automata is monotonic, we report that they are all NP-hard prob-

lems.

The rest of the chapter is organized as follows: In the next three sections we discuss

and present our results related to MSS–Problem, ESW–SA problem and problems related

to monotonic automata, respectively. In the last section we summarize the key results

of this study and present some future directions.

3.2. Minimum Synchronizable Sub-Automaton Problem

We show that the MSS–Problem is computationally hard by reducing the Set Cover prob-

lem to the MSS–Problem.

In Set Cover problem, we are given a finite set of items U = {u1, u2, . . . , um} called

the Universal Set and a finite set of set of items C = {c1, c2, . . . , cn} where ∀c ∈ C, c ⊂ U .

A subset C ′ of C is called a cover if ∪c∈C′ = U . The problem is to find a cover C ′ where

|C ′| is minimized. The decision version of the Set Cover problem is NP-complete and

its optimization version is NP-hard [88, 89].

From a given instance (U,C) of Set Cover problem we construct an automaton

F(U,C) = (Q,Σ, δ) as follows: for each item u in the universal set U we introduce a

state qu and we introduce another state Sink. For each set of items ci ∈ C we introduce

an input symbol xi. We construct the transition function of the automaton F(U,C) as

follows:
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• ∀qu ∈ Q \ {Sink}, ∀xi ∈ Σ

δ(qu, xi) =

 Sink, u ∈ ci
qu, otherwise

• ∀xi ∈ Σ, δ(Sink, xi) = Sink

Lemma 5 Let (U,C) be an instance of a Set Cover problem and C ′ = {c1, c2, . . . , cm}

be a cover. Then the sub-automaton F(U,C)|Σ̄ is synchronizable, where Σ̄ = {xi|ci ∈ C ′}.

Lemma 6 Let Σ̄ = {x1, x2, . . . , xm} be a subset of alphabet of F(U,C) such that F(U,C)|Σ̄
is synchronizable. Then C ′ = {c1, c2, . . . , cm} is a cover.

Hence we reach to the following result.

Theorem 1 Given a synchronizable CSA A = (Q,Σ, δ) and a constant K ∈ Z+, it

is NP-complete to decide if there exists a set Σ̄ ⊆ Σ such that |Σ̄| < K and A|Σ̄ is

synchronizable.

Theorem 2 MSS–Problem is NP-complete.

In [90, 91] authors reported that the minimization version of the Set Cover problem

cannot be approximated within a factor in o(log n) unless NP has quasipolynomial time

algorithms. Moreover, it was also shown that Set Cover problem does not admit an

o(log n) approximation under the weaker assumption that P 6= NP [92, 93]. Therefore

relying on the construction of the automaton F(U,C), it is also possible for us to deduce

such inapproximability results apply to the MSS–Problem.

Lemma 7 Let OPTsc is the size of minimum cover for the Set Cover problem in-

stance (U,C), and let OPTΣ̄ is the size of minimum cardinality input alphabet such that

F(U,C)|Σ̄ is synchronizable. Then OPTsc = OPTΣ̄.

Theorem 3 MSS–Problem does not admit an o(log n) approximation algorithm unless

P = NP.
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Although checking the existence and constructing one synchronizing sequence for a

CSA are polynomial time solvable problems, we seen that the MSS–Problem is NP-complete

for CSAs. That is, under the assumption that P 6= NP there is a complexity jump. Re-

call that in [87] Pavel Martyugin showed that it is PSPACE-complete to construct a reset

word for a PSA. Having these observations, it is natural to ask if there is a complexity

jump when we consider the MSS–Problem for PSAs.

Before going any further please note that for a synchronizable PSA A, the sub-

automaton A|Σ̄ can be a CSA. To see that this is the case, consider a synchronizable

PSA with input alphabet {a, b, c} such that only input b is not defined at some states.

When we drop transitions that are labeled with input b, we obtain a completely speci-

fied automaton. Therefore since we showed, for CSAs, that the problem is NP-hard, we

assume that, from now on, for any non-empty subset Σ̄ ⊂ Σ the sub-automaton A|Σ̄ is

a PSA if and only if A is a PSA.

Lemma 8 MSS–Problem for PSA is in PSPACE.

Now we are going to show that MSS–Problem for PSA is PSPACE-hard.

Lemma 9 MSS–Problem for PSA is PSPACE-hard.

Finally using Lemma 8 and Lemma 9 we reach to the following conclusion.

Theorem 4 MSS–Problem for PSA is PSPACE-complete.

3.3. Exclusive Synchronizing Word Problems

In [86], Igor K. Rystsov considers the problem of constructing a word that synchronizes

a given set of states Q̄ ⊂ Q at a given set of states F where the underlying automaton is

non–synchronizable. The problem is named as Inclusion Problem for the Weakly Syn-

chronizing Automaton. Rystsov showed that this problem is PSPACE-complete. However

the problem we consider here is different for two reasons: (1) We consider synchronizable

automata and (2) We prohibit resetting a state q ∈ Q̂ at F .
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We show that Exclusive Synchronizing Word (ESW–SA) problem is PSPACE-complete by

a reduction from Finite Automata Intersection Problem(FA-INT), which was

introduced by Dexter Kozen [94].

Definition 13 Let A = {A1, A2, . . . , Az} be a set of deterministic finite automata with

a common alphabet Σ. The FA-INT problem is to determine whether the given set

of automata accept a common word in Σ?, i.e. whether there is a word x̄ such that

w ∈ L(Ai) for all 1 ≤ i ≤ z.

In the same work Kozen proved that the FA-INT problem is PSPACE-complete. Given

an instance of an FA-INT problem, with a set of automaton A having a common alphabet

Σ, we construct a synchronizable automaton A such that we can find a solution x̄ for the

ESW–SA problem for automaton A if and only if we can find a word that is accepted

by every automata in A.

From each automaton, we pick initial state and form set Q̄. We add |F | number of

new states and form set F . We introduce another state called Sink state. We introduce

transitions from accepting states of each automaton to a state q ∈ F labeled by S and

we introduce transitions from all the states of the automaton (except states of Q̄) to

Sink state labeled by input R. Moreover, we introduce transitions from all the states

of the automaton (except the accepting states of A and the states in F ) to Sink state

labeled by input S. For each qi ∈ Q̄, we introduce self loop transitions labelled with

input R. Sink state loops with all inputs. We represent the reduction in Figure 3.1.

The intuition of the construction is as follows: note that the input sequence RS can

reset the automaton at the Sink state at any time. However, in order to reset initial

states exclusively into F , we must avoid applying this input sequence. On the other

hand, we must apply input S to reach to the set F . However, since S takes all non-

accepting states to Sink state all states in set Q̄ must reach to accepting states at the

time of application of S. Plus, in order to avoid resetting the set Q̄∪F into F , we have

to apply input R to reset F into the Sink state. Now we show that the construction

works.
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Lemma 10 ESW–SA problem is PSPACE-hard.

A1 A2 A3
. . . An

q0
1 q0

2 q0
3

. . . q0
n

...
...

...
. . . ...

q1 q2 q3 . . . qn

...
...

...
. . . ...

qA1 qA2 qA3 . . . qAn

F1
. . . F|F |

Sink

R,S

R

S

R R R

R

R

S
SS S

S ∪ Σ S ∪ Σ

Σ ∪R ∪ S

Figure 3.1.: Synchronizable Automaton A constructed from an FA-INT problem. States

q0
1, q

0
2, q

0
3, . . . , q

0
n form Q̄

We will show that ESW–SA problem is in PSPACE after we make the following

observations. Let us consider an arbitrary CSA A = (Q,Σ, δ) and sets Q̄, F ⊂ Q. Let

Q̂ = Q \ Q̄, and |Q̄| = m, |F | = k, |Q| = n. For an exclusive synchronizing word x̄,

let us denote the set of states reached by a prefix w′ of x̄ from Q̄ and Q̂ by using a

pair π = (δ(Q̄, w′), δ(Q̂, w′)), which we call a state configuration pair. We must have

δ(Q̄, w′) ∩ δ(Q̂, w′) = ∅, since otherwise we can reset a state in Q̂ at F . Note that there

are (2m−1)× (2n−m−1) < 2n different state configurations possible that can be reached

by prefixes of exclusive synchronizing sequences. This indicates that L = 2n is an upper

bound for a shortest exclusive synchronizing sequence.
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Now we can propose a PSPACE algorithm for ESW–SA problem.

Lemma 11 ESW–SA problem is in PSPACE.

Consequently we have the following result.

Theorem 5 ESW–SA problem is PSPACE-complete.

We now consider the inapproximability of the ESW–SA problem. Condon et al

introduce the maximization version of the FA–INT problem [95].

Definition 14 Maximization of FA-INT Problem: Let A = {A1, A2, . . . , Am}

be a set of deterministic finite automata with input alphabet Σ. Maximum Finite

Automaton Intersection Problem(MAX FA-INT) problem is to find a subset A′

of A such that automata in A′ accept a common word w ∈ Σ?, and |A′| is maximized.

However they proved that it is PSPACE-hard to approximate MAX FA-INT problem

within a factor nε for ε > 0. As we reduce from the FA-INT problem, we can give a

similar result for the maximization version of the ESW–SA problem.

Definition 15 Max Exclusive Synchronizing Word for Synchronizable Au-

tomata (Max ESW–SA): Given a synchronizable automaton A = (Q,Σ, δ), subsets

Q̄ and F of states Q, find a subset Q̄′ ⊆ Q̄ where there exists an exclusive synchronizing

word for Q̄′ to F , such that |Q̄′| is maximized.

Lemma 12 Let A′ be a subset of A where automata in A′ has a common word and |A′|

is maximized. Also let Q̄′ be a subset of states Q̄ of A, where there exists an exclusive

synchronizing word for Q̄′ to F and |Q̄′| is maximized. Then |Q̄′| = |A′|.

Therefore we reach to the following result.

Theorem 6 There exists a constant ε > 0 such that approximating Max ESW–SA

problem within ratio nε is PSPACE-hard.
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3.4. Synchronizing Monotonic Automata

In this section we consider problems related to monotonic automata. We first show that

Synchronizability Problem for PSMA is an NP-hard problem by reducing the Exact

Cover problem which is defined as follows:

Definition 16 Exact Cover Problem: Let U = {1, 2, . . . ,m} be the universal set

and C = {c1, c2, . . . , cn} is a finite set of set of items such that ∀c ∈ C, c ⊂ U . Is there

a subset C ′ of C such that ∪c∈C′ = U and for all c, c′ ∈ C ′ we have c ∩ c′ = ∅.

Let us assume that we are given an instance of an Exact Cover problem (U,C).

We now introduce a reduction F that maps a given Exact Cover instance (U,C) into

a partially specified monotonic automaton F(U,C) = (Q,Σ, δ).

We form the set Q as follows: for each u ∈ U we introduce two states q0
u and q1

u. We

refer to states with superscript 1 (i.e. q1
u) as the satellite state of u and we refer to states

with superscript 0 (i.e. q0
u) as the base state of u. The pair (q0

u, q
1
u) is called as the pair

set of u and denoted as Qu. Finally we introduce a state S such that the state set Q is

given as Q = {q0
i |i ∈ U} ∪ {q1

i |i ∈ U} ∪ {S}.

The input alphabet and the transition function of the automaton F(U,C) are given

by:

• Σ = {x1, x2, . . . , x|C|} ∪ {X, Y }

• ∀q ∈ Q,∀x ∈ Σ

δ(q, x) =



q0
u, if q = q0

u and x = xi where u /∈ ci
q1
u, if q = q0

u and x = xi where u ∈ ci
q1
u, if q = q1

u and x = xi where u /∈ ci
q0
u, if q ∈ {q1

u, q
0
u} where x = X

S, if q = q1
u where x = Y

q0
1, if q = S and x = X

Clearly, any input sequence w ∈ Σ∗ must begin with input symbol X such that for any

q ∈ Q, δ(q,X) is a base state. Moreover, the transition structure of the automaton
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F(U,C) allows us to reset Q into state S by input symbol Y only. However the input

Y is only defined at the satellite states. Therefore after the application of input symbol

X and before the application of input symbol Y , we must apply some input sequence

w ∈ Σ∗ such that for all states q ∈ Q of F(U,C) we have that δ(q, w) is a satellite state.

Moreover in order to take a base state q0
u to a satellite state q1

u, we must apply an input

symbol xc if and only if u ∈ c. Besides since the input xc′ is defined at a satellite state

q1
u if and only if u /∈ c′, input xc can appear in x̄ at most once.

We demonstrate the reduction with an example. Let (U1, C1) be given as U1 =

{1, 2, 3, 4, 5, 6} and C1 = {(1, 2, 5), (3, 4, 6), (1, 4, 2)}. The automaton F(U1, C1) obtained

by the reduction is given in Figure 3.2:

q0
1 q1

1

q1
2q0

2

q1
3q0

3

q0
4 q1

4

q0
5 q1

5

q0
6 q1

6

S

X,x2 x1,x3

X,x2 x1,x3

X,x1,x3 x2

X,x1 x2,x3

X,x2,x3 x1

X,x1,x3 x2

x2
X

Y

x2
X

Y

x1,x3

X

Y

x1
X

Y

x2,x3

X

Y

x1,x3

X

Y

X

Figure 3.2.: Monotonic Partially Specified Automaton F(U1, C1) constructed from

the Exact Cover instance U1 = {1, 2, 3, 4, 5, 6} and C1 =

{(1, 2, 5), (3, 4, 6), (1, 4, 2)}

The automaton is synchronizable (with word w = X12Y ), which suggests that the

corresponding Exact Cover problem instance has a solution (C ′ = {c1, c2}).

Now we show that the transition function of the automaton F(U,C) preserves some

linear ordering < of the states and so it is monotonic.

Lemma 13 Let (U,C) be an arbitrary Exact Cover problem instance, then the states

of the automaton F(U,C) admits a linear order for all input symbols in set Σ.
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We demonstrate the monotonicity of the automaton in Figure 3.3.

S

q0
1

q1
1

q0
2

q1
2

q0
3

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...

Y X x1 x2 x3

Figure 3.3.: Monotonicity of the automaton F(U1, C1) constructed from the Exact

Cover problem instance (U1, C1).

Theorem 7 Synchronizability Problem for PSMA is NP-hard.

Since the existence check for a synchronizing sequence of a given PSMA is NP-hard,

this implies the following results.

Theorem 8 Synchronizing Word Problem and Minimum Synchronizing Word

Problem for a PSMA are NP-hard problems.

We now consider the problems related to NSMA. We will show the hardness of these

problems using a reduction from the N–Queens puzzle. The N–Queens puzzle has

been an important and interesting subject for many aspects of Mathematics and Com-

puter Science. In particular, the N–Queens puzzle is often used as a benchmark for

algorithms designed for AI research and combinatorial optimization. The N–Queens

puzzle is known to be an NP-complete problem [96], since it is a slight generalization of

the Exact Cover problem [97, 98].
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Definition 17 N Queens Puzzle: Given an integer N the N–Queens puzzle is to

produce a placements of N number of Queens on an N × N chessboard such that no

queen is under attack.

In the N–Queens puzzle, we have an N ×N chessboard, each cell being represented

by a pair (i, j) of integers with 1 ≤ i, j ≤ N . A cell is said to be occupied if there is

a queen at that cell. A queen can move an unlimited distance up and down, left and

right, and diagonally. Thus, a queen in cell (i, j) attacks another cell (n,m) (or a queen

in that cell) if i = n, or j = m, or |n− i| = |m− j|.

A cell that is attacked by a queen is said to be a dead cell ; otherwise it is called a live

cell. A simple case is demonstrated in Figure 3.4.

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0ZQ
1 Z0Z0Z

a b c d e

a5 c5 e5

b4 d4

a3 c3 e3

b2 d2

a1 c1 e1

b5 d5

a4 c4 e4

b3 d3

a2 c2 e2

b1 d1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0ZQ
1 Z0Z0Z

a b c d e

a5 c5 e5

b4 d4

a3 c3 e3

b2 d2

a1 c1 e1

b5 d5

a4 c4 e4

b3 d3

a2 c2 e2

b1 d1

Figure 3.4.: A 5x5 Chessboard in which a queen is placed at board position (e, 2) (left

image). Chessboard places with red crosses are dead cells and chessboard

places with green squares are live cells (right image).

For a given an instance B of an N–Queens puzzle, we construct a monotonic au-

tomaton F(B) = (Q,Σ, δ) such that a solution to the N–Queens puzzle instance B

constitutes a solution to the KFW–NSMA problem for the automaton F(B).

For each board position (i, j), we introduce three states {q0
i,j, q

+
i,j, q

−
i,j}. We group states

with (0), (−) and (+) superscripts as Q0, Q− and Q+ respectively i.e. Q = Q0∪Q−∪Q+

where Q0 = {q0
i,j|1 ≤ i, j ≤ N}, Q− = {q−i,j|1 ≤ i, j ≤ N} and Q+ = {q+

i,j|1 ≤ i, j ≤ N}.

35



From now on states in Q+ ∪ Q− are called the satellite states and states in set Q0 are

called the board states.

The input alphabet and the transition function of F(B) are given as follows:

• Σ = {xi,j|1 ≤ i, j ≤ N}

• ∀q0
i,j ∈ Q0,∀xk,l ∈ Σ

δ(q0
i,j, xk,l) =


q+
i,j, i = k, j = l

q−i,j, (i, j) attacks (k, l)

q0
i,j, else

For a board state q0
i,j, an input symbol xk,l is called an attacking input if (i, j)

attacks (k, l).

• ∀q ∈ Q+ ∪Q−,∀x ∈ Σ we have δ(q, x) = q

As a final, step we set K and the set F as follows: K = N +N2, F = Q+.

Before going any further, we first show that for any N–Queens puzzle instance B,

automaton F(B) is monotonic.

Lemma 14 Let B be an arbitrary N–Queens puzzle instance, the states Q of the au-

tomaton F(B) admits a linear order.

In Figure 3.5, we show that the states of the automaton F(B) admits a linear order. Due

to space limitations we present a small portion, however the reader can easily verify that

the linear order is preserved for all input symbols at all the states of the automaton.

Let w ∈ Σ? be a word that resets N + N2 states of the automaton F(B) at F . For

a decomposition w = w′xi,jx̄
′′ of x̄, where w′, x̄′′ ∈ Σ?, xi,j is called an effective input if

δ(q0
i,j, w

′) = q0
i,j.

Lemma 15 Let w ∈ Σ? be a reset word that resets N + N2 states of the automaton

F(B) at F . Then x̄ defines a solution for the N–Queens puzzle instance B.
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q+
1,1

q0
1,1

q−1,1

q+
1,2

q1,2

q−1,2

. . .
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. . .
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. . .

. . .

...
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...
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...
...

...
...

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

Figure 3.5.: Monotonicity of the automaton F(B) constructed from the N–Queens in-

stance B.

Lemma 16 Let {(i1, j1), (i2, j2) , . . . , (iN , jN)} be a solution to the N–Queens puz-

zle. Then set of positions (i1, j1), (i2, j2) , . . . , (iN , jN) defines a solution for the KFW–

NSMA Problem for automaton F(B).

Theorem 9 KFW–NSMA Problem is NP-hard.

Note that given an N–Queens problem instance B, for automaton F(B) and let F =

Q+. In this case, there is a word x̄ that resets at most N + N2 states at F , however

finding such a word is NP-hard. Therefore MFW–NSMA is NP-hard.

Theorem 10 MFW–NSMA Problem is NP-hard.

3.5. Chapter Summary and Future Directions

In this chapter we introduced several problems. In the first problem (MSS problem),

we assume that the input symbols of the underlying FSM (Automaton) have costs and

our aim is to extract a subset of input alphabet such that one can construct a reset
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word using transitions that are labeled by symbols from the reduced input alphabet and

the cost of the reduced input alphabet is less than K. We show that if the transition

function of the underlying automata is a total function, then the problem is NP-complete.

Otherwise, if the transition function is partial then the problem is PSPACE-complete.

In the second problem we consider constructing an exclusive reset word (ESW-SA).

By exclusive we mean that the reset word resets a set of states and is guaranteed not

to reset states out of this set. We show that even if the underlying automaton is syn-

chronizable the problem is PSPACE-complete and there exists a constant ε > 0 such that

approximating the maximization version of the problem within ratio nε is PSPACE-hard.

Later we consider problems related to monotonic automata. We first consider mono-

tonic automata with partial transition functions. Monotonicity is a feature that simpli-

fies the complexity of the synchronizability problems. On the contrary, having a partial

transition function makes the related synchronizability problems harder. We investigated

the case when we have both of these features. We showed that checking the existence,

computing one and computing a shortest synchronizing sequence are NP-hard problems.

Later we consider non-snychronizing monotonic automata. We showed that resetting

K number of states (KFW–NSMA problem), or maximum number of states (MFW-

NSMA problem) of a monotonic non-synchronizing automaton are NP-hard problems.

In line with these results we can propose some future works. Hardness results indicate

that instead of exact algorithms we must design greedy algorithms for the problems

introduced in this work. Consequently, designing and implementing such greedy algo-

rithms for the MSS and the ESW–SA problems is one possible research direction. For

monotonic partially specified machines, the problems investigated in this Chapter are

shown to be NP-hard. It is also known that these problems are in PSPACE, since these

are partially specified. Hence, for these problems we currently have a gap and it remains

open to show whether these problems are in NP or PSPACE-hard. The upper bounds for

the KFW–NSMA and MFW–NSMA problems remain open. Thus it would also be an

interesting research direction to find upper bounds for these problems.
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4. Hardness and Inaproximability of

Minimizing Adaptive Distinguishing

Sequences

4.1. Introduction

Usually, for a given specification M , a checking sequence is constructed and afterwards

the checking sequence is applied to all implementations of M . Due to this “construct

once and use many times” nature, one clearly desire a short checking sequence.

Until now, most of the efforts spent on to construct short checking sequences aim to

overlap the contents of the checking sequences to reduce their lengths. In this Chapter,

we consider a rather unique way of reducing the length of checking sequences. All ADS

based checking sequence generation methods start with the assumption that an ADS is

given. The given ADS is repeatedly applied within the checking sequence to identify the

states and to verify the transitions. These ADS applications form a considerably large

part of the checking sequence. Therefore we believe that reducing the size of ADSs is

a reasonable way to reduce the length of the checking sequences.

Earlier ADS construction algorithms [22, 21, 23] are exhaustive and require expo-

nential space and time. The only polynomial time algorithm was proposed by Lee and

Yannakakis (LY Algorithm). It can check if M has an ADS in O(pn log n) time [35],

and if one exists, we can construct an ADS in O(pn2) time [35]. Alur et al. show that

checking the existence of an ADS for non-deterministic FSMs is EXPTIME-complete [46].
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Recently, Kushik et al. present an algorithm (KEY algorithm) for constructing ADSs

for non-deterministic observable FSMs [47]. We believe that the KEY algorithm can also

construct ADSs for deterministic FSMs, since the class of deterministic FSMs is a sub-

class of non-deterministic FSMs. However, since the KEY algorithm tends to construct

all subset of states for the state set, it may require exponential time and space.

In summary, these ADS construction algorithms are not guaranteed to compute the

minimum cost ADS for a given FSM. Moreover, to our knowledge, there is no work that

analyses the computational complexity of constructing minimum cost ADSs.

In this Chapter, we investigate the complexity of constructing minimum sized ADS.

We consider a number of different size definitions for an ADS, such as the height of

the ADS (MinHeightADS problem), the total root–to–leaf path length over all the

leaves of the ADS tree (MinADS problem), and the depth of a particular leaf node in

the ADS tree (MinSDS problem). We show that for each one of these definitions, the

minimization problem is hard to decide, and hard to approximate.

When the height of the ADS tree is considered as the size of an ADS, it was proven

by Sokolovskii that if an FSM M with n states has an ADS, the shortest ADS for M

cannot be longer than π2n2/12 [99]. A known lower bound is n(n− 1)/2 [35], i.e. there

exist FSMs with a shortest ADS of length n(n− 1)/2.

The LY algorithm can compute ADSs having the upper bound of n(n− 1)/2 for the

height of ADS and therefore matches this known lower bound. Thus, LY algorithm

can actually generate the minimum ADS for those FSMs with shortest ADS of height

n(n − 1)/2. However, LY algorithm is not guaranteed to produce a minimum ADS in

general. Although the use of a reduced ADS can be useful in several contexts (e.g.

for constructing test sequences), except the exhaustive algorithms [22, 21, 23], there is

no work in the literature on constructing reduced size ADS. As we emphasize, to our

knowledge, there is no work that analyses the computational complexity of constructing

minimum cost ADSs. As a matter of fact, in this work we show that this is a hard

problem and polynomial time algorithms for constructing an ADS, may not generate

minimum ADSs.
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In order to validate our motivation that using minimized ADSs can yield shorter

checking sequences, we first introduce two modifications on the LY algorithm to construct

reduced size ADSs. Then we propose a Lookahead base algorithm to construct reduced

size ADSs. We perform experiments on both randomly generated FSMs, and FSM

specifications of sequential circuits obtained from industry. Experiments show that

modifications on LY algorithm can construct better ADSs in terms of the size of the

generated ADSs but requires extra computation time. Experiments also suggest that

using reduced ADSs in fact gives rise to shorter checking sequences.

4.1.1. A Motivating Example

In the followings we try to demonstrate what we could gain by using a reduced size ADS

in checking sequence construction on a concrete example. Several size definitions will be

given for ADSs later in the Chapter. We will consider the total root–to–leaf path length

over all leaves as the size of the ADS in this section. Let us consider the FSM M1 given

in Figure 4.1.

s1 s2 s3

s4s5s6

a/0, d/0, e/0

b/0, c/1

d/0

b/1, c/2

a/0, e/0

a/0, e/0

b/2, c/2

d/0

d/0, e/0

a/1, b/3, c/2

d/0

c/1, e/0

a/1, b/4

d/0

a/1, b/4, e/0
c/0

Figure 4.1.: An example FSM M2

LY algorithm generates the ADSA1 given in Figure 4.2. The size ofA1 is 16. However,

by manual inspection, one can see that the ADS A2 of size 8, given in Figure 4.3 is also
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an ADS for M1. A2 is a minimum size ADS for M1, since it is not possible to distinguish

all the states of M1 by using 1 input only.

a

b

c

s2

1
s1

0

4
s3
3

0

b

c

s6

0
s5

1

4
s4
3

1

Figure 4.2.: An ADS A1 for

M2 of Figure 4.1

generated by LY

algorithm

b

s1

0

s2

1

s3

2

s4

3

c

s5

1

s6

0

4

Figure 4.3.: A manually designed

minimum size ADS

A2 for M1 of Fig-

ure 4.1

In order to see the effect of using A1 or A2 in checking sequence construction, we

consider the following checking sequence construction methods: HEN method given

in [23], UWZ method given in [30], HIU method given in [29], SP method given

in [33], and DY method given in [54]. These methods span the history of distinguishing

sequence based checking sequence generation methods, starting from the first (HEN)

to the most recent ones (SP and DY), and also with some important improvements on

the early versions (UWZ and HIU).

For an FSM M with n states, and an implementation N to be verified, a checking

sequence is a test sequence that would identify any faulty implementation N of M .

Although the methods constructing checking sequences differ in the way they form the

final checking sequence, the components that need to exists in the sequence are the same.

In the checking sequence, there are repeated applications of distinguishing sequences

to identify the current state of N . First, in order to see that each state s in M also exists

in N , N is brought to a state that is supposed to correspond to s and a distinguishing

sequence is applied. The application of the distinguishing sequence for this purpose is

called a state verification.

Second, in order to see that every transition in M from a state s to state s′ with input

symbol x and output symbol y, N is brought to the state that corresponds to s and
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the input symbol x is applied (with the hope that y will be observed). In order to see

that N made a transition into the state that corresponds to s′, another application of

distinguishing sequence takes place. The application of the input symbol x followed by

the application of the distinguishing sequence is called transition verification.

Therefore, for a completely specified FSM M with n states and input alphabet X,

there will be n state verification and n|X| transition verification components, each one

having an application of the distinguishing sequence.

The state verification and transition verification components can be performed in any

order, and they are combined by using appropriate transfer sequences, which is an input

sequence that transfers M from one state to another state. The methods HEN, UWZ,

HIU, SP, and DY mainly differ in what order they consider state verification and

transition verification components, and how they select the transfer sequences to put

these components together. The earliest method we consider, HEN, imposes a prior

ordering of these components, and then finds the necessary transfer sequences to combine

the components. The later improvements on HEN (namely UWZ and HIU) let the

components be combined in any order (without fixing a prior ordering), hence they

are able to use shorter transfer sequences, using empty transfer sequences whenever

possible. Therefore, the total length of transfer sequences used in UWZ and HIU

is shorter compared to HEN. The most recent methods (SP and DY) even consider

overlapping these components, hence the transfer sequence lengths become even shorter.

For more details on these methods, we direct reader to the references [23, 30, 29, 33, 54].

Table 4.1 gives the length of checking sequences when A1 and A2 are used with these

methods.

The results on this single example are promising and show that reducing the height

of ADS does provide an opportunity to reduce the length of checking sequences. Of

course, an extensive set of experiments would establish a more convincing evidence in

this direction. We present the results of such experiments later in Section 4.5. We will

first focus on the question of whether it is possible to find minimum ADSs efficiently.

In order to show the hardness of constructing a minimum ADS, we will use reduc-
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A1 A2 Reduction (%)

HEN 299 224 25%

UWZ 176 96 45%

HIU 158 92 41%

SP 149 111 25%

DY 105 83 20%

Table 4.1.: Comparison of checking sequence lengths for FSM M1

tions from known NP-complete problems. These problems are related to the binary

identification problem [100]. In next section we introduce this problem and review ex-

isting hardness results related to binary decision trees used in the context of the binary

identification problem.

4.2. Binary Decision Trees

Let Z = {z1, z2, . . . , zn} be a finite set of distinct objects and T = {t1, t2, . . . , tm} be a

finite set of tests where each test t ∈ T is a function t : Z → {0, 1}. Intuitively, when a

test t is applied to an object z, the object z produces the response t(z), i.e. either a 0

or a 1 is obtained as an answer.

The set of objects Z = {z1, z2, . . . , zn} and the set of tests T = {t1, t2, . . . , tm} can

also be presented as a table D[T, Z] (which we will call a decision table) with m rows

and n columns where the rows are indexed by the tests and the columns are indexed by

the objects. An element D[t, z] is set to the value t(z). Table 4.2 is an example of such

a decision table where there are 4 objects and 3 tests. A row corresponds to a test t and

it gives the vector of responses of the objects to t. Similarly, a column corresponds to an

object z and it gives the vector of responses of z to the tests. For a test t and an object

z, we will use the notation D[t, .] and D[., z] to refer to the row of D[T, Z] corresponding

to the test t and the column of D[T, Z] corresponding to the object z, respectively.
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D z1 z2 z3 z4

t1 0 1 1 0

t2 1 0 1 0

t3 1 0 1 1

Table 4.2.: An example decision table

Suppose that we are given a decision table D[T, Z] and an unknown object from Z, and

we are asked to identify this object. One can apply all the tests in T and the results of

the tests will be corresponding to a unique column of the table identifying the unknown

object, provided that for all objects z ∈ Z, D[., z] is unique, which we will assume

throughout the work (as otherwise such an identification is not possible). Note that if

for a test t, D[t, .] is a row where every elements is 0 (or every element is 1), this means t

does not distinguish between any objects, hence the test t is useless for the identification

of the unknown object. Therefore, we assume that there is no such useless test t in

T . We can in fact find such useless tests and eliminate them in polynomial time, by

performing a single pass over the table D[T, Z]. Also note that if there are two different

tests t and t′ such that D[t, .] and D[t′, .] are the same, then the information provided

by t and t′ are the same, hence they are duplicate tests. We will also assume that no

such duplicate tests exist, as otherwise we can find and eliminate them in polynomial

time as well, by checking the equality of every pair of rows of D[T, Z].

Identifying an unknown object of Z by using tests in T can also be performed adap-

tively. In this case the procedure to be applied can be described in the form of a (binary)

decision tree T having the following properties.

Definition 18 A decision tree for a decision table D[T, Z] where Z = {z1, z2, . . . , zn}

and T = {t1, t2, . . . , tm} is a rooted tree T with n leaves such that:

1. Each leaf of T is labeled by a distinct object z ∈ Z.

2. Each internal node of T is labeled by a test t ∈ T .

45



3. Each internal node has two outgoing edges, one with label 0 and the other with

label 1.

4. Consider a path from the root to a leaf node p labeled by an object z. Let q be an

internal node on this path and t be the test labeling the node q. If p is under the

0–successor of q then t(z) = 0, and if p is under the 1–successor of q then t(z) = 1.

Figure 4.4 and Figure 4.5 present two different decision trees for the decision table

given in Table 4.2. The identification procedure based on a given decision tree T proceeds

as follows: If r is the root node of T , we start by applying the test rv (the test labeling

r). If the outcome is 0, then the subtree rooted at the 0–successor of r is considered,

otherwise (when the outcome is 1) the subtree rooted at the 1–successor of r is considered.

The procedure is repeated recursively for the root of each subtree visited, until a leaf is

reached. When a leaf node p is reached, the object labeling p gives the unknown object.

t3

z2
0

t1

t2

z4
0

z1
1

0
z3
1

1

Figure 4.4.: A decision tree for

the decision table

of Table 4.2

t1

t2

z4

0

z1

1

0

t2

z2

0

z3

1

1

Figure 4.5.: Another decision

tree for the deci-

sion table of Ta-

ble 4.2

The following is immediately follows from definitions.

Lemma 17 Let D[T, Z] be a decision table, T be a decision tree for D[T, Z], and p be

a leaf node in T . If p̄v = ti1ti2 . . . tik and p̄e = y1y2 . . . yk, then for any 1 ≤ j ≤ k,

tij(pv) = yj.

Note that it is always possible to find such a decision tree thanks to the assumption

that D[., z] is unique for all z ∈ Z. There can be more than one decision tree for a
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given decision table, e.g. Figure 4.4 and Figure 4.5 are two different decision trees for

the decision table given in Table 4.2. Since the identification procedure for the unknown

object is directly based on the decision tree used, the cost of the procedure depends

on the decision tree. One may want to minimize this effort by using an appropriate

decision tree. However, there can be different measures that can be used to describe

the effort. Given a decision tree T and an object z ∈ Z, let dT (z) be the depth of the

leaf node labeled by z in T . For the decision tree in Figure 4.4, we have dT (z1) = 3,

dT (z2) = 1, dT (z3) = 2, and dT (z4) = 3. One measure can be the expected number

of tests to be applied, which corresponds to minimizing the sum
∑

z∈Z dT (z) assuming

each object is equiprobable. Another measure can be the depth of the decision tree T

in order to minimize the worst case behaviour of the identification procedure based on

T . The following definitions state these problems formally.

Definition 19 MinDT problem: Given a decision table D[T, Z], find a decision tree T

such that
∑

z∈Z dT (z) is minimized.

Definition 20 MinHeightDT problem: Given a decision table D[T, Z], find a decision

tree T such that max{dT (z)|z ∈ Z} is minimized.

Another measure can be motivated as follows. Suppose that the objects are diagnoses

in a medical emergency room where some binary tests are applied to reach a diagno-

sis. The tests all take the same amount of time, however one of the diagnosis is more

important than the others, since it requires a much more urgent action to be taken. In

such a case, the situation can be modeled as a binary identification problem, where one

would like to find a decision tree whose root–to–leaf path corresponding to this urgent

diagnosis is minimized. Definition 21 states the problem formally.

Definition 21 MinPathDT problem: Given a decision table D[T, Z] and an object

z ∈ Z, find a decision tree T such that dT (z) is minimized.

Decision version of the problems MinDT, MinHeightDT, and MinPathDT are

NP-complete [100, 101, 102]. Besides they are also known to be hard to approxi-
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mate [103, 104, 105, 102]. In the following sections, we introduce analogous definitions

as minimization metrics for ADSs.

4.3. Minimizing Adaptive Distinguishing Sequences

Given an ADS A and a state s, let dA(s) be the depth of the leaf node labeled by the

state s in A. One measure that we can use to minimize ADSs can be the expected

number of inputs to be applied, which corresponds to minimizing the sum
∑

s∈S dA(s)

assuming each state is equiprobable. Another measure can be the depth of the ADS A

in order to minimize the worst case behaviour of the state identification based on A.

The following definitions state these problems formally.

Definition 22 MinADS problem: Given an FSM M , find an ADS A for M such that∑
s∈S dA(s) is minimized.

Definition 23 MinHeightADS problem: Given an FSM M , find an ADS A for M

such that max{dA(s)|s ∈ S} is minimized.

For an ADS A, let p be a leaf node labeled by a state s and let ᾱs = p̄v. The input

sequence ᾱs can be used to check whether an unknown state of M is s or not, since

for any state s′ 6= s, λ(s, ᾱs) 6= λ(s′, ᾱs) by Lemma 2. We call the sequence ᾱs a state

distinguishing sequence (SDS) for s. In order to find an ADS in which an SDS for a

state s is minimized, one may want to solve the following problem.

Definition 24 MinSDS problem: Given an FSM M and a state s of M , find an ADS

A for M such that dA(s) is minimized.

It is also possible to consider a more general problem with the observation that,

each SDS given by an ADS may be used different number of times. As an illustration,

consider Figures 4.6, 4.7 and 4.8. There are thirteen incoming transitions of state s1,

and for each incoming transition, the SDS of s1 will be applied in a checking sequence

(see the discussion on transition verifications given in Section 4.1.1). Although the ADS
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given in Figure 4.7 is better with respect to the MinADS problem, the length of the

SDS for the state s1 in this ADS is longer. Therefore, the ADS given in Figure 4.8 may

be preferred. The following problem definition is motivated by such uses of an ADS.

s1 s2

s3s4

a/0, b/0, c/0, d/1
e/0

a/0, b/0, c/0

e/0

d/0

e/2, d/0

e/2

a/0, b/0, c/0

e/1, d/0

a/0, b/0, c/0

Figure 4.6.: An example

FSM M3.
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Figure 4.7.: An ADS A1

for M3 of Fig-

ure 4.6.

d

s1

1

e

s2

0

s4

1

s3

2
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Figure 4.8.: Another ADS

A2 for M3 of

Figure 4.6.

Definition 25 MinWeightedADS problem: Given an FSM M , let s be a state in M

and ws be a constant representing the weight for the state s. Find an ADS A for M

such that
∑

s∈S(wsdA(s)) is minimized.

4.4. Modeling a Decision Table as a Finite State

Machine

The similarity between a decision table and an FSM is in fact clear. Objects and tests

in the given decision table correspond to the states and the inputs of the FSM that

will be generated. Hence applying a test will be corresponding to applying an input,

and the output to be produced in this case will be the response of the object to the

test. However, one major difference is the fact that objects do not change as the tests

are applied whereas states can perform a transition into another state when an input is

applied. In order to have the direct correspondence between the objects and the states,

we will have self looping transitions with the inputs corresponding to the tests. This

would yield an FSM where each state is isolated. We will add extra input symbols, one
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for each state, to make the generated FSM strongly connected. The transitions with

these extra inputs will be defined in such a way that they cannot play any role in forming

an ADS. We now give the formal definition of the mapping of a decision table into an

FSM.

4.4.1. Mapping

We call the mapping function β which is formally defined below.

Mapping β: Given a decision table D[T, Z], we construct an FSM MD = (S,X, Y, δ, λ)

where

1. S = {sz|z ∈ Z}

2. X = XT ∪ XZ where XT = {xt|t ∈ T} and XZ = {xz|z ∈ Z} (we assume that

T ∩ Z = ∅)

3. Y = {0, 1, 2}

4. For a state sz ∈ S and an input xt ∈ XT , δ(sz, xt) = sz and λ(sz, xt) = t(z)

5. For a state sz ∈ S and an input xz′ ∈ XZ , δ(sz, xz′) = sz′ and λ(sz, xz′) = 2

As an example, for the decision table given in Table 4.2, the corresponding FSM is

given in Figure 4.9. The bold solid edges indicate the transitions for the inputs in XT ,

and the dashed edges indicate the transitions for the inputs in XZ .

Below, we assume that we are given a decision table D[T, Z] (which we will simply

refer as D) where T = {t1, t2, . . . , tm} and Z = {z1, z2, . . . , zn} and we assume that

MD is the FSM generated by using the mapping β given above. MD has n states and

n(n+m) transitions.

4.4.2. Hardness and Inapproximability Results

An FSM MD generated by the mapping β from a decision table D has two types of input

symbols, XT and XZ . We now prove that no ADS of MD would be able to use inputs

in XZ .
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Figure 4.9.: The FSM MD corresponding to the decision table given in Table 4.2

Lemma 18 An input xz ∈ XZ cannot appear as the label of an internal node p in an

ADS A of MD.

Note that an ADS of MD is not necessarily always branching. Figure 4.10 demon-

strates such an ADS for FSM MD of Figure 4.9. In an ADS of MD, the internal nodes

can only be labeled by the inputs in XT and these inputs cannot change the states of MD

(Condition (4) of mapping β). Therefore, a subtree in MD whose root node p has only

one child, can safely be replaced by the subtree rooted at the only child of p. Figure 4.10

and Figure 4.11 depict an example of such a subtree replacement in an ADS which is

not always branching. For this reason, without loss of generality, we assume that an

ADS given for MD is always branching.

When one considers only those ADSs of MD that are always branching, an implication

of Lemma 18 is that, there is a one–to–one correspondence between the decision trees of

D and such ADSs of MD. Since the input symbols in XT does not change the state of

MD, the application of an input xt in MD to an unknown state sz of MD, is effectively

51



xt2

xt1

sz4

0
sz2

1

0
xt3

xt1

sz1

0
sz3

1

1

1

Figure 4.10.: An ADS for MD

given in Fig-

ure 4.9, which

is not always

branching

xt2

xt1

sz4

0

sz2

1

0

xt1

sz1

0

sz3

1

1

Figure 4.11.: An always branch-

ing ADS con-

structed from the

ADS given in

Figure 4.10

the same as the application of the test t to an unknown object z of D, and vice versa.

Formally, we have the following results.

Lemma 19 Given a decision tree T for D, there exists an isomorphic ADS A for MD.

Lemma 20 Given an ADS A for MD, there exists an isomorphic decision tree T for

D.

Due to this one–to–one correspondence established by Lemma 19 and Lemma 20,

the problems MinADS, MinHeightADS, and MinSDS are at least as hard as the

MinDT, MinHeightDT, and MinPathDT problems, respectively. Therefore, the

hardness and inapproximability results existing for the problems MinDT, MinHeightDT,

and MinPathDT in the literature are inherited by the problems MinADS, MinHeigh-

tADS, and MinSDS as stated by the following claims.

Theorem 11 The decision version of the problems MinADS, MinHeightADS, and

MinSDS are NP-complete.

MinADS is a special case of MinWeightedADS (when ws = 1 for all states s).

Therefore the following result holds.

Theorem 12 The decision version of the problem MinWeightedADS is NP-complete.
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Similarly, the inapproximability results existing in the literature for decision trees are

inherited by ADS minimization.

Theorem 13 For any constant c > 0, it is NP-hard to approximate MinADS and

MinWeightedADS problems within a ratio of (2− c).

Theorem 14 Unless P = NP, there cannot be an o(log n) approximation for Min-

HeightADS and MinSDS problems.

4.5. Experiment Results

As shown above, minimizing ADSs with respect to the metrics are hard. Therefore, the

best we can hope to do at this point is to design heuristic algorithms.

In this section, we first briefly describe LY algorithm and explain three modified

versions (GLY1, GLY2 and RLY) of LY algorithm. We compare these modifications

both with respect to the size of ADSs they produce, and with respect to the length of

checking sequences constructed by using these ADSs.

The experiments were carried out on a computer with an Intel Quad-Core CPU and

4GB RAM.

4.5.1. LY Algorithm

In this section, we briefly describe how LY algorithm given in [35] constructs an ADS

for a given FSM M = (S,X, Y, δ, λ).

An input sequence x̄ ∈ X? is said to be a splitting sequence for a set S ′ ⊆ S of states,

if |λ(S ′, x̄)| > 1, and for any x̄′, x̄′′ ∈ X?, x ∈ X such that x̄ = x̄′xx̄′′, x is a valid input

for δ(S ′, x̄′). An input symbol x ∈ X is called a valid input for a set of states S̄ ⊆ S,

if the following holds: ∀si, sj ∈ S̄, si 6= sj, δ(si, x) = δ(sj, x) ⇒ λ(si, x) 6= λ(sj, x).

Intuitively, x̄ is an input sequence such that at least two states in S ′ produce different

output sequences for x̄, and no two states in S ′ are merged without distinguishing them.
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In other words, x̄ splits S ′, hence the name. We call an input symbol x a splitting input

for S ′, if x is a splitting sequence of length one for S ′.

LY algorithm constructs an ADS tree in two steps as explained in the following

sections.

Forming a Splitting Tree

In the first step, LY algorithm constructs a tree called the splitting tree (ST). An ST is

a rooted tree where every node is associated with a set of states called a block (B ⊆ S)

and an input sequence (x̄ ∈ X?). The leaves are labeled by singleton blocks and the

empty input sequence. The block of the root node is set to S. For an internal node p

labeled by a block B and an input sequence x̄, x̄ is a splitting sequence for B. There is

a child node p′ of p for each ȳ ∈ λ(B, x̄). The block of p′ is set to be the block Bx̄/ȳ.

Therefore, the blocks of the children of an internal node p with block B is a partitioning

of B.

The construction of an ST starts by creating a partial ST with only the root node

with block B = S. This partial ST is processed iteratively, until all the leaves become

nodes with singleton blocks. In each iteration, a leaf node p in the partial ST is chosen,

where p has a block B such that |B| > 1. The algorithm finds a splitting sequence x̄

for B. The input sequence label of p is set to be x̄. The children of p are created as

explained in the previous paragraph.

The block of a node p is set when the node p is created. However, the input sequence

labeling a node is set when the algorithm processes the node p.

For our purposes, it is important to explain how a splitting sequence is found for a

block B. LY algorithm, first attempts to find a splitting input by considering every

input symbol x ∈ X. LY algorithm does not specify any specific order on the input

symbols to be considered for this check. Therefore, a typical implementation of LY

algorithm would use some fixed (possibly lexicographical) ordering of the input symbols

for this check. This is exactly where our modifications on LY algorithm take place. We

give the details of these suggested modifications in Section 4.5.2.
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The partial ST can be expanded in this way as long as we can find leaf nodes for which

there exists a splitting input. When there is no such leaf node, the algorithm finds a

leaf node p in the partial ST with a block B, an input symbol x that is valid for B, an

internal node p′ with block B′ such that δ(B, x) ⊆ B′, and none of the children p′′ of

p′ has a block B′′ where δ(B, x) ⊆ B′′. The existence of such nodes p, p′ and the valid

input x are guaranteed when an ADS exists1. Since p′ is an internal node, it has been

processed by the algorithm before, and therefore there is a splitting sequence x̄ labeling

the node p′. The splitting sequence to be used for p is then obtained as xx̄.

Forming an ADS

After the ST is constructed, LY algorithm uses the ST to construct a tree T that defines

an ADS. The tree T has a similar structure and construction with an ST. The difference

is that, in ST the initial states are considered, whereas in the construction of T , the final

states reached are considered.

Each node p of T is associated with an input sequence X (p) and with a set of states

B(p). The edges of T are labeled by output sequences. For a leaf node p of T , we have

|B(p)| = 1 and X (p) = ε. For an internal node p, |B(p)| > 1.

Let p be an internal node in T with X (p) = x̄ and B(p) = B. Also let p′ be a child

of p, where the edge from p to p′ is labeled by an output sequence ȳ. In this case,

B(p′) = δ(Bx̄/ȳ, x̄). Note that unlike ST, the states labeling the children of a node p do

not necessarily form a partition of B(p).

The construction of T is performed iteratively. First a partial tree is created which

only includes the root node p of T , with B(p) = S. As long as there is a leaf node p

where B(p) = B with |B| > 1 in the partial tree, p is processed in the following way.

The ST is consulted to find the deepest node p′ in ST such that the block B′ of p′ in

ST includes B, i.e. B ⊆ B′. Let x̄ be the splitting sequence labeling p′ in ST. Then,

X (p) is set to x̄ and for each ȳ ∈ λ(B, x̄), a child p′′ of p is created in T , by setting

1Since the proof of correctness of LY algorithm is out of scope of this Thesis, we refer the reader

to [35] to see why such nodes have to exist in the partial ST.
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B(p′′) = δ(Bx̄/ȳ, x̄).

Once T becomes a tree where for all the leaves p we have |B(p)| = 1, T defines an

ADS tree. We refer the reader to [35] to see why T defines an ADS.

4.5.2. Modifications on LY algorithm

We present three modified versions of LY algorithm GLY1,GLY2 and RLY. Modifica-

tions take place only in the construction of a splitting tree. As explained in Section 4.5.1,

LY algorithm first tries to find a splitting input for a block B. Rather than being sat-

isfied by the existence of such an input sequence, we identify all splitting inputs for the

block B and select the one that “seems” to be the best choice.

The motivation behind the approach GLY1 comes primarily from the balanced tree

strategy [106]. In balanced trees, it is guaranteed that the difference between the sizes of

the sub-trees rooted at sibling nodes is less then some threshold to keep the height of the

tree relatively small. This is in fact the same heuristic used for approximating optimal

decision trees [107]. Similarly, in GLY1, for a given block B, we select a splitting input

symbol that partitions B most evenly.

Let B be a block and X be a set of splitting sequences for B. For a splitting sequence x̄

for B, Bx̄ refers to the partitioning of B with respect to x̄, i.e. Bx̄ = {Bx̄/ȳ|ȳ ∈ λ(B, x̄)}.

Among the elements of X , we would like to pick the one that would give the most

balanced partitioning of B. For this reason, we introduce the following function F that

considers the differences in the cardinalities of the partitioning provided by the available

splitting sequences:

F (B,X ) = argmin
x̄∈X

∑
B′,B′′∈Bx̄

∣∣∣|B′| − |B′′|∣∣∣ (4.1)

In GLY1, for picking a splitting input for a block B, we consider XB the set of splitting

inputs for B. We define:

GLY1(B) = rand(F (B,XB)) (4.2)
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where the function rand(.) chooses an element of the set given as its input randomly2.

In GLY2, we aim to select input symbol x in XB that maximizes the size of the

partitioning Bx, without concerning the sizes of the elements in Bx. If there are two or

more input symbols that give the same maximum value, among these the one that gives

the most even partitioning is chosen by using the function F . Formally,

GLY2(B) =

 x′, if argmaxx∈XB
|Bx| = {x′}

F (B, argmaxx∈XB
|Bx|), otherwise

(4.3)

Besides these versions, we also consider a version of the LY algorithm in which a

splitting input is selected randomly. We call this version as RLY and formally for a

block B, we have

RLY(B) = rand(XB) (4.4)

Except these modifications, GLY1, and GLY2 are exactly the same as LY algo-

rithm. Similarly, instead of LY, from now on we write FLY to refer to version of the

LY algorithm which chooses the splitting input according to some fixed ordering (i.e.

alphabetical ordering).

4.5.3. A Lookahead Based ADS Construction Algorithm

In this subsection, we explain the details of the proposed algorithm to construct a re-

duced ADS for an FSM M = (S,X, Y, δ, λ) which is minimal, deterministic, completely

specified and known to have an ADS. Before presenting the details of the actual al-

gorithm, we provide some definitions and routines that are going to be used in this

section.

In [24] Hennie introduces the use of a tree, called the successor tree, for construct-

ing adaptive homing/distinguishing sequences. The successor tree grows exponentially

and it possesses information that can be used to find the minimum cost adaptive hom-

ing/distinguishing sequences. However since it grows exponentially (with the number of

states), it becomes impractical to construct a successor tree to obtain a reduced adaptive

homing/distinguishing sequences as the size of the FSM gets larger.

2Note that operators argmin/argmax return the set of arguments achieving the optimum value.
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Our method has two phases. In the first phase, a tree called the Enhanced Successor

Tree (EST) similar to a successor tree is generated. In the second phase, EST is used to

construct an ADS.

An EST contains two types of nodes; input nodes I and output nodes O. The root

and the leaves of an EST are output nodes. Except the leaves, the children of an output

node are input nodes, and the children of an input node are output nodes. In other

words, on a path from the root to a leaf, one observes a sequence of output and input

nodes alternatingly, starting and ending with an output node.

Each input node p is labeled by an input symbol in(p). Similarly, each output node

q is labeled by an output symbol out(q), except the root node for which out(q) = ε. An

output node q is also associated with a block bl(q). For the root node q, bl(q) = S. An

output node q is a leaf node iff |bl(q)| = 1. A non-leaf output node q that is associated

with a block bl(q), has a separate input node p as its child for each input symbol x that

is valid for bl(q), with in(p) = x. An input node p (where x = in(p)) with a parent

output node q (where B = bl(q)), has a separate output node r as its child for each

output symbol y ∈ λ(B, x), with out(r) = y and bl(r) = δ(Bx/y, x).

The EST of an FSM M is potentially an infinite tree. Instead of the whole tree, the

algorithm constructs a limited size partial EST, using which an ADS can be produced.

The algorithm uses heuristic approaches to explore the relevant and promising parts of

the EST to find a reduced size ADS with respect to different metrics, such as the height

and the external path length.

The partial EST constructed by the algorithm will be the EST where the tree is

pruned at several nodes. For a leaf q in an EST we have |bl(q)| = 1. However, for a leaf

node q in a partial EST, we have |bl(q)| ≥ 1.

Initially, the algorithm starts with the partial EST consisting of only the root node. In

each iteration, an output node q is handled and the partial EST rooted at q is expanded

exhaustively upto depth k, where k is a parameter given to the algorithm. Among the

children of q, an input node p that seems to be the best (according to the objective

and the heuristic being used) is selected, and the search continues recursively under the
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subtrees rooted at the children of p.

During the construction of the partial EST T , some nodes are marked as the nodes to

be used for ADS construction later. Namely, a set of output nodes L and a set of input

nodes I are marked. Each output node q ∈ L has the property that |bl(q)| = 1 and it

corresponds to a leaf node in the ADS that will be constructed later. Also the nodes in

I will be corresponding to the non–leaf nodes of the ADS.

The algorithm constructing a partial EST is given in Algorithm 1.

Algorithm 1: Construct a partial EST for M
Input: FSM M = (S,X, Y, δ, λ), k ∈ Z≥1

Output: A partial EST T , a set of leaves L, and a set of input nodes I

begin

1 L← ∅, I ← ∅

2 Construct an output node q0 with bl(q0) = S, out(q0) = ε

3 Initialize T to be a tree consisting of the root q0 only

4 Q← {q0} // Q is the set of output nodes yet to be processed

5 while Q 6= ∅ do

6 Pick an output node q ∈ Q to process

7 Q← Q \ {q}

8 ExpandEST(q,k) // expand subtree under q exhaustively upto a certain depth

9 Choose a child node p of q // based on the objective and the heuristic used

10 I ← I ∪ {p} // The input node p will be used for the ADS

11 foreach child r of p do

if |bl(r)| > 1 then

12 Q← Q ∪ {r} // not a singleton yet, needs to be processed

else

13 L← L ∪ {r} // reached a singleton block

The procedure “ExpandEST(q, k)”, constructs the partial EST rooted at the node q

exhaustively upto the given depth k. If in this partial subtree, for every leaf node r,

we have |bl(q)| = |bl(r)| (which means the block bl(q) could not be divided into smaller

blocks by using input sequences of length upto k that are valid for bl(q)), the procedure

increases the depth of the subtree rooted at q until it encounters a level at which there

exists a leaf node r with |bl(r)| < |bl(q)|. Clearly, this is always possible since the FSM

M has an ADS.

At line 9 of Algorithm 1, a child node p of q is chosen heuristically. This choice is based

on the scores of the nodes which are calculated by processing the nodes in the subtree
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rooted at q in a bottom–up manner. First the scores of the leaves in this subtree are

assigned. This is followed by the score evaluation of the internal nodes in the subtree.

The score of a non–leaf node depends on the scores of its children. The score of a node

reflects the potential size of the ADS that will be eventually formed if that node is

decided to be used in the ADS to be formed.

When the score of an output node q is computed based on the scores of its children,

since we have the control over the input to be chosen, the child node of q having the

minimum score is chosen. However, when the score of an input node p is computed

based on the scores of its children, since we do not have the control of the output to

be produced, we prepare for the worst and use the maximum score of the children of

p. A similar approach is in fact also suggested by Hennie [24] (please see Chapter 3).

The process of calculating the scores of the nodes depends on the heuristic used and the

details are given in Section 20.

Before presenting the algorithm to construct an ADS, we will give some properties of

the nodes L and I marked by Algorithm 1. For an output node q, consider the path

from the root of T to q (including q). Let w and v be the concatenation of input symbols

and output symbols on this path, respectively. We use below the notation io(q) to refer

to the input/output sequence w/v.

Proposition 3 Let q be an output node in T , let io(q) = w/v. Then we have bl(q) =

δ(Sw/v, w).

Proposition 4 |L|+
∑

q∈Q |bl(q)| = |S| is an invariant of Algorithm 1 before and after

every iteration the while loop.

Proposition 4 implies the following result, since when Algorithm 1 terminates we have

Q = ∅.

Corollary 1 When Algorithm 1 terminates, |L| = |S|.

Proposition 5 Let q be an output node in T with |bl(q)| = 1, and let w/v = io(q).

There exists a unique state s ∈ S such that λ(s, w) = v.
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Algorithm 2 describes how an ADS can be constructed based on the partial EST T ,

the set of marked nodes L and I in T by Algorithm 1. Note that at line 6 of Algorithm 2,

Sw/v is claimed to be a singleton, which is guaranteed by Proposition 5. In order to show

that A which is generated by Algorithm 2 is an ADS, we also prove the following.

Proposition 6 The leaves of A constructed by Algorithm 2 is labeled by distinct states.

Theorem 15 A constructed by Algorithm 2 is an ADS.

Algorithm 2: Construct an ADS
Input: The partial EST T , the set of marked nodes L and I by Algorithm 1

Output: An ADS A

begin

// Construct and label the internal nodes of A

1 foreach node p ∈ I do

2 Construct an internal node p′ in A

3 Label p′ by in(p)

// Construct and label the leaf nodes of A

4 foreach node q ∈ L do

5 Let w/v = io(q)

6 Let s be the state such that {s} = Sw/v

7 Construct a leaf node q′ in A

8 Label q′ by s

// Construct the edges to the leaves

9 foreach leaf node q′ ∈ A do

10 Let q be the corresponding node of q′ in T

11 Let p be the parent of q in T

12 Let p′ be the corresponding node of p in A

13 Insert an edge between p′ and q′ with the label out(q)

// Construct the remaining edges

14 foreach internal node p′ ∈ A do

15 Let p be the corresponding node of p′ in T

16 if p has a grandparent in T then

// except the root of A

17 Let q be the parent of p in T

18 Let r be the parent of q in T

19 Let r′ be the corresponding node of p in A

20 Insert an edge between p′ and r′ with the label out(q)
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Heuristics

We use different heuristic approaches to minimize the size of ADSs with respect to two

different metrics, which are minimizing the height and minimizing the external path

length of the ADS.

As mentioned above, the score of a node q in the partial EST constructed so far is

an estimation of the size of the ADS that will be formed by using a child of q in ADS.

Let d(q) be the depth of q in the EST and v(q) be the score of q. We also keep track

of another information, z(q). It is the number of singleton output nodes in the winner

subtrees under q in the current partial EST, and used to break the ties as explained

below.

Let us consider a leaf node q, where |bl(q)| = 1. This is in fact a leaf node also in

the complete EST. For such leaf nodes, we set v(q) = d(q) and z(q) = 1. However, for

a leaf node q in the current partial EST with |bl(q)| > 1, we set z(q) = 0. Although

q is currently a leaf node in the partial EST, if we were to expand q, there will appear

a subtree under q. In order to take into account the size of the subtree rooted at q

(without actually constructing this subtree), we need to estimate the size of the subtree

under q. Note that bl(q) is the set of states yet to be distinguished from each other.

We consider two different metrics as the size of an ADS: height or external path length.

Depending on the objective, we estimate the size of the subtree that would appear under

a (yet to be processed) output node q in different ways. While minimizing for height,

we use two different heuristic functions HU : O → R+ and HLY : O → R+. Similarly,

while optimizing for external path length, we use heuristic functions LU : O → R+ and

LLY : O → R+.

For an FSM with n states the height of an ADS is bounded above by n(n− 1)/2 [35].

We use this bound for heuristic functions HU and LU in the following way. The score

of node q with respect to function HU is given as HU(q) = d(q) + |bl(q)|(|bl(q)| − 1)/2,

where d(q) is the depth of q. On the other hand, function LU multiplies the number

of states with the expected height of the subtree to approximate the expected external

path length. That is, LU(q) = (d(q) + |bl(q)|(|bl(q)| − 1)/2)|bl(q)|.
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As another estimation method for the size of the subtree to appear under an output

node q, one can use LY algorithm to construct an ADS for the states in bl(q). The

heuristic functions HLY and LLY use this idea. Let A′ be the ADS computed by LY

algorithm for the states in bl(q), and let hA′ and lA′ be the height and the external

path length of A′. Then the heuristic functions HLY and LLY are defined as HLY (q) =

d(q) + hA′ and LLY (q) = d(q)|bl(q)|+ lA′ .

At line 9 of Algorithm 1, for the output node q being processed in that iteration, an

input node p which is a child of q is chosen. Let T ′ refer to the subtree rooted at q in the

partial EST at this point. While choosing the child input node p to be used, the scores

of the nodes in T ′ are calculated in a bottom up manner. First, for each (current) leaf

node q′ (which is an output node) in T ′, v(q′) is assigned by using one of the heuristic

functions (HU(q′) or HLY (q′) for height optimization, and LU(q′) or LLY (q′) for external

path length optimization) and z(q′) is assigned. The score of the remaining nodes in T ′

are based on the scores of its children and are calculated as follows.

When minimizing for height, for an input node p′, v(p′) is set to the maximum score of

its children and z(p′) is set to the sum of singleton scores of its children. For an output

node q′, v(q′) is set to the minimum score of its children, and z(q′) is set to the z(.)

value of the winner child. When minimizing for external path length, for an input node

p′, v(p′) and z(p′) is set to the sum of the scores of its children. For an output node

q′ on the other hand, v(q′) is set to the minimum score of its children and z(q′) is set

to the z(.) value of the winner child. Note that, there may be ties during this process

when we attempt to take minimum or maximum. Among the nodes achieving the same

minimum/maximum, the tie is first tried to be broken by maximizing the number of

singleton values (z(.)). If still there is a tie, this is broken randomly. From now on we

will write LEA to refer to the Lookahead driven ADS construction algorithm on EST.

We present a summary of the heuristics and algorithms used in this section in Table ??.
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Table 4.3.: The list of heuristics/algorithms used to construct ADSs

Method Abbreviation

LEA Lookahead Algorithm that uses Heuristics HU ,HLY ,LU , and LLY
GLY1 Modified version of LY algorithm #1

GLY2 Modified version of LY algorithm #2

RLY Randomized version of LY algorithm

HU Heuristic for MinHeightADS that uses local information

LU Heuristic for MinADS that uses local information

HLY Heuristic for MinHeightADS that uses LY algorithm

LLY Heuristic for MinADS that uses LY algorithm

FLY The LY algorithm with fixed ordering of inputs

BF The Brute–Force algorithm given in [21]

4.5.4. FSMs used in the Experiments

For our experiments, we used both randomly generated FSMs and a set of FSMs available

as a benchmark as explained below.

Random FSM Generation

We randomly generate FSMs using the tool utilised in [43, 108]. An FSM M is con-

structed randomly as follows: First, for each input x and state s we randomly assign the

values of δ(s, x) and λ(s, x). Then we check whether M is strongly connected, minimal

and has an ADS. We omit the FSMs that could not pass these tests. Consequently, all

FSMs used are strongly connected, minimal, and has an ADS.

By following this procedure we generated two test suites, TS1 and TS2. In each test

suite we have 6 classes of FSMs. Each class contains 100 FSMs. Thus the number of

FSMs used in these experiments is 600(TS1) + 600(TS2) = 1200. In TS1, the number

of states range in {50, 60, . . . , 100}, but the size of input and output alphabets are fixed

to four. In TS2, the state and input/output alphabet cardinalities of the classes are
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(30, 4/4), (30, 8/8), (30, 16/16), (60, 4/4), (60, 8/8) and (60, 16/16).

We use Intel Xeon E5-1650 @3.2-GHZ CPU with 16 GB RAM to carry out these tests.

We implemented proposed algorithm, LY algorithm and the brute-force algorithm using

C++ and compiled them using Microsoft Visual Studio .Net 2012 under 64 bit Windows

7 operating system.

Benchmark FSMs

Random FSMs allow us to perform experiments and grasp some properties of different

versions of FLY algorithm, however it is possible that FSMs used in real-life situations

differ from these randomly generated FSMs. Therefore we carry out some case studies on

FSM specifications used in workshops between 1989-1993 [109]. The benchmark suite has

59 FSM specifications ranging from simple circuits to advanced circuits obtained from

industry. We extract specifications that are minimal, deterministic, strongly connected

and having an ADS. We discarded sequential circuits that have larger than 10 input

bits. Note that the FSM specification of the sequential circuit having n input bits has

2n number of inputs, that is there is an exponential growth in the number of inputs.

After post-processing, we obtain FSM specifications of circuits DVRAM, Ex4, Log,

Rie, and Shift Register 3. In Table 4.4 we present the size (number of states and the

number of transitions) of these FSMs.

4.5.5. Results

We present the results of the experiments in three sections. We first compare the external

path length, the height of the ADSs, and the running times for FLY, LEA (Lookahead

Approach using heuristics HU , HLY , LU , LLY ), GLY1 GLY2, and RLY. Next, we

compare the length of the checking sequences constructed by using ADSs generated by

these methods. Finally, we show how using minimum cost ADSs affects the length of

the checking sequences.

3FSM specification Ex4 is partially specified. We complete the missing transitions by adding self

looping transitions with a special output symbol, and do not use these inputs for ADS construction.
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Table 4.4.: Size of Case Studies

Name Number of States Number of Transitions

Shift Register 8 16

Ex4 14 896

Log 17 8704

DVRAM 35 8960

Rie 29 14848

Comparison of External Path Lengths, Heights and Timings

In order to evaluate the relative performance of different approaches, we compute the

ADSs through the HU , HLY , LU , LLY , GLY1, GLY2, FLY and brute–force algorithms

separately. The brute–force algorithm (BF) is described in [21]. BF algorithm constructs

EST to a depth that is sufficient to form an ADS. We also constructed ADSs with the

HU , HLY , LU , LLY , GLY1 and GLY2. In the following sections we present the results

of our experimental study.

In order to compare algorithms, we use two measures. The first measure (M1) is the

mean difference between the height/external path length found by the algorithm and

the optimal value found by BF. For an FSM M in a class M, let A(M) be the result

returned by the algorithm A, where A is either GLY1, or GLY2, or LY, or BF, or our

algorithm using the heuristics given in this work. The second measure (M2) is the ratio

of cases in which A(M) finds the optimal ADS. These measures are formally defined as

follows, where the comparison operator “
?
=” returns 1 if comparison is true, and returns

0 otherwise:

M1 =

∑
M∈M(size(A(M)) − size(BF (M)))

|M|

M2 =

∑
M∈M(size(A(M))

?
= size(BF (M)))

|M|

66



We evaluate the methods with respect to the number of states, size of input/output

alphabets, and the parameter k.

The effect of number of states: To see the effect of the number of states, we

performed experiments on FSMs in TS1 by using k = 1 for Algorithm 1. Note that,

using a larger k value would intuitively increase the quality of our results at the expense

of increased running time. We discuss the effect of different k values separately below.

We present the results in Table 4.5.

The results are quite promising. We see that when |M | = 50, HLY can find the

shallowest tree in 99% of the instances. Comparing FLY and GLY2, we see that GLY2

is better than FLY. Moreover, considering the results of measureM1, we see that LEA

constructs ADS trees closer to the optimum than the trees generated by approaches

FLY, GLY1 and GLY2. We observe that this rate gradually decreases as the number

of states increases. Moreover, in terms of running times, we see that HU is the fastest,

and HLY is the slowest approach and HLY is slower than FLY by nearly 3 fold.

We observe that heuristics LU and LLY cannot compute the optimum ADSs most of

the times, but compared to the FLY, GLY1 and GLY2, we see that LU and LLY are

able to reduce the average gap to the optimal external path length by at least 3, at most

6 fold.

The effect of the size of the input/output alphabet: We again use the measures

M1 and M2 to analyze the effect of the size of the input/output alphabet on the

performances. We use Algorithm 1 with k = 1. In this experiment we used FSMs in

TS2. Table 4.6 summarizes the results.

Clearly the results indicate that the FLY algorithm computes ADSs quicker than the

other methods when input size is increased. In terms of M1, HLY produces the best

results when the objective function is to minimize the height.

We observe that as the number of input/output symbols increases, LEA tends to

produce optimum ADSs. Moreover as the number of input/output symbols increases,

LEA, GLY1 and GLY2 tend to be slower. We observe that as we increment the size of

input/output symbols by a factor of 4 (4 to 16) the time required to compute ADSs is
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doubled for LEA.

The effect of the value of parameter k:

Now we show the effect of the lookahead distance, i.e. the value of the parameter k

used in Algorithm 1. Note that approaches GLY1, GLY2 and FLY do not use such

variable. We set the number of input/output symbols to 4. We consider four classes of

FSMs where the number of states in these classes are 30, 50, 70 and 100.

Note that since the outputs are uniformly distributed during the generation of FSMs,

one would expect the average depth of the ADS to be around dlogq ne, where n and q

are the number of states and the number of outputs, respectively. For our experiments

with 4 outputs and the number of states ranging between 30 and 100, the height of the

ADSs is expected to be 3–4 (i.e. for 4 outputs (dlog4 30e = 3 and dlog4 100e = 4)). BF

algorithm reports that, out of 400 FSMs, 371 of the ADSs heights are 4 or more. Since

we use k = 2 and k = 3 in these experiments, the partial ESTs formed by our algorithm

are not exactly the same ESTs that would be formed by the BF algorithm.

The results are concluding: increasing the value of k, improves the quality of the

results at the expense of increased running times. When the objective functions is to

minimize the height (Table 4.7), we see that LEA either finds one of the optimum result

or it misses the optimum result by one. When the objective function is to minimize the

external path length (Table 4.8), the LEA computes an optimum ADS almost in all

cases.

When we consider running times, for k = 2, FLY, GLY1 and GLY2 are nearly 8

times faster than the LEA that uses heuristics HLY /LLY , FLY, GLY1 and GLY2 are

2 times faster than when LEA uses heuristics HU/LU . For k = 3, FLY, GLY1 and

GLY2 are 10 times faster than LEA when it uses HLY /LLY heuristics, and finally FLY,

GLY1 and GLY2 are 4 times faster than LEA when it uses HU/LU heuristics.

The result of the case studies are presented in Table 4.9. Surprisingly we see that

FLY and GLY1 produce same ADSs in all cases and LEA and GLY2 produce same

ADSs in all cases. Besides, FLY, GLY2 and LEA produce exactly the same ADSs for

FSMs Rie and Shift Register. On the other hand, we see that, in terms of height and
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external path length, GLY2 and LEA compute smaller ADSs than FLY and GLY1,

which correlates with the results of experiments on the random FSMs.

Comparison of Checking Sequence Lengths

We use the checking sequence generation methods HEN, UWZ, HIU, SP, and DY

mentioned in Section 4.1.1. We present the results as improvements in the length of the

checking sequences as follows. For each FSM M , we construct a checking sequence C1

using an ADS generated by a method (GLY1, GLY2, HLY , HU , LLY and LU), and

another checking sequence C2 using an ADS generated by FLY. The improvement in

the length of the checking sequence is 100× (|C2| − |C1|)/|C1|.

Results are presented in Tables 4.10, 4.11, 4.12, 4.13, 4.14,and 4.15. In comparison

LLY is better than all other approaches. In general, we note that, the improvements

obtained from SP method are much higher than the improvements obtained from other

CS generation methods. This may imply that the state identification sequences occupy

larger portions of the CSs computed by the SP algorithm. That is the use of transfer

sequences is less compared to other methods. Thus the reduction on the cost of ADSs

yield dramatic reductions (upto 29.2%) on the length of the checking sequences.

There are some cases in which we obtain negative improvements, i.e. the checking

sequence gets longer when a reduced cost ADS is used, please see Figures 4.6, 4.7

and 4.8. ADSs in Figure 4.7 and Figure 4.8 are generated by using GLY1 and FLY,

respectively. Although the ADS of Figure 4.7 is better with respect to external path

length, considering the fact that the number of incoming transitions of state s1 is very

high, ADS of Figure 4.8 having a shorter SDS for s1 is more likely to give a shorter

checking sequence.

One important and promising observation is that, as the size of FSMs gets larger (with

more number of states and/or with more transitions), the improvement ratio also gets

larger.

The results of the experiments on the benchmark FSMs are presented in Table 4.16.

Recall that GLY1 and FLY; GLY2 and LEA compute identical ADSs (see Table 4.9),
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HEN UWZ HIU SP DY

30 3.6 3.3 3.4 3.8 3.1

50 4.8 4.6 4.6 4.1 4.4

70 5.1 5.2 5.1 7.5 4.9

100 7.6 6.4 6.3 8.0 5.7

Table 4.10.: Checking Sequence Length

Comparison for FLY and

GLY1

HEN UWZ HIU SP DY

30 4.9 4.4 4.3 5.8 4.5

50 5.3 4.8 5.6 6.3 5.9

70 5.5 5.2 6.0 6.6 6.2

100 6.8 6.5 7.2 9.2 7.8

Table 4.11.: Checking Sequence Length

Comparison for FLY and

GLY2

HEN UWZ HIU SP DY

30 5.3 4.1 4.8 6.0 4.5

50 6.6 5.4 6.4 7.7 6.9

70 6.9 6.8 6.7 8.5 6.9

100 7.6 6.9 7.9 9.9 7.4

Table 4.12.: Checking Sequence Length

Comparison for FLY and

HU

HEN UWZ HIU SP DY

30 7.5 7.5 7.4 8.7 7.1

50 8.4 7.6 8.6 9.5 7.3

70 8.7 8.7 8.9 10.3 8.0

100 9.9 9.5 9.3 12.2 8.6

Table 4.13.: Checking Sequence Length

Comparison for FLY and

HLY

HEN UWZ HIU SP DY

30 14.0 13.1 13.7 15.8 14.3

50 15.2 14.5 14.5 16.3 15.6

70 16.6 15.3 15.9 16.6 16.9

100 17.4 16.4 16.3 19.4 16.7

Table 4.14.: Checking Sequence Length

Comparison for FLY and

LU

HEN UWZ HIU SP DY

30 14.8 13.8 15.2 15.2 14.5

50 17.4 16.5 16.6 19.4 15.9

70 19.5 17.4 16.8 26.7 16.7

100 22.3 18.2 17.5 29.2 17.8

Table 4.15.: Checking Sequence Length

Comparison for FLY and

LLY
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Table 4.16.: Checking Sequence Length Comparison for Case Studies.

File Method (Checking Sequence Length Comparison (%)))

HEN UWZ HIU SP DY

Log 10.21 8.21 7.68 6.45 7.38

DVRAM 21.48 12.39 9.58 11.22 10.23

Ex4 5.45 3.34 2.49 1.44 2.41

thus we compare FLY with LEA only. Moreover, for files Shift-Register and Rie, all

methods compute identical ADSs, consequently we also do not analyse the results for

these FSMs. The results suggest that simple modifications on the FLY algorithm can

reduce the length of checking sequence up to 21.48%. We believe that this is promising

and we claim that sophisticated greedy algorithms may produce better results.

Constructing Checking Sequences with minimum ADSs

In Section 4.5.5, we compare FLY, GLY1, GLY2, HU , HLY , LU and LLY in terms of

the checking sequence lengths which are constructed by using the ADSs generated by

these approaches. We see that GLY1 GLY2 do not necessarily always generate ADSs

with the smallest cost (height / external path length) compared to ADSs generated by

FLY. But we saw experimentally that LEA can construct almost minimum cost ADSs

for sufficiently large k values. Recall that our primary motivation for this work is that

using a minimum cost ADS would result in a shorter checking sequence.

In this work we suggest and propse several ADS generation approaches. Hence, for a

given FSM, one could simply generate ADSs by using all of these approaches and then

use the minimum cost ADS to construct a checking sequence. For this reason, in this

section we show what we could gain when we use the minimum cost ADS constructed

by all of the approaches while constructing the checking sequences. Moreover, we believe

that comparing the length of checking sequences constructed by using ADSs generated

by FLY and by the minimum cost ADS, would give a better validation of our motivation.
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In order to perform this study, we use the ADSs and the checking sequences con-

structed in Section 4.5.5. For each FSM, and for each approach we generate an ADSs

and among these ADSs, we select an ADS A? with the minimum cost. We then gen-

erate a checking sequence C? using A? and a checking sequence CF using the ADS

constructed by FLY. We report the percentage of cases (Φ) in which C? is shorter than

CF and also the percentage improvement (∆) in the length of the checking sequence.

Table 4.17 and 4.18 summarise the results, where n is the number of states, p/q is

the size of input and output alphabets. In Table 4.17, checking sequences are con-

structed by the ADSs with the minimum height and in Table 4.18, checking sequences

are constructed by the ADSs with the minimum external path length.

Table 4.17.: Improvement in checking sequence length by using the shallowest ADS.

n HEN UWZ HIU SP DY

Φ ∆ Φ ∆ Φ ∆ Φ ∆ Φ ∆

30 51.8 13.7 62.4 11.5 79.9 11.5 60.5 16.1 69.1 12.3

50 65.3 14.6 73.8 13.5 82.4 13.1 76.4 15.9 70.5 13.8

70 73.2 15.4 84.5 14.1 86.8 13.5 80.3 16.4 84.3 14.2

100 83.5 16.3 88.2 15.9 87.6 14.7 83.2 17.1 85.9 15.3

Average 68.4 15.0 77.25 13.75 84.1 13.2 75.1 16.3 77.45 13.9

Comparing results in Table 4.17 and Table 4.18, we can deduce that, minimizing the

external path length is a better choice for the cost of ADSs for reducing the length of

CSs. We derive this conclusion by considering the average values of Φ and ∆, which are

always greater.

Regardless of the checking sequence method, both the percentage of cases (Φ) and the

improvement in the length of checking sequences (∆) increase with the size of the FSM,

consistently. As an extreme example, when the external path length is used as the cost of

an ADS, for SP method and for FSMs with 100 states, 4 input and 4 output symbols, for

93.6% of the FSMs, using the minimum cost ADS generated shorter checking sequences,
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Table 4.18.: Improvement in checking sequence length by using the ADS with minimum

external path length.

n HEN UWZ HIU SP DY

Φ ∆ Φ ∆ Φ ∆ Φ ∆ Φ ∆

30 81.5 11.34 81.3 14.06 80.2 17.95 89.2 19.01 89.2 18.12

50 88.4 12.35 83.4 16.25 96.4 18.11 92.1 24.99 89.4 19.23

70 93.3 16.23 84.5 17.19 93.2 20.27 96.4 28.20 90.8 20.23

100 94.5 19.34 95.6 18.19 93.9 21.86 96.8 30.20 95.1 22.14

Average 89.4 14.8 86.2 16.4 90.9 19.5 93.6 25,6 91.1 19.9

where the improvement in the length reaching to 30.2%.

The results of experiments are manifold. (i) We observe using minimum cost ADSs

reduces the length of checking sequences, in general. (ii) The reduction is higher and

more probable when the cost of the ADS refers to the external path length. (iii) The

reduction is higher and more probable as the size of the FSM gets larger.

Thus we can conclude that the experimental results validate our initial motivation for

this work.

4.5.6. Threats to Validity

We try to identify some threats to the validity of experimental results in this section.

First, we try proposed methods for minimizing ADSs on randomly generated FSMs.

It is possible that for the FSMs used in real-life situations, the performance of these

methods can differ. Although using random FSMs is a general approach for the works

in this field, in order to test the generalization of these methods, we also test them

on some case studies obtained from benchmark FSM specifications as explained in Sec-

tion 4.5.4. We see that GLY2 performs better than GLY1, and heuristic LEA that

uses LY produces the best results among all approaches both in height and external
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path length metrics, similar to the results we obtained from random FSMs. However,

GLY1 performs similarly to FLY, which we believe is due to the fact that ADSs for

these examples are quite shallow.

Another threat could be our incorrect implementation of these approaches. To elimi-

nate this threat, we also used an existing tool that checks if a given tree is an ADS for

an FSM. The ADSs generated by all approaches are all double checked with this tool

to see what is produced is really an ADS.

A threat to our motivation for using minimized ADSs could be that, the actual

method used for checking sequence generation may or may not support this motivation.

In order to see the effect of minimizing ADSs for checking sequence construction, we

considered several checking sequence construction methods. The results suggest that,

in general, regardless of the checking sequence method, using minimized ADS result

in shorter checking sequences. There are occasional cases where using a minimized

ADS actually generates a longer checking sequence. A possible reason for such cases

is explained in Section 4.5.5. As stated in that part, the number of such cases would

possibly decrease if MinWeightedADS problem is considered (instead of MinADS

and MinHeightADS) while minimizing ADSs.

4.6. Chapter Summary

In this work, we studied the problem of computing a minimum ADS for a given de-

terministic, minimal and complete FSM. We introduced several metrics with respect to

which such a minimization can be defined, where each metric resulted in a definition of

a separate minimization problem. For each metric defined, we showed the problem of

deciding a minimum ADS with respect to that metric is NP-complete. We also presented

inapproximability results for each one of these minimization problems. Since determin-

istic FSMs are special cases of nondeterministic FSMs, our results directly apply to

nondeterministic FSMs as well.

Our initial motivation for minimizing ADSs is the use of ADSs in the context of check-
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ing sequence generation. Generating a minimum ADS is important in such a context,

since state recognitions and state verifications are performed by using an ADS, and a

considerable part of a checking sequence consists of such state recognitions/verifications.

Therefore the length of a checking sequence generated by using an ADS, correlates with

the size of that ADS. Due to the hardness and inapproximability of ADS minimization,

heuristic algorithms can be used to generate shorter ADSs than the ones that are gen-

erated by the only polynomial time algorithm known for ADS generation given in [35].

In order to validate our initial motivation, we considered two different modifications on

LY algorithm leading to two different heuristics. The experimental results validate our

initial motivation, and show that using shorter ADSs in checking sequence construction

improves the length of checking sequences.
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5. Using Incomplete Distinguishing

Sequences when Testing from a

Finite State Machine

5.1. Introduction

In this chapter, we consider constructing Checking Experiments for FSMs that do not

have a PDS or an ADS. Many techniques for constructing CEs use DSs to resolve the

state identification problem for two reasons: There are polynomial time algorithms that

generate CEs when there is a known DS and the length of the CEs is relatively short

when designed with a DS [29, 42, 43, 44, 35].

In this Chapter, we use the term complete PDS/ADS to denote the Definition 1

and Definition 2 respectively. Although complete DSs have a number of advantages

over other approaches used to distinguish states, not all FSMs possess a complete DS,

and if there is no complete DS then the state recognition task is carried out by other

approaches such as UIOs or W-Sets. However, as explained in [110], using UIOs or

W-Sets typically leads to significantly longer CEs. Thus the motivation for the work

reported in this text comes primarily from the desire to obtain some of the benefits of

complete DSs when constructing CEs for specifications that do not have complete DSs.

We therefore consider the case where the FSM does not have a complete DS but instead

we would like to form a collection of DSs that, between them, distinguish all of the states

of FSM M .
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A collection of DSs achieves this when for every pair of states s, s′ with s 6= s′ there is

some DS in the collection that distinguishes s and s′. Another way of describing this is

to require a set PS of subsets of the state set S such that: for all s, s′ ∈ S with s 6= s′ we

have some S̄ ∈ PS such that s, s′ ∈ S̄; and for all S̄ ∈ PS there is a DS that distinguishes

the states of S̄. We show how a CE can be generated using a set of incomplete DSs that

distinguish all of the states of the specification. We also explore problems associated

with generating ‘optimal’ sets of incomplete DSs.

While it might seem that complete ADSs are always preferable to complete PDSs,

the use of complete PDSs is beneficial in some circumstances. The key advantage of

complete PDSs is that they simplify the testing process since there is no need to adapt

test input to the observations made. This allows the use of a simpler/cheaper test infras-

tructure and is also important when the observation and processing of outputs incurs

a significant cost by, for example, making testing take longer. In addition, sometimes

adaptivity is not possible due to timing constraints; it might take too long for the test

infrastructure to make decisions.

In Section 5.3 we consider problems associated with incomplete PDSs, motivated by

the fact that sometimes we require test sequences that are not adaptive. We study the

following question.

Definition 26 (MaxSubSetPDS problem) Given FSM M with a finite set of states

S and S̄ ⊆ S, find a subset S̄ ′ of S̄ that has a PDS such that |S̄ ′| is maximised.

One way of expressing the problem of looking for a set of PDSs to distinguish all of

the states of an FSM M with state set S is to look for a set PS of subsets of S such that

the followings hold.

• For every pair of states s, s′ ∈ S with s 6= s′ there is some S̄ ∈ PS such that

s, s′ ∈ S̄; and

• for every S̄ ∈ PS there is some PDS that distinguishes all of the states of S̄.

This leads to the following definition of the MinSetPDS problem.
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Definition 27 (MinSetPDS problem) Given FSM M and a finite set of states S,

find a smallest set PS of subsets of S such that each set in PS has a PDS and for all

s, s′ ∈ S with s 6= s′ we have that there exists S̄ ∈ PS such that s, s′ ∈ S̄.

We show that the MaxSubSetPDS and MinSetPDS problems are PSPACE-complete.

Moreover, we use results given in [95] to show that the MaxSubSetPDS problem is

inapproximable. In Section 5.4 we adapt the problems introduced so far to incomplete

ADSs.

Definition 28 (MaxSubSetADS problem) Given FSM M with a finite set of states

S and S̄ ⊆ S, find a subset S̄ ′ of S̄ that has an ADS such that |S̄ ′| is maximised.

Definition 29 (MinSetADS problem) Given FSM M and a finite set of states S,

find a smallest set PS of subsets of S such that each set in PS has an ADS and for all

s, s′ ∈ S with s 6= s′ we have that there exists S̄ ∈ PS such that s, s′ ∈ S̄.

We show that the MaxSubSetADS and MinSetADS problems are PSPACE-complete.

We also show that the MaxSubSetADS problem is inapproximable. This contrasts

with the case where we are looking for a complete ADS, a problem that can be solved

in polynomial time.

Having determined the complexity of these problems, we consider how incomplete

ADSs can be used in generating checking experiments. We show how the W-method

and the HSI-method can be adapted to produce checking experiments based on ADSs

(and so PDSs). We also demonstrate that the optimisation problems we consider relate

very naturally to test optimisation problems for these checking experiment generation

methods. A combination of these results shows that the optimisation problems are also

relevant to the W-method and the HSI-method. We then propose a greedy algorithm for

the MinSetADS problem and report on the results of experiments that evaluated the

combination of the proposed CE generation algorithm and the greedy algorithm. The

experiments used a set of FSMs and compared the checking experiment size for the W-

method, the HSI-method, and the HSI-method adapted to use ADSs. The experimental
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subjects included randomly generated FSMs and FSMs drawn from a benchmark and

suggest that the proposed method produces shorter CEs that contain fewer resets.

This Chapter is organised as follows. In the next section, we define the terminology

and notation used throughout the Chapter. In Section 5.3 we present results related to

PDSs and subsequently, in Section 5.4, we present results related to ADSs. In Section

5.5 we show how the W-method and HSI-method can be adapted to use ADSs and in

Section 5.6 we report on the results of experiments. In Section 5.7, we summary the

chapter and discuss some possible lines of future work.

5.2. Preliminaries

In this Chapter, we consider incomplete ADSs and PDSs and now we provide definitions

of incomplete Preset and Adaptive Distinguishing Sequences.

Definition 30 Given FSM M = (S,X, Y, δ, λ) and S̄ ⊆ S, input sequence w is an

incomplete Preset Distinguishing Sequence (PDS) for S̄ if for all s, s′ ∈ S̄ with s 6= s′

we have that λ(s, w) 6= λ(s′, w).

Definition 31 Given FSM M = (S,X, Y, δ, λ) and S̄ ⊆ S, an Incomplete Adaptive

Distinguishing Sequence (ADS) for S̄ is a rooted tree A such that the following hold.

1. Each node is labelled by a set of states and the root is labelled by S̄.

2. Each leaf of A is labeled by a singleton set (i.e. {s} for some s ∈ S).

3. Each edge is labeled by an input/output pair.

4. Let us suppose that node v has state set S̄ ′ ⊆ S. If v has one or more outgoing edges

then these edges are labeled by the same input x and have the following property:

if there is some s ∈ S̄ ′ such that λ(s, x) = y then there is a unique edge (v, x/y, v′)

such that v′ is labelled with the set S̄ ′′ = {s′′ ∈ S|∃s′ ∈ S̄ ′.λ(s′, x) = y ∧ δ(s′, x) =

s′′} of states that we can reach from S̄ ′ with a transition that has label x/y.
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5. If v has state set S̄ ′ ⊆ S and has one or more outgoing edges then the input x on

these edges satisfies the following property: for all s, s′ ∈ S̄ ′ with s 6= s′ we have

that either λ(s, x) 6= λ(s′, x) or δ(s, x) 6= δ(s′, x).

The idea is similar to the rationale given for complete ADSs: an incomplete ADS for

S̄ defines an experiment where the next input to be applied depends on the previously

observed input/output sequence (and so the node reached). The last condition ensures

that two states of S̄ cannot be mapped to the same state by an incomplete ADS for S̄

unless they have already been distinguished. If we apply A in a state s ∈ S̄ then the

resultant input/output sequence is that which labels the path of A from the root of A

to a leaf and is also the label of a path of M that has starting state s. By the definition

of an incomplete ADS the input/output sequences for two distinct states from S̄ must

differ and so A distinguishes the states from S̄. When we set S̄ = S these correspond

to the classical notion of Preset and Adaptive Distinguishing sequences. From now on

we will write PDSs/ADSs to denote incomplete PDSs/ADSs and throughout this

Chapter we refer to the depth of ADS tree A when we write the length of A.

We present an example FSM, which will be used throughout the Chapter in Fig-

ure 5.1. We also present manually computed incomplete ADS for states s1, s2 and s4

in Figure 5.2. The input sequences retrieved from the incomplete ADS are as follows:

baab for s1, b for s2 and baab for s4. Note that input sequence b cannot differentiate

states s2 and s3 but it can differentiate s2 from s1 and s4, moreover input sequence baab

can distinguish states s1 and s4 from all of the states of the FSM M2.
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s1 s2

s3 s4

a/0

b/0

b/1

a
/0

a/0

b/
1

b/0

a/0

Figure 5.1.: An example FSM M5

s1, s2, s4

s1, s4

s2, s3

s3, s4

s1

b/0

s1

b/1

a/0

a/0

b/0

s1

b/1

Figure 5.2.: An incomplete ADS

for machine M2 pre-

sented in Figure 5.1

where S̄ = {s1, s2, s4}

5.3. Incomplete Preset Distinguishing Sequences

We have defined a finite automata with triple A = {Q,Σ, δ}, however generally an

automaton has an initial state “0” and a set “F” of accepting states and hence defined

as five–tuple i.e. A = {Q, 0,Σ, δ, F}. In this Chapter we refer to the automata with

initial state and a set of accepting states. A word is accepted by automaton A, if it

takes A from its initial states to an accepting state (a state in F ). The set of all words

accepted by an automaton A defines a (regular) language denoted L(A).

We show that the MaxSubSetPDS problem is PSPACE-complete through relating

it to the Finite Automata Intersection Problem.

It is straightforward to see that the complexity of the FA-INT problem is not altered

if we restrict attention to non-empty words since we can decide whether all of the Ai

accept ε in polynomial time.

Without loss of generality we assume that the automata in A have disjoint sets of

states. Given an instance of the FA-INT problem, with a finite set A = {A1, A2, . . . , Az}
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of automata on a common finite alphabet Σ (Ai = (Qi,Σ, δi, 0i, Fi)), we construct an

FSM M1(A) = (S,X, Y, δ, λ, s0) as follows.

We introduce two new states Sink1, Sink2. Then we take two copiesA1
i = (Q1

i ,Σ, δ
1
i , 0

1
i , F

1
i ), A2

i =

(Q2
i ,Σ, δ

2
i , 0

2
i , F

2
i ) of each automaton Ai and call them pair automata. Given q ∈ Qi

we let q1 and q2 denote the corresponding states in Q1
i and Q2

i respectively. We let

S̄ = {01
1, 0

2
1, . . . , 0

1
z, 0

2
z}, which is the set of initial states of the copies of the automata.

The set of states of the FSM to be constructed is given by S = Q1
1 ∪ Q2

1 ∪ Q1
2 ∪ Q2

2 ∪

. . . ∪ Q2
z ∪ {Sink1, Sink2}, where the initial state is selected as 01

1. The input alphabet

of the FSM is given by X = Σ ∪ {D} and the output alphabet of the FSM is given by

Y = Q1 ∪Q2 ∪ . . . ∪Qz ∪ {0, 1, 2}.

The state transitions of the automata in A are inherited: if a ∈ Σ and qji ∈ Qj
i

for 1 ≤ i ≤ z and 1 ≤ j ≤ 2 then δ(qji , a) = rji for the state ri of Ai such that

δi(qi, a) = ri. The state transitions with input D are as follows: δ(s,D) = Sink1 if and

only if (s = Sink1 or there exists i such that s ∈ Q1
i ) and δ(s,D) = Sink2 if and only if

(s = Sink2 or there exists i such that s ∈ Q2
i ). That is, the states of each pair automata

(A1
i and A2

i ) end in different sink states if input D is supplied.

The output function λ of M1(A) is defined as follows, in which 1 ≤ i ≤ z.

λ(s, x) =



qi, If s = qji for some qji ∈ Q1
i ∪Q2

i and x 6= D,

qi, If s = qji for some qji ∈ (Q1
i ∪Q2

i ) \ (F 1
i ∪ F 2

i ) and x = D.

0, If s = Sink1 or s = Sink2,

1, If s ∈ F 1
i and x = D,

2, If s ∈ F 2
i and x = D,

We demonstrate the construction in Figure 5.3.

The basic idea is that until D is received the transitions from a state in Q1
i ∪ Q2

i

simulate the state transitions of Ai but also tell us which states of Ai are being traversed

and so the value of i (the Ai have disjoint state sets). If D is received in a state qji from

Qj
i then the output tells us the value of j if and only if the state qji is such that qi is an

accepting state of Ai. We now explore properties ofM1(A), proving results that will be

brought together in Theorem 16.
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A1
1 A2

1 A1
2

. . . A2
z

01
1 02

1 01
2

. . . 02
z

... ... ... . . . ...

q1 q2 x . . . y

... ... ... . . . ...

m1 m2 t1 . . . f 2

Sink2Sink1

D/g

D/g
D/a

D/h

Σ/g Σ/g Σ/a Σ/h

D/1

D/2
D/1

D/2

Σ/q Σ/q Σ/x Σ/y

D/q
D/q

D/x

D/y

Σ/m Σ/mΣ/t Σ/f

Σ ∪D/0Σ ∪D/0

Figure 5.3.: An FSM M1(A) constructed from an FA-INT problem instance with S̄ =

{01
1, 0

2
1, . . . , 0

1
z, 0

2
z}

Lemma 21 Let us suppose that set A = {A1, A2, . . . , Az} of automata have a common

alphabet Σ. The FSM M1(A) = (S,X, Y, δ, λ, s0) has a PDS for S̄ = {01
1, 0

2
1, . . . , 0

1
z, 0

2
z}

if and only if there is a non-empty word w ∈ Σ? that is accepted by all of the automata

(in which case ωD is such a PDS).

We now consider how a non-deterministic Turing Machine can decide whether there

is a PDS for a given state set S̄ of FSM M . In this process it guesses inputs one at a

time and maintains a current set π of pairs of states such that: (s, s′) is in π if and only

if s ∈ S̄ and the sequences of inputs received takes M from s to s′. It also maintains

an equivalence relation r between states from S̄: two states s, s′′ are related under r

if they have not been distinguished by the input sequence w that has been chosen: if

λ(s, w) = λ(s′′, w). It is straightforward to see that these two pieces of information can

be updated when a new input is received; we do not need to know the previous inputs

received. Further, the input sequence received defines a PDS for S̄ if and only if no two

different states from S̄ are related under r.
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Lemma 22 The problem of deciding whether a set S̄ of states of FSM M has a PDS

is in PSPACE.

We claim that based on the approach used to prove Lemma 21, we can provide an

inapproximability result for the MaxSubSetPDS problem but before this we explore

the relationship between the optimum solutions of MaxSubSetPDS and MAX FA-INT

problems.

Below, given a property P (such as distinguishing k states of an FSM) a word w is

said to be a minimal word satisfying P if w satisfies P and no proper prefix of w satisfies

P . The following is clear from the proof of Lemma 21.

Lemma 23 Given set A of automata, let OPTA be the set of minimal words that are

accepted by the maximum number of automata from A. Further, given M1(A) let

OPTM1(A) be the set of minimal words that maximise the size of the subset of S̄ whose

states are pairwise distinguished. Then w ∈ OPTA if and only if wD ∈ OPTM1(A).

We can now show that the MaxSubSetPDS problem, of finding a PDS that distin-

guishes the most states from some set S̄, is PSPACE-complete and inapproximable.

Theorem 16 The MaxSubSetPDS problem is PSPACE-complete and for any con-

stant ε > 0 approximating the MaxSubSetPDS problem within ratio nε is PSPACE-hard.

Finally, we consider the problem of finding a smallest set PS of sets of states such that

each set has a PDS (MinSetPDS).

Theorem 17 The MinSetPDS problem is PSPACE-complete.

5.4. Incomplete Adaptive Distinguishing Sequences

In some situations we want to use preset input sequences in testing since this requires

a relatively simple test infrastructure: one that simply applies a sequence of inputs and

observes the resultant outputs. However, testing can be more efficient if we use adaptive
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tests, where the next input to be applied is chosen on the basis of the observations made.

In addition, it is known that the problem of deciding whether an FSM has a (complete)

ADS can be solved in polynomial time and there is a polynomial upper bound on the

size of such an ADS [35]. These results, together with complexity results in Section 5.3,

provide the motivation for considering incomplete ADSs. In this section we therefore

explore incomplete ADSs and report that complexity results given for problems related

to PDSs hold when we consider ADSs.

We assume that we are given a set A = {A1, A2, . . . , Az} of automata with alphabet Σ

and now describe the FSMM2(A) that we construct. We mark the initial states of the

automata so that the initial state of Ai is called 0i and will let S̄ = {01, 02 . . . , 0z, Sink}

for a state Sink described below. We introduce a set D = {d1, d2, . . . , dz} of new inputs

and so there exists one such input di for each Ai ∈ A. The transitions of automata from

A with input Σ are inherited (and given output 0) and the remaining transitions are as

follows

• δ(Sink, x) = Sink for any input x ∈ Σ ∪ D.

• If x ∈ D then:

– If s ∈ Fi then δ(s, x) = s; and

– δ(s, x) = Sink otherwise.

The output function λ of M2(A) is defined as follows in which 1 ≤ i ≤ z.

λ(s, x) =

 i, If s ∈ F 1
i and x = di,

0 For all other cases,

Unlike the previous reduction the output function does not enable us to recognise

the states of automaton Ai while we are visiting the states in Qi \ Fi. Instead, we can

only distinguish states through applying an input from D, possibly after a sequence of

previous inputs. Further, we can only distinguish a state 0i from Sink through applying

an input sequence w that takes Ai to an accepting state and then apply di. We now
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prove that we can construct an ADS for S̄ if and only if the automata in A accept a

common word.

In the following we represent an ADS by a set of input/output sequences: the in-

put/output sequences produced from the different states of the FSM M being consid-

ered.

Lemma 24 Let us suppose that set A = {A1, A2, . . . , Az} of automata have a common

alphabet Σ. The FSMM2(A) = (S,X, Y, δ, λ, s0) has an ADS for S̄ = {01, 02 . . . , 0z, Sink}

if and only if there is a non-empty word w ∈ Σ? that is accepted by all of the automata

(in which case input sequences wd1, wd1d2, wd1d2d3, . . . , wd1d2d3 . . . dz define an ADS).

We now show that we can check in PSPACE whether a set of states has an ADS.

Lemma 25 Given FSM M and state set S̄, the problem of deciding whether S̄ has an

ADS is in PSPACE.

The structure of M2(A) ensures that when trying to distinguish states in S̄ we gain

nothing from adaptivity: once we have observed a non-zero output from one of the states

we have distinguished this state from all other states in S̄ (we must only observe zeros

when starting in Sink ∈ S̄). Thus, when exploring ADSs for S̄ it is sufficient to consider

input sequences.

We now show that the MaxSubSetADS problem, of finding an ADS that distin-

guishes the most states from some S̄, is PSPACE-complete.

Theorem 18 The MaxSubSetADS problem is PSPACE-complete.

Lemma 24 implies that the optimum solution to the MAX FA-INT problem constitutes

an optimum solution to the MaxSubSetADS problem and hence we can reach the

following conclusion.

Lemma 26 Given a set A of automata, let OPTA be the set of minimal words accepted

by the maximum number of automata from A. Further, let M2(A) be the FSM con-

structed from A and also let OPTM2(A) be the set of minimal ADSs that maximise the
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size of the subset of S̄ whose states are pairwise distinguished by ADSs. Then w ∈ OPTA
if and only if ADS wd1, wd1d2, . . . , wd1 . . . dz is in OPTM.

Theorem 19 For any constant ε > 0 approximating the MaxSubSetADS problem

within ratio nε is PSPACE-hard.

As with PDSs, in testing we might want a smallest set of ADSs that, between them,

distinguish all states of M (MinSetADS).

Lemma 27 The MinSetADS problem is in PSPACE.

In the proof of the following, given an instance of FA-INT problem A = {A1, A2, . . . , Ak},

we will define an FSM M3(A) that is the same as M2(A) except for the following:

• For all 1 ≤ i ≤ z we add a state 0′i;

• We set S̄ = {0′1, 0′2, . . . , 0′z, Sink};

• We introduce new input st; and

• We add the following transitions: from state 0′i there is a transition to 0i with label

st/0 and all other inputs take 0′i to Sink with output 0. From all states other than

the 0′i the input of st leads to state Sink and output 0.

The essential idea is that in order to distinguish two states from S̄ an ADS must start

with input st but this ensures that this ADS does not distinguish any two states from

S \ S̄ (and also does not distinguish any state in S \ S̄ from Sink). Thus, any set of

ADSs that distinguishes all of the states ofM3(A) can be partitioned into a subset that

distinguishes the states of S̄ and a subset that distinguish the states in (S \ S̄)∪{Sink}

and so there is an ADS for S̄ if and only if a smallest set of ADSs for M3(A) defines

such an ADS.

Lemma 28 The MinSetADS problem is PSPACE-hard.

We therefore have the following result.

Theorem 20 The MinSetADS problem is PSPACE-complete.
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5.5. Test Generation Using Incomplete DSs

The focus of test generation using complete DSs has largely been on producing checking

sequences, where a checking sequence is an input sequence that distinguishes the specifi-

cation from all faulty FSMs in the given fault model F . However, if we have incomplete

DSs then there is a need to follow each transition by more than one DS and to ensure

that this is always done from the same state of the SUT (not just the same state of

the specification FSM). Algorithms that achieve this when using unique input output

sequences or a characterisation set to distinguish states require the generation and use

of exponentially long subsequences [82] and so are unlikely to scale well. We therefore

concentrate instead on the generation of checking experiments.

In order to apply a checking experiment one typically requires the presence of a reliable

reset r: a process or input that takes the SUT to its initial state irrespective of the state

from which it was applied. Therefore a test case α ∈ T will have the form rβ where r

is the reset operation and β ∈ X∗. From now on, we will omit the reset operation from

all test cases. The reliable reset is used in order to ensure that each test sequence in

the checking experiment is applied from the same state of the SUT. Many systems have

a reliable reset, which can often be implemented through simply turning the system off

and then on again. In this section we assume that the SUT has a reliable reset but we

return later to discuss this assumption further. We explore the generation of checking

experiments using a set of ADSs since such methods can also be used with PDSs (a

PDS defines an ADS).

We initially describe the W-method [4, 48], which is also called the Chow-Vasilevskii

method. This techniques requires us to have a known upper bound m on the number

of states of the SUT and returns a checking experiment. The W-method uses several

components. A state cover is a set of input sequences that reach the states of M and

also includes the empty sequence.

Definition 32 A set V of input sequences is a state cover for FSM M if ε ∈ V and for

each state si of M there is some vi ∈ V such that δ(s0, vi) = si.
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The W-method also uses a characterisation set W , which is a set of input sequences

that between them distinguish the states of M .

Definition 33 A set W of input sequences is a characterisation set for FSM M if for

all pairs si, sj of distinct states of M there is some w ∈ W such that λ(si, w) 6= λ(sj, w).

If the SUT is known to have no more states than the specification (m = n) then the

following is the checking experiment returned.

VW ∪ V XW

The more general case is given by the following

V ({ε} ∪X ∪ . . . ∪Xm−n+1)W

For the FSM presented in Figure 5.1 the set V X is given as {a, b, aa, ab, baa, bab, ba, bb}

and the characterising set (according to the algorithm presented in [21]) is given as

W = {b, ab, aab}. Using the algorithm from [4] the checking experiment produced is fol-

lows (after proper prefixes are removed) T = {aab, aaab, aaaab, abb, abaab, abab, baaaab,

baaab, babb, babaab, babab, baab, bbb, bbaab, bbab}. The length of the test suite is |T | = 66.

The number of test cases is 15 and the average test case length is 4.4.

Let us suppose that we have a set A = {A1,A2, . . . ,Ak} of incomplete ADSs such

that every pair of distinct states of M is distinguished by some ADS from A; such a set

will be said to be fully distinguishing. We can find the set of input sequences that can

be used by the ADSs in A when they are applied in states of M and we can use this

as a characterisation set in the W-method. However, in doing so we lose the benefits

of adaptivity. The Harmonized State Identifiers (HSI) method [49] gives us some clues

as to how we can incorporate adaptivity. The HSI method uses separate sets of state

identifiers: for a state si it uses a set Hi of input sequences such that if si, sj are distinct

states of M then there are input sequences wi ∈ Hi and wj ∈ Hj such that a common

prefix of wi and wj distinguishes si and sj. In test generation, if an input sequence

α ∈ V ({ε} ∪ X ∪ . . . ∪ Xm−n+1) reaches the state si of M then it is followed by all
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input sequences from Hi. This leads to the following checking experiment in which

App(H) is a process that applies the set Hi after an input sequence α if δ(s0, α) = si

(H = {H1, . . . , Hn}).

V ({ε} ∪X ∪ . . . ∪Xm−n+1)App(H)

According to the algorithm given in [50] the harmonized state identifiers 1 for the

FSM presented in Figure 5.1 are given as H1 = {b, aab}, H2 = {b, ab}, H3 = {b, ab}

and H4 = {b, aab}. The test suite generated with the harmonized state identifiers is

as follows (after proper prefixes are removed) T = {aab, aaaab, abb, abaab, baaab, babb,

babaab, baab, bbb, bbaab} the test suite length is |T | = 43, where the number of test case

is 10 and the average test case length is 4.3. In comparison with the W method, the

HSI method reduces the length of the checking experiment by 34.8%.

The HSI method allows different input sequences to be applied in identifying different

states. Naturally, adaptivity can also be used to achieve this and below we prove that

a fully distinguishing set of ADSs defines a set of state identifiers and so we can adapt

the HSI method to use ADSs. Given ADS Aj and state si, let H(si,Aj) ∈ X∗ denote

the input portion of the input/output sequence produced when Aj is applied in state si.

This is also the input portion of the input/output sequence that labels both a path of

Aj from the root to a leaf and also a path of M starting at si. Given state si, we will let

the set Hi(A) be {H(si,Aj)|1 ≤ j ≤ k} with prefixes removed: this is the set of input

sequences applied when using ADSs from A in state si. Then we obtain the following

result.

Proposition 7 Given fully distinguishing set A = {A1,A1, . . . ,Ak} for FSM M , the

Hi(A) are state identifiers for M .

As a result of this we know that a fully distinguishing set of ADSs defines a set of

state identifiers that can be used in the HSI method. In addition, by the definition of

H(si,Aj), if we use the state identifiers then when we apply these in a state of the SUT

1 Where the W set is as given above
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that should be si we only apply the input sequences that we expect to require; the only

condition under which we would apply different input sequences using the ADSs is if

a failure is observed. Thus, whether we use the ADSs or the resultant state identifiers

does not affect the ability of the test suite to find failures in an SUT that has no more

than m states. As a result, given a fully distinguishing set A of ADSs we obtain a test

suite in which an input sequence α followed by A involves separately applying α followed

by each ADS (required) from A. This leads to the following test suite in which App(A)

is a process that, after input sequence α with si = δ(s0, α), applies the set of ADSs

from A required to distinguish si from other states of M .

CE(M,A,m) = V ({ε} ∪X ∪ . . . ∪Xm−n+1)App(A)

Theorem 21 Given an FSM M and upper bound m on the number of states of the

SUT, if A is a fully distinguishing set of ADSs for M then CE(M,A,m) is a checking

experiment for M .

The overall size of CE(M,A,m) depends both on the number of ADSs in A and

the lengths of these. However, each input sequence used is followed by a reset and it

has been observed that reliable resets can be hard to realise and expensive to apply

since they may require a complex system to be reinitialised or may require manual

involvement [111, 112]. This has motivated work that aims to minimise the number of

input sequences (and so resets) used [38, 81]. In such situations we want to minimise the

number of input sequences in the checking experiment and this motivates our interest

in the MinSetADS problem.

The use of ADSs does have potential advantages when compared to state identifiers.

First, we will typically want to avoid using a redundant set of tests to distinguish states,

where redundancy corresponds to the ability to remove some tests without losing the

ability to distinguish the states. For example, consider the FSM given in Figure 5.1

again. For M1, we manually computed the fully distinguishing set A = {A1,A2,A3,A4}

and we present the incomplete ADSs in Figure 5.8.
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s1, s2, s4

s1, s4

s2, s3

s3, s4

s1

b/0

s1

b/1

a/0

a/0

b/0

s1

b/1

Figure 5.4.: Incomplete ADS A1

for S̄ = {s1, s2, s4}

s1, s3

s4

b/0

s1

b/1

Figure 5.5.: Incomplete ADS A2

for S̄ = {s1, s3}

s2, s3

s4, s3

s1

b/0

s1

b/1

a/0

Figure 5.6.: Incomplete ADS A3

for S̄ = {s2, s3}

s3, s4

s1

b/0

s1

b/1

Figure 5.7.: Incomplete ADS A4

for S̄ = {s3, s4}

Figure 5.8.: An incomplete ADSs for machine M1 presented in Figure 5.1

Note that the input sequence baab retrieved from A1 distinguishes states s1 and s4

from every other states. Similarly, the input sequence ab retreived from A3 distinguishes

state s2 from all other states consequently, the input sequence b retreived from A1

for state s2 is redundant. The input sequence b retreived from ADSs A2 and A4 can

distinguish state s3 from states s1 and s4 and finally the input sequence ab can distinguish

state s3 from state s2. Therefore, the resulting state identifiers are given as follows:

H1(A) = {baab}, H2(A) = {ab}, H3(A) = {ab, b} and H4(A) = {baab}.

Again using the algorithm given in [50] with the supplied state identifiers, the com-

puted test suite is given as follows (after proper prefixes are removed) T = {bbaab,
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aabaab, abbaab, baab, babbaab, baab, bbaab} |T | = 39. There are 8 test cases and thus the

average test case length is 4.8. Recall that we obtained a test suit with length 43 with

HSIs. Using ADSs we able to reduce the length of the test suite by 9.3%. Notice that

the average test case length is slightly elevated (from 4.3 (HSI) to 4.8 (ADS)), but the

number of test cases is reduced (from 10 (HSI) to 8 (ADS)).

There are some advantages to using ADSs. If we have non-redundant ADSs then

we are guaranteed to define non-redundant state identifiers; conceptually it is easier to

reason about redundancy in a set of ADSs rather than a set of state identifiers that

have to relate in a particular way. Second, if we apply the ADSs rather than the

state identifier sets then we may obtain additional information that will be useful in

debugging: if we apply the ADSs when we expect the state to be si and we observe the

response for state sj then we have a possible explanation for the failure (the transition

took the SUT to sj rather than si). The HSI method might not provide this information

since it only applies the input sequences required to check that the state is si; adaptivity

in the ADSs can lead to other input sequences being applied based on the response and

can help identify the state reached even if it is not that expected.

We have shown that a fully distinguishing set of ADSs defines a set of identifying

sets that we can use in the HSI technique. We also have the converse, that a set of

identifying sets can be used to construct a fully distinguishing set of ADSs, since each

sequence in an identifying set defines an ADS (in which there is no adaptivity). Thus,

the complexity results in this work regarding ADSs correspond to equivalent results

regarding identifying sets and so are relevant to the HSI method.

Given a set S̄ of states and identifying sets {H1, H2, . . . , Hn}, we can identify alterna-

tive subsets of the Hi that are sufficient to distinguish the states of S̄. Let us suppose

that H ′i ⊆ Hi for all si ∈ S̄. Then we will say that the H ′i form an identifying set for S̄

if for all distinct si, sj ∈ S̄ we have sequences wi ∈ H ′i and wj ∈ H ′j such that a common

prefix of wi and wj distinguishes si and sj.

The following shows how the MaxSubSetADS problem relates to problems regarding

identifying sets.
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Proposition 8 Let us suppose that S̄ is a set of states of FSM M . Then the states

in S̄ can be distinguished by a single ADS if and only if there is an identifying set

{H1, H2, . . . , Hn} for M such that we can choose subsets H ′i ⊆ Hi of each identifying

set, si ∈ S̄, under which each H ′i contains only one input sequence.

The following shows relationship between an HSI problem and MinSetADS.

Proposition 9 If the states in S can be distinguished by k ADS then there is an iden-

tifying set {H1, H2, . . . , Hn} such that for all si ∈ S we have that Hi has at most k input

sequences.

5.6. Practical Evaluation

In this section, we first present a greedy algorithm that aims to compute a fully dis-

tinguishing set with minimum cardinality for a given FSM M . Later we present the

results of experiments using randomly generated FSMs and some benchmark FSMs. We

emphasise that the main aim of the experiments was to explore the effect of using a set

of ADSs instead of harmonised state identifiers. Other techniques such as H [113] and

SPY [52] that use such sets of tests are likely to similarly benefit. The experiments com-

pared the ADS method with the W and HSI methods. In order to analyse the effect of

using incomplete ADSs, we study the cost of checking experiments that are constructed

by these methods. As reported in [114, 53], the cost of a checking experiment is given by

three properties: 1) The length of the checking experiment, 2) Average test case lengths

and 3) The number of resets. In the experiments we analyse these three properties of

the constructed checking experiments.

5.6.1. Greedy Algorithm

Before the actual algorithm is presented, we first have to define some important notions

concerning the greedy algorithm. We present the list of symbols with their definitions

in Table 5.1. In summary, the greedy algorithm receives an FSM M and integer value `
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Symbol Description

T A set of tree structures.

T A tree structure.

N,E Set of nodes, set of edges.

I(n),C(n) Initial and Current sets for node n.

x(n), y(n) Input sequence, output sequence for node n.

M A set of current sets.

L Set of nodes returned by the Refine procedure.

V Set of set of nodes used by the Refine procedure.

N Set of set of nodes used by the Greedy algorithm.

` ∈ Z≥1 Upper bound on the tree height.

Q A set of pairs of states.

φ(Q,N [x]) ∈ R≥0 Heuristic function 1.

Θx(M,N [x]) ∈ Z≥0 Heuristic function 2.

F : S × S →∈ {0, 1} A function used by the Heuristic function 2.

Table 5.1.: Nomenclature for the greedy algorithm
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and it returns a set of trees T = {T1, T2, . . . } such that all trees in this set have depth

at most ` and set T defines a fully distinguishing set. The aim is to produce a set

with minimum cardinality but, since a heuristic is used (a greedy algorithm), this is not

guaranteed.

Basic Notation

A tree T (E,N) ∈ T consists of a set of edges (E) and nodes (N). An edge e ∈ E has a

label that is an input output pair x/y where x ∈ X and y ∈ Y . A node n ∈ N captures

the following information: The initial set I(n), the current set C(n) and strings x(n)

and y(n) that give the input and output sequences that label the path from the root

of T (E,N) to the node n. For the root node n1 we have that x(n1) = y(n1) = ε and

I(n1) = C(n1) = S. Input sequence x(n) is defined as x(n) = x(n′)x where n′ is the

parent node of the current node n and x is the input retrieved from the edge between

n′ and n. Further, y(n) = y(n′)y where n′ is the parent node of the current node n and

y is the output retrieved from the edge between n′ and n. We define initial and current

sets as follows: I(n) = {s ∈ I(n′)|y(n) = λ(s, x(n))} and C(n) = {δ(s, x(n))|s ∈ I(n)}.

There are two types of nodes: a node is a leaf node if and only if it has no outgoing

edges; otherwise it is an internal node.

The greedy algorithm repeatedly executes a routine called refine. The refine routine

receives a node n and a single input x and produces a set of nodes L or returns failure.

The Refine routine is summarised in Algorithm 3.

In lines 4 and 5 the refine routine forms groups of states according to the observed

outputs, putting together states that lead to the same output. In lines 8-12, for each

group, the refine algorithm forms a node. The key point here is that we do not ignore

an input if it merges states i.e. δ(s, x) = δ(s′, x) and λ(s, x) = λ(s′, x). The reason

for such flexibility comes primarily from the fact that instead of a single tree, the aim

of the greedy algorithm is to construct a set of trees. Thus, one tree does not need to

distinguish all pairs of states: a leaf node of a tree can have two or more initial states

as long as other trees distinguish these.
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Algorithm 3: Refine

Data: n, x

Result: L or failure.

begin

1 V [|Y |],L ←− ∅;

2 if |C(n)| = 1 then

3 Return failure;

4 for s ∈ C(n) do

5 Push δ(s, x) onto V [λ(s, x)];

6 i← 0;

7 for i < |Y | do

8 if V [i] 6= ∅ then

9 Declare new node n′;

10 C(n′) = V [i];

11 I(n′) = {s ∈ I(n)|i = λ(δ(s, x(n)), x)};

12 x(n′) = x(n′)x;

13 y(n′) = y(n′)i;

14 Push n′ to L ;

15 Return L;
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The Algorithm

The greedy algorithm is recursive. It receives an FSM M , positive integer `, a set Q

of pairs of states not yet distinguished, and a set M of sets of states. The summary

of the Greedy Algorithm is given in Algorithm 4. Initially Q contains the set of all

pairs of distinct states. At each iteration, the greedy algorithm forms a tree structure

T . We initiate a tree T by introducing a root node n1 (Line 2). The root node has the

following information: I(n1) = S, C(n1) = S, x(n1) = ε, y(n1) = ε. Then for each input

x ∈ X, it executes the refine routine once and notes the obtained set of set N of nodes

as ni, nj . . . nk for some k ≥ 1 (Lines 6 – 7 ).

The setM holds the set of current sets that belong to nodes which cannot be refined.

Intuitively, if current sets of all possible sons of the current node are in set M, there is

no point for investigating this node any more, consequently, we also add the current set

of such node to M as well (Lines 8 – 9).

Otherwise the greedy algorithm evaluates the “goodness” of inputs by calling (Line

10) a heuristic function which is defined as follows:

Φx(Q,N [x]) =
∑

n 6=n′∈N [x]

|Q ∩ I(n)× I(n′)| (5.1)

For any pair of nodes Heuristic 5.1 forms a set of pairs of states and counts the number

of occurrences of pairs in set Q. That is to say Heuristic 5.1 will return the number of

pairs of states in Q distinguished. Intuitively a “good” input is an input that maximises

this mass function: ∀x′ ∈ X, x 6= x′ we have that Φ′x ≤ Φx.

Now consider the machine M2 in Figure 5.9. According to Heuristic 5.1, the greedy

algorithm will initially select input A to distinguish state s3 from other states. After-

wards, the algorithm will try to distinguish states s1, s2 and s4. However, according

to Heuristic 5.1, there is no difference between inputs A and B and thus, the greedy

algorithm can try input A repeatedly and fall into an infinite loop. To prevent, this

in such cases, (i.e. if Heuristic function 5.1 cannot differentiate between inputs (Line

10)), the greedy algorithm decides the next input by the usage of the following greedy
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s1

s2

s4

s3

B/0

B/0

A/0

A/1, B/0

A/0

B/0

A/0

Figure 5.9.: An FSM M6

function (Line 11): Let M = {C(1), C(2), . . . , C(|M|)},

Θx(M,N [x]) =
∑

n∈N [x],C(i)∈M

F(C(i), C(n)) (5.2)

where F is a binary function which returns 1 if and only if the parameters C(i), and C(n)

are identical sets. Otherwise it returns 0. Intuitively function F is defined as follows:

F(C(a), C(b)) =

 1 if C(a) = C(b)

0 Otherwise
(5.3)

If the greedy choice cannot be given, the greedy algorithm declares a failure and adds

the current set of this node to setM (Lines 14 – 15). Otherwise, if the greedy choice is

made (Lines 10 – 13), the greedy algorithm adds the current nodes and edges that are

obtained by the corresponding input (Lines 16 – 19) to the current tree T . While doing

this the greedy algorithm checks, if the current set of the new node exist in one of its

proper ancestor n′ i.e. ∃n′ ∈ N such that C(n) = C(n′) and there exists a simple path

from n′ to n (Line 19).

Afterwards the greedy algorithm selects another unvisited node and repeats the pro-

cedure (Line 20).

The greedy algorithm repeatedly executes this scheme until no node is refineable or

the depth of the tree T becomes larger than `.
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After the tree is constructed the greedy algorithm removes pair of states (s, s′) from

Q if s, s′ are members of initial sets of different leaf nodes i.e. s ∈ I(n) ∧ s′ ∈ I(n′)

for n 6= n′ (Lines 22 – 24). Finally, if |Q| > 0 the algorithm calls itself (Lines 25 – 26).

The Greedy algorithm stops when |Q| = 0 (Lines 27 – 28). Since the greedy algorithm

is a heuristic the resultant tree T need not be optimal; later we report the results of

experiments used to explore the effectiveness of this approach.

We now need to show that at each iteration the greedy algorithm computes an in-

complete ADS. In order to achieve this we first need to emphasise some properties of

tree T . First recall that the greedy algorithm selects a single set of nodes N [x] while

constructing a tree T and since N [x] is constructed by a single input x, the outgoing

edges are labeled by identical inputs and are labeled with different outputs. Therefore

the following immediately follows from the construction of tree T .

Lemma 29 Let n be an internal node of tree T with children n1, n2, . . . , np and let x be

the input portion of the labels of the edges from node n. The following hold:

1. δ(C(n), x) = ∪pi=1C(ni).

2. For all 1 ≤ i ≤ p we have that |λ(I(ni), x(ni))| = 1.

3. For all 1 ≤ i < j ≤ p we have that λ(I(ni), x(n)) = λ(I(nj), x(n)) and λ(I(ni), x(n)x) 6=

λ(I(nj), x(n)x).

Moreover, consider distinct leaf nodes (n, n′) then using Corollary 29 we know that

the output observed from any pair of states s ∈ I(n) and s′ ∈ I(n′) are different.

Lemma 30 Let n, n′ be distinct leaf nodes of tree T . If s ∈ I(n) and s′ ∈ I(n′) then

λ(s, x(n)) 6= λ(s′, x(n)) and λ(s, x(n′)) 6= λ(s′, x(n′)).

Now we show that a tree T returned by the greedy algorithm defines an incomplete

ADS.

Lemma 31 Let T be a tree returned by the greedy algorithm such that N̄ = {n1, . . . , np}

is the set of leaf nodes of T . Let S̄ be a set of states such that for all 1 ≤ i ≤ p we have

that |I(ni) ∩ S̄| ≤ 1. Then T defines an incomplete ADS for set S̄.
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Algorithm 4: Greedy Algorithm
Data: FSM M , `, Q, T, M

Result: A set of trees T

begin

1 n1 ← (S, S, ε, ε), N ← ∅,a := 0, h := 0;

2 Add n1 to tree T (N,E), v ← n1;

3 while v 6= NULL do

4 max := 0, index := −1;

5 if |x(v)| ≤ ` then

6 for x ∈ X do

7 N [x] = Refine(v,x);

8 if N ⊆M then

9 Add C(v) to M

10 else if ∀x, x′, Φ(Q,N [x]) = Φ(Q,N [x′]) then

11 index← x where 6 ∃x′ ∈ X such that Θx′ (M,N [x′]) < Θx(M,N [x])

12 else if ∃x, x′, Φ(Q,N [x]) 6= Φ(Q,N [x′]) then

13 index← x where 6 ∃x′ ∈ X such that Φx(Q,N [x]) < Φx′ (Q,N [x′])

14 if index = −1 then

15 Add C(v) to M

16 else

17 for n ∈ N [index] do

18 if No proper ancestor of node v have a current set C(n) then

19 Add node n to N and add edge to E.

20 v ← next unvisited node, clear B;

21 Push T onto T;

22 for All pair of leaf nodes n, n′ where n 6= n′ do

23 if s ∈ I(n) ∧ s′ ∈ I(n′), then

24 Pop pair of states (s, s′) from Q ;

25 if M 6= ∅ then

26 Return Greedy(M , `, Q, T,M);

27 if M = ∅ then

28 Return T;
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Although the algorithm is easy to implement, it may not compute a fully distinguishing

set for a given FSM. This will happen if the upper bound on ADS length is too short.

Note that for an FSM M with n states, every pair of states is distinguished by a sequence

of length at most n− 1 and it is sufficient to use at most n− 1 such sequences in order

to distinguish all of the states of M . Thus, the algorithm is guaranteed to return a fully

distinguishing set if we use value of ` as n− 1 or larger.

5.6.2. Experimental results

Test Generation

This section describes experiments used to explore the performance of the greedy algo-

rithm and the effect of using fully distinguishing sets by evaluating the resultant checking

experiments. We randomly generated FSMs with 4, 6, and 8 inputs and outputs using

the tool utilised in [43, 108]. The FSMs were constructed as follows: First, for each input

x and state si we randomly assigned the values of δ(si, x) and λ(si, x). After an FSM M

was generated we checked its suitability as follows. We first checked that M is synchro-

nisable, that is whether M has a reset. In order to do this we implemented the existence

check algorithm described in [34]. Then we checked whether M is strongly connected2.

Afterwards we checked that M is minimal and then used the LY-algorithm [35] to check

that M does not have a complete ADS. If the FSM failed one or more of these tests

then we omitted this FSM and produced another. Consequently, all FSMs used had a

reset, were strongly connected and minimal, and had no complete ADS. By following

this procedure we constructed 100 FSMs with 5 states, 100 FSMs with 10 states, . . . ,

100 FSMs with 100 states. This was done for each size of the input and output alphabets

so in total we used 6 ∗ 103 FSMs. We used an Intel i7 3630 Q3 Ivy-Bridge CPU with 8

GB RAM to carry out these tests. We implemented W , HSI and the greedy algorithm

using C++ language and compiled on Visual Studio .Net 2012.

The checking experiment generation methods considered the care where the SUT

2M is strongly connected if for any pair (s, s′) of states of M there is some input sequence that takes

M from s to s′.
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has no more states than the specification FSM. The W and the HSI methods were

implemented according to the descriptions presented in references [4, 50]. As explained

earlier, we also implemented the HSI method adapted for a fully distinguishing set of

ADSs and used the greedy algorithm to produce the ADSs. Since the outputs are

uniformly distributed during the generation of FSMs, one would expect the average

depth of the ADS to be around dlogq ne, where n and q are the number of states and

the number of outputs, respectively. For our experiments with 4,6 and 8 outputs and

the number of states ranging between 5 and 100, the length of ` is expected to be 2–4

for 4 outputs (dlog4 5e = 2 and dlog4 100e = 4), 1–3 for 6 outputs (dlog6 5e = 1 and

dlog6 100e = 3), and 1–3 for 8 outputs (dlog8 5e = 1 and dlog8 100e = 3). For each FSM

we set the upper bound on ADS depth to be twice this value dlogq ne i.e. ` = 2∗dlogq ne.

With these values, we were able to produce fully distinguishing sets.

Checking Experiment Length

We present the results using boxplot diagrams generated by ggplot2 library of the tool

R [115, 116, 117]. For each box the first quartile corresponds to the lowest 25% of data,

the second quartile gives the median, and the third quartile corresponds to the highest

25%. For each boxplot we added the smoothing line computed with the LOESS [118]

method, and the semi-transparent ribbon surrounding the solid line is the 95% confidence

interval. We also give the jitter plot3 where each dot corresponds to the result of an

execution of the corresponding method, where input is a single FSM.

Figure 5.10 presents information regarding the checking experiment length for FSMs

where p/q = 4/4. The figure suggest that except for the FSMs with n = 5, the checking

experiment length obtained by the modified HSI method (ADS method) is less than the

HSI and W methods. Moreover, when n ≥ 40 the third quantile of the boxplots drawn

for the ADS method are lower than the first quantile of the boxplots drawn for the HSI

method. These results suggest that usually the ADS method produces shorter test suites

3The Jitter plot adds a noise to the data to prevent occlusion in the statistical visualizations. Each

data point displace on horizontal axis.
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than the shortest test suite lengths produced by the HSI method. The LOESS band

indicates that, for both methods, the expected mean of the checking experiment lengths

are statistically different and the average mean of the test suite lengths computed by the

ADS method is smaller than that of HSI method. One promising observation is that

the difference between the HSI and ADS methods increases with the number of states.

We present the results of the experiments performed on FSMs with p/q = 6/6 and 8/8

in Figures 5.11 and 5.12 respectively. We observe that the ADS method produces shorter

checking experiments on average. Moreover we note that when n ≥ 20 and p/q = 6/6

and when n ≥ 25 and p/q = 8/8 the first quantiles of the boxplots drawn for the ADS

method are below the third quantiles of the boxplots drawn for the HSI method. The

LOESS bands indicate that as the number of inputs and outputs increases, the difference

between the mean of the test suite lengths computed by the HSI and ADS methods are

statistically different and increases.

Figure 5.10.: Comparison of test suite lengths. Each boxplot summarises the distribu-

tions of 100 FSMs where p = 4, q = 4

To support our observations, we used R to perform a non-parametric Kruskal-Wallis

Significance [119] test on ADS and HSI results. For each method, for each state number
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Figure 5.11.: Comparison of test suite lengths. Each boxplot summarises the distribu-

tions of 100 FSMs where p = 6, q = 6

(n) and for each input/output values (p/q), we constructed two sets of samples such

that one set holds the results for the ADS method and the other set holds the results

for the HSI method. Afterwards, we ran the Kruskal-Wallis difference test on these

sets of samples. The null hypothesis (H0) assumes that these two sets of samples have

identical distributions. We selected the α value to be 0.05 and df = 14. Therefore

according to the table given for the Chi-Squared values in [120], if the null-hypothesis

is correct then the Chi-Squared values (X 2) of these measurements should be smaller

than 3.841. Otherwise, we should reject the null-hypothesis and suggest that there is a

significant difference. The results in Table 5.2 suggests that except for n = 5, p/q = 4,

the differences between the lengths of the checking experiments constructed by the HSI

and the ADS method are statistically significant. Combining these results with the

results given in Figures 5.10, 5.11 and 5.12 we can declare that, at least for the FSMs

used in these experiments, replacing harmonised state identifiers with the incomplete

ADSs tends to reduce checking experiment length.

4Here df stands for the Degree of Freedom, which is given by k − 1 where k is the number of samples
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Figure 5.12.: Comparison of test suite lengths. Each boxplot summarises the distribu-

tions of 100 FSMs where p = 8, q = 8

Finally, for each FSM we compared the lengths of the CE produced by the ADS, W,

and HSI methods. Since the averages show the ADS method producing the shortest CE

and the W method the longest, for each number of states and number of inputs/outputs

we counted how many results (for the 100 FSMs) did not conform to the expected

pattern. Table 5.3 shows the results. Interestingly, when there are only a few states we

find that many of the CEs do not follow the expected pattern. For example, for 48% of

the FSMs with 5 states and 4 inputs/outputs we have that the HSI method produced a

shorter CE than the ADS method, in 25% of cases the W method produced a shorter

CE than the ADS method, and in 24% of cases the W method produced a shorter CE

than the HSI method. However, these numbers reduce as the number of states increases

and, for example, for all of the 300 FSMs with 100 states we find that the CE produced

by the HSI method is no shorter than the CE produced by the ADS method. Thus, it

appears that for larger FSMs the ADS method consistently produces shorter CEs than

supplied to the Kruskal-Wallis test and in our case k = 2.
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the HSI and W methods.

Average Test Case Length

In the previous subsection we showed that using a fully distinguishing set can reduce

the overall length of a checking experiment. In this and next subsections we investigate

possible reasons for this achievement.

Figure 5.13 shows how the average test case length varied with the number of states

when the number of inputs and outputs is four. Although the graphical representation

suggests that the distribution and the expected mean of the average test case lengths are

different, this difference is not more than 2.5 inputs on average. Moreover, as we increase

the number of inputs and outputs to six and eight we observe that this difference does

not change. That is both the W, HSI and the ADS methods produce comparable test

cases. However, we note that as the number of inputs and outputs increases, the average

lengths of test cases reduces. This is expected since having more inputs and outputs

increases the number of transitions and therefore the length of a path from the initial

state to another state decreases. What is more, more inputs and outputs allows the

use of shorter characterising sets, harmonized state identifiers and ADSs to distinguish

states.
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Figure 5.13.: Comparison of average test case lengths. Each boxplot summarises the

distributions of 100 FSMs where p = 4, q = 4
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Figure 5.14.: Comparison of average test case lengths. Each boxplot summarises the

distributions of 100 FSMs where p = 6, q = 6

Figure 5.15.: Comparison of average test case lengths. Each boxplot summarises the

distributions of 100 FSMs where p = 8, q = 8
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We performed a Kruskal-Wallis test on the test case lengths. Table 5.4 suggest that
the distributions are statistically different. Therefore we can conclude that the ADS
method produces shorter test cases compared to the HSI method.

Although we showed that the average test cases are shorter when ADS method is

used, we claim that the small difference (2.5 inputs maximum) probably cannot explain

the reduction of the checking experiment lengths. Therefore we now investigate the

average number of resets of the computed checking experiments.

Number of Resets

As a reset is applied before a test case, the number of resets is the same as the number of

test cases in a checking experiment. Figure 5.16 represents the results of the conducted

experiments when p/q = 4/4.

Based on results in [53], we expect that the number of resets when using ADSs to be

less than that for the W method and similar to the value for the HSI method. Although

the distributions are different, the maximum difference between the means is only 3.3%.

This is the case when p/q = 4/4. However, the difference between the HSI and ADS

methods increases with the number of inputs/outputs. We observe that when p/q = 6/6

and n ≥ 20 and when p/q = 8/8 and n ≥ 20, the average number of resets is lower when

using the ADS method. It appears that as the number of inputs/outputs increases the

difference between the HSI and the ADS methods increases. These observations are

similar to those for the checking experiment lengths.
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Figure 5.16.: Comparison of number of resets required for methods. Each boxplot sum-

marises the distributions of 100 FSMs where p = 4, q = 4

Figure 5.17.: Comparison of number of resets required for methods. Each boxplot sum-

marises the distributions of 100 FSMs where p = 6, q = 6

119



Figure 5.18.: Comparison of number of resets required for methods. Each boxplot sum-

marises the distributions of 100 FSMs where p = 8, q = 8

We conducted a non-parametric Kruskal-Wallis significance test on the number of

resets to support our observations. The results are given in Table 5.5 and indicate that

the difference between the number of resets is statistically significant in all cases.

The HSI and the ADS methods differ only by input sequences used to distinguish

states, therefore these reductions can stem from the followings: 1) For these experiments

the ADS method allows us to eliminate a large number of prefixes. 2) The cardinalities

(i.e. |Ai| for some i) of distinguishing sequences (for ADS method) and the cardinalities

(i.e. |Hi| for some i) of state identifiers (for HSI method) per state, are different. From

now on SI depicts the average number of state identifiers and DS depicts the average

number of ADSs computed for a single state.

Recall that in the transition verification phase, in order to test whether a given tran-

sition is implemented correctly or not, we first need to reach the state from which the

transition originates, then execute the transition, and then check that the state reached

by the transition is correct. Let us assume that the transition is initiated by an input

x and we reach the transition by input sequence w that is δ(s0, wx) = si then for each
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input sequences in Hi and Ai we need to generate test cases. For the HSI method for all

α ∈ Hi we add wxα and for the ADS method for all β ∈ Ai we add wxβ to the checking

experiment. Therefore the values of SI and DS can potentially affect the number of

resets.

We investigated the average values of SI and DS. For each FSM M we computed the

sum (over the states) of the cardinalities of sets Hi and also the sum of the cardinalities

of the Ai and divided these sums by the number of states n. We summarise this study

in Figures 5.19, 5.20 and 5.21, where p/q = 4/4, 6/6 and 8/8 respectively.

In Figure 5.19, we observe that boxplot and jitterplot are similar to the results pre-

sented in Figure 5.16 and indicate that the values of DS and SI are comparable for

ADS and the HSI methods. Moreover, we observe that the values of DS and SI increase

with the number of states. In Figure 5.20 we see that when n ≥ 30 the DS values is

lower compared to the SI values and in Figure 5.21 we see that when n ≥ 25 the DS

values is lower compared to the SI values. Moreover we notice that as the number of

inputs/outputs increases the values of SI and DS appear to decrease.

Figure 5.19.: Comparison of number of DS and SI per state. Each boxplot summarises

the distributions of 100 FSMs where p = 4, q = 4.
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Figure 5.20.: Comparison of number of DS and SI per state. Each boxplot summarises

the distributions of 100 FSMs where p = 6, q = 6.

We again applied the Kruskal Wallis test on the SI and DS values. The results are given

in Table 5.6. We observe that in all cases we reject the null–hypothesis. These results

are similar to those for the number of resets. Furthermore, it seems that the cardinalities

of the inputs and outputs have an impact on the sizes of the harmonised state identifiers

and the fully distinguishing sets. Therefore, according to the experimental studies, we

can propose that instead of harmonised state identifiers, using a fully distinguishing set

of ADSs can reduce the number of test cases used in a checking experiment.
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Figure 5.21.: Comparison of number of DS and SI per state. Each boxplot summarises

the distributions of 100 FSMs where p = 8, q = 8.

As with the CE length, we compared the number of resets for the CEs for each of the

FSMs. The results are summarised in Table 5.7, where we again show the numbers that

do not match the expected pattern (fewest for ADS, most for W method). Interestingly,

for small FSMs it appears that the HSI method normally requires fewer resets than the

ADS method. However, this difference reduces as the number of states increases and

appears to reduce slightly faster as the number of inputs/outputs increases. The figure

seems to stabilise at around 30% for 4 inputs/outputs but for 6 and 8 inputs/outputs

the figure drops to zero.

Case Studies

While using randomly generated FSMs allowed us to perform experiments with many

subjects and so apply statistical tests, it is possible that FSMs used in practice differ

from these randomly generated FSMs. We therefore decided to complement the experi-

ments with some case studies. In this subsection we present the results of experiments

conducted on FSM specifications retrieved from the ACM/SIGDA benchmarks, a set of

test suites (FSMs) used in workshops between 1989-1993 [109]. The benchmark suite
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has 59 FSM specifications ranging from simple circuits to advanced circuits obtained

from industry. The FSM specifications are presented in the kiss2 format. In order to

precess FSMs, we converted the kiss2 file format to our FSM specification format. We

only used FSMs from the benchmark that were minimal, deterministic, had no complete

ADS, were synchronisable, and had fewer than 10 input bits5. 19% of the FSMs had

more than 10 input bits, 15% FSMs had complete ADS, 38% were not minimal and

20% had no synchronising sequence. 11% of the FSM specifications passed all of the

tests. We computed checking experiments using the W, HSI and ADS methods and in

Table 5.8 we present the results.

The case studies indicate that the use of ADSs led to the smallest checking experi-

ments. We see that for FSM bbsse the test suite length is 64% shorter when the set of

ADSs are used in the HSI method. For planet the reduction is 58%, for s1 the reduc-

tion is 54%, for dk17 the reduction is 50%, for s386 the reduction is 48% and finally

for dk27 the reduction is 43%. The difference between the average number of resets are

summarised as follows: For bbsse the reduction is 63%, for s386 the reduction is 57%,

for s1 the reduction is 56%, for planet the reduction is 49%, for dk17 the reduction is

46%, for bbtas the reduction is 38% and finally for dk27 the reduction is 34%

Interestingly, Table 5.8 indicates that the average test case lengths for the HSI and

the ADS method were similar but in one FSM (s386) the average test case length is

shorter when the harmonized state identifiers are used (red coloured values). However,

we can say that these results are similar to those obtained from randomly generated

FSMs. We finally note that, as expected, it appears that as the ratio of the number of

outputs to the number of inputs reduces, the number of resets and the average test case

length increase.

Discussion

Based on the experimental results we can make the following main observations.

5Since the circuits receive inputs in bits, and since n bits correspond to 2n inputs, we do not consider

FSMs with n ≥ 10 bits
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1. Using ADSs instead of harmonised state identifiers is advantageous:

We used 6 ∗ 103 randomly generated FSMs of varying number of states and in-

puts/outputs and found that the ADS method produced shorter checking experi-

ments that have fewer resets. We also analysed the FSMs from the ACM/SIGDA

dataset that are minimal, deterministic, have no complete ADSs, and are syn-

chronisable. In all of these FSMs the ADS method produced shorter checking

experiments with fewer resets.

2. The ADS method computes test cases with slightly shorter lengths:

This results indicate that there are differences in the average test case lengths but

that these do not fully explain the differences in the checking experiment lengths.

3. The ADS method computes checking experiments with fewer resets:

The results suggest that ADS method produces fewer test cases. These results

are similar to those for the lengths of the checking experiments except that the

differences are smaller. Thus, the differences in CE length appear to come from

both differences in mean test sequence length and differences in number of resets.

4. The number of harmonised state identifiers (Hi’s) computed per state

is usually larger than the number of distinguishing sequences (Ai) com-

puted per state:

We see that the ADS method produces fewer distinguishing sequence per state

than the harmonised state identifiers and this explains the difference in the number

of resets.

5.7. Chapter Summary and Future Directions

Software testing is typically performed manually and is an expensive, error prone process.

This has led to interest in automated test generation, including significant interest in

model based testing (MBT). Most MBT techniques generate tests from either finite
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state machines (FSMs) or labelled transition systems. Many automated FSM based test

techniques use complete distinguishing sequences (DSs) to check the state of the system

under test after a transition. While complete DSs have many desirable properties, an

FSM M need not have a complete DS that distinguishes all of its states. However, we

might still have (incomplete) DSs that distinguish some of the states of M and such DSs

might be used in automated test generation.

In this work we explored the problem of constructing DSs for subsets of states of

FSMs. We showed that it is PSPACE-complete to find a preset DS (PDS) that max-

imises the number of states distinguished and it is PSPACE-hard to approximate this

problem. It is also PSPACE-complete to find a smallest set of sets of states that cor-

respond to PDSs that distinguish all of the states of the FSM. We then explored the

corresponding problems for Adaptive DSs (ADSs). It is known that we can decide in

polynomial time whether an FSM has a complete ADS. However, the results for ADSs

were similar to those for such PDSs: the problems considered were PSPACE-complete

and it is PSPACE-hard to approximate the corresponding optimisation problem.

Having produced these results we showed that the well-known W and HSI checking

experiment generation methods can be adapted to use (incomplete) ADSs and so also

PDSs. In addition, we showed that the optimisation problems considered in this work

are relevant to these adapted versions of the W and HSI method and also the stan-

dard HSI method. We then used experiments to explore the effect of optimisation by

randomly generating FSMs and comparing the sizes of the checking experiments pro-

duced using the W-method, the HSI-method, and the HSI-method with an optimised

set of ADSs. In the experiments, the proposed method, that uses ADSs, produced the

smallest checking experiments and the W-method produced the largest checking experi-

ments. In addition, the proposed method required the fewest resets. We extended these

experiments to consider six FSMs from a benchmark and again found that the proposed

method produced smaller test suites that required fewer resets.

There are several lines of future work. First, it would be interesting to explore re-

alistic conditions under which the decision and optimisation problems can be solved in
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polynomial time. Such conditions might lead to new notions of testability. There is also

the question as to how effective is the greedy approach to generating incomplete ADSs:

while the checking experiments returned were smaller than those produced using the

W and HSI methods there may be approaches that return smaller sets of ADSs and

smaller checking experiments. Although the results of the experiments suggest that the

use of incomplete ADSs produce shorter test suites that require fewer resets, it would

be interesting to extend the experiments and possibly also to consider the H and SPY

algorithms. Finally, it would be interesting to extend this work to non-deterministic

FSMs.
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6. Distinguishing Sequences for

Distributed Testing

6.1. Introduction

Early work, regarding the distributed test architecture, was motivated by protocol con-

formance testing [68, 62, 63]. This work identified two problems introduced by dis-

tributed testing. First, there might be a controllability problem in which a local tester,

at a port p, cannot determine when to supply an input. Let us suppose, for example,

that the tester at port 1 should start by sending input x1, this is expected to lead to

output o1 at port 1, and the tester at port 2 should then send input x2. The problem

here is that the tester at port 2 does not observe the earlier input or output and so

cannot know when to send its input. Controllability problems lead to non-determinism

in testing and so there has been interest in the problem of generating test sequences that

do not cause controllability problems [59, 61, 64, 69, 70, 71, 72]. Observability problems

refer to the fact that, since we only make local observations, we may not be able to dis-

tinguish between two different behaviours (global traces). Let us suppose, for example,

that the specification says that the input of x1 at port 1 should lead to output o1 at port

1 and that if we apply x1 again then we should get o1 at port 1 and o2 at port 2. This

defines the allowed global trace x1/〈o1, ε〉, x1/〈o1, o2〉 in which ε denotes null output at a

particular port. Here the tester at port 1 expects to observe x1o1x1o1 and the tester at

port 2 expects to observe o2. If instead the SUT produced x1/〈o1, o2〉, x1/〈o1, ε〉 then the

SUT produced a global trace not allowed by the specification but the local testers made

132



the expected observations: the tester at port 1 observed x1o1x1o1 and the tester at port

2 observed o2. Observability problems can reduce the effectiveness of a test sequence

and so there has been interest in producing test sequences that do not suffer from such

observability problems [60, 63, 73, 74, 75].

This Chapter is structured as follows. In Section 6.2, we formally define the notion

of a global ADS and what it means for such an ADS to be controllable and prove that

a controllable ADS can be implemented using a set of distributed testers. Section 6.3

explores the complexity of problems associated with PDSs, proving that this problem is

generally undecidable. Section 6.4 gives a condition under which it is decidable whether

an MPFSM has a PDS while Section 6.5 then examines ADSs. Finally, Section 6.6

draws conclusions and discusses possible future work.

6.2. Test Strategies for distributed testing

Previous work has observed that when testing from an MPFSM we may require test

cases that are adaptive and in this section we formalise such test cases as test strategies.

We start by defining what we mean by a global test strategy, which can be seen as being

a central tester that controls all of the ports, and we define what it means for such a

strategy to be controllable. We also define what it means for a global strategy to be an

adaptive distinguishing sequence. We then consider distributed test strategies, where

we have a separate tester at each port, and show how a controllable global strategy can

be mapped to such a distributed test strategy.

Before extending the notion of a strategy to distributed testing, and formally defining

what we mean by an ADS in distributed testing, we briefly discuss what we mean for a

test to distinguish states of an MPFSM if we have a single tester that observes the global

order of events at the separate ports. Since MPFSMs only differ from the traditional

notion of an FSM throughout the output being a tuple of values, the usual definitions of

PDSs and ADSs apply and we will call these traditional PDSs and traditional ADSs.

However, from Proposition 1 we know that, in the distributed test architecture a local
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Figure 6.1.: MPFSM M3 for Example 1

tester only observes the events at its port. This reduced observational power can lead

to situations in which a traditional PDS or ADS fails to distinguish certain states.

This section builds on previous work that has discussed the notion of a test strategy for

the case where the system has a single port [46] and also where we have multiple ports and

a local tester has its own strategy [66]. However, as we explain below, the formalisation

in this section is, by necessity, different. In addition, the notion of a strategy (for

testing from an MPFSM) being controllable has not previously been discussed (the

focus has been on controllable input sequences from a single state) and previous work

has not considered the problem of using a strategy to distinguish more than two states

in distributed testing.

6.2.1. Global Test Strategies

In this section we describe global strategies, where there is a single tester that observes

all of the events and supplies all inputs. When testing from an MPFSM an observation

is a trace: an input/output sequence. The tester will make a decision, regarding what to

do next, on the basis of such a trace. We therefore define a global test strategy µ to be a

partial function from (X/Y )∗ to X, where (X/Y )∗ denotes the set of traces (sequences

of input/output pairs). That is to say, if σ is a trace produced by the SUT then µ(σ)

determines what the tester does next: if µ(σ) = x (x ∈ X) then the tester applies x and
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otherwise µ is not defined on σ and testing ends. We include a finiteness requirement in

order to ensure that testing terminates.

Definition 34 A global strategy µ is a partial function from (X/Y )∗ to X such that

only finitely many traces from (X/Y )∗ are mapped to elements of X.

When the tester applies a strategy µ one obtains what has been called an evolution1

of µ [66]. We can restrict the set of evolutions if we start testing an MPFSM M when

it is in state s since we must observe a trace from LM(s), and similarly we can define

the set of evolutions when we know that a global strategy will be applied in a state from

some set S ′. The following adapts the previous notion of an evolution to testing from

an MPFSM.

Definition 35 Trace σ ∈ (X/Y )∗ is an evolution of global strategy µ if the following

hold.

1. If σ′x/y is a prefix of σ for x ∈ X and y ∈ Y then µ(σ′) = x.

2. If σ′ is a prefix of σ and µ(σ′) = x then there exists y ∈ Y such that σ′x/y is prefix

of σ.

Given global strategy µ, we let Ev(µ) denote the set of evolutions of µ. Given MPFSM

M and state s of M , we let the set of evolutions of µ from s be Ev(µ,M, s) = Ev(µ) ∩

LM(s). Further, given MPFSM M with set of states S and S ′ ⊆ S we let the set of

evolutions of µ from S ′ be Ev(µ,M, S ′) =
⋃
s∈S′ Ev(µ,M, s).

This definition states that an input will only be applied after σ′ if this is specified by

the strategy and also that whenever the strategy can apply an input it does so. We will

assume that a global strategy µ is not defined on traces that cannot occur when µ is

applied and so σ 6∈ pre(Ev(µ)) implies that µ is not defined on σ. Clearly, this does

not reduce the effectiveness of the global strategies we consider; it simply avoids some

redundancy.

1Previous work concerned a single (local) tester and so strategies were mappings from Σ∗p.
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While executing a global test case a controllability problem may arise. For example

let x1, x
′
1 ∈ X1 be two different inputs at port 1, x2 ∈ X2, and let us suppose that

there are traces x2/〈o1, o2〉, x1/y and x2/〈ε, o2〉, x2/〈o1, ε〉, x′1/y′ in pre(Ev(µ)). Since

π1(x2/〈o1, o2〉) = π1(x2/〈ε, o2〉, x2/〈o1, ε〉) = o1, tester 1 cannot differentiate between

x2/〈o1, o2〉 and x2/〈ε, o2〉, x2/〈o1, ε〉, and so it cannot know which input (x1 or x′1) to

send after observing o1. Following this observation, we define what it means for a global

strategy to be controllable.

Definition 36 Global strategy µ is controllable if for all σ, σ′ ∈ pre(Ev(µ)), if there

exists port p such that πp(σ) = πp(σ
′) and µ(σ) ∈ Xp then µ(σ′) = µ(σ).

We can now adapt the notion of controllability to the case where we have a strategy

and a set of states from which we might apply this.

Definition 37 Given set S ′ of states of M , strategy µ is controllable for S ′ if for all

σ, σ′ ∈ pre(Ev(µ,M, S ′)), if there exists port p such that πp(σ) = πp(σ
′) and µ(σ) ∈ Xp

then µ(σ′) = µ(σ).

The following shows that this is less restrictive than controllability: a strategy might

be controllable for a given M and S ′ but not controllable in general.

Proposition 10 If a strategy µ is controllable then for every MPFSM M and state

set S ′ we have that µ is controllable for S ′. However, it is possible that strategy µ is

controllable for S ′ for some MPFSM M and state set S ′ and yet µ is not controllable.

We can now define what it means for a global strategy µ to be an adaptive distinguish-

ing sequence for an MPFSMM or for a set of states of M . Ideally, we have a single test

strategy that distinguishes all of the states of M . However, even for single-port FSMs

such a strategy need not exist. Where such ADSs do not exist, we might use a set of

strategies that, between them, distinguish the states. In addition, in some situations we

will only need to distinguish a subset S ′ of states since, for example, we have additional

information that tells us that after a trace σ the state of the SUT must be in S ′. Thus,
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(b) Scenario 2

Figure 6.2.: Figure for Example 2

we use the following definition of what it means for a global strategy to be an ADS for

an MPFSM M and for a set S ′ of states of M .

Definition 38 Global strategy µ is an adaptive distinguishing sequence (ADS) for state

set S ′ ⊆ S of M if for all s, s′ ∈ S ′ with s′ 6= s, σ ∈ Ev(µ,M, s), and σ′ ∈ Ev(µ,M, s′),

we have that σ 6∼ σ′. Further, µ is an adaptive distinguishing sequence (ADS) for M

if it is an adaptive distinguishing sequence for S.

The main difference, when compared to ADSs for testing from a single-port MPFSM

is that we compare global traces using ∼ rather than equality, this being an inevitable

consequence of the reduced observational power of distributed testing.

In testing, an adaptive distinguishing sequence will be used to check the state of the

SUT after some input sequence. For distributed testing, however, even if µ is a con-

trollable ADS for M , we have an additional issue: there may be observability problems

between the application of µ and the response of the SUT to earlier inputs. To see this,

consider the following example.

Example 2 Let us suppose that an ADS µ applies input x1 at port 1, from state s the

MPFSM M produces output o2 at port 2 and from s′ the MPFSM M instead produces

o3 at port 3. In each case, µ then terminates. Then clearly µ distinguishes s and s′.

(Scenario 1 presented in figure 6.2a.) However, now suppose that the input before µ is

applied should lead to o3 being output and the SUT moving to state s but instead the
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SUT produces o2 and moves to state s′. In each case, the tester at port 2 observes o2

and the tester at port 3 observes o3. (Scenario 2 presented in figure 6.2b.)

In Example 2, the incorrect output in the previous transition and the differences in

the response to µ have masked one another but this could not have happened if there

was a difference at port 1 since the tester at port 1 can determine which outputs were

produced at 1 after x1 was input. In order to avoid situations such as that given in

Example 2, it is therefore sufficient to require that the ADS µ leads to differences at a

particular port p and also that µ starts with an input at p: the input at p then precedes

the different outputs at p (in response to µ).

Definition 39 Given p ∈ P, a global strategy µ is an adaptive distinguishing sequence

at p (a p-ADS) for state set S ′ ⊆ S if µ(ε) ∈ Xp and for all s, s′ ∈ S ′ with s′ 6= s,

σ ∈ Ev(µ,M, s), and σ′ ∈ Ev(µ,M, s′), we have that πp(σ) 6= πp(σ
′). In addition, µ is

an adaptive distinguishing sequence at p (a p-ADS) for M if µ is a p-ADS for S.

We will use capital P in p-ADS when we refer to an adaptive distinguishing sequence

at p for some unspecified port p; we use lowercase p-ADS to refer to such an ADS that

explicitly starts with input at p.

When testing a single-port system a PDS is defined by a fixed input sequence: the

tester simply applies this input sequence and observes the resultant output sequence.

A major benefit of using such a PDS is that the test infrastructure does not have to

be adaptive. To obtain such benefits in distributed testing we require that the local

testers do not have to be adaptive. Consider the input sequence x1, x1, x2 and the

process of applying this from a state set S ′ = {s1, s2, s3} such that from s1 we should

obtain the trace σ1 = x1/〈o1,−〉, x1/〈o1, o2〉, x2/〈o1,−〉, from s2 we should obtain the

trace σ2 = x1/〈o1,−〉, x1/〈o1, o2〉, x2/〈o′1,−〉 and from s3 we should obtain the trace

σ3 = x1/〈o1, o
′
2〉, x1/〈o1, o

′
2〉, x2/〈o1,−〉. Here we have that in σ1 and σ2 the tester at

port 2 applies input x2 after observing o2 and in σ3 the tester at port 2 applies input

x2 after observing o′2o
′
2. Thus, although x1, x1, x2 is a fixed input sequence that causes

no controllability problems for S ′ and distinguishes the states from S ′, its application
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requires the tester at port 2 to be adaptive and thus it cannot be applied using local

testers that are not adaptive. We therefore need to restriction the notion of a PDS to

ensure that the local testers do not need to be adaptive.

Given a controllable test case µ and port p we will require that the observations made

at p before an input x is supplied are identical for all states in S ′: the tester at p thus

simply waits for this local trace to be observed before applying x.

Definition 40 A global strategy µ that is controllable for set S ′ of states of MPFSM

M is a controllable PDS for S ′ if and only if the followings hold:

1. Given states s, s′ ∈ S ′ with s 6= s′, if σ and σ′ are the global traces that result from

applying µ in states s and s′ respectively then σ 6∼ σ′.

2. Given states s, s′ ∈ S ′ with s 6= s′, if σ and σ′ are the global traces that result

from applying µ in states s and s′ respectively then for all ports p we have that the

longest prefixes of πp(σ) and πp(σ
′) that end in an input are identical.

When this holds each local tester follows a fixed pattern until its last input has been

supplied and then it simply observes any further output. As a result, the local testers

do not have to be adaptive. We now turn our attention to p-PDSs.

It is known that this problem (generating controllable PDSs) can be solved in low-

order polynomial time when S ′ contains two states [76]. However, it will transpire that

the problem becomes undecidable if we allow S ′ to have more states even if we restrict

to there being two ports.

We can extend the definition of a PDS to p-PDSs. The only difference between the

definitions of p-PDSs and PDSs is that the first input must be applied at port p and the

tester at port p should observe different local traces from different states of MPFSM.

Definition 41 A global strategy µ that is controllable for set S ′ of states of MPFSM

M is a controllable p-PDS for S ′ if and only if the followings hold:

1. µ(ε) ∈ Xp.
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2. Given states s, s′ ∈ S ′ with s 6= s′, if σ and σ′ are the global traces that result from

applying µ in states s and s′ respectively then πp(σ) 6= πp(σ
′).

3. Given states s, s′ ∈ S ′ with s 6= s′, if σ and σ′ are the global traces that result

from applying µ in states s and s′ respectively then for all ports q we have that the

longest prefixes of πq(σ) and πq(σ
′) that end in an input are identical.

6.2.2. Local and Distributed Test Strategies

While global strategies can be used to define what we want to happen in testing, if there

are distributed testers then we need to use separate local strategies for these testers.

This section defines what we mean by local and distributed strategies and proves that if

a global strategy is controllable then we can implement it using a distributed strategy.

This shows the value of generating controllable global strategies for use in testing, which

is the problem we investigate in this work.

In the distributed test architecture, there are |P| physically distributed local testers

that engage in executing a test strategy. A global strategy was a partial function from

(X/Y )∗ to X and so it might appear that a local strategy for port p will be a partial

function from (Xp/Yp)
∗ to Xp. However, the observations made by the tester at port

p need not alternate between inputs and outputs. For example, there might be a trace

such as σ = x1/〈ε, o2〉, x1/〈o1, o2〉, x2/〈o1, ε〉 and here π2(σ) = o2o2x2. As a result, a

local strategy will be a partial function from sequences of observations at p (elements of

Σ∗p) and not from (Xp/Yp)
∗. We include ε in the set of values that can be returned by

the local strategy, with this denoting the case where the tester waits to observe further

output. In contrast to global strategies, if the local tester at port p chooses to not send

an input then it might not have terminated since input can be supplied by other local

testers and this can result in additional observations at p. In distributed testing the

overall test system can be seen as a set of local testers and thus can be represented by

a tuple of local strategies.

Definition 42 A local strategy µp for port p is a function from Σ∗p to Xp∪{ε} such that
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only finitely many traces from Σ∗p are mapped to Xp. Given port set P = {1, 2, . . . , k},

a distributed strategy µ is a tuple (µ1, µ2, . . . , µk) such that for all p ∈ P we have that

µp is a local strategy for p. Further, σ ∈ Σ∗p is an evolution of local strategy µp if the

following hold:

1. If σ′x is a prefix of σ for x ∈ Xp then µp(σ
′) = x.

2. If σ′ is a prefix of σ and µp(σ
′) = x then σ′x a prefix of σ.

We let Ev(µp) denote the set of evolutions of µp.

Given distributed strategy (µ1, µ2, . . . , µk), if σ is a global trace and µp(πp(σ)) = x ∈

Xp then the tester at port p will apply input x whenever it observes πp(σ).

When a distributed strategy µ = (µ1, µ2, . . . , µk) is applied, each local tester makes

decisions regarding when to supply input and does so on the basis of its observations.

In defining the evolutions of such a strategy we need to consider a situation that could

not occur with global strategies: we may get a point where more than one local strategy

can supply the next input and so we have a race. This is clearly undesirable and so we

define what it means for a distributed strategy to be deterministic (to not have such

races) or to be deterministic from a given set of states.

Definition 43 Given MPFSMM and state set S ′, a distributed strategy µ = (µ1, µ2, . . . , µk)

is deterministic for S ′ if there does not exist a trace σ ∈ LM(S ′) such that the following

hold:

1. for all p ∈ P we have that πp(σ) ∈ pre(Ev(µp)); and

2. there exist p, p′ ∈ P, p 6= p′, such that µp(πp(σ)) ∈ Xp and µp′(πp′(σ)) ∈ Xp′.

Further, µ is deterministic if there does not exist a trace σ ∈ (X/Y )∗, such that the

following hold:

1. for all p ∈ P we have that πp(σ) ∈ pre(Ev(µp)); and

2. there exists p, p′ ∈ P, p 6= p′, such that µp(πp(σ)) ∈ Xp and µp′(πp′(σ)) ∈ Xp′.
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This requires that we cannot have a trace σ that can occur when applying µ (all the

projections of σ are prefixes of evolutions of the local strategies) after which two different

testers can supply the next input. Clearly, the µp being functions then ensures that any

next input after a global trace σ is uniquely defined.

It is straightforward to extend the notion of an evolution to deterministic distributed

strategies.

Definition 44 Trace σ ∈ (X/Y )∗ is an evolution of a (deterministic) distributed strat-

egy µ = (µ1, µ2, . . . , µk) if the following hold:

1. If σ′x/y is a prefix of σ for x ∈ Xp then µp(πp(σ
′)) = x; and

2. If σ′ is a prefix of σ and µp(πp(σ
′)) = x, x ∈ Xp, then there exists y ∈ Y such that

σ′x/y is a prefix of σ.

Given deterministic distributed strategy µ, we let Ev(µ) denote the set of evolutions of

µ.

This can be extended to the case where we have a set S ′ of states from which a

distributed strategy might be applied.

Definition 45 Given MPFSM M , state set S ′ of M , and distributed strategy µ =

(µ1, µ2, . . . , µk) that is deterministic for S ′, trace σ ∈ (X/Y )∗ is an evolution of µ from

S ′ if σ ∈ LM(S ′) and the following hold:

1. If σ′x/y is a prefix of σ for x ∈ Xp then µp(πp(σ
′)) = x; and

2. If σ′ is a prefix of σ and µp(πp(σ
′)) = x, x ∈ Xp, then there exists y ∈ Y such that

σ′x/y is a prefix of σ.

We let Ev(µ,M, S ′) denote the set of such evolutions of µ from S ′.

Given a global strategy µ and port p we can define the projection of µ at p and, in

an abuse of notation, call this πp(µ). We initially define πp(µ) to be a relation between

Σ∗p and Xp ∪ {ε}: for some σp ∈ Σ∗p we may have that πp(µ) maps σp to more than one

element of Xp ∪ {ε}.
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Definition 46 Given a global strategy µ and port p ∈ P, πp(µ) is a relation µp between

Σ∗p and Xp ∪ {ε} defined by: x ∈ µp(σp) for x ∈ Xp ∪ {ε} and σp ∈ Σ∗p if and only if

there exists some σ ∈ Ev(µ) such that x = µ(σ) and πp(σ) = σp.

Importantly, if a global strategy is controllable then the projections form a determin-

istic distributed strategy.

Proposition 11 If global strategy µ is controllable then the distributed strategy (π1(µ), π2(µ),

. . . .πk(µ)) is deterministic.

This also tells us that if we have a controllable global strategy µ then the set of evo-

lutions is defined for the distributed strategy (π1(µ), π2(µ), . . . , πk(µ)) since evolutions

are defined for deterministic distributed strategies.

When considering a set S ′ of states we restrict attention to traces in LM(S ′). As

a result, one might think that given MPFSM M and set S ′ of states of M , if global

strategy µ is controllable for S ′ then the distributed strategy (π1(µ), π2(µ) . . . πk(µ)) is

deterministic for S ′. However, this is not necessarily the case since in forming the local

strategies we consider all evolutions of a global strategy, not only those allowed from S ′.

Proposition 12 It is possible that global strategy µ is controllable for S ′ but the dis-

tributed strategy (π1(µ), π2(µ), . . . πk(µ)) is not deterministic for S ′.

This leads us to define the projection of a global strategy in the presence of a set S ′

of states.

Definition 47 Given global strategy µ, port p ∈ P and set S ′ of states of an MPFSM

M , πS
′

p (µ) is a relation µp between Σ∗p and Xp∪{ε} defined by: x ∈ µp(σp) for x ∈ Xp∪{ε}

and σp ∈ Σ∗p if and only if there exists some σ ∈ Ev(µ,M, S ′) such that x = µ(σ) and

πp(σ) = σp.

We can now generalise Proposition 11 for the case where we have a set S ′ of states.

The proof of the following is equivalent to that of Proposition 11 except that we restrict

attention to traces in Ev(µ,M, S ′).
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Proposition 13 Given state set S ′ of an MPFSMM , if global strategy µ is controllable

for S ′ then the distributed strategy (πS
′

1 (µ), πS
′

2 (µ), . . . .πS
′

k (µ)) is deterministic for S ′.

We have shown that the projections of a controllable global strategy define a determin-

istic distributed strategy. We now prove that if we take the projections of a controllable

global strategy then the distributed strategy we obtain has the same set of evolutions.

This shows that we can safely implement a controllable global strategy using distributed

testers.

Proposition 14 Let us suppose that µ is a controllable global strategy and for all p ∈ P

we have that µp = πp(µ). Then the distributed strategy µ′ = (µ1, µ2, . . . , µk) is such that

Ev(µ) = Ev(µ′).

We now extend the above to the case where we are considering a given set of states,

with the proof of the following being the same as that of Proposition 14 except that we

restrict attention to traces from Ev(µ,M, S ′)).

Proposition 15 Let us suppose that µ is a controllable global strategy for set S ′ of

states of MPFSM M and for all p ∈ P we have that µp = πS
′

p (µ). Then the distributed

strategy µ′ = (µ1, µ2, . . . , µk) is such that Ev(µ,M, S ′) = Ev(µ′,M, S ′).

While we earlier represented an ADS as a single global strategy, in practice we use a

distributed strategy, and so we now define what it means for a distributed strategy to

be an adaptive distinguishing sequence. This is a (deterministic) distributed strategy

that distinguishes the states of an MPFSM M being considered, or some specified set

of states.

Definition 48 A distributed strategy µ is an adaptive distinguishing sequence for state

set S ′, S ′ ⊆ S, if µ is deterministic for S ′ and for all s, s′ ∈ S ′ with s′ 6= s, σ ∈

Ev(µ,M, s), and σ′ ∈ Ev(µ,M, s′) we have that σ′ 6∼ σ. Further, µ is an adaptive

distinguishing sequence for M if µ is an adaptive distinguishing sequence for S.

We can extend this to p-ADS s.
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Definition 49 Let us suppose that p is a port of M . A distributed strategy µ is an

adaptive distinguishing sequence at p (a p-ADS) for state set S ′, S ′ ⊆ S, if µ is

deterministic for S ′, µ(ε) ∈ Xp, and for all s, s′ ∈ S ′ with s′ 6= s, σ ∈ Ev(µ,M, s), and

σ′ ∈ Ev(µ,M, s′) we have that πp(σ
′) 6= πp(σ). Further, µ is an adaptive distinguishing

sequence at p (a p-ADS) for M if µ is an adaptive distinguishing sequence at p for S.

We can now prove that if a global strategy is controllable and is an ADS (or p-ADS)

for an MPFSM M then the distributed strategy obtained by taking the projections of

µ is also an ADS (or p-ADS).

Proposition 16 Let us suppose that MPFSMM has port set P = {1, 2, . . . , k}. If µ is

controllable and is an adaptive distinguishing sequence for M then µ′ = (π1(µ), π2(µ), . . . , πk(µ))

is an adaptive distinguishing sequence for M .

Proposition 17 Given S ′ ⊆ S, if µ is controllable for S ′ and is an adaptive distinguish-

ing sequence for S ′ then µ′ = (πS
′

1 (µ), πS
′

2 (µ), . . . , πS
′

k (µ)) is an adaptive distinguishing

sequence for M from S ′.

The proofs of the following are almost identical to those of the two results above.

Proposition 18 If µ is controllable and is a p-ADS for M then µ′ = (π1(µ), π2(µ), . . . , πk(µ))

is a p-ADS for M .

Proposition 19 Given S ′ ⊆ S, if µ is controllable for S ′ and is a p-ADS for S ′ then

µ′ = (πS
′

1 (µ), πS
′

2 (µ), . . . , πS
′

k (µ)) is a p-ADS for M from S ′.

These results are important since they tell us that as long as we restrict attention to

controllable strategies, it is safe to generate global strategies that are ADSs/PDSs (and

so also p-ADSs/p-PDSs) and then take their projections. If a global strategy µ is not

controllable then there must be a port p and traces σ and σ′ such that πp(σ) = πp(σ
′),

µ(σ) ∈ Xp and µ(σ′) 6= µ(σ). But it is straightforward to see that the set of projections

of µ do not define a distributed strategy in which the local testers are deterministic: we

have that πp(µ) must relate πp(σ) to more than one element of Xp ∪ {ε}. Thus, a local
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tester cannot determine what to do next based on its observations and, in addition, µ

and (π1(µ), π2(µ) . . . , πk(µ)) will have different sets of evolutions. As a result, we know

that it is safe to consider controllable global strategies and also that if a global strategy

is not controllable then we cannot implement it using distributed testers. In the rest of

the work we therefore focus on the problem of generating controllable global strategies

that are ADSs/PDSs (and so also p-ADSs/p-PDSs).

6.3. Generating controllable PDSs

We have seen that a global controllable ADS can be implemented by local testers.

However, a PDS is an ADS in which there is no adaptivity and so this result also holds

for PDSs. Motivated by this, this section explores the problem of deciding whether an

MPFSM has a controllable PDS.

We will prove that this problem is PSPACE-hard and in doing so we will use a special

class of the problem of generating a PDS for a single-port MPFSMẆe then show that

any algorithm that generates controllable PDSs for an MPFSM can be used to produce

PDSs for this class of single-port MPFSM.

Lemma 32 The following problem is PSPACE-complete: given a single-port MPFSM

M in which no transition produces empty output, does M have a distinguishing sequence?

We can now show that the problem of deciding whether an MPFSM has a controllable

PDS that distinguishes all of its states is PSPACE-hard.

Proposition 20 The following problem is PSPACE-hard: given a multi-port MPFSM

M , is there a controllable PDS that distinguishes all of the states of M? In addition,

this result still holds if we restrict attention to MPFSMs that have two ports.

It is known that for a single port MPFSMs there are MPFSMs such that the shortest

PDSs are of exponential length [35]. Relying on the reduction presented above, we

deduce that this result is valid for multi–port MPFSMs.
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Corollary 2 There is a class of MPFSMs where the shortest PDS is of exponential

length.

We now explain a construction that will be used in the proof of Proposition 21. Let

us assume that M = (S,X, Y, δ, λ) is a single-port MPFSM in which all the transitions

have non-empty outputs. We construct a multi-port MPFSMM ′′ = (P , S ′, X ′, Y ′, δ′, λ′)

as follows. For each state si ∈ S, we introduce states si and s?i to give the state set

S ′ = S ∪ {s?i |si ∈ S}. The MPFSM has two ports P = {1, 2}. The input and output

alphabets are: X1 = {R}, X2 = X, Y1 = Y ∪ {0, 1}, Y2 = {ε, L}. For each state

s?i , we introduce the transition from s?i to si with label R/〈0, L〉. Moreover, for each

input x ∈ X and state s?i ∈ S ′, we introduce a transition from s?i to δ(si, x) with label

x/〈λ(si, x), ε〉. In addition for each input x ∈ X and state si ∈ S ′, we introduce a

transition from si to δ(si, x) with label x/〈λ(si, x), ε〉. Finally, for each state si, we

introduce a self-loop transition with label R/〈1, L〉.

Clearly the machine M ′′ is completely specified. The intuition behind the reduction

is as follows, in order to distinguish between states si, s
?
i at port 1, the first input to

be applied is input R (at port 1). Otherwise, if an input x ∈ X is applied first (at

port s), states si, s
?
i are merged without being distinguished at port 1. Moreover the

construction also guarantees that states can only be distinguished at port 1.

Proposition 21 The problem of deciding whether a MPFSM has a p-PDS is PSPACE-hard.

It has been shown that for a given MPFSM and a port p ∈ P it is possible to

construct a separating word for two states in polynomial time and this word has length

at most k(n− 2) + 1 [65]. Therefore we may consider bounded PDSs.

Definition 50 The Bounded PDS problem is to decide if there is a controllable PDS

µ for a given MPFSM M such that the length of the longest evolution in Ev(M,µ, S)

is not more than ` ∈ Z>0.

We will show that the bounded PDS problem is in EXPSPACE.
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Proposition 22 The problem of deciding whether an MPFSM M has a PDS of length

` is in EXPSPACE.

Therefore Proposition 20 and Proposition 22 together lead us to the following result.

Theorem 22 The problem of deciding whether there is a controllable PDS of length

` for MPFSM M is in EXPSPACE and PSPACE-hard. This holds even if we restrict

attention to MPFSMs with two ports.

We extend this result to p-PDSs.

Theorem 23 The problem of deciding whether there is a controllable p-PDS of length

` for MPFSM M is in EXPSPACE and PSPACE-hard. This holds even if we restrict

attention to MPFSMs with two ports.

We now focus on the problem of deciding whether an MPFSM M has a controllable

PDS for some state set S ′. We show that the problem is undecidable through reducing

the undecidable Post’s Correspondence Problem [121]. Post’s Correspondence Problem

is defined as follows:

Definition 51 Post’s Correspondence Problem (PCP) is to decide, for sequences α1, α2, . . . , αb

and β1, β2, . . . , βb, whether there is a sequence a1, a2, . . . , an of indices in [1..b] such that

αa1αa2 . . . αan = βa1βa2 . . . βan.

Theorem 24 The problem of deciding whether there is a controllable PDS for state

set S ′ of MPFSM M is undecidable and this holds even if we restrict attention to

MPFSMs with two ports.

We now show that the p-PDS problem is again undecidable.

Theorem 25 The problem of deciding whether there is a controllable p-PDS for state

set S ′ of MPFSM M is undecidable and this holds even if we restrict attention to

MPFSMs with two ports.
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Hunt et al. [122] introduced a variation of PCP that is defined as follows:

Definition 52 The Bounded Posts Correspondence Problem (B-PCP) is to decide, for

sequences α1, α2, . . . , αb and β1, β2, . . . , βb, whether there is a sequence a1, a2, . . . , an of

indices in [1 . . . b] such that αa1αa2 . . . αan = βa1βa2 . . . βan and n ≤ K where K ∈ Z>0 is

a positive integer.

In other words in the B-PCP problem our objective is to find a solution that uses

at most K sequences. In the same work the authors state that finding a solution is

NP-complete.

Theorem 26 It is NP-complete to decide whether an instance of the B-PCP has a

solution.

We now consider the problem of finding a bounded PDS for a subset of states i.e. we

decide, given an MPFSMM , a state set S ′ and bound `, whether there is a controllable

PDS for S ′ that has length at most `.

Theorem 27 The Bounded PDS problem is in EXPSPACE and is NP-hard.

Theorem 28 The Bounded p-PDS problem is in EXPSPACE and is NP-hard.

Finally, we consider the case where ` is bounded above by a polynomial function of

the number of states of M .

Theorem 29 If ` is defined by a polynomial in term of the number of states of M then

the Bounded PDS problem is NP-complete.

Theorem 30 If ` is defined by a polynomial in term of the number of states of M then

the Bounded p-PDS problem is NP-complete.

As noted before, instead of using a PDS we could instead use a characterisation set

containing controllable separating sequences and we have a polynomial upper bound on

the sum of the lengths of the sequences in such a characterisation set. Thus, in practice

we are likely to have a polynomial upper bound in the length of PDSs in which we

are interested. This observation motivates the above result. In the following section we

consider the problem of PDS generation for a class of MPFSMs we call C-MPFSMs.
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6.4. PDS generation: a special case

In this section we prove that the PDS existence problem is decidable for a special class

of MPFSMİn this class of MPFSM if the input of x leads to no output at port p for

some state of an MPFSM M then the input of x leads to no output at p for all states

of M . This can be seen as imposing a fixed pattern on the communication that occurs

between the agents at the ports through interacting with M .

Definition 53 An MPFSM M = (P , S, s0, X, Y, δ, λ) is said to be consistent if for all

s, s′ ∈ S, x ∈ X, and p ∈ P, πp(λ(s, x)) = ε implies that πp(λ(s′, x)) = ε.

We will call an MPFSM that is consistent a C-MPFSM. C-MPFSMs have the

following important properties, the first two relating to controllability. Note that our

definition of a strategy being controllable extends immediately to input sequences since

an input sequence defines a strategy. Therefore, throughout this section we will use

input sequence x̄ and a strategy µ interchangeably.

Proposition 23 Given distinct states s and s′ of C-MPFSM M , if input sequence x̄

is controllable from state s then x̄ is controllable from s′.

We can extend this result to a set of states.

Proposition 24 Given C-MPFSM M with state set S, state s ∈ S and set S ′ ⊆ S of

states of M , if input sequence x̄ is controllable from s then x̄ is controllable from S ′.

The following relates to observability problems.

Proposition 25 Given C-MPFSM M , states s and s′ of M , and input sequence x̄, if

λ(s, x̄) 6= λ(s′, x̄) then there is some port p such that πp(λ(s, x̄)) 6= πp(λ(s′, x̄)).

In other words, for a given C-MPFSM when an input sequence x̄ ‘globally distin-

guishes’ states s, s′ of M then x̄ also ‘locally distinguish’ the states s, s′ of M . In the

following we extend this property.
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Proposition 26 Given C-MPFSM M with state set S, if x̄ is a controllable input

sequence and for all s, s′ ∈ S ′, S ′ ⊆ S, we have that s 6= s′ ⇒ λ(s, x̄) 6= λ(s′, x̄) then x̄

is a controllable PDS for S ′.

We can therefore conclude that when testing from C-MPFSMs there are no ob-

servability problems and an input sequence is controllable for a state if and only if it

is controllable for all non-empty sets of states. It will transpire that these properties

simplify the PDS existence problem.

In the following we use a canonical MPFSM [76] χpmin(M) of a C-MPFSM M with

respect to port p with the motivation that by considering χpmin(M) we avoid controllabil-

ity problems (for PDSs that start with input at p). This will simplify PDS construction:

by Proposition 25 we do not have to worry about observability problems and by using

χpmin(M) we will also avoid controllability problems.

The canonical MPFSM χpmin(M) is constructed in two steps. First we construct a

partial MPFSM χmin(M), second from χmin(M) we construct χpmin(M). We can now

define the (incomplete) MPFSM χmin(M) = (P , Smin, s′0, X, Y, δmin, λmin), based on

[76] (which uses ideas from [37]).

For each si ∈ S and P ⊆ P there can be vertex sPi representing the situation in which

the state is si and the next input must be at a port in P (since otherwise there will be

a controllability problem). In this construction we will use the following in which T is

the set of transitions of M .

• Departp(si) = {(si, sj, x/y) ∈ T |x ∈ Xp} is the set of transitions from si whose

input is at p.

• ArriveP (si) = {(sj, si, x/y) ∈ T |ports(x/y) = P} is the set of transitions ending

at si that involve the set P of ports.

The set Smin of states of χmin(M) is defined by the following.

1. For all 1 ≤ i ≤ n and P ⊆ P , sPi ∈ Smin if ArriveP (si) 6= ∅.

2. State sP0 is in Smin and sP0 is the initial state of χmin(M).
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The state sP0 represents the situation before testing starts: the SUT is in the initial

state and since no inputs have been applied the first input can be applied at any port

without causing a controllability problem. The set Tmin of transitions of χmin(M) (and

so the functions δmin and λmin) is defined by, for each transition t = (si, sj, x/y) ∈ T

and sPi ∈ Smin with port(x) ∈ P , including in Tmin the transition (sPi , s
Pt
j , x/y) where

Pt = ports(x/y).

The following results are known [76].

Proposition 27 For each controllable path ρ̄ in M that starts at s0, there is a unique

controllable path ρ̄′ in χmin(M) that starts at sP0 such that label(ρ̄) = label(ρ̄′).

Proposition 28 For each path ρ̄′ in χmin(M) that starts at sP0 , there is a unique con-

trollable path ρ̄ in M that starts at s0 such that label(ρ̄) = label(ρ̄′).

Importantly, χmin(M) captures the controllable paths of M and since an input se-

quence is controllable from one state if and only if it is controllable from all non-empty

sets of states (Proposition 24), it captures the set of input sequences that are controllable

from sets of states of M and the corresponding behaviours.

The final step is to create a completely specified MPFSM χpmin(M) = (P , Spmin, X, Y, δ
p
min, λ

p
min)

from χmin(M) in which for each state s and port p there is a state s{p}; this will allow us

to explore controllable PDSs that start with input at p. This is achieved by applying

the following.

1. For every state s of M such that s{p} is not in Smin.

a) Add the state s{p}.

b) For every input x at p, if si = δ(s, x) and y = λ(s, x) then add the transition

(s{p}, sPi , x/y) such that and P = ports(x/y).

2. For every input x and state s ∈ Smin such that there is no transition from s with

input x, add a self-loop transition from s to s with input x and output ε at all

ports.
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We can now show how controllable PDS construction for M relates to PDS construc-

tion for χpmin(M). Note that we require a particular type of PDS for χpmin(M): since

a PDS will be applied by distributed testers we require that the trace before apply an

input at p has fixed projection at p (see Definition 40). In the following, a PDS for

χpmin(M) is said to be non-redundant if it does not lead to the execution of any of the

self-loops added to make χpmin(M) completely-specified.

Proposition 29 An input sequence x̄ is a controllable PDS that starts with input at p

for set S ′ = {s1, s2 . . . , sr} ⊆ S of states of M if and only if x̄ is a non-redundant PDS

for set S ′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
r } of states of χpmin(M) such that for all 1 < i ≤ |x̄|, if xi ∈

Xq then for all s
{p}
i , s

{p}
j ∈ S ′′ we have that πq(λ

p
min(s

{p}
i , x̄i−1)) = πq(λ

p
min(s

{p}
j , x̄i−1)).

The definition of χpmin(M) uses sets of ports as labels on states and this might appear

to lead to a combinatorial explosion. However, the number of states of χpmin(M) is

bounded above by the number of transitions of M plus one (for the initial state) plus

an additional |S||P| states of the form s{p}. Let n be the number of states, k be the

number of ports and m be the number of inputs of C-MPFSM M . Also let nmin be the

number of states of machine χpmin(M), then nmin ≤ nk + nm + 1. Thus, χpmin(M) can

be constructed in polynomial time.

We now present some definitions and observations related to PDSs and then we give

an upper bound on the length of a minimal controllable PDSs for C-MPFSMs 2.

Given an input sequence x̄, we will let Bx̄ denote the set of sets of ‘current states’ that

can occur if we know that x̄ has been applied from a state in S ′′. Thus, if one or more

states in S ′′ leads to output ȳ when x̄ is applied then one of the sets in Bx̄ is the set of

states that can be reached from states in S ′′ = {s{p}1 , . . . , s
{p}
n } by paths with label x̄/ȳ

(the set {δpmin(s{p}, x̄)|λpmin(s{p}, x̄) = ȳ}). More formally, we have that

Bx̄ = {{δpmin(s{p}, x̄)|λpmin(s{p}, x̄) = ȳ}|∃s{p} ∈ S ′′.ȳ = λpmin(s{p}, x̄)}

2This upper bound is used in the proof that the decision problem is in PSPACE; it seems likely that

smaller upper bounds can be found but that is not a concern here.
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While applying an input sequence x̄i, different states of S ′′ may produce different traces.

This will lead to the splitting of the set S ′′ into smaller sets of states. On the other hand

if a state s{p} produces a different output trace from all other states in set S ′′ \ {s{p}}

then s{p} is distinguished from states S ′′ \ {s{p}}.

We use δpmin(B, x̄i) to denote the set Bx̄i . Clearly the application of a PDS x̄ from

set S ′′ will lead to a set Bx̄ of cardinality n; each set is a singleton set. We now give an

upper bound on PDS length for C-MPFSMs.

Lemma 33 Given a C-MPFSM M with n states, k ports, and m inputs, M has a

controllable PDS if and only if it has one of length at most n(nmin)n where nmin =

nk + nm+ 1.

Thus we conclude that PDS existence check for C-MPFSM is decidable (it is sufficient

to check all input sequences of length at most n(nmin)n).

Theorem 31 It is decidable whether a C-MPFSM has a PDS.

We will show that the problem is PSPACE-complete. First we define a nondeterministic

Turing Machine T that can decide the existence of a PDS for a given C-MPFSM for a

state set S ′ of C-MPFSM M . T will apply inputs one at a time and maintain a current

set C of pairs of states such that (s, s′) is in C if and only if s ∈ S ′ and the sequences of

inputs received takes M from s to s′. T also maintains an equivalence relation r defined

by two states s, s′′ ∈ S ′ being related under r if and only if the currently guessed input

sequence x̄ does not distinguish s and s′ (λ(s, x̄) = λ(s′′, x̄)). Finally, T maintains a

set of ports Pc from which an input can be supplied (the ports where no differences in

outputs have been observed).

Clearly, these pieces of information can be updated when a new input is received: after

an input is guessed, T updates the current set information, the equivalence relation r

and finally the set of ports (a port is removed from Pc if the latest input leads to different

outputs at this port). Since the problem is to decide existence, T does not need to store

the sequence of previous inputs received. Further, the input sequence received defines a
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PDS for S ′ if and only if no two different states from S ′ are related under r. We now

prove that the PDS problem is in PSPACE for C-MPFSMs.

Proposition 30 The problem of deciding whether a C-MPFSM M has a PDS is in

PSPACE.

Thus we conclude that deciding whether a given C-MPFSM has a PDS is PSPACE-complete.

Theorem 32 The problem of deciding whether a C-MPFSM has a PDS is PSPACE-complete.

Likewise the MPFSM M ′′ constructed in Proposition 21 is a C-MPFSM and so we

have the following result.

Proposition 31 The problem of deciding whether a C-MPFSM has a p-PDS is PSPACE-hard.

The proof of the following is identical to that of Proposition 30 except that the non-

deterministic Turing Machine, in looking for a p-PDS, chooses the first input to be at

p and only considers whether each pair of states produce different outputs at p.

Proposition 32 The problem of deciding whether a C-MPFSM M has a p-PDS is in

PSPACE.

We therefore have the following result.

Theorem 33 The problem of deciding whether a C-MPFSM has a p-PDS is PSPACE-complete.

6.5. Generating controllable ADSs

In Section 6.2 we defined what we mean by a controllable global ADS and showed that it

is sufficient to consider such ADSs. In addition, potential observability problems between

an ADS and the transitions before this, which might adversely affect the effectiveness

of the ADS, are avoided if we produce a p-ADS.

We now show that the problem of deciding whether an MPFSM M has an ADS that

distinguishes all of its states is PSPACE-hard. We will rely on Lemma 32 that tells us that

the problem of deciding whether a single-port MPFSM has a PDS is PSPACE-hard

even if all transitions have non-empty output.
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Theorem 34 The following problem is PSPACE-hard: given a multi-port MPFSM M ,

is there a controllable ADS that distinguishes all of the states of M? In addition, this

result still holds if we restrict attention to MPFSMs that have two ports.

We have the same result if we are interested in p-ADSs.

Theorem 35 The following problem is PSPACE-hard: given a multi-port MPFSM M

and port p of M , is there a controllable p-ADS that distinguishes all of the states of M?

In addition, this result still holds if we restrict attention to MPFSMs that only have

two ports.

We might have the situation in which there is no ADS for the MPFSM being con-

sidered but there are controllable strategies that allow us to distinguish sets of states.

Theorem 36 The following problems are PSPACE-hard:

1. Given a multi-port MPFSM M , find a controllable ADS µ and state set S ′ where

µ is a controllable ADS for S ′ and µ and S ′ are such that S ′ has maximal size.

2. Given a multi-port MPFSM M and port p of M , find a controllable p-ADS µ

and state set S ′ where µ is a controllable p-ADS for S ′ and µ and S ′ are such

that S ′ has maximal size.

Given MPFSM M with state set S, we say that the length of the longest evolution

in Ev(µ,M, S) is the height of µ. We now extend our observations using results given

in [35].

Theorem 37 There is a class of MPFSMs that contain ADS (or p-ADS) such that

the shortest evolution is of exponential length.

Finally, since existence is PSPACE-hard so are the corresponding optimisation prob-

lems.

Theorem 38 The following problems are PSPACE-hard.
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1. Given a multi-port MPFSM M , what is the smallest value of ` such that M has

an ADS of height `?

2. Given a multi-port MPFSM M , what is the smallest value of ` such that M has

a p-ADS of height `?

The results in this section showed that ADS generation problems are computationally

hard, in contrast to the situation with single-port FSMs, but left open the question of

whether these problems are decidable. In the next section we show that we can reduce

these negative results to some extent when we limit the height of the ADS (or p-ADS).

We now consider the problem of constructing a complete ADS or p-ADS µ for an

MPFSMM where we bound the height of µ. We are therefore interested in the following

problem.

Definition 54 Given MPFSM M and natural number `, the EXACT-HEIGHT prob-

lem for M and ` is to determine whether M has a controllable ADS with height `.

Naturally, this corresponds also to the problem of deciding whether there is a con-

trollable ADS with height at most ` and it is straightforward to adapt the proofs in

this section to the case where we have a bound on the height of an ADS. We therefore

focus on the EXACT-HEIGHT problem. This problem is motivated by the fact that

it is possible to use a set of separating sequences instead of an ADS or PDS in order

to identify states. It is known that for any two states si and sj of an MPFSM M

with n states, k ports and m inputs, we can decide in O(mn2) time whether there is

a controllable separating sequence that distinguishes si and sj and if so there is such

a sequence of length at most k(n − 1). Thus, one can construct a set of controllable

separating sequences to form a characterisation set of polynomial size and this can be

achieved in polynomial time.

We will show that the Directed Hamiltonian Path (DHP) problem for strongly

connected directed graphs, which is NP-complete [88, 89], is polynomial time reducible

to the EXACT-HEIGHT problem. An instance of a DHP problem can be defined as
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follows, where a walk is said to visit a vertex v if v is the starting vertex or the ending

vertex of at least one edge in the walk.

Definition 55 Consider a strongly connected directed graph G = (V,E) with vertex

set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. We say that walk ρ of

G is a Hamiltonian path if and only if the walk visits each vertex of G exactly once.

The Directed Hamiltonian Path problem is to decide whether a strongly connected

directed graph G has a Hamiltonian path.

Given an instance G of the DHP problem, we will construct an MPFSM M(G) =

(P , S, s0, X, Y, δ, λ). The aim will be to construct the transition structure of the MPFSM

in such a way that an ADS µ simulates the rules that govern the DHP problem. We

will then prove that if G has n vertices then there is an ADS µ for M whose longest

evolution in Ev(µ,M, S) is of length n− 1 if and only if the corresponding sequence of

symbols constitutes a solution to the DHP problem for G.

We now show how we construct M(G). We represent vertex vi of G by a state si of

M and add an additional state se and so S = {s1, . . . , sn} ∪ {se}. For each edge ei of G

there will be a corresponding port i of M and unique input xi at port i. We include an

extra port 0 and so the port set of M is P = {0}∪{1, 2, . . . ,m}. There are no inputs at

port 0. The output alphabets are: Y0 = {1, 2, . . . , n} and for all 1 ≤ i ≤ m, Yi = {oi}.

If ei is an edge from vertex vj to vertex vl then the state changes associated with

transitions of M(G) that have input xi are defined by the following rules:

1. We include in M(G) a transition from sj to sl with input xi.

2. From every state s ∈ S with s 6= sj there is a self-loop transition from s with input

xi. These are included to make M(G) completely specified and all transitions from

se are of this form.

Thus, for each state s of M(G), a walk in G has a corresponding walk in M(G) that

starts at s. We define the output in response to input xi in order to ensure that in

controllable testing xi can only be followed by an input xj if ei can be followed by ej
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in G. As a result, controllable walks through M(G) will correspond to walks of G. Let

us suppose that ei is an edge from vertex vj to vertex vl and in G the edges that leave

vl (and so can follow ei) are are those in E ′ ⊆ E. Then for port p, 1 ≤ p ≤ m, the

transitions with input xi produce output op at p if ep ∈ E ′ and otherwise they produce

no output at p. As a result, input xi can be followed by input xj in controllable testing

if and only if ei can be followed by ej in G. At port 0 there are two case: the input of

xi leads to output j at 0 if xi is input when M is in state sj (recall that ei leaves vertex

vj) and otherwise, if xi is input when M(G) is in a state sj′ 6= sj, it leads to no output

at 0.

As a result of this construction, any input of xi leads to the same output at all ports

in {1, 2, . . . ,m} irrespective of the state in which it is applied. Thus, only the output

at port 0 can be used to distinguish states. In addition, no output can be produced

at 0 when an input sequence is applied from se. For example consider an instance G

of Directed Hamiltonian Path problem given in Figure 6.3a and corresponding

MPFSM M(G) given in Figure 6.3b.

In terms of distinguishing states there is no value in following input immediately by

itself (e.g. having a subsequence of the form xixi). We will say that a strategy for M(G)

is non-redundant if it cannot lead to an input being immediately followed by itself and

results will restrict attention to non-redundant strategies.

We now prove that a controllable global strategy of M(G) has a particular form.

Proposition 33 Given directed graph G and MPFSM M(G) with state set S, if µ is a

non-redundant controllable global strategy for M(G) then all traces in Ev(µ,M(G), S \

{se}) have the same input portion xi1 , . . . , xil and this has the property that ei1 , . . . , eil

is a walk of G.

We now show how the DHP problem for strongly connected G relates to the existence

of an ADS µ for M(G) whose longest evolution has length ` = n.

Proposition 34 Strongly connected directed graph G has a Hamiltonian path if and

only if M(G) has a controllable ADS that distinguishes all of the state of M(G) and
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Figure 6.3.: An example reduction.

whose longest evolution has length ` = n.

We can now prove that the problem of deciding whether an MPFSM has an ADS

whose longest evolution has length ` is NP-hard. The following holds when we are

interested in distinguishing all states in S or some subset S ′ of these.

Theorem 39 The Exact Height ADS problem is in EXPSPACE and is NP-hard.

The definition of M(G) ensures that the states of M(G) can only be distinguished by

the output at port 0. In order to adapt the proof to the p-ADS problem we require

input at 0 since a 0-ADS must start with input at 0. We can achieve this by having one

input x0 at port 0 that, irrespective of the current state, sends a constant to all ports

and does not change state. It is straightforward to adapt the proof of Proposition 34

to prove that a strongly connected directed graph has a Hamiltonian path if and only

if the resultant MPFSM which includes transitions with input x0, has an ADS that

starts with x0 and whose longest evolution has length n+ 1. Essentially, such an ADS
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must start with x0 and then apply an ADS that does not contain x0. Since the Exact

Height ADS problem is in EXPSPACE we obtain the following result3.

Theorem 40 The Exact Height p-ADS problem is in EXPSPACE and is NP-hard.

Finally, if we suitably bound ` then the problems are NP-complete.

Theorem 41 The Exact Height ADS and Exact Height p-ADS problems for an

MPFSM with n states are NP-complete if ` = poly(n), where poly(n) is a polynomial

function of n.

As noted before, in testing it is possible to use a characterisation set containing con-

trollable separating sequences. Thus, in practice we are unlikely to be interested in

ADSs that are significantly longer than the sum of the lengths of the sequences in such

a characterisation set and we know that there is a polynomial upper bound on this value.

This provides clear motivation for the above result: in practice we are likely to have a

polynomial upper bound on the height of an ADS that we are ready to use.

6.6. Chapter Summary and Future Directions

Many automated test generation algorithms for testing from a single-port FSM M use

tests that distinguish states of M and there has been particular interest in preset dis-

tinguishing sequences (PDSs) and adaptive distinguishing sequences (ADSs). There

has been interest in both approaches since when applying PDSs it is possible to use

a less complex test infrastructure but ADSs can be shorter, are computationally less

expensive to produce, and there are FSMs that have ADSs but no PDS.

This work has shown how the concepts of PDSs and ADSs can be extended to

distributed testing. We showed that if a PDS or ADS is controllable then it can be

implemented by a set of distributed local testers but otherwise this is not possible. We

also showed how these local testers can be devised. We then explored the problems of

3The problem being NP-hard follows as before since the DHP problem allows a polynomial bound.
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deciding whether an MPFSM has a PDS, proving that this problem is PSPACE-hard

and is generally undecidable if we consider subsets of the set of states. Having shown

this we gave a condition under which the latter problem is decidable but NP-hard and a

second stronger condition under which it is NP-complete.

Having explored PDSs we then considered ADSs. We proved that the problem of

deciding whether an MPFSM has an ADS is PSPACE-hard but left decidability open.

This situation is significantly different from the single-port MPFSM problem, which can

be solved in low-order polynomial time. We also showed that the problem of deciding

whether there is an ADS with height ` (or height at most `) is NP-hard. However, we

observed that in practice we can use a set of separating sequences of polynomial size and

so it makes sense to assume that the upper bound ` is bounded above by a polynomial

in the size of M . For such bounds the problem of deciding whether an MPFSM has an

ADS is NP-complete.

There are several lines of future work. First, it is still open whether the ADS existence

problem is decidable. There is also the problem of finding sensible conditions under which

the problems studied can be solved in polynomial time. Finally, there is the problem of

exploring heuristics for devising controllable PDSs and ADSs and here it is encouraging

that although the PDS existence problem is PSPACE-hard for single-port FSMs it has

been found that SAT solvers can be effective in solving this problem [108].
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7. Conclusions

In Finite State Machine (FSM) based testing, a Fault Detection Sequence is applied to

an implementation and the response of the implementation is analysed. If the imple-

mentation produces the expected output then the implementation is said to be a correct

implementation.

We first aimed to reduce the costs of components of a CS by hoping that this will

reduce the cost of the CS. The first component that we investigated is a Reset Sequence.

The second component that we studied is State Identification Sequence.

In this thesis, we aim to reduce the cost of fault detection sequences. We first intro-

duced several problems related to reset sequences: an input sequence that resets the FSM

under consideration, and investigated their computational complexities. It is known that

constructing one of the shortest reset sequence is an NP-complete problem [34]. However

when the transition structure of a machine is monotonic (transitions of machine pre-

serve some linear order of the states) one can construct one of the shortest reset word in

polynomial time. However the complexity of constructing shortest reset sequences for

monotonic partial machines was an open problem. We, therefore, investigated to reveal

if this desirable complexity condition survives when the machine has partial transitions.

This is interesting, because if the underlying machine is not monotonic and is partial

then constructing a reset sequence is know to be PSPACE-complete. We showed that this

problem is NP-hard. Currently, the upper bound is not set and we left this as an open

problem. Therefore, it would be interesting to see if the problem is in NP or in PSPACE.

Moreover we believe that proposing heuristics for these problems are also important.

Secondly, as state identification components form a large portion of a CS, we studied
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strategies to reduce the length of state identification sequences. There are different kinds

of state identification sequences: Unique Input Output (UIO) sequences, Separating

Family or Distinguishing Sequences. Among others, distinguishing sequences are known

to be the most efficient state identification sequences and it has been known that the

use of distinguishing sequences allow to construct shorter CSs.

There are two types of distinguishing sequences, Preset Distinguishing Sequences

(PDS) and Adaptive Distinguishing Sequences (ADS). For a given FSM checking the

existence of a PDS is known to be PSPACE-complete and it is know that there are FSMs

whose shortest PDS is given by exponential function with the number of states of the

underlying FSM. On the other hand, there are polynomial time algorithms to construct

ADSs and the length of the ADSs is bounded by a polynomial function of the size of

the underlying FSM.

The standard ADS generation algorithm runs in polynomial time but not guaranteed

to compute the minimum cost ADS. As an ADS defines a tree, the “cost” may not be

immediately clear. In this thesis, we introduced several problems related to minimizing

ADSs and we showed that all these problems are hard to solve and hard to approxi-

mate. We introduced several modification strategies for the exiting ADS construction

algorithm and also proposed a heuristic approach for constructing reduced cost ADSs.

We further performed a set of experiments and reveal what one can gain if one use

reduced cost ADSs while constructing CS. We revealed that it is possible to reduce the

length of CS by 29.2% on the average.

Although distinguishing sequences are important and reduce the cost of CS, not all

FSMs have a distinguishing sequence. For such cases instead of a CS a CE (set of

input sequences) are applied and used to detect fault. For a given FSM with no DS,

state identification problem can be solved by using either UIOs or Separating Family or

enhanced version of separating family called Harmonized State Identifiers. In this thesis,

we introduce the notion of Incomplete Distinguishing Sequences and show how to use

these sequences while constructing CEs. The motivation of this research comes primarily

from the desire to establish a tactic of utilizing desired properties of distinguishing

164



sequences. In order to achieve this, we first investigate the hardness of constructing such

incomplete distinguishing sequences and show that construction of such sequences are

PSPACE-complete. Moreover, we introduce a heuristic approach that aims to construct a

set of incomplete distinguishing sequences with reduced cardinality. We experimentally

showed that the use of incomplete distinguishing sequences give rise to construct shorter

checking experiments.

Finally, in this thesis we studied the computational complexity of constructing distin-

guishing sequences for distributed testing. In distributed testing the underlying FSM has

a finite set of ports (multi–port FSMs MPFSM) and each port is controlled by distinct

tester. Moreover, the testers are assumed to be disconnected, that is, testers do not have

a capability of using any form of communication method which means that no tester has

the capability of acquiring the global trace of the underlying MPFSM. This restricted

observation power of testers, necessarily change the nature of testing. Such restrictions

introduces Controllability and Observability problems. Controllability problem refers

to the condition in which a tester cannot decide whether it should apply an input by

evaluating its local trace. Observability problem refers to the condition in which the

testers cannot detect the faults of the implementation by analysing their local traces.

Controllability and observability problems reduce the effectiveness of fault detection se-

quences designed for single–port FSMs. Similarly, these problems invalidate the state

identification capabilities of distinguishing sequences. However, distinguishing sequences

are still desirable for constructing fault detection experiments for MPFSMs. The for-

mal definition of distinguishing sequences and the undecidability results for constructing

distinguishing sequences for distributed testing has been set. However the hardness of

computing and the definitions of controllable distinguishing sequences have not been

addressed. In this thesis, we define what it means for a distinguishing sequence to be

a controllable and investigate the hardness of constructing such sequences. The results

are disappointing, they are all hard problems and the bounds for these sequences have

not been set yet. We propose a subclass of MPFSMs for which constructing a PDS

is decidable. As a future work it would be interesting to set bounds for controllable
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distinguishing sequences for MPFSMs.
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Appendix A
Lemma 5 Let (U,C) be an instance of a Set Cover problem and C ′ = {c1, c2, . . . , cm}

be a cover. Then the sub-automaton F(U,C)|Σ̄ is synchronizable, where Σ̄ = {xi|ci ∈ C ′}.

Proof 1 Consider F(U,C) as defined above. If C ′ = {c1, c2, . . . , cm} is a cover, we

claim that for w = x1x2 . . . xm, we have δ(Q,w) = {S}, hence w is a reset word for

F(U,C). This is evident from the fact that, for any u ∈ U , there exists a c ∈ C ′ such

that u ∈ c (since C ′ is a cover). For a u ∈ U , let xi be the first input symbol in w

such that u ∈ ci. In this case, δ(qu, x1x2 . . . xi−1xixi+1 . . . xm) = δ(qu, xixi+1 . . . xm) =

δ(Sink, xi+1 . . . xm) = Sink. Now consider, F(U,C)|Σ̄ where Σ̄ = {x1, x2, . . . , xm}. Note

that F(U,C) is a CSA, and therefore so is F(U,C)|Σ̄. The sequence w = x1x2 . . . xm is

defined at all states of F(U,C)|Σ̄ and therefore is a reset word for F(U,C)|Σ̄.

Lemma 6 Let Σ̄ = {x1, x2, . . . , xm} be a subset of alphabet of F(U,C) such that F(U,C)|Σ̄
is synchronizable. Then C ′ = {c1, c2, . . . , cm} is a cover.

Proof 2 Let w = x1x2 . . . xk be a reset word for the synchronizable CSA F(U,C)|Σ̄.

Since δ(Sink, w) = Sink, we must have δ(q, w) = Sink for all qu ∈ Q \ {Sink}. Due

to the structure of the transition function δ, we can divide w as w = w′xiw
′′ such that

δ(qu, w
′) = qu and δ(qu, xi) = S. This implies that u ∈ ci.

Theorem 1 Given a synchronizable CSA A = (Q,Σ, δ) and a constant K ∈ Z+, it

is NP-complete to decide if there exists a set Σ̄ ⊆ Σ such that |Σ̄| < K and A|Σ̄ is

synchronizable.

Proof 3 The proof is trivial using Lemma 5 and Lemma 6, and using the fact that Set

Cover is NP-complete.

Theorem 2 MSS–Problem is NP-complete.

Proof 4 MSS is obviously in NP. Note that a special case of MSS is where we have

the cost function W assigning costs to the input symbols is a constant function. Using

Theorem 1, this special case is NP-complete, hence so is MSS.
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Lemma 7 Let OPTsc is the size of minimum cover for the Set Cover problem in-

stance (U,C), and let OPTΣ̄ is the size of minimum cardinality input alphabet such that

F(U,C)|Σ̄ is synchronizable. Then OPTsc = OPTΣ̄.

Proof 5 The proof is trivial using using Lemma 5 and Lemma 6.

Theorem 3 MSS–Problem does not admit an o(log n) approximation algorithm unless

P = NP.

Proof 6 Consider again the special case of MSS–Problem where we have the function

W as a constant function. Suppose that P 6= NP and there exists a polynomial time

algorithm P which returns an o(log n) approximation for MSS–Problem. Therefore for

given Set Cover problem instance (U,C), one can construct automaton F(U,C)|Σ̄, and

using P, can obtain a solution Σ̄ ⊆ Σ. In this case, Lemma 5, Lemma 6 and Lemma 7

together imply that Σ̄ defines a solution C ′ for (U,C) which is also an o(log n) approx-

imation for the Set Cover problem instance (U,C), which we know to be impossible

when P 6= NP.

Lemma 8 MSS–Problem for PSA is in PSPACE.

Proof 7 For a given subset Σ̄ of Σ, A|Σ̄ is either a CSA or a PSA. In either case, we

know checking if A|Σ̄ is synchronizable can be performed in PSPACE. Using a nondeter-

ministic Turing Machine, one can try all possible subsets Σ̄, and hence the problem can be

solved in NPSPACE. Using Savitch’s Theorem [123], we conclude that the MSS–Problem

for PSAs is in PSPACE.

Lemma 9 MSS–Problem for PSA is PSPACE-hard.

Proof 8 We will reduce from the problem of checking if a PSA is synchronizable or

not, which is known to be PSPACE-hard. Let A = (Q,Σ, δ) be a PSA. Suppose that we

construct a PSA A′ = (Q,Σ∪{a}, δ′), where ∀q ∈ Q, x ∈ Σ, δ′(q, x) = δ(q, x). However,

for the input symbol a, δ′ is defined in such a way that |δ′(Q, a)| = 1 (that is A′ is

synchronizable by the sequence w = a). Let us define W : Σ ∪ {a} → Z+ as ∀x ∈ Σ,
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W (x) = 0, and W (a) =∞. We then consider an instance of MSS–Problem for PSA A′

with K = 0. Note that, this instance of the MSS–Problem has a solution iff the original

PSA A is synchronizable. Therefore, MSS–Problem for a PSA is at least as hard as

deciding if a PSA is syncrhonizable.

Theorem 4 MSS–Problem for PSA is PSPACE-complete.

Lemma 10 ESW–SA problem is PSPACE-hard.

Proof 9 Let us consider a non–deterministic Turing Machine which starts with the

state configuration π0 = (Q̄0, Q̂0) = (Q̄, Q̂). At each step where we have the state

configuration πi = (Q̄i, Q̂i), we pick an input symbol x ∈ Σ randomly, and compute the

next state configuration πi+1 as πi+1 = (δ(Q̄i, x), δ(Q̂i, x)). If δ(Q̄i, x) ∩ δ(Q̂i, x) 6= ∅ the

algorithm stops the search. Otherwise, if δ(Q̄i, x) ⊆ F , the algorithm reports success.

If this is not the case, the algorithm picks another random input symbol to proceed with

the search. Since the maximum length L of an exclusive synchronizing sequence is less

than 2n, the algorithm can stop after executing at most L steps. The space needed to

count the number of steps and handling the bookkeeping for the state configurations is

polynomial in n. Therefore, the entire search in this way can be performed in NPSPACE.

Based on Savitch’s Theorem [123], ESW–SA problem is in PSPACE as required.

Lemma 11 ESW–SA problem is in PSPACE.

Theorem 5 ESW–SA problem is PSPACE-complete.

Lemma 12 Let A′ be a subset of A where automata in A′ has a common word and |A′|

is maximized. Also let Q̄′ be a subset of states Q̄ of A, where there exists an exclusive

synchronizing word for Q̄′ to F and |Q̄′| is maximized. Then |Q̄′| = |A′|.

Proof 10 Let w ∈ Σ? be a common word for all the automata in A′. Let Q̄′′ be the set of

states in Q̄ in A, consisting of the initial states of automata in A′. Using the reduction

from FA–INT to ESW—SA, δ(Q̄′′, RwS) ⊆ F and δ(Q̂, RwS) = Sink, as explained in

the proof of Lemma 10. Therefore, when one considers a maximum cardinality subset Q̄′
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of Q̄ for which there exists an exclusive synchronizing sequence, we have |Q̄′| ≥ |Q̄′′| =

|A′|.

Reversely, consider a maximum cardinality subset Q̄′ of Q̄ for which there exists an

exclusive synchronizing sequence w. Again, as explained in the proof of Lemma 10,

w is in the form w = Rw′S, and w′ is a common word for the subset A′′ of set of

automata A, where an automaton Ai ∈ A′′ iff the initial state of Ai is in Q̄′. When one

considers a maximum cardinality subset A′ of A for which there is a common word, we

have |A′| ≥ |A′′| = |Q̄′|.

This implies that |A′| = |Q̄′|, when maximum cardinality subsets are considered.

Theorem 6 There exists a constant ε > 0 such that approximating Max ESW–SA

problem within ratio nε is PSPACE-hard.

Proof 11 Let us assume that there exist an efficient algorithm P that approximates

Max ESW–SA Problem within ratio nε. In this case, we can convert any given MAX

FA-INT problem instance to automaton A and use algorithm P on A. Relying on

Lemma 12, the solution will also be an approximation for Max FA-INT instance for

the set of automata A, which directs us to the required contradiction.

Lemma 13 Let (U,C) be an arbitrary Exact Cover problem instance, then the states

of the automaton F(U,C) admits a linear order for all input symbols in set Σ.

Proof 12 We claim that the state set Q admits the following linear order S < q0
1 <

q1
1 < q0

2 < q1
2 < · · · < q0

|U | < q1
|U |. First consider the input symbol X, from the reduction

F, it is clear that the input X resets all states at the respective base states. Therefore

for input symbol X we have:

δ(S,X) ≤ δ(q0
1, X) ≤ δ(q1

1, X) ≤ δ(q0
2, X) ≤ . . . ≤ δ(q0

|U |, X) ≤ δ(q1
|U |, X)

The input symbol Y resets all the satellite states at S state and is defined only at these

states. Therefore, we have:
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− ≤ − ≤ δ(q1
1, Y ) ≤ − ≤ δ(q1

2, Y ) ≤ · · · ≤ − ≤ δ(q1
|U |, Y )

where − denotes the cases where Y is not defined.

Finally consider the input symbols in Σ \ {X, Y }, which are only defined at some base

and satellite states. Let qai and qbj be two states such that qai < qbj and x ∈ Σ \ {X, Y } be

an input symbol defined at both qai and qbj . When i < j, δ(qai , x) = qa
′
i and δ(qbj , x) = qb

′
j .

Since i < j, we have qa
′
i < qb

′
j , or equivalently δ(qai , x) < δ(qbj , x). When i = j, then we

must have δ(qai , x) = qai and δ(qbj , x) = qbj . Again in this case, we have qai < qbj , and thus

δ(qai , x) < δ(qbj , x).

Theorem 7 Synchronizability Problem for PSMA is NP-hard.

Proof 13 We first show that if there exists a solution to the Exact Cover problem

instance (U,C), then automaton F(U,C) is synchronizable.

Let (U,C) has a solution with C ′ = {c1, c2, . . . , c`}. i.e. ci, cj, 1 ≤ i, j,≤ `, i 6= j the

followings hold: (1)ci ∩ cj = ∅ (2)
⋃

1≤i≤` ci = U .

First, we must observe that there exist single input symbol (X) that is defined at all

the states. Therefore any synchronizing sequence of F(U,C) must begin with the input

X, which leaves us with the set of all base states. Since C ′ is an exact cover, after input

symbol X the application of the input sequence x1x2 · · ·x` will leave us with the set of

all satellite states. Therefore Xx1x2 · · · x`Y resets F(U,C) at S as required.

Conversely if automaton F(U,C) is synchronizable then there exists a solution to the

corresponding Exact Cover problem instance.

Let w be a rest word for machine F(U,C). We, without loss of generality, assume that

w is minimal, i.e. no prefix and no suffix of w is a reset sequence. For such a minimal

reset sequence w, it must be in the form w = Xw′Y , where w′ has no occurrence of X

and Y .

We will prove that w′ = x1x2 · · ·x` defines an exact cover C ′ = {c1, c2, . . . , c`} for

(U,C).
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Since Xw′Y is a reset sequence, for any u ∈ U , δ(q0
u, w

′) = q1
u. This is only possible if

there exists a unique input symbol xi in w′ such that w′ = w′1xiw
′
2 where δ(q0

u, w
′
1) = q0

u,

δ(q0
u, xi) = q1

u, δ(q1
u, w

′
2) = q1

u. When δ(q0
u, xi) = q1

u, this due to the fact that u ∈ ci.

Therefore, w′ gives a unique ci for each u ∈ U such that u ∈ ci. Hence if w′ = x1x2 · · ·x`,

then we have C ′ = {c1, c2, . . . , c`} as an exact cover.

Theorem 8 Synchronizing Word Problem and Minimum Synchronizing Word

Problem for a PSMA are NP-hard problems.

Lemma 14 Let B be an arbitrary N–Queens puzzle instance, the states Q of the au-

tomaton F(B) admits a linear order.

Proof 14 First note that the automaton F(B) is not strongly connected. The automaton

consist of N2 set of states where each set has 3 states of the form Qi,j = {q0
i,j, q

+
i,j, q

−
i,j}.

For two different set of states Qi,j and Qi′,j′, the set of states are disjoint and not

reachable from one another. Therefore the ordering between a state q ∈ Qi,j and a state

q′ ∈ Qi′,j′ is not important, i.e. any ordering between q and q′ works. On the other hand,

for a given state set Qi,j, we define the order between the states as q−i,j < q0
i,j < q+

i,j. Due

to the transition structure of F(B), for any input symbol xk,l, we have the following

cases:

• If k = i, l = j then δ(q−i,j, xk,l) = q−i,j < δ(q0
i,j, xk,l) = q+

i,j = δ(q+
i,j, xk,l) = q+

i,j.

• If (k, l) attacks (i, j) then δ(q−i,j, xk,l) = q−i,j = δ(q0
i,j, xk,l) = q−i,j < δ(q+

i,j, xk,l) = q+
i,j.

• Otherwise, then δ(q−i,j, xk,l) = q−i,j < δ(q0
i,j, xk,l) = q0

i,j < δ(q+
i,j, xk,l) = q+

i,j.

In each case, the monotonicity condition is met by using the linear order suggested and

the result follows.

Lemma 15 Let w ∈ Σ? be a reset word that resets N + N2 states of the automaton

F(B) at F . Then w defines a solution for the N–Queens puzzle instance B.
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Proof 15 Consider that w resets N +N2 states at F = Q+. Note that δ(Q+, w) = Q+

and |Q+| = N2. Since δ(Q−, w) = Q−, the remaining N states reaching to F must be

from the board states in Q0.

We will first show that there are exactly N effective input symbols in w. For an

effective input xi,j in w, we have w = w′xi,jw
′′ and δ(q0

i,j, w
′) = q0

i,j. Based on the

transition structure of F(B), we then have δ(q0
i,j, w

′xi,j) = q+
i,j, which means one more

state in F . Since, we need to accumulate N such states in F , there must be exactly N

effective input symbols in w.

Let us consider two different effective input symbols xi,j and xk,l in w. Without loss

of generality, assume that we have w = w′xi,jw
′′xk,lw

′′′. Since xk,l is an effective input,

δ(q0
k,l, w

′xi,jw
′′) = q0

k,l. This implies that (k, l) does not attack (i, j) (or vice versa since

“attacks” relation is symmetric). This means that the indices of N effective inputs in w

gives N board positions for N queens that do not attack each other.

Lemma 16 Let {(i1, j1), (i2, j2) , . . . , (iN , jN)} be a solution to the N–Queens puz-

zle. Then set of positions (i1, j1), (i2, j2) , . . . , (iN , jN) defines a solution for the KFW–

NSMA Problem for automaton F(B).

Proof 16 Let us consider the input sequence w = xi1,j1xi2,j2 · · ·xiN ,jN . We claim that w

resets N +N2 states in F = Q+.

For any prefix w′xip,jp of w, we have δ(q0
ip,jp , w

′) = w′. This is due to the fact that

(ip, jp) is not attacked by any other position. Therefore xip,jp is an effective input, hence

the application of xip,jp after w′ moves the state q0
ip,jp to q+

ip,jp
. After executing these

N effective inputs, we will have N of the states in Q0 moved into Q+. Since also

δ(Q+, w) = Q+ and |Q+| = N2, the result thus follows.

Theorem 9 KFW–NSMA Problem is NP-hard.

Proof 17 Based on the reduction given above, Lemma 15 and Lemma 16, the result is

immediate.

Theorem 10 MFW–NSMA Problem is NP-hard.
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Appendix B

Lemma 17 An input xz ∈ XZ cannot appear as the label of an internal node p in an

ADS A of MD.

Proof 18 Using Lemma 3, |δ(Sp̄v/p̄e , p̄v)| > 1. Lemma 4 requires that pv be a valid input

for δ(Sp̄v/p̄e , p̄v). However, xz is not valid for any set of states since for any two states

s and s′, λ(s, xz) = λ(s′, xz) = 2 and δ(s, xz) = δ(s′, xz) = sz.

Lemma 18 Given a decision tree T for D, there exists an isomorphic ADS A for MD.

Proof 19 We construct an isomorphic ADS A by changing the label of an internal node

t to xt, and by changing the label of a leaf node from z to sz, and by keeping the edge

labels intact.

It is easy to see that conditions (1)–(4) of Definition 2 are satisfied by A. To show

that Condition (5) of Definition 2 also holds, let p be a leaf node labeled by sz in A,

let p̄v = xti1xti2 . . . xtik and p̄e = ȳ. Also consider the path from the root to the leaf

labeled by z in T . Due to the construction of A from T , the sequence of node la-

bels along this path is ti1ti2 . . . tik and the sequence of edge labels is again ȳ. Using

Lemma 17, we have ȳ = ti1(z)ti2(z) . . . tik(z). Then λ(sz, p̄v) = λ(sz, xti1xti2 . . . xtik ).

Since sz has self-looping transitions for input symbols in XT , λ(sz, xti1xti2 . . . xtik ) =

λ(sz, xti1 )λ(sz, xti1 ) . . . λ(sz, xtik ). Using the properties of the mapping β, this sequence

is ti1(z)ti2(z) . . . tik(z) = ȳ.

Lemma 19 Given an ADS A for MD, there exists an isomorphic decision tree T for

D.

Proof 20 Lemma 18 implies that all the internal nodes have their labels from XT . This

also implies that there is no edge in A labeled by the output symbol 2.

We construct an isomorphic decision tree T by changing the label of an internal node

xt to t, and by changing the label of a leaf node from sz to z, and by keeping the edge

labels intact. It is easy to see that Condition (1) and Condition (2) of Definition 18 are
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satisfied by T . Since A is always branching, and since output symbol 2 cannot appear in

A, Condition (3) of Definition 18 is also satisfied.

For Condition (4) of Definition 18, let p be a leaf node in T labeled by an object z,

and p′ be an internal node on the path from the root to p, and let t be the label of p′. Let

q and q′ be the corresponding nodes in A for p and p′ respectively. Note that the label

of q must be sz and the label of q′ must be xt. If q is in the 0-successor (respectively

1–successor) of q′, then by Lemma 1 we have λ(δ(sz, q̄
′
v), xt) = λ(sz, xt) = t(z) equal to

0 (respectively 1). Using this result and the isomorphic structure of A and T , we can

conclude if p is in the 0–successor of (respectively 1–successor) of q′, then t(z) is equal

to 0 (respectively 1).

Theorem 11 The decision version of the problems MinADS, MinHeightADS, and

MinSDS are NP-complete.

Proof 21 It is known that if an FSM M has an ADS, there is an ADS A for M where

the size of A is polynomial in the size of M [35, 99]. Therefore the cost for MinADS,

MinHeightADS, and MinSDS problems can be computed in polynomial time. Hence

the problems are in NP.

Note that MinDT [100], MinHeightDT [101], MinPathDT [102] problems are

NP-hard. Since the problems MinADS, MinHeightADS, MinSDS are at least as

hard, they are also NP-hard.

MinADS is a special case of MinWeightedADS (when ws = 1 for all states s).

Therefore the following result holds.

Theorem 12 The decision version of the problem MinWeightedADS is NP-complete.

Theorem 13 For any constant c > 0, it is NP-hard to approximate MinADS and

MinWeightedADS problems within a ratio of (2− c).

Proof 22 For any constant c > 0, it is NP-hard to approximate MinDT problem within

a ratio of (2 − c) [103, 104] 1, hence the same inapproximability result applies to Mi-

1MinDT problem is referred to as 2-UDT problem in [103, 104].
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nADS problem. Also, since MinADS is a special case of MinWeightedADS, this

inapproximability result immediately applies to MinWeightedADS problem as well.

Theorem 14 Unless P = NP, there cannot be an o(log n) approximation for Min-

HeightADS and MinSDS problems.

Proof 23 Unless P = NP, there cannot be an o(log n) approximation for MinHeightDT

and MinPathDT problems [105, 102]. Hence this result applies to MinHeightADS

and MinSDS problems as well.

Proposition 3 Let q be an output node in T , let io(q) = w/v. Then we have bl(q) =

δ(Sw/v, w).

Proof 24 The proof is trivial by using induction on the depth of q.

Proposition 4 |L|+
∑

q∈Q |bl(q)| = |S| is an invariant of Algorithm 1 before and after

every iteration the while loop.

Proof 25 Before the first iteration, |L| = 0 and Q only has the root node q0 for which

we have bl(q0) = S. In an iteration of the algorithm, an output node q is removed from Q

and a child (input) node p of q is selected. It is sufficient to observe two facts. First, each

state s ∈ bl(q) is represented by a state s′ ∈ bl(q′) where q′ is a child of p, s′ = δ(s, in(p))

and out(q′) = λ(s, in(p)). Second, no two states s1, s2 ∈ bl(q) can be represented by the

same state s′ in the same child q′, since in(p) is a valid input for the states in bl(q).

Therefore, when we consider all children q′ of p, we have
∑

q′ |bl(q′)| = |bl(q)|. Those

children q′ of p with |bl(q′)| = 1 are included in L, and those children q′ of p with

|bl(q′)| > 1 are included in Q. Hence the result follows.

Proposition 5 Let q be an output node in T with |bl(q)| = 1, and let w/v = io(q).

There exists a unique state s ∈ S such that λ(s, w) = v.

Proof 26 Suppose s and s′ are two distinct states such that λ(s, w) = λ(s′, w) = v.

By Proposition 3, we would then have δ(s, w) and δ(s′, w) in bl(q). Since |bl(q)|, this

implies δ(s, w) = δ(s′, w). This is not possible since at each step a valid input is applied,

therefore no two states can be merged into a single state.
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Proposition 6 The leaves of A constructed by Algorithm 2 is labeled by distinct states.

Proof 27 Assume that there are two leaf nodes q′1 and q′2 in A such that they are both

labeled by the same state s. Let q1 and q2 be the leaf (output) nodes in T that correspond

to q′1 and q′2. Let w1/v1 and w2/v2 be the input/output sequences io(q1) and io(q2). In

this case, we would have λ(s, w1) = v1 and λ(s, w2) = v2. However, this is not possible

since M is deterministic.

Theorem 15 A constructed by Algorithm 2 is an ADS.

Proof 28 A has n = |S| leaves as implied by Corollary 1. We will argue that A satisfies

the conditions of Definition 2. Condition (i) is satisfied as shown by Proposition 6. Con-

dition (ii) and Condition (iii) are easily satisfied due to the construction in Algorithm 2.

Condition (iv) is satisfied due to the fact that in T , for an input node p, each child q

of p has a distinct output symbol out(q). Lines 5–8 of Algorithm 2, assigns the label of

leaves in such a way that Condition (v) is satisfied (see Proposition 5).
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Appendix C
Lemma 20 Let us suppose that set A = {A1, A2, . . . , Az} of automata have a common

alphabet Σ. The FSM M1(A) = (S,X, Y, δ, λ, s0) has a PDS for S̄ = {01
1, 0

2
1, . . . , 0

1
z, 0

2
z}

if and only if there is a non-empty word w ∈ Σ? that is accepted by all of the automata

(in which case ωD is such a PDS).

Proof 29 First, let us suppose that ω 6= ε is in the intersections of the languages of the

Ai and consider w = ωD. By construction, ω distinguishes any two 0αi and 0βj with i 6= j

since ω ∈ Σ? is non-empty, the output in response to an element of Σ identifies the state

of the corresponding Ai, and the state sets of the Ai are pairwise disjoint. Further, if we

consider states 01
i and 02

i we find that ω takes them to accepting states from Fi and then

D leads to different outputs (1 and 2). Thus, if there is some non-empty ω ∈ Σ? in the

intersections of the languages of the Ai then M1(A) has a PDS ωD for S̄.

We now prove that ifM1(A) has a PDS for S̄ then there is some non-empty ω ∈ Σ? in

the intersections of the languages of the Ai. We can observe that in order to distinguish

states 01
i and 02

i it is necessary to apply input D but also that after D has been applied the

state must be in {Sink1, Sink2} and further input cannot distinguish the states. Thus

there is a PDS for S̄ if and only if there is a PDS for S̄ that has the form w = ωD

where ω ∈ Σ? and we now consider such a PDS.

Now let us suppose that δ(01
i , ω) /∈ F 1

i for some 1 ≤ i ≤ z. Then δ(δ(01
i , ω), D) = Sink1

and similarly δ(δ(02
i , ω), D) = Sink2 and it is clear that λ(01

i , ωD) = λ(02
i , ωD). This

contradicts ωD being a PDS for S̄. Therefore w must be in the form w = ωD such that

ω is non-empty and brings all the initial states to accepting states. Thus, if M1(A) has

a PDS for S̄ then there is some non-empty ω ∈ Σ? in the intersections of the languages

of the Ai.

Lemma 21 The problem of deciding whether a set S̄ of states of FSM M has a PDS

is in PSPACE.

Proof 30 We will show that a non-deterministic Turing Machine can solve this using

polynomial space. Such a machine will guess inputs one at a time. It will maintain

178



the set π of pairs of states and equivalence relation r as described above and this uses

polynomial space. After guessing a new input x and updating π and r the machine

checks whether the input sequence received defines a PDS for S̄: this it the case if and

only if r relates no two different states of S̄. Thus, if M has a PDS for S̄ then this

non-deterministic Turing Machine will find such a PDS using polynomial space.

We now have to consider the case where M does not have a PDS for S̄: we require

that the non-deterministic Turing Machine terminates. In order to ensure this we use

the result that if M has n states and S̄ has m states then M has a PDS for S̄ if and only

if it has such a PDS with length at most B = (m− 1)nm [21]2. The non-deterministic

Turing Machine therefore includes a counter that counts how many inputs have been

received: the machine terminates with failure if the counter exceeds the upper bound.

We require additional O(log2B) = O(log2(m− 1) +m log2(n)) = O(m log2(n)) space for

the counter and so the space required is still polynomial.

We have defined a non-deterministic Turing Machine that requires only polynomial

space in order to solve the problem and so the problem is in non-deterministic PSPACE.

We can now use Savitch’s Theorem [123], which tells us that a problem is in PSPACE if

and only if it is in non-deterministic PSPACE, and the result follows.

Lemma 22 Given set A of automata, let OPTA be the set of minimal words that are

accepted by the maximum number of automata from A. Further, given M1(A) let

OPTM1(A) be the set of minimal words that maximise the size of the subset of S̄ whose

states are pairwise distinguished. Then w ∈ OPTA if and only if wD ∈ OPTM1(A).

Theorem 16 The MaxSubSetPDS problem is PSPACE-complete and for any con-

stant ε > 0 approximating the MaxSubSetPDS problem within ratio nε is PSPACE-hard.

Proof 31 The problem being PSPACE-hard follows from Lemma 23 and the MAX FA-

INT problems being PSPACE-hard. To see that this problem is in PSPACE, first observe

that it is sufficient to prove that the following problem is in PSPACE: for 1 ≤ k ≤ n

2In [21], Gill presents this result on pg: 104, Theorem 4.3. Note that Gill named the set S̄ as the

Admissible Set i.e. the initial states of the underlying FSM.
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decide whether there is a PDS that distinguishes k states of the FSM M . We can show

that this is in PSPACE in a similar manner to Lemma 22, the only differences being that

in a first step the non-deterministic Turing Machine guesses the set S̄ ′ of k states.

To prove that the problem of approximating the MaxSubSetPDS is PSPACE-hard, let

us assume that we have an algorithm P that belongs to a complexity class C < PSPACE

and returns an nε approximation for the MaxSubSetPDS Problem. In such a case,

given an instance A of the MAX FA-INT problem, we can construct FSM M1(A) and

using P we can obtain a solution w = ωD. But then Lemma 23 implies that ω defines

an approximation for A and hence P defines an nε approximation for the MAX FA-INT

problem. Thus the result follows.

Theorem 17 The MinSetPDS problem is PSPACE-complete.

Proof 32 We first prove that the problem is in PSPACE. Observe that in PS we require

at most one set for each pair of states of M and so if M has state set S then the set PS

of subsets has size at most |S|(|S| − 1).

It is therefore sufficient to show that we can solve the problem of trying to find a set k

of subsets where each subset corresponds to a PDS (1 ≤ k ≤ |S|(|S| − 1)); if we can do

this then a Turing Machine could start with k = |S|(|S| − 1) and then reduce k step by

step until a set is found. Given k, a non-deterministic Turing Machine can thus initially

guess such a set PS of k subsets and for each such set S ′ ∈ PS the Turing Machine tries

to build a PDS that distinguishes all of the states in S ′. As before, for a given set S ′

the process terminates when the upper bound on PDS length is exceeded or the PDS

being built is sufficient. Since this can be performed in polynomial space we have that

the result follows from Savitch’s Theorem [123].

To see that the problem is PSPACE-hard it is sufficient to observe that M has a complete

PDS if and only if it has a set PS that satisfies the conditions of the MinSetPDS

problem and contains only one set. The result therefore follows from the complete PDS

problem being PSPACE-hard [35].

Lemma 23 Let us suppose that set A = {A1, A2, . . . , Az} of automata have a common

180



alphabet Σ. The FSMM2(A) = (S,X, Y, δ, λ, s0) has an ADS for S̄ = {01, . . . , 0z, Sink}

if and only if there is a non-empty word w ∈ Σ? that is accepted by all of the automata

(in which case input sequences wd1, wd1d2, wd1d2d3, . . . , wd1d2d3 . . . dz define an ADS).

Proof 33 We first show that if w is accepted by all the automata then input sequences

wd1, wd1d2, wd1d2d3, . . . , wd1d2d3 . . . dz define an ADS for S̄. Since w is accepted by

all the automata, input sequence w will take any initial state 0i to an accepting state.

We show that wd1d2 . . . dj distinguishes states 0i, 0j for any 1 ≤ i 6= j ≤ z. This follows

from the fact that at state δ(0j, w) the FSM will not change its state, will produce 0

when any input from set D \ {dj} is applied, and will produce j as output if input dj is

applied. It is clear also that this word distinguishes all 0j from Sink since it will lead to

the output j being produced from 0j but not from Sink. Therefore, if there exists a word

w that is accepted by all the automata, then FSM M2(A) has an ADS for set S̄ in the

form of wd1, wd1d2, wd1d2d3, . . . , wd1d2d3 . . . dz.

Now assume that machine M2(A) has an ADS for S̄ and we are required to prove that

there is some w ∈ Σ in the intersections of the languages of the automata. Let us suppose

that from S̄ the ADS applies input sequence w and then input x such that the response

to w does not distinguish any two elements of S̄ but the response to wx distinguishes two

or more states of S̄. Then the input of x after w must lead to different outputs for two

or more states in S̄ and so we must have that x ∈ D. Further, the input of w in any

state of S̄ leads to a sequence of zeros since this is the response to any input sequence

when in state Sink. If w does not take some 0j to a final state then wx takes 0j to

state Sink producing only zeros as output and so the ADS does not distinguish 0j from

Sink ∈ S̄. Thus, w must take each Ai to a final state and so by definition we have that

w ∈ Σ? and w is in the languages defined by all of the Ai and so the result holds.

Lemma 24 Given FSM M and state set S̄, the problem of deciding whether S̄ has an

ADS is in PSPACE.

Proof 34 We will show that a non-deterministic Turing Machine can solve this using

polynomial space. Such a machine will operate through a sequence of steps, extending
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the depth of the ADS by one in each step. It will maintain a set π of pairs of states and

equivalence relation r as in the proof of Lemma 22 and again this uses polynomial space.

As before, we start with π = {(s, s)|s ∈ S̄}. In each step, if (s, s′) ∈ π then the current

‘guess’ takes s to s′ and (s, s′) ∈ r if and only if the current ‘guess’ does not distinguish s

and s′. A step involves the non-deterministic Turing Machine guessing a next input for

each equivalence class of r and updating π and r accordingly. The machine also checks

whether an ADS has been defined for S̄: this it the case if and only if r relates no two

different states of S̄. Thus, if M has an ADS for S̄ then this non-deterministic Turing

Machine will find such an ADS using polynomial space.

Similar to before, we now have to consider the case where M does not have an ADS for

S̄ and require that the non-deterministic Turing Machine terminates. This is achieved

by using the result that if M has n states and S̄ has m states then M has an ADS for

S̄ if and only if it has such an ADS with length at most ` ≤ Σi=m
i=2 C

(
n
i

)
< 2n [99]3. The

non-deterministic Turing Machine thus has a counter that gives the length of the current

‘guess’ and terminates with failure if the counter exceeds the upper bound. We require

additional O(log2 `) space for the counter and so the space required is polynomial.

The non-deterministic Turing Machine requires polynomial space in order to solve the

problem and so the problem is in non-deterministic PSPACE; the result again follows

from Savitch’s Theorem [123].

Theorem 18 The MaxSubSetADS problem is PSPACE-complete.

Proof 35 The problem being PSPACE-hard follows from Lemma 24 and the MAX FA-

INT problem being PSPACE-hard. In order to see that the problem is in PSPACE, we

prove that the following problem is in PSPACE: “for 1 ≤ k ≤ n, decide whether there is

an ADS that distinguishes k states”. We can deduce that this problem is in PSPACE,

by considering the algorithm presented in Lemma 25. This time as a preprocessing

step the Turing Machine will guess a set of states S̄ with cardinality k then the Turing

Machine continues to implement the procedure that we describe in the proof of Lemma 25.

Therefore the MaxSubSetADS problem is in PSPACE.

3Theorem 1, bound (2).
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Lemma 25 Given a set A of automata, let OPTA be the set of minimal words accepted

by the maximum number of automata from A. Further, let M2(A) be the FSM con-

structed from A and also let OPTM2(A) be the set of minimal ADSs that maximise the

size of the subset of S̄ whose states are pairwise distinguished by ADSs. Then w ∈ OPTA
if and only if ADS wd1, wd1d2, . . . , wd1 . . . dz is in OPTM.

Theorem 19 For any constant ε > 0 approximating the MaxSubSetADS problem

within ratio nε is PSPACE-hard.

Proof 36 To prove that the problem of approximating MaxSubSetADS is PSPACE-hard,

we consider an algorithm P that belongs to a complexity class C < PSPACE and re-

turns an nε approximation for the MaxSubSetADS Problem. In such a case, given

a MAX FA-INT problem instance A, we can construct FSM M2(A) and using P we

can obtain a solution wd1, wd1d2, . . . , wd1d2 . . . dz. But then Lemma 26 implies that w

defines an approximation for A and hence P is also an approximation for the MAX

FA-INT problem. The result thus follows.

Lemma 26 The MinSetADS problem is in PSPACE.

Proof 37 We can show that this problem is in PSPACE by following a procedure that

is similar to the one we present in the proof of Theorem 18. As before, if the FSM M

has state set S then PS requires at most |S|(|S| − 1) sets. As a result, it is sufficient to

prove that given k the following problem can be solved in PSPACE: is there a collection

PS = {S̄1, S̄2 . . . S̄k} of subsets of S such that for every pair s, s′ of states there is some

S̄i such that s, s′ ∈ S̄i and for each S̄i (1 ≤ i ≤ k) there is an ADS that distinguishes the

states of S̄i. The Turing Machine guesses such a PS and then performs the remaining

steps for each of the S̄i separately. Clearly, this procedure takes polynomial space. The

Turing Machine will return failure when it exceeds the bound given for the maximum

depth, while if suitable ADSs are found then the Turing Machine returns success.

Lemma 27 The MinSetADS problem is PSPACE-hard.
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Proof 38 We again consider an instance A = {A1, . . . , Ak} of the FA-INT problem

with a common alphabet Σ and we construct M3(A). From Lemma 24 and the FA-

INT problem being PSPACE-hard we know that the problem of deciding whether there

is an ADS for {01, . . . , 0z, Sink} is PSPACE-hard. We will prove that any solution to

the MinSetADS problem for M3(A) also determines whether there is an ADS for

{01, . . . , 0z, Sink}.

Let us suppose that PS is a smallest set of subsets of S such that for every pair of states

s, s′ with s 6= s′ there is some S̄ ′ ∈ PS that contains both s and s′ and for every set

S̄ ′ ∈ PS there is an ADS that distinguishes the states in S̄ ′. By construction, any set

S̄ ′ ∈ PS that contains Sink and a state s ∈ S̄ \ {Sink} must correspond to ADSs that

start with st. Similarly, if S̄ ′ ∈ PS contains Sink and some s ∈ S \ S̄ then it must

correspond to ADSs that do not start with st.

We will let P ′S denote the set of subsets of PS that contain Sink and at least one state

s ∈ S̄ \ {Sink}. We will prove that there is an ADS that distinguishes all of the states

of S̄ if and only if P ′S contains only one set.

First assume that P ′S contains only one set. Thus, the one set in P ′S contains all states

from S̄ and this implies that there is an ADS for S̄ as required.

Now assume that S̄ has an ADS. By definition, no set in P ′S contains a state s 6∈ S̄ and

for all s 6∈ S̄ we have that PS \ P ′S contain a set that has both s and Sink. Thus, for

each s, s′ ∈ (S \ S̄) ∪ {Sink} with s 6= s′ we have that PS \ P ′S has a set that contains

both s and s′. As a result, it is sufficient for the sets in P ′S to contain all pairs s, s′ from

S̄ with s 6= s′. Since there is an ADS that achieves this, by the minimality of PS we

must have that P ′S contains only one set.

We now know that S̄ has an ADS if and only if P ′S contains only one set and so if we

can solve the MinSetADS problem for M3(A) then we can decide whether S̄ has an

ADS. We can now note that S̄ has an ADS if and only if the state set {01, . . . , 0z, Sink}

of M3(A) has an ADS: the ADS for S̄ in M3(A) starts with st and then applies an

ADS for state set {01, . . . , 0z, Sink} of M3(A). The result thus follows from Lemma 24

and the FA-INT problem being PSPACE-hard.
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Theorem 20 The MinSetADS problem is PSPACE-complete.

Proposition 7 Given fully distinguishing set A = {A1, . . . ,Ak} for FSM M , the Hi(A)

are state identifiers for M .

Proof 39 It is sufficient to prove that if si, sj are distinct states of M then there are

input sequences wi ∈ Hi(A) and wj ∈ Hj(A) such that there is a common prefix w of

wi and wj that distinguishes si and sj. First observe that since A is fully distinguishing

there is some Al ∈ A that distinguishes si and sj. But by definition this means that the

application of Al from si and sj leads to different input/output sequences. However, the

input sequence can only differ once a different output has been observed. Thus, Al has

a node v such that the following hold:

1. The path from the root of Al to v has a label α/β that labels paths from both si and

sj; and

2. There are edges with labels x/yi and x/yj from v with yi 6= yj such that αx/βyi

labels a path from si and αx/βyj labels a path from sj.

However, this means that w = αx is a prefix of input sequences in Hi and Hj and also

that w distinguishes si and sj. The result therefore follows.

Theorem 21 Given an FSM M and upper bound m on the number of states of the

SUT, if A is a fully distinguishing set of ADSs for M then CE(M,A,m) is a checking

experiment for M .

Proof 40 This follows from Proposition 7 and the HSI method returning a checking

experiment.

Proposition 8 Let us suppose that S̄ is a set of states of FSM M . Then the states

in S̄ can be distinguished by a single ADS if and only if there is an identifying set

{H1, . . . , Hn} for M such that we can choose subsets H ′i ⊆ Hi of each identifying set,

si ∈ S̄, under which each H ′i contains only one input sequence.
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Proof 41 First assume that the states in S̄ can be distinguished by a single ADS A.

Given state si ∈ S̄ let H ′i denote the set containing one input sequence: the input portion

of the input/output sequence produced when A is applied in state si. It is straightforward

to check that the argument used in the proof of Proposition 7 applies and so the H ′i are

state identifiers for S̄ as required.

Now let us suppose that we have state identifiers {H ′i|si ∈ S̄} for S̄ such that each H ′i

contains only one input sequence, which we call wi. Form a deterministic automaton A

that is a tree with |S̄| leaves such that for each state si ∈ S̄ the tree A has a path from the

root to a leaf such that this path has label wi/λ(si, wi). Since the H ′i define identifying

sets for S̄, for distinct states si, sj ∈ S̄ we have that the input in wi, wj can only differ

after a different output in response to a common prefix of wi, wj. Thus, A is an ADS

for S̄ as required.

Proposition 9 If the states in S can be distinguished by k ADS then there is an iden-

tifying set {H1, . . . , Hn} such that for all si ∈ S we have that Hi has at most k input

sequences.

Proof 42 We will assume that the states in S can be distinguished by a set A of k

ADSs. Given state si ∈ S̄ let Hi denote the set containing the input portion of the

input/output sequence produced when A ∈ A is applied in state si. By Proposition 7 the

Hi are state identifiers for S as required.

Lemma 28 Let n be an internal node of tree T with children n1, n2, . . . , np and let x be

the input portion of the labels of the edges from node n. The following hold:

1. δ(C(n), x) = ∪pi=1C(ni).

2. For all 1 ≤ i ≤ p we have that |λ(I(ni), x(ni))| = 1.

3. For all 1 ≤ i < j ≤ p we have that λ(I(ni), x(n)) = λ(I(nj), x(n)) and λ(I(ni), x(n)x) 6=

λ(I(nj), x(n)x).

Lemma 29 Let n, n′ be distinct leaf nodes of tree T . If s ∈ I(n) and s′ ∈ I(n′) then

λ(s, x(n)) 6= λ(s′, x(n)) and λ(s, x(n′)) 6= λ(s′, x(n′)).
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Lemma 30 Let T be a tree returned by the greedy algorithm such that N̄ = {n1, . . . , np}

is the set of leaf nodes of T . Let S̄ be a set of states such that for all 1 ≤ i ≤ p we have

that |I(ni) ∩ S̄| ≤ 1. Then T defines an incomplete ADS for set S̄.

Proof 43 We will show that T can be used to construct an incomplete ADS A for S̄.

Take a copy of tree T and for every node n remove from I(n) all states not in S̄. Now

remove all nodes with empty initial sets to form A.

Now we need to show that A is an incomplete ADS for S̄. By the construction of A,

each leaf node must be labeled by a singleton set. To see this, assume that an initial set

of a leaf node contains two or more states. Since we drop states that are not in S̄ this

implies that there exist distinct s, s′ ∈ S̄ such that s, s′ ∈ I(na) for some a, providing a

contradiction.

Moreover, it is easy to see that each internal node is labeled by a set of states, and

each edge is labeled by an input output pair. Therefore conditions (1)-(3) of incomplete

ADS given in Definition 2 are satisfied. For an internal node in A there are at most

|Y | outgoing edges and due to the refine algorithm edges from a common node have

identical input labels and different output labels. Thus, using Corollary 29, Condition

(4) of Definition 2 is satisfied. Moreover due to the Corollary 30 we can deduce that

Condition (5) of Definition 2 also holds. Therefore T defines an incomplete ADS for

S̄.
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Appendix D

Proposition 10 If a strategy µ is controllable then for every MPFSM M and state

set S ′ we have that µ is controllable for S ′. However, it is possible that strategy µ is

controllable for S ′ for some MPFSM M and state set S ′ and yet µ is not controllable.

Proof 44 The first part is immediate from the definitions. For the second part consider

a global strategy µ that:

• starts by supplying input x1 at port 1;

• if 〈o1, ε) is output then the strategy supplies input x2 at port 2 and terminates;

• for every other output the strategy terminates.

This strategy is not controllable since it should send input x2 to port 2 after x1/〈o1, ε〉 but

not after the empty sequence ε, even though x1/〈o1, ε〉 and ε have the same projections

at port 2. However, µ is controllable for any S ′ from which the input of x1 cannot lead

to output 〈o1, ε〉. The result thus follows.

Proposition 11 If global strategy µ is controllable then the distributed strategy (π1(µ), π2(µ),

. . . .πk(µ)) is deterministic.

Proof 45 We are required to prove that µ′ = (π1(µ), π2(µ) . . . .πk(µ)) is deterministic.

We will use proof by contradiction and assume that µ′ is non-deterministic. By Def-

inition 43 there therefore exists global trace σ1 ∈ (X/Y )∗ such that for all p ∈ P we

have that πp(σ1) ∈ Ev(µp) and ports p, p′ with p 6= p′ such that µp(πp(σ1)) ∈ Xp and

µp′(πp′(σ1)) ∈ Xp′. By Definition 46, there exist global traces σ and σ′ in Ev(µ) such

that:

• πp(σ) = πp(σ1) and µ(σ) = x, x ∈ Xp; and

• πp′(σ′) = πp′(σ1) and µ(σ′) = x′, x′ ∈ Xp′.
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By Definition 36, since µ is controllable and πp(σ) = πp(σ1) we must have that µ supplies

input x after σ1. Similarly, by Definition 36, since πp′(σ
′) = πp′(σ1) we must have that

µ supplies input x′ after σ1. This contradicts the definition of a global strategy, since µ

applies two different inputs after σ1, and so the result follows.

Proposition 12 It is possible that global strategy µ is controllable for S ′ but the dis-

tributed strategy (π1(µ), π2(µ), . . . πk(µ)) is not deterministic for S ′.

Proof 46 Consider a global strategy µ that initially supplies input x1 at port 1 and only

supplies another input if the output is 〈1, ε〉, in which case the input is x2 at port 2.

Further let S ′ be some set of states from which the input of x1 cannot lead to 〈1, ε〉.

Then clearly µ is controllable for S ′ since from S ′ it simply supplies x1, observes an

output, and then terminates. However, if we take the projections we find that π1(µ)

starts by supplying input x1 and π2(µ) can initially supply input x2 (since µ can supply

x2 after x1/〈1, ε〉 and π2(x1/〈1, ε〉 = ε). Thus, the distributed strategy (π1(µ), π2(µ)) is

not deterministic for S ′ as required.

Proposition 13 Given state set S ′ of an MPFSMM , if global strategy µ is controllable

for S ′ then the distributed strategy (πS
′

1 (µ), πS
′

2 (µ), . . . .πS
′

k (µ)) is deterministic for S ′.

Proposition 14 Let us suppose that µ is a controllable global strategy and for all p ∈ P

we have that µp = πp(µ). Then the distributed strategy µ′ = (µ1, µ2, . . . , µk) is such that

Ev(µ) = Ev(µ′).

Proof 47 First we prove that Ev(µ) ⊆ Ev(µ′). Proof by contradiction: assume that

there is some σ ∈ Ev(µ) \ Ev(µ′). Let σ′ denote the longest prefix of σ that is in

pre(Ev(µ′)) and so there exists an input/output pair x/y such that σ′x/y is a prefix of

σ and σ′x/y 6∈ pre(Ev(µ′)). Let p be such that x ∈ Xp. Since σ′x/y ∈ Ev(µ) we have

that µ(σ′) = x and so µp(πp(σ
′)) = x. Thus, µ′ can supply input x after σ′ and so

σ′x/y ∈ pre(Ev(µ′)), providing a contradiction as required.

Now we prove that Ev(µ′) ⊆ Ev(µ). Proof by contradiction: assume that there is some

σ ∈ Ev(µ′) \ Ev(µ). Let σ′ denote the longest prefix of σ that is in pre(Ev(µ)) and
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so there exists an input/output pair x/y such that σ′x/y is a prefix of σ and σ′x/y 6∈

pre(Ev(µ)). Let p be such that x ∈ Xp. Since σ′x/y ∈ Ev(µ′) we have that µp(πp(σ
′)) =

x. Thus, by the definition of πp(µ), there exists some σ′′ ∈ Ev(µ,M, S ′)) such that

πp(σ
′′) = πp(σ

′) and µ(σ′′) = x. However, since πp(σ
′′) = πp(σ

′) and µ is controllable we

must have that µ(σ′) = µ(σ′′). Thus, µ(σ′) = x and so σ′x/y ∈ pre(Ev(µ)), providing a

contradiction as required.

Proposition 15 Let us suppose that µ is a controllable global strategy for set S ′ of

states of MPFSM M and for all p ∈ P we have that µp = πS
′

p (µ). Then the distributed

strategy µ′ = (µ1, µ2, . . . , µk) is such that Ev(µ,M, S ′) = Ev(µ′,M, S ′).

Proposition 16 Let us suppose that MPFSMM has port set P = {1, 2, . . . , k}. If µ is

controllable and is an adaptive distinguishing sequence for M then µ′ = (π1(µ), π2(µ), . . . , πk(µ))

is an adaptive distinguishing sequence for M .

Proof 48 By Proposition 11, since µ is controllable we know that µ′ is deterministic.

In addition, by Proposition 14 we know that Ev(µ) = Ev(µ′) and so for every state s

of M we have that Ev(µ,M, s) = Ev(µ′,M, s). The result now follows from µ being an

adaptive distinguishing sequence for M .

Proposition 17 Given S ′ ⊆ S, if µ is controllable for S ′ and is an adaptive distinguish-

ing sequence for S ′ then µ′ = (πS
′

1 (µ), πS
′

2 (µ), . . . , πS
′

k (µ)) is an adaptive distinguishing

sequence for M from S ′.

Proof 49 By Proposition 13, since µ is controllable for S ′ we know that µ′ is deter-

ministic for S ′. In addition, by Proposition 15, for every state s of M we have that

Ev(µ,M, s) = Ev(µ′,M, s). The result now follows from µ being an adaptive distin-

guishing sequence for S ′.

Proposition 18 If µ is controllable and is a p-ADS for M then µ′ = (π1(µ), π2(µ), . . . , πk(µ))

is a p-ADS for M .
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Proposition 19 Given S ′ ⊆ S, if µ is controllable for S ′ and is a p-ADS for S ′ then

µ′ = (πS
′

1 (µ), πS
′

2 (µ), . . . , πS
′

k (µ)) is a p-ADS for M from S ′.

Lemma 31 The following problem is PSPACE-complete: given a single-port MPFSM

M in which no transition produces empty output, does M have a distinguishing sequence?

Proof 50 The problem being in PSPACE is a consequence of the general PDS existence

problem for single-port FSMs being in PSPACEand so we focus on proving that the prob-

lem is PSPACE-hard. We will show that any algorithm that can solve this problem can

also solve the general problem of deciding whether a single-port MPFSM has a distin-

guishing sequence. Let M = (S, s0, X, Y, δ, λ) be a single-port MPFSM in which some

transitions may have output ε. We construct an MPFSM M ′ = (S, s0, X, Y ∪{y}, δ, λ′)

where y 6∈ Y is a new output and the function λ′ is defined by: given s ∈ S and x ∈ X,

if λ(s, x) 6= ε then λ′(s, x) = λ(s, x) and otherwise λ′(s, x) = y. It is now sufficient to

observe that an input sequence is a distinguishing sequence for M if and only if it is a dis-

tinguishing sequence for M ′. The result now follows from the problem of deciding whether

a single-port MPFSM has a distinguishing sequence being PSPACE-complete [35].

Proposition 20 The following problem is PSPACE-hard: given a multi-port MPFSM

M , is there a controllable PDS that distinguishes all of the states of M? In addition,

this result still holds if we restrict attention to MPFSMs that have two ports.

Proof 51 Assume that we have been given a single-port MPFSMM1 = (S, s0, X, Y, δ, λ)

such that all of the transitions of M1 have non-empty output. We will construct a multi-

port MPFSM M that has two ports 1 and 2. The state set of M will be S and the initial

state will be s0. Port 1 will have input alphabet X1 = X and output alphabet Y1 = ∅.

Port 2 will have input alphabet X2 = ∅ and output alphabet Y2 = Y . Given state s and

input x such that δ(s, x) = s′ and λ(s, x) = y, we will include in M the transition from

s to s′ that has input x ∈ X1 and produces output 〈ε, y〉.

Now consider controllable PDSs for M . First observe that all input sequences are con-

trollable. In addition, since no output is produced at port 1, the restriction that no input
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can follow a difference in output is always satisfied. Thus, we can consider all input

sequences. Finally, an input sequence distinguishes two states of M if and only if it

distinguishes two states of M1. Thus, an input sequence is a controllable PDS for M if

and only if it is a PDS for M1. The result now follows from Lemma 32.

Corollary 3 There is a class of MPFSMs where the shortest PDS is of exponential

length.

Proof 52 Consider a single-port MPFSM that has a PDS with exponential length [35],

now reapply the reduction given in Proposition 20.

Proposition 21 The problem of deciding whether a MPFSM has a p-PDS is PSPACE-hard.

Proof 53 Given a single-port MPFSM M that has no transitions with output ε, we

construct the multi-port MPFSM M ′′ as described above. We show that the single-port

MPFSM M has a PDS if and only if M ′′ has a p-PDS where p = 1.

First let us suppose that the single-port MPFSM M has a PDS x̄. We show that Rx̄ is

a p-PDS for M ′′. First note that after input R the tester at port 2 sees no differences

in outputs (it observes L from all the states) and the tester at port 1 sees 0 from states

of the form s?i and 1 from states of the form si and so can differentiate state si from s?i .

In addition, when tester 2 observes L it starts applying x̄ to the MPFSM and since x̄

produces different outputs from different states of MPFSM M the tester at port 1 can

distinguishes each pair of states of the MPFSM M ′′.

Now let us suppose that M ′′ has a p-PDS and we need to show that a minimal p-PDS

must be in the form of Rx̄ where x̄ is a PDS for single-port MPFSM M . First assume

that the PDS starts with input x rather than R. Then such an attempt causes each pair

si, s
?
i of states to merge at state δ(si, x) without being distinguished. Therefore the first

input must be R ∈ X1.

After input R, the tester at port 1 observes either 0 (at state s?i ) or 1 (at state si). Note

that after R the MPFSM must be at state si for some i (rather than s?i ). Then if Rx̄

is a p-PDS for M ′′, then x̄ must distinguish any pair of states si, sj ∈ S.
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We know that single-port MPFSMM has a PDS if and only if M ′′ has a p-PDS where

p = 1. Thus the result follows from Lemma 32.

Proposition 22 The problem of deciding whether an MPFSM M has a PDS of length

` is in EXPSPACE.

Proof 54 We now show that the problem is in EXPSPACE. A non-deterministic Turing

machine can guess an input sequence x̄ of length ` and it can compute and store each

λ(s, x̄) in space that is polynomial in `. In order to check that x̄ is controllable the

Turing machine can simply compare prefixes of the sequences of the form λ(s, x̄): there

are controllability problems if there are prefixed σ1 and σ′1 of such traces that have the

same projection at a port p such that after σ and σ′ the behaviour at p differs. This

can be checked in time that is polynomial in terms of `. Finally, the Turing machine

can check in time that is polynomial in terms of ` whether x̄ is a PDS. Thus, a non-

deterministic Turing machine can check whether a guess x̄ is a controllable PDS in

space that is polynomial in terms of ` and so exponential in terms of the representation

of ` (that takes O(log2 `) space). Finally, using Savitch’s Theorem [123] we know that

a deterministic Turing machine can also solve the problem in exponential space. We

therefore have that the problem is in EXPSPACE.

Theorem 22 The problem of deciding whether there is a controllable PDS of length

` for MPFSM M is in EXPSPACE and PSPACE-hard. This holds even if we restrict

attention to MPFSMs with two ports.

Theorem 23 The problem of deciding whether there is a controllable p-PDS of length

` for MPFSM M is in EXPSPACE and PSPACE-hard. This holds even if we restrict

attention to MPFSMs with two ports.

Proof 55 The hardness result follows from Proposition 21. The proof of being in EXPSPACE

is identical to the proof of Proposition 22 except that the non-deterministic Turing ma-

chine guesses an input sequence x̄ such that the first input of x̄ is an element of the input

alphabet of port p.
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Theorem 24 The problem of deciding whether there is a controllable PDS for state

set S ′ of MPFSM M is undecidable and this holds even if we restrict attention to

MPFSMs with two ports.

Proof 56 We will prove this by showing that any algorithm that solves this problem

can be used to solve Post’s Correspondence Problem. Let us suppose that we have an

instance of PCP defined by sequences α1, α2, . . . , αb and β1, β2, . . . , βb. We will now

define an MPFSM M such that there is a controllable PDS for S ′ = {s1, s2, s3, s4} if

and only if there is a solution to this instance of PCP.

Let m denote the length of the longest sequence in α1, α2, . . . , αb, β1, β2, . . . , βb (ie. m =

max{|α1|, |α2|, . . . , |αb|, |β1|, |β2|, . . . , |βb|}). For all 1 ≤ j ≤ b there is an input xj at

port 1. We will structure M such that a sequence of m consecutive inputs of xj leads

to output sequence αj at port 2 from states s1 and s2 and output sequence βj at port 2

from states s3 and s4. The first such sequence takes states s1, s2, s3, s4 to s′1, s
′
2, s
′
3, s
′
4

respectively and after that these input sequences lead to cycles. From state s′j the input

of x′ at port 2 leads to output j at port 2 and M moves to state se from which there are

only self-loop transitions labelled with inputs and no output. If an input sequence does

not follow this pattern (a sequence of m instances of some xa1 followed by m instances

of some xa2 etc.) then the states reached from the si are all mapped to state se and we

cannot then distinguish s1 from s2 or s3 from s4.

Now consider the conditions under which a controllable PDS can distinguish the states

in S ′. This can only be achieved if x′ is applied when the states reached from s1, s2, s3, s4

are s′1, s
′
2, s
′
3, s
′
4 respectively since this is the only way of distinguishing s1 and s2 (and

also the only way of distinguishing s3 and s4). By definition, the input sequence must be

in the form xma1
xma2

. . . xman, where xm denotes x repeated m times, and the output sequence

at port 2 must be the following:

• From states s1 and s2 the sequence αa1αa2 . . . αan

• From states s3 and s4 the sequence βa1βa2 . . . βan.

By the definition of a controllable PDS, we require there to be a common sequence of
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outputs at port 2 before x′ is applied and so we require that αa1αa2 . . . αan = βa1βa2 . . . βan.

There is thus an input sequence that has the required properties, and so defines a con-

trollable PDS, if and only if there is a solution to the given instance of PCP. The result

therefore follows from the PCP being undecidable.

Theorem 25 The problem of deciding whether there is a controllable p-PDS for state

set S ′ of MPFSM M is undecidable and this holds even if we restrict attention to

MPFSMs with two ports.

Proof 57 Let us assume that we have an instance of PCP defined by sequences α1, α2, . . . , αb

and β1, β2, . . . , βb. Consider the MPFSM M = (P .S,X, Y, δ, λ) constructed from the

PCP instance as presented in the proof of Theorem 24. From M we construct MPFSM

M ′ as follows: we introduce four new states {s0
1, s

0
2, s

0
3, s

0
4} to the state set of M . We

introduce a new input symbol R to the input alphabet of port 2 and we introduce a new

output symbol o1 to the output alphabet of port 1. For 1 ≤ i ≤ 4, we introduce a transi-

tion labeled by R/(o1, ε) from state s0
i to si. For all other input, the MPFSM produces

ε at each port when the MPFSM is in state s0
i . Now we set S ′ = {s0

1, s
0
2, s

0
3, s

0
4}.

Clearly, in order to distinguish states S ′ at port 2, the input R ∈ X2 should be applied.

Moreover, the states S ′ can only be distinguished at port 2. The rest of the proof is

identical to the proof of Theorem 24, and thus the result follows.

Theorem 26 It is NP-complete to decide whether an instance of the B-PCP has a

solution.

Theorem 27 The Bounded PDS problem is in EXPSPACE and is NP-hard.

Proof 58 The problem being NP-hard follows from the construction presented in the

proof of Theorem 24 and the bounded PCP being NP-hard (for bound ` of the bounded

PCP we use bound m` for the bounded PDS problem).

The problem being in EXPSPACE follows in the same way as the proof of Proposition 22

except that the non-deterministic Turing machine considers a subset S ′ of the state set

of the MPFSM M .
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Theorem 28 The Bounded p-PDS problem is in EXPSPACE and is NP-hard.

Proof 59 The problem being NP-hard follows from the construction presented in the

proof of Theorem 24 and the bounded PCP being NP-hard. The proof of the problem

being in EXPSPACE is similar to the proof of Theorem 23.

Theorem 29 If ` is defined by a polynomial in term of the number of states of M then

the Bounded PDS problem is NP-complete.

Proof 60 Now let us assume that there exist a polynomial time solvable algorithm A

which solves the bounded PDS problem for FSM with n number of states where ` is

bounded by some polynomial. Let us assume that we are given a bounded PCP problem

instance α1, α2, . . . , αb and β1, β2, . . . , βb where K is bounded by polynomial function of

m`.

Then we can use the reduction given in Theorem 24 and use algorithm A on the PCP

instance where ` = Km and obtain the PDS. But this implies that we solve the PCP

problem for K which is not possible since bounded PCP is NP-complete4.

We now show that the problem is in NP. We have seen in the proof of Theorem 27

that the bounded PDS problem can be solved by a non-deterministic Turing machine in

space and time that is polynomial in terms of the size of M and `. However, since `

is a polynomial in terms of the number of states of M , we have that the problem can

be solved by a non-deterministic Turing machine in time and space that polynomial in

terms of the size of M . Thus, the problem is in NP as required.

Theorem 30 If ` is defined by a polynomial in term of the number of states of M then

the Bounded p-PDS problem is NP-complete.

Proof 61 Now let us assume that there exist a polynomial time solvable algorithm A

which solves the bounded p-PDS problem for FSM with n number of states where ` is

bounded by some polynomial. Let us assume that we are given a bounded PCP problem

4Note that For Bounded PCP the exact algorithm requires time O(2K) and thus there is no limitations

on K
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instance α1, α2, . . . , αb and β1, β2, . . . , βb where K is bounded by polynomial function of

m`.

Then we can use the reduction given in Theorem 25 and use algorithm A on the PCP

instance where ` = Km and obtain the p-PDS. But this implies that we solve the PCP

problem for K which is not possible since bounded PCP is NP-complete.

We now show that the problem is in NP. Recall that in Theorem 23 we show that a non-

deterministic Turing machine guess an input sequence of length `. Since the length of the

p-PDS is polynomial, a non-deterministic Turing machine can non-determinisitically

guess an input sequence x̄ and check if x̄ defines a p-PDS or not. Thus, the problem is

in NP as required.

Proposition 23 Given distinct states s and s′ of C-MPFSM M , if input sequence x̄

is controllable from state s then x̄ is controllable from s′.

Proof 62 Let us suppose that x̄ = x1, x2, . . . , xr, x1/y1, x2/y2, . . . , xr/yr labels a path

from state s and x1/y
′
1, x2/y

′
2, . . . , xr/y

′
r labels a path from state s′. By definition, x̄ is

controllable from s if and only if for all 1 < i ≤ r we have that if port(xi) = p then

πp(xi−1/yi−1) 6= ε. But since M is a C-MPFSM this is the case if and only if for all

1 < i ≤ r we have that if port(xi) = p then πp(xi−1/y
′
i−1) 6= ε. By definition, this is the

case if and only if x̄ is controllable from s′ and so the result follows.

Proposition 24 Given C-MPFSM M with state set S, state s ∈ S and set S ′ ⊆ S of

states of M , if input sequence x̄ is controllable from s then x̄ is controllable from S ′.

Proof 63 Let us suppose that x̄ = x1, x2, . . . , xr and x1/y1, x2/y2, . . . , xr/yr labels a

path from state s. By Definition 37, we require to prove that for all si, sj ∈ S ′ and

proper prefixes x̄i and x̄j of x̄ with |x̄i| ≤ |x̄j|, if port(xj+1) = p then (πp(λ(si, x̄i)) =

πp(λ(sj, x̄j))) =⇒ (x̄i = x̄j). Since M is a C-MPFSM πp(λ(si, x̄i)) = πp(λ(sj, x̄j)) im-

plies that there are no inputs or outputs at p in the subsequence xi+1/yi+1, xi+2/yi+2, . . . , xj/yj

of x1/y1, x2/y2, . . . , xr/yr. Since x̄ is controllable from s and the input xj+1 is at port p,

we have that xi+1/yi+1, xi+2/yi+2, . . . , xj/yj = ε and so x̄i = x̄j as required.
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Proposition 25 Given C-MPFSM M , states s and s′ of M , and input sequence x̄, if

λ(s, x̄) 6= λ(s′, x̄) then there is some port p such that πp(λ(s, x̄)) 6= πp(λ(s′, x̄)).

Proof 64 Let x̄′ be the shortest prefix of x̄ such that λ(s, x̄′) 6= λ(s′, x̄′). Then x̄′ = x̄′′x

for some x ∈ X and by the minimality of x̄′ we have that λ(s, x̄′′) = λ(s′, x̄′′). Since

λ(s, x̄′) 6= λ(s′, x̄′), λ(δ(s, x̄′′), x) 6= λ(δ(s′, x̄′′), x). Thus, there must be some port p such

that πp(λ(s, x̄′)) 6= πp(λ(s′, x̄′)). But if x̄ = x̄′x̄′′′ then since M is a C-MPFSM we know

that πp(λp(δ(s, x̄
′), x̄′′′))) and πp(λp(δ(s, x̄

′), x̄′′′))) contain the same number of outputs

and so πp(λ(s, x̄)) 6= πp(λ(s′, x̄)) as required.

Proposition 26 Given C-MPFSM M with state set S, if x̄ is a controllable input

sequence and for all s, s′ ∈ S ′, S ′ ⊆ S, we have that s 6= s′ ⇒ λ(s, x̄) 6= λ(s′, x̄) then x̄

is a controllable PDS for S ′.

Proof 65 If S ′ contains at most one state then the result holds immediately. We there-

fore assume that S ′ contains two or more states and it is sufficient to consider two

distinct states s, s′ from S ′. However, we know that λ(s, x̄) 6= λ(s′, x̄) and so the result

follows from Proposition 25.

Proposition 27 For each controllable path ρ̄ in M that starts at s0, there is a unique

controllable path ρ̄′ in χmin(M) that starts at sP0 such that label(ρ̄) = label(ρ̄′).

Proposition 28 For each path ρ̄′ in χmin(M) that starts at sP0 , there is a unique con-

trollable path ρ̄ in M that starts at s0 such that label(ρ̄) = label(ρ̄′).

Proposition 29 An input sequence x̄ is a controllable PDS that starts with input at p

for set S ′ = {s1, s2 . . . , sr} ⊆ S of states of M if and only if x̄ is a non-redundant PDS

for set S ′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
r } of states of χpmin(M) such that for all 1 < i ≤ |x̄|, if xi ∈

Xq then for all s
{p}
i , s

{p}
j ∈ S ′′ we have that πq(λ

p
min(s

{p}
i , x̄i−1)) = πq(λ

p
min(s

{p}
j , x̄i−1)).

Proof 66 First let us suppose that x̄ is a controllable PDS for S ′ = {s1, s2, . . . , sr} that

starts with input at p. Since x̄ is controllable, the label of the path in M from si that has

input portion x̄ is the same as the label of the path in χpmin(M) from s
{p}
i that has input
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portion x̄. Thus, since x̄ distinguishes the states in S ′ it also distinguishes the states in

S ′′. Further, since x̄ is a controllable PDS for S ′, by definition for all 1 < i ≤ |x̄|, if xi ∈

Xq then for all s
{p}
i , s

{p}
j ∈ S ′′ we have that πq(λ

p
min(s

{p}
i , x̄i−1)) = πq(λ

p
min(s

{p}
j , x̄i−1)).

Finally, since x̄ is controllable in M , it is non-redundant in χpmin(M) and so the result

holds.

Now let us suppose that x̄ is a non-redundant PDS for set S ′′ = {s{p}1 , s
{p}
2 , . . . , s

{p}
r } of

states of χpmin(M) such that for all 1 < i ≤ |x̄|, if xi ∈ Xq then for all s
{p}
i , s

{p}
j ∈ S ′′ we

have that πq(λ
p
min(s

{p}
i , x̄i−1)) = πq(λ

p
min(s

{p}
j , x̄i−1)). Similar to before, the label of the

path from s
{p}
i in χpmin(M) that has input portion x̄ is the same as the label of the path

from si in M that has input portion x̄. Thus, x̄ distinguishes the states in S ′ and so, by

Proposition 25, x̄ distinguishes the states from S ′ in distributed testing.

Lemma 32 Given a C-MPFSM M with n states, k ports, and m inputs, M has a

controllable PDS if and only if it has one of length at most n(nmin)n where nmin =

nk + nm+ 1.

Proof 67 Consider the MPFSM χpmin(M) of M with set Smin of states. Let S ′′ =

{s{p}1 , s
{p}
2 , . . . , s

{p}
n } and let x̄ be a shortest PDS for S ′′ of χpmin(M).

Now let us assume that B = S ′′ and x̄ = x̄ax̄
′xbx̄b where x̄′ = x0, x1, . . . x|x̄′| is a fragment

of PDS x̄ such that |δpmin(B, x̄a)| < |δpmin(B, x̄ax0)| = |δpmin(B, x̄ax̄′)| < |δpmin(B, x̄ax̄′xb)|.

We will prove that for any distinct proper prefixes x̄′′, x̄′′′ of x̄′ we have that δpmin(B, x̄ax̄′′) 6=

δpmin(B, x̄ax̄′′′). We will use proof by contradiction and assume that there exist proper pre-

fixes x̄′′, x̄′′′ of x̄′ such that δpmin(B, x̄ax̄′′) = δpmin(B, x̄ax̄′′′) and |x̄′′| < |x̄′′′|.

Now let us suppose that x̄′′′ = x̄′′x̄0 and x̄′ = x̄′′′x̄1 = x̄′′x̄0x̄1. Since x̄ is a PDS

for S ′′ we must have that x̄1xbx̄b distinguishes any two state that are in the same set

in δpmin(B, x̄ax̄′′x̄0). From Propositions 24 and 25 we know that no path of χpmin(M)

causes controllability and observability problems in M . Hence, since δpmin(B, x̄ax̄′′) =

δpmin(B, x̄ax̄′′x̄0), we can replace x̄′ (which equals x̄′′x̄0x̄1) by x̄′′x̄1 in x̄. But this leads to

a shorter controllable PDS, which contradicts the minimality of x̄.

We can now note that the number of possible values for a set Bx̄a is bounded above by

the number of possible mappings from the states S ′′ to the states reached from S ′′ by x̄a
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and so by (nmin)n. Further, Bx̄ initially contains only one set and finally contains n

sets and so there are at most n − 1 points at which the size of Bx̄ increases. We can

therefore conclude that a minimal PDS can be seen as being a sequence of at most n−1

subsequences each of length at most (nmin)n. Moreover, Propositions 29 implies that x̄

is a PDS for state set S ′′ of χpmin(M) if and only if x̄ is a PDS for MPFSM M and

so the result follows.

Theorem 31 It is decidable whether a C-MPFSM has a PDS.

Proposition 30 The problem of deciding whether a C-MPFSM M has a PDS is in

PSPACE.

Proof 68 We will show that a non-deterministic Turing Machine T can decide whether

there is a PDS using polynomial space. T will guess inputs one at a time. It will

maintain the set C of pairs of states, equivalence relation r, the set of allowable ports Pc

as described above and this uses polynomial space. The machine first inspects set Pc and

guesses an input symbol x from a port in Pc.

After guessing a new input x and updating C, r, and Pc the machine checks whether the

input sequence received defines a PDS for S: this is the case if and only if r relates no

two different states of S. Thus, if M has a PDS for S then T will find such a PDS

using polynomial space.

Consider the case where M does not have a PDS for S: we require that the non-

deterministic Turing Machine terminates. In order to ensure this we use the result that

if C-MPFSM M has n states then M has a PDS for S if and only if it has such a

PDS with length at most n(nmin)n. T therefore includes a counter that counts how many

inputs have been received: the machine terminates with failure if the counter exceeds the

upper bound. Therefore we need additional O(log2(n(nmin)n)) = O(n log2(nmin)) space

for the counter and so the space required is still polynomial.

We have defined a non-deterministic Turing Machine that requires only polynomial space

in order to solve the problem and so the problem is in non-deterministic PSPACE. We

200



can now use Savitch’s Theorem [123], which tells us that a problem is in PSPACE if and

only if it is in non-deterministic PSPACE, and the result follows.

Theorem 32 The problem of deciding whether a C-MPFSM has a PDS is PSPACE-complete.

Proof 69 First observe that the reduction presented in Proposition 20 generates a C-

MPFSMṪhus we know that deciding whether an MPFSM has a controllable PDS is

PSPACE-hard. Consequently Propositions 20 and 30 together imply that the problem is

PSPACE-complete.

Proposition 31 The problem of deciding whether a C-MPFSM has a p-PDS is PSPACE-hard.

Proposition 32 The problem of deciding whether a C-MPFSM M has a p-PDS is in

PSPACE.

Theorem 33 The problem of deciding whether a C-MPFSM has a p-PDS is PSPACE-complete.

Theorem 34 The following problem is PSPACE-hard: given a multi-port MPFSM M ,

is there a controllable ADS that distinguishes all of the states of M? In addition, this

result still holds if we restrict attention to MPFSMs that have two ports.

Proof 70 Assume that we have been given a single-port MPFSMM1 = (S, s0, X, Y, δ, λ)

such that all of the transitions of M1 have non-empty output. We will construct a multi-

port MPFSM M that has two ports 1 and 2. The state set of M will be S and the initial

state will be s0. Port 1 will have input alphabet X1 = X and output alphabet Y1 = ∅.

Port 2 will have input alphabet X2 = ∅ and output alphabet Y2 = Y . Given state s and

input x such that δ(s, x) = s′ and λ(s, x) = y, we will include in M the transition from

s to s′ that has input x ∈ X1 and produces output 〈ε, y〉.

Now consider controllable adaptive test cases for M . Since all inputs are at port 1 and

no outputs are produced at port 1, there is no opportunity for a controllable adaptive test

case to lead to different input sequences from different states: the tester choosing the

next input will have observed no output irrespective of the state that the adaptive test

case was applied in. Thus, all controllable adaptive test cases for M correspond to fixed
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input sequences. In addition, since every transition produces non-empty output at port

2 and no output at port 1, if the tester applies an input sequence x1, x2, . . . , xm at port

1 and the tester at port 2 observes output sequence y1, y2, . . . , ym then we know that for

all 1 ≤ i ≤ m, yi was produced in response to input xi. Thus, there are no observability

problems.

To summarise, a controllable adaptive test case for M corresponds to a fixed input se-

quence x̄ and the output sequence observed at port 2 when x̄ is applied from state s ∈ S

is exactly λ(s, x̄). Thus, an adaptive test case for M is a controllable ADS for M if and

only if it corresponds to an input sequence x̄ such that for all s, s′ ∈ S with s 6= s′ we

have that λ(s, x̄) 6= λ(s′, x̄). This is the case if and only if x̄ is a distinguishing sequence

for M1. The result now follows from Lemma 32.

Theorem 35 The following problem is PSPACE-hard: given a multi-port MPFSM M

and port p of M , is there a controllable p-ADS that distinguishes all of the states of M?

In addition, this result still holds if we restrict attention to MPFSMs that only have

two ports.

Proof 71 Given a single-port MPFSM M1 that has no transitions with output ε, we

construct a multi-port MPFSM in the same way as in the proof of Theorem 34 except

that we set X2 = {x2} and Y1 = {o1}, we add a new output o2 to Y2, and for every state

s we have that δ(s, x2) = s and λ(s, x2) = 〈o1, o2〉. Thus, the input of x2 does not change

state and does not help distinguish states.

Let us suppose that we have the situation in which there is a trace σ and two different

sequences σ1, σ2 ∈ {〈o1, o2〉}∗ such that the tester at port 1 sends different inputs after

σσ1 and σσ2 and |σ1| < |σ2|. After observing π1(σ) followed by |σ1| occurrences of o1 the

tester at port 1 does not know whether to apply the input that should follow σσ1 or wait

for further instances of o1. Thus, any such situation causes a controllability problem and

so, since we are considering controllable p-ADSs, such situations cannot occur.

We therefore know that the tester at port 2 cannot provide the tester at port 1 with

additional information, through applying x2, that allows the ADS to adapt the input
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supplied at port 1 based to output produced at port 2. Thus, an input sequence x̄ is a 2-

ADS for M if and only if x̄ with all instances of x2 removed is a distinguishing sequence

for M1. The result therefore follows from Lemma 32.

Theorem 36 The following problems are PSPACE-hard:

1. Given a MPFSM M , find a controllable ADS µ and state set S ′ where µ is a

controllable ADS for S ′ and µ and S ′ are such that S ′ has maximal size.

2. Given a MPFSM M and port p of M , find a controllable p-ADS µ and state

set S ′ where µ is a controllable p-ADS for S ′ and µ and S ′ are such that S ′ has

maximal size.

Proof 72 If we have an algorithm that solves the first part and are given MPFSM M ,

then M has a controllable ADS if and only if the algorithm returns such an ADS. The

first part thus follows from Theorem 34. Similarly, the second part follows from Theorem

35.

Theorem 37 There is a class of MPFSMs that contain ADS (or p-ADS) such that

the shortest evolution is of exponential length.

Proof 73 Consider a single-port MPFSM that has a PDS with exponential length [35],

now reapply the reduction given in Theorem 34.

Theorem 38 The following problems are PSPACE-hard.

1. Given a MPFSM M , what is the smallest value of ` such that M has an ADS of

height `?

2. Given a MPFSM M , what is the smallest value of ` such that M has a p-ADS

of height `?

Proof 74 An MPFSM has an ADS/p-ADS if and only if it has a minimum height

ADS/p-ADS. Thus, any algorithm that returns the smallest ` such that M has an

ADS/p-ADS of height ` also decides whether M has an ADS/p-ADS. The result

thus follows from the existence problems being PSPACE-hard.
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Proposition 33 Given directed graph G and MPFSM M(G) with state set S, if µ is a

non-redundant controllable global strategy for M(G) then all traces in Ev(µ,M(G), S \

{se}) have the same input portion xi1 , . . . , xil and this has the property that ei1 , . . . , eil

is a walk of G.

Proof 75 First observe that all transitions of M(G) with input xi, 1 ≤ i ≤ m, produce

the same output at all ports of M(G) except 0. In addition, M(G) has no inputs at port 0.

We will prove that the input portions are the same for all traces in Ev(µ,M(G), S\{se})

and will use proof by contradiction: assume that the input portions of Ev(µ,M(G), s)

and Ev(µ,M(G), s′) are different for some states s, s′ ∈ S \ {se}. Let x̄ denote the

longest common prefix of the input portions of Ev(µ,M(G), s) and Ev(µ,M(G), s′).

Without loss of generality, assume that Ev(µ,M(G), s) has an input portion that follows

x̄ with input xp at port p. However, since M(G) has no input at port 0 we have that

p 6= 0 and so the responses to x̄ in states s and s′ have the same outputs at p. Thus,

since µ is controllable, Ev(µ,M, s′) must have an input portion that follows x̄ with

input xp. However, this contradicts the definition of x̄ as required. Thus, all traces in

Ev(µ,M(G), S\{se}) have the same input portion xi1 , . . . , xil. Further, by the definition

of M(G), in a non-redundant controllable global strategy an input xi can only be followed

by input xj if in G we have that ei can be followed by ej. The result therefore follows.

Proposition 34 Strongly connected directed graph G has a Hamiltonian path if and

only if M(G) has a controllable ADS that distinguishes all of the state of M(G) and

whose longest evolution has length ` = n.

Proof 76 First we prove that if G has a Hamiltonian path ρ = e1, . . . , en−1 then M(G)

has an ADS whose longest evolution has length n. Choose an edge en of G that can

follow en−1 in G: since G is strongly connected there must be some such edge. By the

definition of M(G), the input sequence x1, . . . , xn defines a controllable global strategy for

M(G). In addition, since ρ is a Hamiltonian path, for every state si of M(G), si 6= se,

the application of input sequence x1, . . . , xn from si includes an input that corresponds

to an edge with starting vertex vi and so leads to an output sequence at port 0 that starts
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with i. Finally, the application of x1, . . . , xn in state se leads to no output being produced

at 0. Thus, x1, . . . , xn defines an ADS and its longest evolution has length n as required.

Now we assume that M(G) has a controllable ADS whose longest evolution has length

` = n and we are required to prove that G has a Hamiltonian path. By Proposition 33 we

know that there is some input sequence x1, . . . , xn such that all traces of Ev(µ,M(G), S \

{se}) have input portion x1, . . . , xn. Further, since µ is an ADS for M(G) we must have

that for every state si 6= se, x1, . . . , xn contains an input xj such that vi is the starting

vertex of ej. In addition, since µ is controllable we must have that e1, . . . , en is a walk of

G. To conclude, all vertices of G start edges in walk e1, . . . , en of G and so e1, . . . , en−1

is a Hamiltonian path of G.

Theorem 39 The Exact Height ADS problem is in EXPSPACE and is NP-hard.

Proof 77 We will first show that a non-deterministic Turning machine T can decide

the Exact Height ADS problem using exponential space. We can allow T to initially

guess an ADS µ with height at most `. Since this defines a finite tree with at most n

leaves there is an upper bound on the size of the tree that is polynomial in terms of n

and ` and so this take space that is polynomial in ` and n.

In order to check whether µ is controllable it is sufficient to compute the traces that

can be produced by applying µ from states of M and for any two traces σ and σ′ check

whether there are corresponding controllability problems. There are corresponding con-

trollability problems if there are prefixed σ1 and σ′1 of σ and σ′ respectively that have

the same projection at a port p such that after σ and σ′ the behaviour of the tester at

p differs. Thus, the Turing machine can check this in polynomial time. Finally, the

Turing machine can check in polynomial time whether µ distinguishes the states of M .

The Turing machine takes space that is polynomial in n and ` and so exponential in the

description of the problem (since ` can be described in O(log2 `) space). Thus, we have

that a non-deterministic Turing machine can solve the problem in exponential space. Fi-

nally, using the Savitch’s Theorem [123] we know that a deterministic Turing machine

can also solve the problem in exponential space. We therefore have that the problem is

in EXPSPACE.
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The problem being NP-hard follows from Proposition 34 and the fact that the Directed

Hamiltonian Path problem with strongly connected directed graphs is NP-hard.

Theorem 40 The Exact Height p-ADS problem is in EXPSPACE and is NP-hard.

Theorem 41 The Exact Height ADS and Exact Height p-ADS problems for an

MPFSM with n states are NP-complete if ` = poly(n), where poly(n) is a polynomial

function of n.
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