-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

i]COURNAL OF

S . OMPUTER

i *,“ ScienceDirect % SYSTEM

SRR CIENCES
ELSEVIER [—

Journal of Computer and System Sciences 73 (2007) 908-923
www.elsevier.com/locate/jcss

Minimizing nfa’s and regular expressions

Gregor Gramlich *!, Georg Schnitger

Institut fiir Informatik, Johann Wolfgang Goethe-Universitdit Frankfurt, Robert-Mayer-Straf3e 11-15, 60054 Frankfurt am Main, Germany
Received 22 December 2004; received in revised form 27 November 2006

Auvailable online 22 December 2006

Abstract

We show inapproximability results concerning minimization of nondeterministic finite automata (nfa’s) as well as of regular
expressions relative to given nfa’s, regular expressions or deterministic finite automata (dfa’s).

We show that it is impossible to efficiently minimize a given nfa or regular expression with n states, transitions, respectively
symbols within the factor o(n), unless P = PSPACE. For the unary case, we show that for any § > 0 it is impossible to efficiently
construct an approximately minimal nfa or regular expression within the factor n1=9 unless P = NP.

Our inapproximability results for a given dfa with n states are based on cryptographic assumptions and we show that any efficient
algorithm will have an approximation factor of at least m. Our setup also allows us to analyze the minimum consistent dfa
problem.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Automata and formal languages; Computational complexity; Approximability

1. Introduction

Among the most basic objects of formal language theory are regular languages and their acceptance devices, finite
automata and regular expressions. Regular expressions describe lexical tokens for syntactic specifications, textual
patterns in text manipulation systems and they are the basis of standard utilities such as scanner generators, editors
or programming languages (perl, awk, php). Internally regular expressions are converted to (nondeterministic) finite
automata and the succinctness of this representation crucially determines the running time of the applied algorithms.

Contrary to the problem of minimizing dfa’s, which is efficiently possible, it is well known that nfa or regular
expression minimization is computationally hard, namely PSPACE-complete [11]. Jiang and Ravikumar [8] show
moreover that the minimization problem for nfa’s or regular expressions remains PSPACE-complete, even when speci-
fying the regular language by a dfa.

* This paper is the final version of [G. Gramlich, G. Schnitger, Minimizing nfa’s and regular expressions, in: V. Diekert, B. Durand (Eds.),
STACS 05, in: Lecture Notes in Comput. Sci., vol. 3404, Springer-Verlag, 2005. [4]] and also includes results from [G. Gramlich, Probabilistic
and nondeterministic unary automata, in: B. Rovan, P. Vojtds (Eds.), MFCS, in: Lecture Notes in Comput. Sci., vol. 2747, Springer-Verlag, 2003,
pp. 460—-469].

¥ Corresponding author. Fax: +49 69 798 28814.

E-mail addresses: gramlich@thi.informatik.uni-frankfurt.de (G. Gramlich), georg @thi.informatik.uni-frankfurt.de (G. Schnitger).
URL: http://www.thi.cs.uni-frankfurt.de/~gramlich (G. Gramlich).
1 Partially supported by DFG project SCHN503/2-1.

0022-0000/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2006.11.002

https://core.ac.uk/display/82240385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 909

We consider the problem of approximating a minimal nfa or a minimal regular expression. There are several
approaches to nfa minimization [1,5,6,10] either without approximation guarantees or running in at least exponential
time. This article explains why such guarantees cannot be expected for efficient algorithms.

We investigate the approximation problem in two scenarios. In the first scenario the language is specified by a
dfa which makes proofs of inapproximability hard, since the input is not specified concisely and thus more time
compared to concise inputs such as nfa’s or regular expressions is available. Jiang and Ravikumar [8] ask to determine
the approximation complexity of converting dfa’s into nfa’s, and in particular ask whether efficient approximation
algorithms with a polynomial approximation factor exist. Corollary 13 shows that such an approximation is at least
as hard as factoring Blum integers and therefore efficient approximation algorithms with polynomial approximation
factor are unlikely.

We show in Theorem 10 that efficient approximation algorithms determine regular expressions of length at least

poly(km for a given dfa of size k, even if optimal regular expressions of length poly(log k) exist. We have to assume

however that strong pseudo-random functions exist in nonuniform NC'. The concept of a strong pseudo-random func-
tion is introduced by Razborov and Rudich [15]. Naor and Reingold [12] show that strong pseudo-random functions
exist even in 7CY, provided factoring Blum integers requires time 282(n%) (for some ¢ > 0).

We show similar results for approximating nfa’s in Corollary 13, but now relative to the weaker assumption that
strong pseudo-random functions exist in nonuniform Logspace. We also apply our technique to the minimum consis-
tent dfa problem [9,14] in which a dfa of minimum size, consistent with a set of classified inputs, is to be determined.

Thus in the first scenario we follow the cryptographic approach of Kearns and Valiant [9] when analyzing the
complexity of approximation, but work with pseudo-random functions instead of one-way functions.

In the second scenario we assume that the language is specified by either an nfa or a regular expression. For
the unary case we show in Theorem 18 a lower bound of % for the approximation factor. This holds under the
assumption P # NP for given nfa’s as well as for given regular expressions [3]. We improve the approximation factor
in Theorem 22 to n!~? for every § > 0, provided P % NP and provided we require the approximation algorithm to
determine a small equivalent nfa or regular expression, opposed to just determining its size.

Furthermore we show a PSPACE-completeness result for approximating the minimal size of general nfa’s or reg-
ular expressions. Specifically Theorem 24 shows that it is impossible to efficiently minimize a given nfa or regular
expression with n states, n transitions, respectively n symbols within the factor o(n), unless P = PSPACE. The proof
of Theorem 24 is based on the PSPACE-completeness of the regular expression nonuniversality problem.

We introduce strong pseudo-random functions in Section 2 and investigate the complexity of approximating mini-
mal regular expressions or nfa’s, relative to a given dfa, in Sections 2.1 and 2.2. The minimum consistent dfa problem
is considered in Section 2.3. Finally, relative to a given nfa or regular expression, the complexity of approximately
minimizing unary nfa’s or regular expressions is determined in Section 3.1, whereas general alphabets are treated in
Section 3.2.

2. Pseudo-random functions and approximation

We consider the question of computing small equivalent nfa’s or regular expressions for given dfa’s. Inapproxima-
bility results seem to be hard to prove, since, intuitively, it takes large dfa’s to specify hard inputs and consequently
the allowed running time increases. We can only weakly utilize the dfa specification in comparison with a mere truth
table specification and hence first concentrate on the truth table specification for functions f: {0, 1} — {0, 1}.

Our goal is to utilize the natural proof setup of Razborov and Rudich [15] and, in particular, to conclude that any
efficient approximation algorithm separates pseudo-random functions from random functions. However we then face
the problem that nfa’s or regular expressions are too weak to express pseudo-random functions with few states. There-
fore we follow the approach of Pitt and Warmuth [13] and repeat inputs. Thus instead of approximating minimum
nfa’s for the language L(f) ={x | x € {0, 1}" A f(x) = 1} € {0, 1}"*, we consider the approximation problem for (the
complement of) the language

Ly(f):={x"|xe€{0,1}" A f(x)=1} S {0, 1}"7?
for a suitable natural number p; x? is the p-fold concatenation of x.

First we introduce the concept of strong pseudo-random functions [15], but replace circuits by probabilistic Turing
machines and require only a constant probability of separating pseudo-randomness from true randomness. Obviously

910 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

strong pseudo-random functions exist in our setting, provided strong pseudo-random functions exist in the sense of
Razborov and Rudich.

Dgﬁnition 1. Let f, = (f;})ses be a function ensemble with functions f; : {0, 1} — {0, 1} for a seed s € S and let
(ry)ieq,..,22y be the ensemble of all n-bit boolean functions. We call f, a strong pseudo-random ensemble with
parameter ¢ iff for any randomized algorithm A

|prob[A(f,) = 1] — prob[A(r,) = 1]| < %

provided A runs in time 20(°) and has access to [, respectively r,i,, via a membership oracle. The probability is
defined by the random choices of A and the uniform sampling of s from S, respectively the uniform sampling of i
from {1, ...,2%"}.

It is widely believed that there is some & > 0, such that any algorithm running in time 29 cannot factor Blum
integers well on average. Observe that we may assume ¢ < 1. Naor and Reingold [12] construct 7C? functions which
are strong pseudo-random functions, provided factoring Blum integers requires time 2?*) for some .

As already mentioned, we restrict our attention to approximating minimal nfa’s or regular expressions for the
languages L, (f) for n-bit boolean functions f:{0, 1} — {0, 1}. We interpret this approximation problem as the
problem of approximating a functional G(f), where G(f) is either defined as the size of a minimum nfa or the
minimal length of a regular expression for the language L, (f).

Definition 2. B,, is the set of all n-bit boolean functions. We define the compression k,, : B, — B, for m < n by
(km (f))(x) = f(0"™x) for x € {0, 1}".

We say, that a functional G = (G,,), with G, : B, — N separates a function class C from random functions with
monotonically increasing thresholds #;(-) and £, (-) iff G, (f) < t;(n) holds for every function f € C N B,, whereas
G, (hy) > tp(n) for most functions in By, i.e.,

li |{hn € Bn | Gn(hn) < l‘z(l’l)}| _
im =0

n—00 |Bn|

holds. Moreover we require that G, (k,, (f)) < t;(n) for any function f € CN B, and any m < n.

It is not surprising that a functional G, which separates a function class C containing pseudo-random functions
from random functions, cannot be efficiently approximated. We even allow randomized approximation algorithms
which may underestimate the minimum.

Definition 3. Let |x| be the length of input x. We say that a randomized algorithm App: X — N with approximation
factor p(]x|) for a minimization problem opt has overestimation error € = sup, .y prob[App(x) > u(|x|) - opt(x)]
and underestimation error €_ = sup,..x prob[App(x) < opt(x)]. The probabilities are defined by the random choices
of App.

We state a generic lemma for approximation algorithms on compressed inputs allowing us to replace oracle access
by truth table presentation.

A quick remark on our notation: we use r, to denote an n-bit random ensemble, f, to denote an n-bit pseudo-
random ensemble and 4, to denote the input functions for which a small regular expression is to be found. The
generic lemma separates C, from n-bit random functions by applying an approximation algorithm on the compressed
function k,;, (h;,).

Lemma 4. Assume that the functional G separates C from random functions with thresholds t|, t» and suppose that C
contains a strong pseudo-random ensemble with parameter ¢.

Let App be a randomized approximation algorithm that approximately determines Gy, (hy,), when given the truth
table of size |hy| = 2™ of a function hy, € By,. Then for all | > 1, if App runs in time 2000 and achieves an

approximation factor u(2™) < t|t(27£lr;;l)’ then App must have errors €4 +€_ > %

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 911

Proof. By assumption C contains strong pseudo-random functions with parameter €. For the sake of contradiction,

let App be an algorithm which approximates G, (h,,) when given the truth table of %, (with running time 200n) for

some / > 1, approximation factor 1 < u(2™) < tlt(zrfi'l"/)&,) and errors €4 +€_ < %). We construct an algorithm A which

uses App to distinguish n-bit functions in C from n-bit random functions. We set m = [n/!].
A has oracle access to the input &, € B,, and builds the truth table for the restriction &, (h,). Then A runs App on
k (hy) and accepts (i.e. A(h,) = 1), if App(ku(hn)) < t2(m), and rejects (i.e. A(h,) = 0) otherwise. So

|prob[A(f,) = 1] — prob[A(ry) = 1]| = |prob[App (ki (fn)) < t2(m)] — prob[App (km (rn)) < t2(m)]|

holds, where probabilities are defined by the probabilistic choices of App as well as the random sampling of seeds
for f,, respectively the uniform random sampling of functions r,, € Bj,.

G separates C from random functions and hence we have G, (k,, (f,)) < t1(n) for f,, C C. Finally observe that
w(2™) - t1(n) < tp(m) holds by assumption on £ (2™), and since #; is monotonically increasing. Thus

prob[App (ki (fn)) < t2(m)] = prob[App (kn (f)) < u(2™) - 11(n)]
=1 — prob[App (ki () > 1 (2") - 11(n)]
> 1 = prob[App (ki (fn) > 1(2") - G (ki (fu))]
21 —ex

holds. We utilize that the restriction of a uniformly sampled function r,, from B, leads to a uniformly sampled random
function r,, from B,, and obtain

— Hhm | G (hy) < 12(m)}] +e

prob[App (ki (rn)) < 12(m)] < prob[G (ki (ra)) < 22(m)] + € B

=e_+o(l).

Thus |prob[App(ky, (fr)) < t2(m)] — prob[App(ky, (rp)) < 2(m)]| =21 — €4 —e— —o(1) > % holds for sufficiently

large m. Since A runs in time O(2™) + 290") = 20() this contradicts the assumption that C contains a strong
pseudo-random ensemble with parameter . O

2.1. Regular expressions and logarithmic formula depth

Definition 5. A formula is a binary tree with A and Vv gates as interior nodes; leaves are marked by labels from
{x1,%1,...,xi,Xi,...}. For a formula f let £(f) be the length, i.e., the number of leaves of f. The length ¢(R) of a
regular expression R is the number of symbols from the alphabet X' appearing in R.

We later use a strong pseudo-random ensemble C; C NC!. Observe that any f € C; N By, has formula depth at
most ¢ - logm and formula length at most pj (m) := m€.

We define the functional G1 by setting G,(,})(hm) to equal the minimum length of a regular expression for the
complement of L, (k) = {xP! | hy (x) = 1}.

We associate regular expressions with formulae and show that the length of the regular expression is exponentially
related to the depth of the formula.

Definition 6. Let f be a formula for a function f:{0, 1}"* — {0, 1}. We define the regular expression R(f) recursively

as follows:
o If f=x;, then R(f) ;= (0+ 1)\~ 1(0+ 1) .
o If f=1X;, then R(f) := (0+ 1)\~10(0 + 1) .
o Iff=1f; Afy, then R(f) := R(f}) o R(f2).
o Iff=f; V£, then R(f) := R(f)) o (0+ 1)t 1 (04 1) 0D o R(£y).

912 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

Lemma 7. Let W = {w | Ix € {0, 1} A w € {x}*} be the language of repeated inputs of length m.

@ LRO)YNW ={x"D| fx) =1} = Lop (f).

(b) Iff is a formula of depth at most k, then the regular expression R(f) has length at most 2 - 4m.

(c) For a given formula f of depth k there is a regular expression R of length at most O(4m) which describes the
complement of L(R(f)) N W.

(d) In particular, L, (fin) has regular expressions of length at most tl(l) = O (m***t1) for any f,, € C1 N By,.

Proof. (a) can be shown by an indl_lction on the structure of formula f: Obviously L(R(f)) < {0, 1ymt® 1 £ = x;,
then R(f) = (0 + 1)~ 1 (0 + 1)~ and thus

LRO)NW={x|xe{0,)" Axi=1}={x]| fx)=1].
The case f = x; follows analogously. If f=f; A f, then R(f) = R(f;) o R(f») and thus
L(R®) NW = (L(R(f1)) o L(R())) N W = ((L(R(E)) N W) o (L(R(E))NW))NW
=[x W] e =1} o (X' ® |) =1}) W = (x"DHE | 1) =1 A fr(x) =1}
={x"O| fo=1}.
If f=1£; v £, then R(f) = R(f;) o (04 1)@ 1 (0 + 1) t®) 5 R(f,) and thus
L(R®) NW = (L(R(#D) o {0, Y™™ U0, 1)) o L(R(E2))) N W
= ((L(RED) o {0, ™ ™Y nw) U (10, 1™ o L(R(£2)) N W)
= {x WO] [) = 1} U WO] o) =1} = WHO |) =1 v H) =1]
={x"O| feo=1}.

(b) Let £(k) be the maximal length of the regular expression R (f) for a formula f with depth k. We show recursively
that £(k) <2 - 4%m. For k =0 we have £(0) < 2m =2 - 4*m.

For formulae f; and f; of depth at most k the regular expression R(f; A f,) has length at most 2¢(k) < 2-2-45m =
4+l and the regular expression R(f] V f) has length at most

20(k) +2m(E(f) + €(F2) <2-2-4m +2m - (25 +2%) <2m - (2% 2K Com - (2T (2F 4 1))
<om- (2N <o 4k,

(c) We want a small regular expression for L) (f) and first observe that if we negate f with DeMorgan, then depth
does not increase. Hence L(R(f)) has a regular expression of length at most 2-4*m. Assuming L(R(f)) N{0, 1}*® =
L(R(f)) holds, as we will show next by induction over the structure of the formula, we obtain

Lon(f)=L(RO)NW=L(RO)UW =L(R®) U {x {0, 1}*: x| #m-eD}UW,
since L(R(f)) € {0, 1}“®_ We check whether the input does not consist of repetitions with the regular expression
(O+D*1TO+1"10O+D*) +(O+D* 0O+ 1" 10+1)*)

and cover words of wrong length by (04 1 + &) ¢®=1 1 (0 4 1) t®+1 0 4 1)*,

It remains to show that for any w € {0, l}m'e(ﬂ either w € L(R(f)) or w € L(R(f)). This is not obvious, since w
might be a word that does not consist of repetitions.

If f = x;, then R(f) = (0 + 1))~11(0 4+ 1)"~. On the other hand f = X; and thus R(f) = (0 + 1)\ ~10(0 + 1) .
Now assume, that wy ... w,, € {0, 1}, then obviously w € L(R(f)) <& w ¢ L(R(f)), since w; is either 0 or 1.

Let the assumption hold for f; and f; and let f =f; v f,. Thus

R(®) = R(f1) 0 0+ D™ + 0+)™M o R(fy)
and

R() = R(fi Afr) = R(f1) o R(F2)

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 913

hold. Let w € {0, 1}"*® then

wE L(R(f)) & Wi... Wh) € L(R(fl)) V Wit ()41 - - - Wnot(f) € L(R(fz))
& Wi W) & LRED) V Wineery 41 - - - Wieey & L(R(E))
S Wl Whet(f)) © Winet(d)+1 - - - Wity & L(R(ED)) o L(R(E))
& w¢L(R(E)oR(E))
& wé¢L(RMD)

holds and the proof for f =f; A f; is analogous.

(d) Since all functions in C; N B, have formula depth at most ¢ - logm, we may assume that all these functions
have formulae of depth exactly ¢ - logm and length exactly pi(m) = m®. Thus with part (a) L, (f») coincides with
L(R(f)) N W and, with part (b), L, (fin) has regular expressions of length o@clogmyy = om*tly. o

Naor and Reingold [12] show that NC! contains a strong pseudo-random ensemble for some parameter & > 0,
provided factoring Blum integers is sufficiently hard. More precisely there are some constant ¢ and a hard pseudo-
random ensemble C; with formula depth at most ¢ - logm and formula length at most pj(m) = m® for functions in
CiNB,,.

Thus we know that (strong pseudo-random) functions from C; N B, have short regular expressions of length at
most [1(1) (m) = poly(m), whereas we show next that most m-bit functions have only regular expressions of length at
least £2(2™).

Lemma 8. The number of languages described by regular expressions of length at most tél) (m) = % is bounded by

V22" = o(|Bul).

Proof. We define the rpn-length of a regular expression R as the number of symbols from X U {+, 0, *, ¢, @} ap-
pearing in R, when R is written in reverse Polish notation. A regular expression of length at most ¢ has rpn-length at
most 67 [6]. At any position in the regular expression in reverse Polish notation there may be one of the seven distinct

symbols 0, 1, +, o, *, &, . Thus we can have at most <6t 77 <7 L 220t distinct regular expressions of rpn-length

. . () 2m m—1
at most 6¢. The claim follows, since 2202 (") = 2209y = 22"

O

The functional G measures the length of minimal regular expressions. To show that GV separates C; from
random functions, we also need to show, that the language L, (k;;(f,)) for the restriction ky,(f,) does not need
longer regular expressions than L, (f5,). G,(,%)(km (fu) < tl(l) (n) holds for functions f,, € C; N B, because a formula
f for f,, can be transformed into a formula for k,,(f,) of same depth: We show how to deal with the leaves that
are constants after setting xi, ..., x,—, to zero. We have to replace these leaves and their parent gates, because our
definition of formulae only allows variables as leaves. We consider the last level of A or Vv gates in f. If one of the
children is a constant after restricting its value and the gate is equivalent to a variable (e.g. 1 A x;), we replace the
fixed child by the variable. If the value of the gate is fixed however (e.g. 0 A x;), we replace the gate and its children
by x, A X5, respectively x, V X;,.

Hence as a consequence of Lemmas 7 and 8, G separates C; from random functions with thresholds tl(l) (m) =
O (m>**!y and tél)(m) = %. Thus we may apply the generic Lemma 4 and obtain that efficient algorithms approxi-

mating the length of a shortest regular expression for L, (f) do not exist. However we have to specify the input not
by a truth table but by a dfa.

Proposition 9. Let h € By, and let p be some function of m, then there is a dfa D,(h) with ® (2™ - p) states that
accepts L ,(h). Moreover D, (h) can be constructed in time poly(2" - p).

Proof. The dfa D (h) consists of a binary tree of depth m rooted at the initial state. A leaf that corresponds to a word
x with h(x) = 0 gets a self loop, a leaf that corresponds to a word x with i (x) = 1 is starting point of a path of length

914 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

(p — 1)m that can only be followed by inputs with p — 1 repetitions of x. Each such path leads to a rejecting state
and any wrong letter on this path, respectively any word longer than (p — 1)m (measured on the path only) leads to
an accepting trap state. Each state is accepting, except for those already described as rejecting. The dfa D, (h) has
OQ™ - p) states. O

Observe that Proposition 9 is the only place, where we utilize the dfa specification to recognize m with rela-
tively few states.

As a consequence of Lemma 4, running time 200m") i insufficient for good approximations and we have obtained
our first main result.

Theorem 10. Suppose that strong pseudo-random functions in B, with parameter ¢ and formula depth bounded by
c - logm exist for some c.

Let App be a randomized approximation algorithm that approximately determines the length of a shortest equiv-
alent regular expression, when given a dfa with k states. Then there is a polynomial poly, such that for all | > 1, if
App runs in time 20(10gk)) and gchieves an approximation factor (k) <

erte>12.

m, then App must have errors

Proof. We assume by way of contradiction that the claim is falsified by an approximation algorithm App. We show
how to determine a good bound on the length of a regular expression for the language L, (h,,). We then apply
Lemma 4, since we obtain a too good approximation for the functional GW (h,,) which is defined as the length of a
shortest regular expression for L, (hy,).

In particular, given a truth table for 4,,, we apply Proposition 9 and obtain a dfa D for L, (k) in time 200m)
D has @ (2™ - p1(m)) states. In the next step, we apply App to D and obtain an approximation of GV (h,,) with factor
n(@2™ - p1(m)) where pi(m) =m* holds. By assumption for any polynomial “poly,” there is some / > 1, such that

.m"

m c m . . . oM e
n@"-m) < poly ((og@")77 holds. Thus the approximation factor is bounded by poly (mT7)

To apply Lemma 4, remember that GO separates C; from random functions with thresholds tlm(m) = O (m2t
and tél) (m) = %. For a polynomial poly’ () > n*¢ and for sufficiently large m,
(D
. 2™ . m¢ 2m t, (m)
2" . m€) < < <2
u() m/e)dc ~ d/e)3c tl(l)(ml/s)

holds, which is a better approximation than allowed by Lemma 4. O

Remark 11. We repeatedly apply the reasoning of Theorem 10. The only difference will be different values of

and 1,. Observe that the approximation factor is then at least tlt(zrg;’/)e) .

The argument shows that there are always dfa’s with optimal regular expressions of length poly(logk), such that
an “efficient” approximation algorithm can only determine regular expressions of length m. Thus the original
question of Jiang and Ravikumar [8] phrased for regular expressions instead of nfa’s, namely ngwether it is possible to

approximate within a polynomial, has a negative answer modulo cryptographic assumptions.
2.2. Nfa’s and two-way automata of polynomial size

In this section we use the functionals G® and G defined by Gﬁ,%) (hm), respectively Gﬁ,?) (hw). Gf,f) (hp) equals
the minimum number of states, respectively G,(,?) (hm) equals the minimum number of transitions, of an nfa recogniz-
ing L, (hy). We choose py(m) = m€ as defined in the previous section as an upper bound for the length of shortest

formulae for functions in C N B, and derive upper bounds tfz) for the number of states and t1(3) for the number of

transitions from the upper bound tl(l) = O (m>“*1) for the length of a shortest regular expression for L 1 (hm). We set

t1(2) = tl(l), t1(3) = (tl(l))2 and observe that the number of states of a minimum nfa is not larger than the length ¢ of an

equivalent regular expression and the number of transitions is at most quadratic in £. Thus all functions in C; have

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 915

@)

nfa’s of “size” at most t,”, respectively t()

Moreover all but a negligible fraction of languages require nfa’s with at
least tzz) (m) = 251 states, respectively 2, ® (m) = W transitions.

Lemma 12.

(a) The number of languages accepted by nfa’s with at most t2)(m) 2%*1 states is bounded by N2"t2" = o(| B,,|).
(b) The number of languages accepted by nfa’s with at most t,”) (m) = 20 transitions is bounded by ~/22" = o(| B, |).

Proof. (a) Let N (k) be the number of distinct languages accepted by nfa’s with at most k states over a two-letter
alphabet. Then N (k) < 2k - 22K [2] and hence

[\

N (17 (m)) < 524 Q2R _ 0% R QU o of _ Jomro,
(b) We show that there are at most M (k) = k'% languages accepted by nfa’s with at most k transitions over a
two-letter alphabet. This establishes the claim, if we set tf) (m) = %, since

1020
M(e5) (m)) = (o) . <210mF — /22"

20m

For any nfa N with s states and k transitions there is an equivalent nfa N’ with s + 1 states, at most 2k transitions
and exactly one final state. Just add a final state f, make every other state nonfinal and for every transition in N that
leads to a final state in NV, add a transition to f and keep every other transition.

There are at most ((S“ZL,:)Z)2 - 52 < s8F2 distinct languages over {0, 1} accepted by nfa’s with s states and k transi-
tions, since this is an upper bound for the number of possibilities to place 2k transitions for each letter of the alphabet
{0, 1} and the number of choices for the initial and the final state.

We can assume that the number of states is bounded by the number of transitions and hence we have at most
k852 < &k 10k distinct languages. O

We apply Remark 11 with thresholds t1(2) = O (m2t) and t2(2) = 2%~ for state minimization and t1(3) = O (m*t?)
and t<3) n:n for transition minimization.
Corollary 13. Suppose that strong pseudo-random functions in B, with parameter & and formula depth bounded by
c - logm exist for some c.

Let App be a randomized approximation algorithm that approximately determines the number of states (respectively
number of transitions) of a minimum equivalent nfa, when given a dfa with k states. Then there is a polynomial poly,

such that for all 1 > 1, if App runs in time 20W0eh) and achieves an approximation factor u(k) < ng)’/a)

(respectively (k) <), then App must have errors €4 +€_ > %

S S
poly((logk)"/*)

We cannot expect better bounds with our cryptographic approach, since an arbitrary s € B, always has an nfa for
m with 027 + p - m) states, as we show next.

We first construct an nfa Nj; with e-transitions and less than 4 - 27 states for L1 (h). Our nfa consists of a state qu
and py, for each w € {0, 1}* with |w| < 5 qs is the initial state and p, is the only final state There are transitions
8(qw,0) ={quo} foro e {0 1} and |w]| < . Thus we initially build a binary tree. For |w| = 7, we add e-transitions
8(qw.€) ={px | x €{0,1} A h(wx) = 0}. The remaining transitions are §(pow, o) = {pw} for o € {0, 1} and
|w| < 7. There are no transitions for symbols that do not match the first letter of the state’s index: §(pow, 1 —0) =0

A word y accepted by N; must have length m and must evaluate to 4(y) = 0, on the other hand for every input y
with h(y) = 0, there is a path from the initial to the final state.

By adding an e-transition from the final state to the initial state, we turn Nj, into an nfa for (L (h))*. Additionally,
we accept every word that is not a repetition of a word of length m with 2(m + 1) states and accept every word that is

916 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

not of length p - m with p - m 4 2 states. The method for removing e-transitions is well-known and does not increase
the number of states.

We finally mention that the assumption of strong pseudo-random functions with small formula depth can be re-
placed by the weaker assumption of strong pseudo-random functions with two-way dfa’s of polynomial size. (Observe
that two-way dfa’s of polynomial size have the power of nonuniform Logspace, which is at least as powerful as nonuni-
form NC'.) We show that two-way dfa’s can be simulated efficiently by nfa’s after repeating the input suitably often.

Lemma 14. Let m, k € N. Then there is a polynomial p(m), such that for any two-way deterministic finite automaton
A, with at most m* states, there is an nfa N,, with O(p(m)) states and transitions accepting the complement of

Ly(Ap) = {xp(m) } x €{0, 1} A A, accepts x}.

Proof. Obviously A, runs for at most p(m) = m - m* steps on inputs x € {0, 1}, since no cell can be visited twice
in the same state. As shown in [13], A,, on input x € {0, 1}"* can be simulated by a dfa D,, with p(m) states working
on input x”" _ The nfa N,, decides nondeterministically to run D,, (with final and nonfinal states interchanged) or
to check whether the input is syntactically incorrect, i.e., verifying inequality or incorrect length. N, has t;(m) =
poly(m) states, respectively transitions. O

We can rephrase Corollary 13 with the weaker assumption that pseudo-random functions in By, exist which are
computed by two-way dfa’s with at most m* states for some k. When applying Lemma 4, we have to first redefine
the number of repetitions to make sure that a class C, of pseudo-random functions can be recognized by two-way
dfa’s of size at most m*. We therefore set py(m) = m**! and are guaranteed to find an equivalent nfa recognizing
Ly, (fm) (for f, € C2 N Byy) with @ (p2(m)) states, respectively transitions. Thus t1(2) (m) and t1(3) (m) have to be reset
accordingly.

G (ki (f)) < t1(n) holds, since we can transform a two-way dfa A, for L1 (f) ={x | x € {0, 1}" A f(x) = 1} with
state set Q into a two-way dfa A,, for L{(k,,(f)) ={y |y € {0, 1} A f(0""™y) = 1} with the same state set Q. The
new initial state q(’) is the state in which A,, enters position n — m + 1 for the first time. The transitions for A,, remain
the same as for A, except for the case, when A,, reads the left end marker 4. We define §(g,) to move right and
take the state that A, reaches, when visiting position n — m + 1 for the first time, after starting in ¢ on position n —m
with zeros only on positions 1, ...,n —m.

2.3. The minimum consistent dfa problem

In the minimum consistent dfa problem, sets POS, NEG C {0, 1}* with POS N NEG = () are given. The goal is to
determine the minimum size of a dfa D such that POS C L(D) and NEGN L(D) = 0.

Remember our assumption that the class C; of functions computable by two-way dfa’s with m* states for inputs of
length m contains strong pseudo-random functions. Since two-way dfa’s of polynomial size have the power of nonuni-
form Logspace, this assumption is weaker than the assumption that NC' contains strong pseudo-random functions.

To make the transition from two-way to one-way dfa’s, we repeat an input p,(m) = m**! times and define
Gﬁf) (hy) as the minimum size of a dfa accepting POS = {xP? | h,,(x) = 1} and rejecting NEG = {xP? | h,,(x) = 0}.
Observe that for any function f,,, € Co N B,, we have G,(,f)(fm) < t1(4) (m) := m*t1 since any two-way dfa with mk
states can be simulated by a dfa with mK*1 states, provided the input x € {0, 1} is repeated pp(m) = m**! times.
(See the proof of Lemma 14.)

Lemma 15. G (h,,) < t2(4) (m) = é—:"n holds for at most ~/22" = o(|B,,|) functions in By,.

Proof. Let K (s) be the number of distinct languages accepted by dfa’s with at most s states over a two-letter alphabet.
Then K (s) < s [2] and hence

om
m

35m m
K (1;”(m) < (§—m> <o =V,

The claim holds, since different functions /,, have different consistent dfa’s. O

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 917

Thus Gf,iL) separates C, from random functions with thresholds tf4), t2(4) and we apply Remark 11. However, when
given the function 4, we build the sets POS = {xP2 | h;,(x) = 1} and NEG = {xP? | h,,(x) = 0} instead of building a
dfa for L (h,,). We obtain the following theorem.

Theorem 16. Suppose that strong pseudo-random functions in By, with parameter € exist which are computed by
two-way dfa’s with at most m* states for some k.

Let App be a randomized approximation algorithm that approximately determines the number of states of a mini-
mum consistent dfa and let N =" . _posunec |X| be the input length. Then there is a polynomial poly, such that for

all 1 > 1, if App runs in time 20 (10gN ") and achieves an approximation factor (N) < then App must

___ N
poly((log N)/¢)”
have errors €4 +€_ > %

Thus, assuming that minimal consistent dfa’s have size opt = poly(log N), efficient approximation algorithms are
m > 200 B , where B < 1,/ is sufficiently large and
d < N is the number of classified examples. This result is stronger than the result of at least opr® - d# due to Kearns and

Valiant [9]. The stronger result is a consequence of our use of pseudo-random functions instead of one-way functions.
(See also Naor and Reingold [12].)

doomed to determine consistent dfa’s of size at least

3. Approximately minimizing nfa’s or regular expressions

We now assume that the language is specified concisely, i.e., as an nfa or a regular expression and prove in this
scenario strong inapproximability results.

3.1. Unary nfa’s and regular expressions

We begin by investigating unary languages, i.e., languages over a one-letter alphabet. A unary regular language is
recognized by a dfa that starts with a possibly empty path and ends in a nonempty cycle.

In our proofs, we only consider cyclic languages, i.e., languages that can be recognized by dfa’s consisting of a
cycle only. In particular, we say that a language L C {a}* is d-cyclic iff

(ajeL = aj+d€L)

holds for any j € N and call d a period of L. A smallest period is called the minimal period and any period is a
multiple of the minimal period.

Our first result shows that efficient approximations for state minimization within the factor % for a given nfa
with m states do not exist, if P % NP. This result remains true for the number of transitions (respectively number of
symbols in regular expressions).

We can improve the inapproximability result, if we require the construction of a small nfa or regular expression.
We show for this case, that for a given nfa or regular expression A of size m and any § > 0, no efficient algorithm can
determine an nfa or regular expression A’ equivalent to A of size at most opt - m' =%, if P # NP.

Stockmeyer and Meyer [16] show, that the nonuniversality problem L(N) # X* is NP-complete for regular ex-
pressions and nfa’s N, if we consider only unary languages. Since our argument is based on their construction, we
show the proof.

Fact 17. [16] For a unary nfa N, it is NP-hard to decide, if L(N) # {a}*.

Proof. We reduce 3SAT to the universe problem for unary nfa’s. Let @ be a 3CNF-formula over n variables with m
clauses. Let py, ..., p, be the first n primes and set D :=]_[f': 1 Pi- According to the Chinese remainder theorem, the
function p: N — N" with u(x) = (x mod py, ..., x mod p,) is injective, if we restrict the domain to {0, ..., D — 1}.
We call x a code for an assignment, if u(x) € {0, 1}".

We construct an nfa Ng that accepts {a}* iff @ is not satisfiable. We first make sure, that Lo e = {a
k is not a code} is accepted. Therefore, for every prime p; (p; > 2) we construct a deterministic cycle that accepts
the words a/ with j %0 (mod p;) A j # 1 (mod p;). So there are 2 nonfinal states and (p; — 2) final states in the

“

918 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

cycle. For every clause C of @ with variables x;,, x;,, x;; we construct a deterministic cycle C* of length p;, pi, pis-
C* accepts

{ak | the assignment k mod pi; for x;; (j =1,2,3) does not satisfy cl.

Since the falsifying assignment is unique for the three variables in question, exactly one state is accepting in C*. We
turn the set of disjoint cycles into an nfa by adding an initial state gg and transitions from ¢gg to the second state of
each cycle.

The construction can be done in time polynomial in the length of @. If there is a word a/ ¢ L(Ng), then j is a
code for a satisfying assignment. On the other hand every satisfying assignment has a code j and a/ is not accepted
by Ny. O

Observe that the number of transitions is the same as the number of states |Q¢| plus the number of cycles. An
equivalent regular expression Rp with length at most 2 - | Q4| can obviously be constructed.

We set Ly = L(Ng) for the automaton Ng constructed above. Observe that L is a union of cyclic languages and
hence is cyclic itself. Obviously if @ ¢ 3SAT, then a minimum nfa or regular expression for L has size 1. We show
that, for @ € 3SAT, every nfa accepting Ly must have at least Z?:z pi states, which implies Theorem 18.

Theorem 18. Given an nfa or regular expression N of size n, it is impossible to efficiently approximate the minimal
size of an nfa or regular expression for L(N) within a factor of ﬁ unless P = NP.

We first determine a lower bound for the period of L¢.
Lemma 19. For any given 3CNF-formula ® € 3SAT the minimal period of Lg is either D :=[]/_, p; or %.

Proof. Lg is D-cyclic, since D is the least common multiple of the cycle lengths of Ng. Assume that neither D nor
% is the minimal period of Lg. Then there is i > 2, such that d = 2%, is a period of Lg. We know that afPit? ¢ Lo.o
for every g € N, because gp; + 2 does not represent a code. Since Lo ¢ € Lo and we assume that Lg is d-cyclic,
a?Pit2+7d belongs to Le for every r € N as well.

On the other hand, since Lo # {a}*, there is a word a’ ¢ Lg, and so a't'? ¢ Lg for every t € N. It is a contradic-
tion, if we find g, r, t € N, so that gp; +2 4+ rd =1+ td, since the corresponding word has to be in L because of the
left-hand side of the equation and cannot be in Lg because of the right-hand side.

dq,r,t: gqgpi+2+rd=I1+td <& 3Fq,r,t: gqpi=l—-24+(—r)d
& dg: gpi=1l—2 (modd)
& dg: q[E(l—Z)p;1 (mod d).

The multiplicative inverse of p; modulo d exists, since gcd(p;, d) = 1, and we have obtained the desired contra-
diction. O

We need a linear relation between the number of clauses and variables in the CNF-formula. Hence we consider
E3SAT — ES, the satisfiability problem for formulae with exactly 3 literals in every clause and every variable appear-
ing in exactly 5 distinct clauses. It is well known that E3SAT — ES is NP-complete.

The following lemma determines a lower bound for the size of an nfa equivalent to Ng, if @ is satisfiable.

Lemma 20. Let & € E3SAT — E5 and assume that @ consists of m clauses. Then any nfa for Le has at least cm? Inm
states for some constant c.

Proof. We know from Lemma 19, that L(Ng) is either minimally D-cyclic or %—cyclic with D =[T]/_, p; where
n is the number of variables in @. Jiang, McDowell and Ravikumar [7] show that any nfa accepting a unary cyclic
language with a period % that factorizes as [[7_, p; must have at least Y ;_, p; states. We estimate the size of the

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 919

ith prime number p; by i Ini < p; < 2i Ini (the lower bound holds for all i € N, the upper bound holds for i > 3). So
every nfa for Lg must have at least

n n n 2

n
Ezpi> EJ]ni}/xlnxdx}Zlnn
1= 1=

1

states. We have 5n = 3m and thus we can express the lower bound for the number of states in relation to the number
of clauses in @: Every nfa for Ly must have at least cm? Inm states for some constant c. O

Finally we determine an upper bound for the size of the nfa Ng.

Lemma 21. Let @ be a 3CNF formula with m clauses and exactly 5 appearances of every variable. Then the nfa Ng
as well as the regular expression R has size at most O (m*(Inm)3) and at least §2(m*Inm).

Proof. The number of states in a cycle for a clause is a product of three primes. So there are at most m - pﬁ =
O (m(m1nm)3) states in all of these cycles. The cycles recognizing Lo ¢ have Y ;_, pi = ©®(n?%1nn) states, where n
is the number of variables of @. Since n = ® (m) the claim follows. Remember that the number of transitions in Ng
and the number of symbols in R¢ is linearly related to the number of states in No. O

Proof of Theorem 18. Assume that the polynomial time deterministic algorithm A approximates the minimum size

S5

of an equivalent nfa or regular expression for a given regular nfa or regular expression of size s within the factor ﬁ
We show that the satisfiability problem can be decided in polynomial time.

Let @ be the given input for the E3SAT — ES problem, where we assume that @ has n variables and m clauses.
We construct the nfa Ng or regular expression Rg as in Fact 17. If @ is not satisfiable, then size 1 is the optimum,
and according to Lemma 21 the algorithm App claims that an equivalent nfa or regular expression with size at most

V5 _V©Om*inm®) _

Ins _ In(2@m2(nm)))

o(m2 In m)

exists. Since, by Lemma 20 any satisfiable formula ¥ generates a language Ly with nfa’s of size £2(m?Inm), and
thus regular expressions of size £2(m?Inm), the claimed size (y/s/Ins) is asymptotically smaller than the minimum
size for Ly and hence with the help of App, we can decide if @ is satisfiable within polynomial time. O

Now we consider approximation algorithms that construct small equivalent nfa’s or regular expressions opposed to
just determining the size and obtain an even stronger inapproximability result.

Theorem 22. Let N be an arbitrary unary nfa or regular expression of size m. Let opt be the size of a minimal
equivalent nfa, respectively regular expression. For any § > 0, if P # NP, then no efficient algorithm can determine
an nfa or regular expression N' equivalent to N with size at most opt - m'~°.

Proof. Let N be an nfa (regular expression) constructed in the proof of Fact 17. N has the property that either opt = 1
i

or opt > — and it is NP-complete to distinguish the two cases.
Inm

Suppose that there is a constant § > 0 and an efficient algorithm A that computes an nfa, respectively a regular
expression, A(N) equivalent to N with size(A(N)) < opt - size(N)' ~°. If we apply A on its output again, then

size(A(A(N))) < opt - size(A(N))lf‘S < opt*- size(N)1=9°,

If we repeat this process k times, then size(AX(N)) < opr* - size(N)(1=9" . So for k > k)g?%é)’ we have size(AF(N)) <
optk - size(N)AIT, and hence for m large enough, size(Ak(N) < % follows, if opt = 1, respectively size(Ak (N)) >

opt > M polds otherwise. O

Inm

920 G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

3.2. General nfa’s or regular expressions

Our negative results for general alphabets are based on the well known proof [11] of the PSPACE-completeness
of regular expression nonuniversality: Given a regular expression R, is L(R) # X*? The PSPACE-completeness of
regular expression nonuniversality implies the PSPACE-completeness of the exact minimization of nfa’s and regular
expressions.

The proof of [11] shows, that for an arbitrary language L € PSPACE there is a polynomial time transformation
T such that w € L & L(T(w)) # X*, where L(T (w)) is the language described by the nfa, respectively regular
expression T (w). We restrict ourselves to languages L € £ where L is the class of languages that can be accepted by
deterministic in-place Turing machines.? Our inapproximability result utilizes the following observation.

Lemma 23. For any given language L € L there is a deterministic in-place Turing machine M|, recognizing L with a
single accepting state. M runs for at least 2"* steps on every input w € L of length n.

Proof. Let M be some deterministic in-place Turing machine which accepts L and has only one accepting state g 5.
We construct a Turing machine M that has all the states and transitions M has. However, whenever M| enters q, it
counts in binary from 0" to 1”7, changes to a new state q}, when reaching 1", and stops. q} is the only state in which
M|, accepts and q}- causes My tostop. 0O

Assume that M = (Qu, X'y, I'm, 8, qo, {gr}) is a Turing machine with the properties stated in Lemma 23 which
recognizes the PSPACE-complete language L(M). (A padding argument shows that £ contains PSPACE-complete
languages.) We reduce the word problem for L (M) to the minimization problem for regular expressions and nfa’s. In
particular for an input w of M, we construct a regular expression R,,, which describes exactly all words which are not
concatenations of consecutive legal configurations starting from configuration gow leading to the unique accepting
state g .

Ry, is defined over the alphabet X' = (Qpr x I'y) U I'yy U {#} which allows us to describe sequences of configu-
rations of M separated by the new symbol #. Every legal configuration has length exactly n = |w| and is a word in
Iy - (Om x Typ) - F;jl. The symbol [gq, a] € Oy x I'y represents the head position of M on a cell with contents a
while M is in state g. Ry, is a union of the regular expressions R, Ry, R3 and Ry4.

e Rj describes all words which do not start with #[gg, wi]ws ... w,#, i.e.,

Ry = Ng + #(Nigo.wy1 + [q0. wi1(Nu, + w2 (Nuy + w3 (... (N, + waNg)...))))
with N, = ¢ + (X' \ a) X*. Observe that we use the abbreviation
¥=) 0 and (Z\a)=) o
=) oeX\{a}

e R; describes all words which do not contain [g ¢, y] forany y € I'y, i.e.,

*
Ry = < Z a))
aeX\({qr}xTm)

e R3 = X*(X \#) describes all words which do not end with #.

e R4 describes any illegal change on the tape between consecutive configurations: In a legal sequence y of con-
figurations, for every triple y; _1y;y;11 € &> of consecutive letters, the new middle symbol y; 1 is a function
of y;—1yiyi+1. Thus for any illegal sequence x of configurations either there is a position i with x; 4,41 # x;, if
the head is not scanning x;, or Xx;4,41 is not updated correctly.

In particular, for each ay, az, a3 € I'yy U {#} accept every word x which does not have a; at the corresponding
middle position in the next configuration by the regular expression

S*oajaazo X" o (X \ ap) o X*.

2 £ coincides with DSPACE(O (n)), but considering only Turing machines that work in-place simplifies the proof.

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 921

Finally, for each a;, ay € I'y; and each [q,a] € Qp x Iy with §(g,a) = (q', b, —) for some gq’ € Qj; and some
b € I')y accept wrong sequences by

T*olg,alaiaz 0 Z" o (Z\ ¢/ a1]) o Z* + Z*oaylg,alaz o 2" o (¥ \ b) o T*
+ X*oajarlq,alo X" o (X \ ar) o X*.

Treat those [q, a] € O x T’y with §(gq, a) = (q’, b, <) accordingly. Ry is the union of all the regular expressions
just described.

The regular expression Ry, has m < |w| -3 -|X|* = O(lw|) symbols. Thus an equivalent nfa with m states can be
constructed. It is easy to verify, that there is an equivalent nfa with O (Jw|) transitions.

If M rejects w, then L(R,,) coincides with X*. However, if M accepts w, then the configuration sequence y
corresponding to the accepting computation is not covered by R,, and it is the only word not in L(Ry,).

Any accepting computation y has length at least 2!/, since M is a Turing-Machine as described in Lemma 23. We
show that X* \ {y} requires nfa’s with at least |w| states. Every dfa which excludes a single word of length at least
2wl needs at least 2! states, thus every equivalent nfa needs at least |w/| states. Hence, if L(R,,) = X*\ {y} for some
y with |y| > 2/*! then every nfa which accepts L(R,,) needs at least |w| states. Thus |w| is a lower for the number of
transitions in any equivalent nfa as well as for the size of any equivalent regular expression.

Thus, if w ¢ L(M), then L(R,,) can be recognized by an nfa with one state or | X| transitions, respectively a
regular expression of size | X'|, whereas for w € L(M), nfa’s with at least |w| states or transitions, respectively regular
expressions of size at least |w| are required.

Since we efficiently constructed R,, with m = O (Jw|) symbols and the efficient construction of an equivalent nfa
with O (Jw|) states and transitions is possible as well, we have found the desired gap.

Theorem 24. Unless P = PSPACE, it is impossible to efficiently approximate the size of a minimal nfa or regular
expression describing L(A) within an approximation factor of o(m) when given an nfa or a regular expression A with
m states, transitions or symbols, respectively.

Standard encoding arguments show that this PSPACE-completeness result is true for regular expressions or nfa’s
over any alphabet X' with | X| > 2.

4. Conclusions and open problems

We have been able to verify inapproximability of nfa’s or regular expressions either for given nfa’s or regu-
lar expressions (utilizing P # NP, respectively P 7 PSPACE) or for given dfa’s (assuming the existence of strong
pseudo-random functions in nonuniform NC', respectively nonuniform Logspace). Below we list our results.

NFA AND REGULAR EXPRESSION MINIMIZATION

INSTANCE: An nfa N with k states over a binary alphabet.

SOLUTION: The size of a smallest nfa equivalent with N.

MEASURE: Number of transitions or number of states.
BAD NEWS: Not approximable within o(k).

ASSUMPTION: P # PSPACE.
REMARK: More generally the same complexity result holds, if a given nfa or regular expression is to be trans-
formed into an equivalent nfa or regular expression of minimal size.
REFERENCE: Theorem 24.

UNARY NFA OR REGULAR EXPRESSION MINIMIZATION

INSTANCE: An nfa N with k states over a unary alphabet.
SOLUTION: The size of a smallest nfa equivalent with N.

922

MEASURE:
BAD NEWS:
ASSUMPTION:
REMARK:

REFERENCE:

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923

Number of transitions or number of states.

Not approximable within %

P # NP.

More generally the same complexity result holds, if a given unary nfa or regular expression is to be
transformed into an equivalent nfa or regular expression of minimal size.

Theorem 18.

CONSTRUCTIVE UNARY NFA OR REGULAR EXPRESSION MINIMIZATION

INSTANCE:
SOLUTION:
MEASURE:
BAD NEWS:
ASSUMPTION:
REMARK:

REFERENCE:

An nfa N with k states over a unary alphabet.

A smallest nfa equivalent with N.

Number of transitions or number of states.

Not approximable within k!~% for any §.

P # NP.

More generally the same complexity result holds, if a given unary nfa or regular expression is to be
transformed into an equivalent nfa or regular expression of minimal size.

Theorem 22.

DFA — NFA MINIMIZATION (STATES)

INSTANCE:
SOLUTION:
MEASURE:
BAD NEWS:
ASSUMPTION:
REFERENCE:

A dfa D with k states over a binary alphabet.
The size of a smallest nfa equivalent with D.
Number of states.

Not approximable within W\/lggk)'

Strong pseudo-random functions in Logspace.
Corollary 13.

DFA — NFA MINIMIZATION (TRANSITIONS)

INSTANCE:
SOLUTION:
MEASURE:
BAD NEWS:
ASSUMPTION:
REFERENCE:

A dfa D with k states over a binary alphabet.
The size of a smallest nfa equivalent with D.
Number of transitions.
Not approximable within m.

Strong pseudo-random functions in Logspace.
Corollary 13.

DFA — REGULAR EXPRESSION MINIMIZATION

INSTANCE:
SOLUTION:
MEASURE:
BAD NEWS:

ASSUMPTION:
REFERENCE:

A dfa D with k states over a binary alphabet.
The size of a smallest regular expression equivalent with D.
Number of symbols.

Not approximable within m.

Strong pseudo-random functions in NC'.
Theorem 10.

MINIMUM CONSISTENT DFA

INSTANCE:
SOLUTION:

Two finite sets P, N of binary strings.
The minimal size of a dfa accepting all strings in P and rejecting all strings in N.

G. Gramlich, G. Schnitger / Journal of Computer and System Sciences 73 (2007) 908-923 923

MEASURE: Number of states in the automaton.

: i ithin ——JPIHINT
BAD NEWS: Not approximable within polyQog(1 PIHTNT) *

ASSUMPTION: Strong pseudo-random functions in Logspace.
REFERENCE: Theorem 16.

Our results for nfa or regular expression minimization, for given nfa’s or regular expressions, are best possible and
include the number of states, the number of transitions, respectively the length as resources to be minimized. The
situation is different for a given dfa, since ideally we would like to have hardness results relative to the assumption

P # NP. Moreover, when minimizing the number of states, our methods are only able to show approximation factors

of size at least W\/lggk). for a given dfa of size k and sharper bounds are not excluded. Finally the complexity of nfa

or regular expression minimization remains open, if a language L1 (h,,) is specified by a truth table for 4,,.

The exact complexity of the unary nfa or regular expression minimization problem remains open, since it is not
excluded that efficient algorithms with approximation factor ﬁ exist for some function f(n) growing slower than
any root of n. Finally we mention the unary dfa — nfa minimization problem, whose exact status is also to be resolved.

UNARY DFA — NFA MINIMIZATION

INSTANCE: A dfa D with k states over a unary alphabet.
SOLUTION: The size of a smallest nfa equivalent with D.
MEASURE: Number of states or transitions.
BAD NEWS: Optimal solution cannot be determined efficiently.
ASSUMPTION: NP ¢ DTIME(n©{02m)
REMARK: Cyclic case can be approximated within 1 + Ink.
REFERENCE: [7], [3].

References

[1] J.-M. Champarnaud, F. Coulon, Nfa reduction algorithms by means of regular inequalities, Theoret. Comput. Sci. 327 (3) (2004) 241-253.
[2] M. Domaratzki, D. Kisman, J. Shallit, On the number of distinct languages accepted by finite automata with n states, J. Automata Languages
Combinatorics 7 (4) (2002) 469-486.
[3] G. Gramlich, Probabilistic and nondeterministic unary automata, in: B. Rovan, P. Vojtds (Eds.), MFCS, in: Lecture Notes in Comput. Sci.,
vol. 2747, Springer-Verlag, 2003, pp. 460—469.
[4] G. Gramlich, G. Schnitger, Minimizing nfa’s and regular expressions, in: V. Diekert, B. Durand (Eds.), STACS ’05, in: Lecture Notes in
Comput. Sci., vol. 3404, Springer-Verlag, 2005.
[5] L. Ilie, G. Navarro, S. Yu, On nfa reductions, in: J. Karhuméki, H.A. Maurer, G. Paun, G. Rozenberg (Eds.), Theory Is Forever, in: Lecture
Notes in Comput. Sci., vol. 3113, Springer-Verlag, 2004, pp. 112—124.
[6] L. Ilie, S. Yu, Follow automata, Inform. and Comput. 186 (1) (2003) 140-162.
[7] T. Jiang, E. McDowell, B. Ravikumar, The structure and complexity of minimal nfa’s over a unary alphabet, Int. J. Found. Comput. Sci. 2 (2)
(1991) 163-182.
[8] T. Jiang, B. Ravikumar, Minimal nfa problems are hard, SIAM J. Comput. 22 (6) (1993) 1117-1141.
[9] M.J. Kearns, L.G. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. ACM 41 (1) (1994) 67-95.
[10] O. Matz, A. Potthoff, Computing small nondeterministic finite automata, in: Proc. of the Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Dpt. of CS., Univ. of Aarhus, 1995, pp. 74-88.
[11] A.R. Meyer, L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, in: Proc. 13th Ann.
IEEE Symp. on Switching and Automata Theory, 1972, pp. 125-129.
[12] M. Naor, O. Reingold, Number-theoretic constructions of efficient pseudo-random functions, J. ACM 51 (2) (2004) 231-262.
[13] L. Pitt, M.K. Warmuth, Prediction-preserving reducibility, J. Comput. System Sci. 41 (3) (1990) 430-467.
[14] L. Pitt, M.K. Warmuth, The minimum consistent dfa problem cannot be approximated within any polynomial, J. ACM 40 (1) (1993) 95-142.
[15] A.A. Razborov, S. Rudich, Natural proofs, J. Comput. System Sci. 55 (1) (1997) 24-35.
[16] L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time: Preliminary report, in: Proc. of the 5th Annual ACM Symposium
on Theory of Computing, 1973, pp. 1-9.

