7 research outputs found

    Application and Control Aware Communication Strategies for Transportation and Energy Cyber-Physical Systems

    Get PDF
    Cyber--Physical Systems (CPSs) are a generation of engineered systems in which computing, communication, and control components are tightly integrated. Some important application domains of CPS are transportation, energy, and medical systems. The dynamics of CPSs are complex, involving the stochastic nature of communication systems, discrete dynamics of computing systems, and continuous dynamics of control systems. The existence of communication between and among controllers of physical processes is one of the basic characteristics of CPSs. Under this situation, some fundamental questions are: 1) How does the network behavior (communication delay, packet loss, etc.) affect the stability of the system? 2) Under what conditions is a complex system stabilizable?;In cases where communication is a component of a control system, scalability of the system becomes a concern. Therefore, one of the first issues to consider is how information about a physical process should be communicated. For example, the timing for sampling and communication is one issue. The traditional approach is to sample the physical process periodically or at predetermined times. An alternative is to sample it when specific events occur. Event-based sampling requires continuous monitoring of the system to decide a sample needs to be communicated. The main contributions of this dissertation in energy cyber-physical system domain are designing and modeling of event-based (on-demand) communication mechanisms. We show that in the problem of tracking a dynamical system over a network, if message generation and communication have correlation with estimation error, the same performance as the periodic sampling and communication method can be reached using a significantly lower rate of data.;For more complex CPSs such as vehicle safety systems, additional considerations for the communication component are needed. Communication strategies that enable robust situational awareness are critical for the design of CPSs, in particular for transportation systems. In this dissertation, we utilize the recently introduced concept of model-based communication and propose a new communication strategy to address this need. Our approach to model behavior of remote vehicles mathematically is to describe the small-scale structure of the remote vehicle movement (e.g. braking, accelerating) by a set of dynamic models and represent the large-scale structure (e.g. free following, turning) by coupling these dynamic models together into a Markov chain. Assuming model-based communication approach, a novel stochastic model predictive method is proposed to achieve cruise control goals and investigate the effect of new methodology.;To evaluate the accuracy and robustness of a situational awareness methodology, it is essential to study the mutual effect of the components of a situational awareness subsystem, and their impact on the accuracy of situational awareness. The main components are estimation and networking processes. One possible approach in this task is to produce models that provide a clear view into the dynamics of these two components. These models should integrate continuous physical dynamics, expressed with ordinary differential equations, with the discrete behaviors of communication, expressed with finite automata or Markov chain. In this dissertation, a hybrid automata model is proposed to combine and model both networking and estimation components in a single framework and investigate their interactions.;In summary, contributions of this dissertation lie in designing and evaluating methods that utilize knowledge of the physical element of CPSs to optimize the behavior of communication subsystems. Employment of such methods yields significant overall system performance improvement without incurring additional communication deployment costs

    Cooperative Autonomous Vehicle Speed Optimization near Signalized Intersections

    Get PDF
    Road congestion in urban environments, especially near signalized intersections, has been a major cause of significant fuel and time waste. Various solutions have been proposed to solve the problem of increasing idling times and number of stops of vehicles at signalized intersections, ranging from infrastructure-based techniques, such as dynamic traffic light control systems, to vehicle-based techniques that rely on optimal speed computation. However, all of the vehicle-based solutions introduced to solve the problem have approached the problem from a single vehicle point of view. Speed optimization for vehicles approaching a traffic light is an individual decision-making process governed by the actions/decisions of the other vehicles sharing the same traffic light. Since the optimization of other vehicles’ speed decisions is not taken into consideration, vehicles selfishly compete over the available green light; as a result, some of them experience unnecessary delay which may lead to increasing congestion. In addition, the integration of dynamic traffic light control system with vehicle speed optimization such that coordination and cooperation between the traffic light and vehicles themselves has not yet been addressed. As a step toward technological solutions to popularize the use of autonomous vehicles, this thesis introduces a game theoretic-based cooperative speed optimization framework to minimize the idling times and number of stops of vehicles at signalized intersections. This framework consists of three modules to cover issues of autonomous vehicle individual speed optimization, information acquisition and conflict recognition, and cooperative speed decision making. It relies on a linear programming optimization technique and game theory to allow autonomous vehicles heading toward a traffic light cooperate and agree on certain speed actions such that the average idling times and number of stops are minimized. In addition, the concept of bargaining in game theory is introduced to allow autonomous vehicles trade their right of passing the traffic light with less or without any stops. Furthermore, a dynamic traffic light control system is introduced to allow the cooperative autonomous vehicles cooperate and coordinate with the traffic light to further minimize their idling times and number of stops. Simulation has been conducted in MATLAB to test and validate the proposed framework under various traffic conditions and results are reported showing significant reductions of average idling times and number of stops for vehicles using the proposed framework as compared to a non-cooperative speed optimization algorithm. Moreover, a platoon-based autonomous vehicle speed optimization scheme is posed to minimize the average idling times and number of stops for autonomous vehicles connected in platoons. This platoon-based scheme consists of a linear programming optimization technique and intelligent vehicle decision-making algorithm to allow vehicles connected in a platoon and approaching a signalized intersection decide in a decentralized manner whether it is efficient to be part of the platoon or not. Simulation has been conducted in MATLAB to investigate the performance of this platoon-based scheme under various traffic conditions and results are reported, showing that vehicles using the proposed scheme achieve lower average values of idling times and number of stops as compared to two other platoon scenarios

    String stability of interconnected vehicles under communication constraints

    No full text
    In this paper, we present a novel modelling and string stability analysis method for an interconnected vehicle string in which information exchange takes place via wireless communication. The usage of wireless communication introduces time-varying sampling intervals, delays, and communication constraints of which the impact on string stability requires a careful analysis. In particular, we study a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string and utilizes information exchange between vehicles through wireless communication in addition to local sensor measurements. The propagation of disturbances through the interconnected vehicle string is inspected by using the notion of so-called string stability which is formulated here in terms of an L2-gain requirement from disturbance inputs to controlled outputs. This paper provides conditions on the uncertain sampling intervals and delays under which string stability can still be guaranteed. These results support the design of CACC systems that are robust to uncertainties introduced by wireless communication

    Advances in System Identification and Stochastic Optimization

    Get PDF
    This work studies the framework of systems with subsystems, which has numerous practical applications, including system reliability estimation, sensor networks, and object detection. Consider a stochastic system composed of multiple subsystems, where the outputs are distributed according to many of the most common distributions, such as Gaussian, exponential and multinomial. In Chapter 1, we aim to identify the parameters of the system based on the structural knowledge of the system and the integration of data independently collected from multiple sources. Using the principles of maximum likelihood estimation, we provide the formal conditions for the convergence of the estimates to the true full system and subsystem parameters. The asymptotic normalities for the estimates and their connections to Fisher information matrices are also established, which are useful in providing the asymptotic or finite-sample confidence bounds. The maximum likelihood approach is then connected to general stochastic optimization via the recursive least squares estimation in Chapter 2. For stochastic optimization, we consider minimizing a loss function with only noisy function measurements and propose two general-purpose algorithms. In Chapter 3, the mixed simultaneous perturbation stochastic approximation (MSPSA) is introduced, which is designed for mixed variable (mixture of continuous and discrete variables) problems. The proposed MSPSA bridges the gap of dealing with mixed variables in the SPSA family, and unifies the framework of simultaneous perturbation as both the standard SPSA and discrete SPSA can now be deemed as two special cases of MSPSA. The almost sure convergence and rate of convergence of the MSPSA iterates are also derived. The convergence results reveal that the finite-sample bound of MSPSA is identical to discrete SPSA when the problem contains only discrete variables, and the asymptotic bound of MSPSA has the same order of magnitude as SPSA when the problem contains only continuous variables. In Chapter 4, the complex-step SPSA (CS-SPSA) is introduced, which utilizes the complex-valued perturbations to improve the efficiency of the standard SPSA. We prove that the CS-SPSA iterates converge almost surely to the optimum and achieve an accelerated convergence rate, which is faster than the standard convergence rate in derivative-free stochastic optimization algorithms
    corecore