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Abstract

Road congestion in urban environments, especially near signalized intersections, has been a

major cause of significant fuel and time waste. Various solutions have been proposed to solve the

problem of increasing idling times and number of stops of vehicles at signalized intersections,

ranging from infrastructure-based techniques, such as dynamic traffic light control systems, to

vehicle-based techniques that rely on optimal speed computation. However, all of the vehicle-

based solutions introduced to solve the problem have approached the problem from a single

vehicle point of view. Speed optimization for vehicles approaching a traffic light is an indi-

vidual decision-making process governed by the actions/decisions of the other vehicles sharing

the same traffic light. Since the optimization of other vehicles’ speed decisions is not taken

into consideration, vehicles selfishly compete over the available green light; as a result, some

of them experience unnecessary delay which may lead to increasing congestion. In addition,

the integration of dynamic traffic light control system with vehicle speed optimization such that

coordination and cooperation between the traffic light and vehicles themselves has not yet been

addressed.

As a step toward technological solutions to popularize the use of autonomous vehicles, this

thesis introduces a game-theoretic-based cooperative speed optimization framework to minimize

the idling times and number of stops of vehicles at signalized intersections. This framework

consists of three modules to cover issues of autonomous vehicle individual speed optimization,

information acquisition and conflict recognition, and cooperative speed decision making. It relies

on a linear programming optimization technique and game theory to allow autonomous vehicles

heading toward a traffic light cooperate and agree on certain speed actions such that the average

idling times and number of stops are minimized. In addition, the concept of bargaining in game

theory is introduced to allow autonomous vehicles trade their right of passing the traffic light

with less or without any stops. Furthermore, a dynamic traffic light control system is introduced

to allow the cooperative autonomous vehicles cooperate and coordinate with the traffic light
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to further minimize their idling times and number of stops. Simulation has been conducted

in MATLAB to test and validate the proposed framework under various traffic conditions and

results are reported showing significant reductions of average idling times and number of stops

for vehicles using the proposed framework as compared to a non-cooperative speed optimization

algorithm. Moreover, a platoon-based autonomous vehicle speed optimization scheme is posed

to minimize the average idling times and number of stops for autonomous vehicles connected in

platoons. This platoon-based scheme consists of a linear programming optimization technique

and intelligent vehicle decision-making algorithm to allow vehicles connected in a platoon and

approaching a signalized intersection decide in a decentralized manner whether it is efficient

to be part of the platoon or not. Simulation has been conducted in MATLAB to investigate

the performance of this platoon-based scheme under various traffic conditions and results are

reported, showing that vehicles using the proposed scheme achieve lower average values of idling

times and number of stops as compared to two other platoon scenarios.
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Chapter 1

Introduction

In the USA alone, there were about six million vehicle crashes in 2010. Human errors caused ap-

proximately 93% of these crashes [1]. Over the past few years, technology and automobile indus-

tries have concentrated on the human driving process in their efforts to automate the transporta-

tion system. Recently, various car models have started to include automatic characteristics and

features, such as parking assistant systems that automatically steer vehicles into available parking

spaces. Some automobile companies have made leaps toward manufacturing Autonomous Vehi-

cles (AVs), which can implement different levels of automatic functions as a means of achieving

a safer and more efficient transportation system. AVs are believed by many industrial companies

and stakeholders to have the potential to dramatically improve the current transportation system.

The next section provides a brief introduction to AVs.
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1.1 Autonomous Vehicles

AVs, also called Self-Driving Vehicles (SDVs), have different levels of intelligence and capabil-

ity to perform partial or full automatic driving tasks. AVs can be categorized, based on their level

of autonomy, into four major levels [2–4]. In Level-one AVs, the driver is in full control of the

vehicle, and the automation is limited to very specific control functions, such as cruise control,

anti-lock brakes and an electronic stability control system. The automation of Level-two AVs

is extended to multiple and more integral control functions, such as Adaptive Cruise Control

(ACC), Cooperative Adaptive Cruise Control (CACC), lane centering and lane changing, and

autonomous parking capability. Other than when these automatic systems are functioning, the

driver is responsible for monitoring the roadway at all times. Level-three AVs are able to mon-

itor the surrounding environment and navigate autonomously, so the drivers are not expected to

monitor the roadway at all times. However, under certain critical conditions the drivers must be

attentive and ready to take back control of the vehicle for a short period of time. The Google

car [3] is an instance of this level of self-driving (Figure 1.1). Level-four AVs are those capable

of monitoring the surrounding environment and performing all driving tasks autonomously for

an entire trip. The driver may input a destination to the vehicle, but is not expected to intervene

during operation. Therefore, these AVs may operate without passengers or with passengers who

cannot drive (e.g., disabled people, non-drivers or elderly people, etc).

Reportedly, AVs have multiple major positive impacts on the transportation system, such

as reduced driver stress and public transportation cost; improved mobility of the non-driving,

disabled and elderly people; reduced accident risks; increased road capacity (e.g., by forming

platoons of vehicles travelling in a row with safe headway distances, resulting in less speed vari-

ations); and reduced parking costs [1–4]. However, many issues need to be resolved before AVs

can be practically operated on the roads. The next section addresses a few challenges associated

with the widespread development and use of AVs.
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Figure 1.1: The autonomous car of Google Corporation [3].

1.2 Challenges

Security and privacy risks are one category among the many important issues to be resolved be-

fore AVs are widely marketed. In scenarios of comprehensive AV adoption, Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) communication systems may be vulnerable to data

abuse [2]. Hence, the communication systems must be robust and controllable in cases such as

when there is cyber attack risk. In addition, in order to enhance road safety and driver conve-

nience, AVs require high-technology sensors, special navigation systems, and software upgrades;

as a result, purchase prices will be increased by thousands of dollars. Also, these technological

components must meet high installation, testing, and maintenance standards, which add more

cost to the ownership of AVs [3]. Consequently, low and middle income people will not be able

to afford AVs. Moreover, laws for the liability, standardization, and certification have to be leg-

islated. There are concerns about who owns the risk when highly autonomous vehicles crash;

therefore, solutions to legalize and legislate the use of AVs have to be found [1].

Most importantly, the impact of the wide use of AVs on road congestion, especially in urban

environments, is uncertain and has to be investigated. On one hand, AVs will have many positive

impacts on the transportation system, such as reducing public transportation cost due to fewer
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human-driving activities, reducing public transportation demand through increased rates of car-

sharing and better mobility of the non-driving, disabled, and elderly people. Moreover, a high

adoption of AVs will reduce parking costs as many people can drive to work or school then

program their AVs to return home while they are working or studying. On the other hand, all

of these positive impacts may increase the number of vehicles on roads; consequently, traffic

congestion in urban areas might rise. As forming platoons of vehicles reduces the inter-vehicle

spacing and speed variations on roads, this could improve the road capacity on highways but only

when the penetration rate is high [3]. Therefore, the impacts of AVs on road congestion in urban

areas cannot be predicted and need to be addressed through research. It is reported in [2] that in

order to obtain positive impacts on road congestion, cooperation between AVs and infrastructure

is necessary. Cooperative AV systems could improve traffic management, and therefore reduce

congestion in urban environments.

1.3 Motivation

Road congestion in urban environments, especially near Signalized Intersections (SIs), has been

a major cause of significant fuel waste and time delay. It is reported in [1] that in the USA every

year, 4.8 billion hours is wasted by traffic congestion. This significant delay costs around $100

billion of fuel waste and $23 billion due to congestion impacts on trucking operations. These

facts present a strong need to devise technological congestion-reduction techniques for AVs.

Long and cumulative idling times of vehicles at SIs are considered a major contributor to traffic

congestion within urban environments. Therefore, various solutions have been proposed to solve

the problem of the increasing idling times at Traffic Lights (TLs), ranging from infrastructure-

based techniques such as dynamic TL control systems [5–7] to vehicle-based techniques that rely

on vehicle optimal speed computation [8] [9]. These techniques have one common objective, that

is, to minimize the vehicles’ idling times and number of stops at TLs.
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However, all of the vehicle-based solutions introduced to solve the idling-time-minimization

problem have approached the problem from a single-vehicle point of view. In fact, traffic mobil-

ity is a function of all the vehicles sharing a travel resource and is dependent on the constraints

imposed by the environment and infrastructure. Therefore, it is natural for conflicts to arise be-

tween vehicles sharing the same travel resource. Speed optimization for vehicles approaching

a TL is an individual decision-making process governed by the actions/decisions of the other

vehicles sharing the same TL. Hence, interest conflicts are expected to occur. The major draw-

back of existing vehicle speed optimization solutions is that the optimization of other vehicles’

speed decisions is not taken into consideration. As a result, vehicles selfishly compete over the

available green light, often causing to each other unnecessary delays. In addition, even though

there has been interesting research conducted on dynamic TL control, the existing work does not

integrate dynamic TL control with vehicle speed optimization such that coordination and coop-

eration between the TL and vehicles are implemented to minimize idling times and number of

stops.

As a step forward in devising technological solutions to popularize the use of AVs, the main

motivating objective of this thesis is to introduce a game-theoretic AV speed optimization solu-

tion to minimize the idling times and number of stops of AVs at TLs. The main motivating ob-

jective for the rest of the research is to integrate the dynamic TL control with the game-theoretic

AV speed optimization such that a dynamic-TL-AV-based cooperative technological system is

devised to further minimize vehicles’ idling times and number of stops. The task of satisfying

the needs of many participants in a process is extremely complex. Game theory is recognized as a

solid mathematical platform to capture the complexity of team-aware optimization problems. For

instance, by cooperating with each other, vehicles can exchange strategic actions (e.g., speeds)

in some form of compensation to minimize their idling times at TLs. Both categories of game

theory, cooperative and non-cooperative, have been well developed and can be used to model the

AV minimization problem of idling times and number of stops as a cooperative strategic game.
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1.4 Thesis Objectives

Existing research on vehicle optimal speed computation to minimize the idling times and number

of stops at SIs does not consider the interaction and cooperation between vehicles. Thereby, the

aim of this thesis has been to allow AVs, travelling toward a TL, to interact and cooperate with

each other as well as with the TL control system such that the average idling times and number

of stops are minimized. Thus, to model the AV speed optimization as a cooperative process, the

following research objectives are addressed:

• Developing a problem formulation using game theory to address the interaction and coop-

eration between AVs approaching an SI.

• Investigating the feasibility and stability of the game-theoretic formulation.

• Developing a cooperative AV speed optimization solution framework to model the inter-

action and cooperation between AVs approaching an SI.

• Developing a bargaining model to allow the AVs heading toward a TL trade their rights of

passing through without delay.

• Developing a dynamic TL control system to allow the cooperative AVs interact and coop-

erate with the TL to achieve further minimization of idling times and number of stops.

• Investigating the impacts of speed optimization on connected-AV platoons when approach-

ing SIs.

• Finally, conducting extensive simulation experiments to test and validate the performance

of the introduced techniques.
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1.5 Thesis Organization

This thesis is divided into six chapters as follows: Chapter 2 provides extensive background

information and a literature review addressing the environmental, economical, and safety impacts

of AVs. In addition, challenges creating barriers to the widespread use of AVs are also discussed.

Then, research on vehicle-centric speed optimization techniques as well as dynamic TL control

systems is addressed. Following that, research conducted on vehicle speed control and platooning

systems such as ACC and CACC as well as fuzzy logic control is summarized. Background

information is presented on game theory as a team-based optimization platform with special

attention given to the shortest-path and congestion games.

Chapter 3 states the problem of increasing idling times and stop numbers at a TL as the

number of vehicles utilizing the TL increases. The idling time and stop number minimization

problem for AVs approaching a TL is formulated as a strategic game, and the stability of the

AV speed optimization game is discussed as well. Furthermore, this chapter introduces a game-

theoretic Cooperative Speed optimization Framework (CSOF) for solving the problem of idling

time and stop number minimization and achieving better traffic efficiency at SIs. Moreover, a

bargaining model using cooperative game theory is introduced to allow the AVs to trade their

rights of passing TLs without delay.

Chapter 4 presents a dynamic TL control system to allow coordination and cooperation be-

tween the cooperative AVs and the TL system as a pace forward for further minimization of

idling times and number of stops of AVs at TLs. This cooperative AV-TL control system consists

of decision making and control. The decision making is based a theoretic game structured as a

three-player game including the roads with green-light, roads with red-light, and the TL system.

The control part employs fuzzy logic to adjust the signal timings according the traffic volume on

the roadways.
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Chapter 6 addresses a platoon-based autonomous vehicle speed optimization scheme to min-

imize the idling times and number of stops of connected-AV platoons when approaching TLs.

This cooperative scheme consists of a speed optimization procedure conducted by the leader

of the platoon and intelligent algorithm for decision making to be run by every follower in the

platoon such that the average idling times and stop numbers of the AV-platoons are minimized.

Finally, Chapter 7 summarizes concluding remarks of what has been addressed in the thesis

and presents a discussion on the simulation results obtained within each chapter. In addition, a

future research plan is outlined, addressing the future directions of the thesis.
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Chapter 2

Background and Literature Review

This chapter provides background and a literature review on a broad range of AV development,

challenges and problems. First, it addresses a number of research studies conducted with regards

to the road safety, environmental, and economical impacts of adopting AVs as an alternative to

conventional vehicles that are fully driven by humans. Second, issues and challenges associated

with the development of AVs are discussed with special attention given to AV speed optimization

and control near SIs. Third, it addresses research conducted on dynamic TL control systems and

their contribution to the problem of TL efficiency improvement. Finally, background information

on game theory is presented, focusing largely on shortest-path and congestion games as well as

the applications of game theory to the dynamic TL control.
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2.1 Safety, Environmental and Economical Impacts

According to [1], approximately 15 deaths per 100,000 people were caused by about six million

vehicle crashes in the USA in 2010. Of these crashes, 93% were caused by human error. In

addition, around 2.3 million people were treated in hospitals due to car crash injuries throughout

the USA in 2009. AVs can significantly reduce the accident rate and have positive impacts on

road safety since most of fatal accidents are caused by alcohol, distraction, drugs or fatigue. Even

if the accident is caused by a vehicle failure or the environment, additional human factors such as

inattention or speeding usually maximize the severity of the crash and thus, injury consequences.

A recent study in [2] states that only 5% of road crashes are due to vehicle failure. Accidents

resulting from human-driving mistakes constitute approximately 90% of the overall accident

rate; therefore, widespread AV adoption could reduce the overall accident rate by 90% [10].

The positive safety impacts of AVs are further extended to having vehicles that are much lighter

in weight and more energy efficient than conventional vehicles, as some safety features (e.g.,

reinforced steel bodies and airbags) can be neglected; according to one authority, 20% reduction

in weight corresponds to 20% increase in efficiency [1].

Green-house-gas emissions can also be reduced when AVs are widely used [2]. Since AVs

are equipped with high-technology capabilities, they will be able to navigate more efficiently and

smoothly than human drivers throughout any journey. When there is high market penetration of

AVs, major reductions can be reached with respect to parking problems, energy consumption and

CO2 emission [3]. Road vehicle automation could help increase road capacity by facilitating the

formation of platoons of vehicles, which reduce the road space required per vehicle [2]. Forming

platoons of vehicles alone would reduce fuel consumption on highways by about 20% [1]. Cited

by [4], the SARTRE project reports that with a platoon of vehicles, the fuel savings are approx-

imately 8% for the lead vehicle and 14% for the following vehicles when the average speed of

the platoon is 85 km/hour and the headway between every two vehicles is 6 m. The signifi-
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cant benefit of AV emission reduction will be mainly in urban areas and achieved by minimizing

speed variations and stop-and-go driving. 50% congestion reduction results in 8% fewer traffic

accidents and 5% CO2 emission reduction [4]. Hence, AVs will certainly have a positive impact

on the environment.

In [1], KPMG LLP and the Center for Automotive Research (CAR) cooperatively conducted

a research study in which leading technologists, automotive industry leaders, academicians, and

stakeholders were interviewed on the convergence of AV adoption and implications for invest-

ment in AVs. They concluded that due to the benefits expected from using them, AVs will be

widely adopted in the coming few years. In addition, the Victoria Transport Policy Institute has

conducted a study in [3] about the impacts of the four levels of AVs on transportation planning.

This research pays attention to the benefits and costs of AVs, exploring the impacts on the park-

ing supply and public transit demand. The results illustrate that the adoption of AVs by wealthy

people will perhaps start in the 2020s or 2030s. The impacts of increasing safety, reducing road

congestion, reducing emissions, and reducing parking congestion will be significant only when

AVs become common, adopted by low-income people, most likely in the period from 2040s to

2060s. The widespread use of Level-four AVs can also reduce vehicle ownership by making

people rely more on self-driving taxis and car-sharing [11]. Moreover, in [10], a research study

sponsored by the Eno Center for Transportation presented the benefits of generally adopting AVs

in the USA. It is reported that AVs have the potential to reduce crashes, congestion, fuel con-

sumption, and parking needs; and to ease the mobility of elderly and disabled people. When the

market penetration rate of AVs is only 10%, the annual savings of the USA economy could reach

$25 billion. An anonymous survey with over 450 responses was conducted in [12] to explore the

feelings, beliefs and expectations of participants toward the technology of AVs. It is shown that

the productivity, efficiency and environmental impacts are accepted by the participants. However,

the cost and legal structures were not acceptable; therefore, it was concluded that the promotion

of AVs must be further developed so that the technology becomes accepted by the public.
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2.2 Challenges and Related Issues

Even though some levels of AVs will be convenient for long-distance travelers, non-drivers,

commercial drivers and disabled people, they require high-technology sensors, special naviga-

tion and mapping systems, and software upgrades; therefore, several thousands of dollars will

likely be added to the vehicle purchase and ownership prices. Thus, the cost of purchase and

ownership is expected to be prohibitively high. Furthermore, in order to enhance road safety

and passenger convenience, these technological components have to meet high manufacturing,

installation, testing, and maintenance standards, which add more costs on top of the vehicle pur-

chase and ownership prices [3]. For instance, $70,000 is the cost of the Light Detection and

Ranging (LIDAR) technology used by Google’s AV [1] [10]. Additional costs occur with other

sensors; consequently, such high costs will not be affordable by low-income people, constituting

a barrier to the large-scale market penetration of AVs. It is expected that when the purchase cost

is reduced, the adoption of AVs will likely be widened; hence, further developments to reduce

the total cost of purchase and ownership are greatly needed before stakeholders and investors

invest in this emerging technology [1].

AVs may also introduce some privacy and security concerns, such as cyber terrorism as they

are equipped with computer technology and V2V communications [2]. Communication systems

must be robust and safe from corruption and cyber attacks. It is expected that several security

issues will emerge when AVs become popular. For instance, hackers or unauthorized parties

may capture data and compromise the vehicle owner by tracking the vehicle or identifying the

owner’s residence. Furthermore, hackers could provide fake information to drivers or attack the

whole transportation system, causing collisions and traffic disruptions [1] [10]. Another example

would be a computer virus that may be programmed and spread across vehicles along a period of

time; consequently, all the targeted vehicles simultaneously increase their speeds. It may not be

possible to completely secure the whole system since each AV represents an access point in the
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targeted group [10]. In addition, AVs may use data generated by other vehicles (e.g., the Google

car), so “there are privacy concerns over who would have access to this data and how it might be

used” [2]. Therefore, further developments are needed with regards to AV security and privacy.

The protection against such security and privacy threats may include the removal of identifying

information, the aggregation of data within the vehicle rather than broadcasting a large amount

of raw data over a fleet of vehicles, encryption, and the use of security functions at each layer of

software and hardware [1].

Legislation is expected to impact the fast adoption of AVs [1]. For example, in Europe, the

legal framework imposes that vehicles must be controlled by a driver all time of operation, which

illegalizes at least level-three and level-four AVs. Some issues must be resolved with respect to

liability law, regulatory law, standardization, and certification [4]. An important question would

explore the case of crashes involving AVs designed such that the driver is no longer in control.

Hence, the ambiguity behind risk responsibility must be resolved before high market penetration

of AVs occurs [1].

2.3 Traffic Management near Intersections

Traffic management especially near intersections has been an important area of research. An

autonomous intersection management system is proposed in [15], where incoming vehicles are

assigned priorities by a controller to pass through USIs safely based on a defined brake-safe

state. A queue control algorithm is addressed in [16] to control the average queue size at SIs and

thereby alleviate congestion in road networks. A traffic management framework is introduced

in [17] to reduce traffic congestion at SIs by incorporating a dynamic vehicle rerouting strategy

and a TL control system. To provide emergency safety responses at SIs, a TL control system

based on deterministic and stochastic Petri Nets (PNs) is designed in [18] where TL control
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strategies are implemented to ensure the safety of traffic in cases of accidents. An Internet-of-

Things (IoT)-based platform containing three main units is introduced in [19] for emergency

vehicle priority and self-organized traffic control management at SIs.

Based on the self-organizing biological concept, a design of a self-organizing network with

a set of local rules to manage traffic priority is presented in [20] where priority is given to emer-

gency vehicles to expedite their response times. A heuristic approach is proposed in [21] to

resolve space-time conflicts such that AVs are able to pass through USIs safely with minimum

delay. A cooperative framework is introduced in [22] to allow adjacent TL control systems to

coordinate their signal-timing settings so as to globally optimize the traffic efficiency and travel

time at multiple intersections. To manage traffic at USIs, a distributed traffic management proto-

col is addressed in [23] to allow vehicles to cross safely and with high level of driver’s comfort.

A study is presented in [24] to analyze the difference based on the passing order of vehicles at

USIs between the cooperative driving of the ad hoc negotiation strategy and the planning strat-

egy. A cooperative mechanism is developed in [25] to autonomously manage the crossing of AVs

through USIs by adjusting the entry times and speeds of AVs in a certain core area.

2.4 Vehicle Speed Optimization

This section considers research conducted to address the impacts of vehicle speed optimization

on traffic efficiency near SIs. Traffic efficiency at TLs can be achieved by minimizing the idling

times of vehicles as well as stop-and-go driving. As presented next, limited research has been

conducted on centric-speed optimization (i.e., the vehicles individually and independently com-

pute their optimal speeds to meet the green-light time) to minimize the idling times and number

of stops at TLs.

An algorithm called Green Light Optimal Speed Advisory (GLOSA) has been proposed in [8]
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to minimize the number of stop times at SIs through a journey. The impacts of this algorithm

on traffic efficiency and average trip time were reported. The performance analysis of the same

algorithm is investigated again in [9] using the performance metrics of average fuel consumption

and average stop times at SIs. Vehicles equipped with this algorithm are assumed to communicate

among each other through V2V communication and with the TL through V2I communication to

gather information about the TL characteristics. Based on the time that the vehicle would take to

get to the TL plus the time remaining in the current phase, depending on the current phase light,

an optimal speed is recommended to the driver to follow.

A real-world testing and evaluation of GLOSA is presented in [26] where important factors

that are simplified in simulations but affect the results are taken into consideration. Investigat-

ing the ride comfort for buses approaching SIs, a genetic algorithm-based method is proposed

in [27], showing that the installation and use of GLOSA on buses results in significantly smoother

speeds, better ride comfort and arrival during green-light time. A modified version of GLOSA

called Driver-Centric GLOSA (DC-GLOSA) is introduced in [28]. DC-GLOSA takes into con-

sideration the acceleration and braking of vehicles to achieve better fuel saving and driving com-

fort. A multi-segment GLOSA system called R-GLOSA is proposed in [29] to provide an AV

with the optimal speed when approaching an SI assuming that the AV can have access to the TL

schedules along the whole path of travel. In large-scale simulation, the potentials and limitations

of GLOSA are investigated in [30]. A performance comparison between the single-segment

and multi-segment GLOSA approaches is addressed in [31], concluding that during free-flow

conditions, the multi-segment GLOSA achieves better results in terms of travel time and fuel

efficiency. To easily enable the application of GLOSA, a windshield mounted smart-phone pro-

totype is proposed in [32] for detecting and predicting the schedules of TLs.

An approach for a single-vehicle optimal speed computation is introduced in [33] to reduce

fuel consumption and CO2 emissions by reducing stop-and-go driving in urban areas particularly

at TLs. In this approach though, the case of a driver cruising the vehicle speed to pass a TL
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is not considered. The vehicles are assumed to communicate through V2V communication and

with the TL through V2I communication within a certain distance called the Region of Interest

(ROI). The TLs are assumed to be static with fixed cycle/phase duration. The approach proposed

in [33] is used in [34] for a single-vehicle optimal speed computation to reduce CO2 emissions.

Since [34] pays attention to the reduction of CO2 by reducing stop-and-go driving, the case

where the driver may cruise the vehicle speed to pass the TL is taken into account. The TLs are

assumed to be dynamic, and vehicles can communicate at a high reliability with the TLs through

V2I communication within a distance of 100 m.

To minimize the overall emissions of vehicles, an approach is presented in [35] to provide

the vehicle with optimal speeds toward an SI to avoid unnecessary acceleration and deceleration.

By analyzing the driving behaviour as well as the signal phasing and timing information, an

eco-driving model is introduced in [36] to provide the drivers of Electric Vehicles (EVs) with

the optimal speed profiles when approaching an SI. To minimize the energy consumed along a

certain path, an analytical model is proposed in [37] to compute a time-dependent optimal speed

profile for EVs approaching an SI.

The impacts of V2I communication, namely vehicle to TL communication, on fuel and emis-

sion reductions have been investigated in [38]. In this research, the focus is on the key factors

that influence fuel and emission reductions. These key factors are the gear choice and distance

at which the highest fuel and emission savings are achieved. It is concluded that the maximum

fuel and emission reductions can be achieved by integrating optimal speed computation with the

gear choice factor such that stops at TLs are to some extent avoided. A vehicle speed advisory

method along with a fuel consumption model to reduce fuel consumption when passing an SI are

introduced in [39]. Using the time computed to the TL and vehicle acceleration and deceleration

capabilities, the major contribution of this research is the computation of a fuel-optimal speed

profile during deceleration and acceleration phases based on the deceleration rate (i.e., when

approaching the TL) and acceleration rate (i.e., after passing the TL).
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Noticeably, the approaches and techniques proposed for optimal speed computation of vehi-

cles approaching a TL are incomplete, failing to efficiently minimize the vehicles’ idling times

and number of stops. All of these studies have focused only on single-vehicle optimal speed com-

putation, and therefore, cooperation between the vehicles and TLs to optimize vehicles’ speeds

and reduce stop-and-go driving at TLs has not been addressed at all yet.

2.5 Adaptive Cruise Control

The underlying idea of Adaptive Cruise Control (ACC) is based on the theory of the Conventional

Cruise Control (CCC) system. The CCC system can maintain the speed of a vehicle at a desired

value set by the driver. Since in congested traffic conditions the CCC system becomes less useful,

a radar system was added to it, creating ACC. The addition of the sensory radar technology has

enabled the system to adjust the headway distance of a vehicle from another vehicle travelling

ahead. The ACC system decreases the need for the driver to continuously adjust speed to match

that of a vehicle ahead, and so the system is designed to reduce driving workload and increase

driver comfort and convenience [40].

There are two modes of operation for ACC (i.e., set-speed control and follow control). When

the system is in use and no vehicle is present within the predefined headway distance of the ACC

vehicle, the system functions in the set-speed control mode. The objective of this mode is to

control the speed of the vehicle to that set by the driver. If a forward vehicle is detected by the

radar, the ACC system functions in the time-gap mode (i.e., follow mode). During this mode, the

system adjusts the vehicle speed to maintain a time gap between the two vehicles. Therefore, the

ACC system reduces the driver workload by: (1) maintaining a desired preset speed; (2) applying

limited deceleration when approaching a slower vehicle ahead on the same lane; (3) keeping a

safe headway distance between the two vehicles; and (4) accelerating back to the desired preset
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speed when no slower vehicle is detected ahead [40]. However, when forming a platoon of

vehicles on the road, the ACC system has several drawbacks. String stability, which is considered

as a major barrier to ACC improving road capacity, is defined as the oscillations or perturbations

resulting from the speed variations of the leading vehicle in a platoon of vehicles [41–44]. These

speed shock-waves are amplified by the following vehicles’ drivers when pressing the braking

pedals harder and harder one after another to avoid collision when the leading vehicle brakes or

decelerates.

2.5.1 Cooperative Adaptive Cruise Control

To improve the performance of ACC, V2V communication capability was added to the sys-

tem [40]. The updated version of ACC is called Cooperative Adapted Cruise Control (CACC).

CACC, which relies on V2V communication, has improved the performance of a platoon of vehi-

cles and thus, reduced the impacts of string stability [40,41,45]. Including V2V communication

has improved the performance of the system because the leading vehicle can communicate with

the rest of the platoon, transmitting its expected acceleration/deceleration rates before it performs

its actions. CACC has proven to help increase the capacity of highways only when the penetra-

tion rate of the vehicles equipped with CACC is high. There are two positive impacts of CACC

on highways. First, it reduces the inter-vehicle spacing, which improves highway capacity. V2V

communication allows vehicles equipped with CACC to travel at closer headways, resulting in

extremely small time gaps between vehicles. Second, it improves the homogeneity of traffic flow

by reducing the effects of string stability to the lowest level [4, 40, 41]. As reported in [40], ”a

cause of congestion is the occurrence of shockwaves in traffic platoons”.
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2.5.2 Platoon Formation in Urban Areas

There have been three streams of research being conducted in the field of platoon formation in

urban areas. The first one focuses on optimizing the traffic flow of platoons using dynamic traffic

signal control. A self-scheduling control model is proposed in [46] where a view of incoming

traffic is used to determine whether to extend the TL timing or not. A similar platoon-based TL

control algorithm has been introduced in [47] to optimize the traffic flow of platoons.

The second research stream focuses on platoon formation and management near Un-Signalized

Intersections (USIs). A platoon-based traffic control strategy has been proposed in [48] to im-

prove traffic efficiency at USIs, where a Petri Nets model is introduced to describe the traffic

behaviour. Similarly, a model has been introduced in [49] to manage the movement of platoons

at USIs. Other platoon management techniques to improve traffic efficiency as compared to a TL

system have been introduced in [50–53].

The last stream focuses on platoon management near SIs, where the platoon has no control

over TLs but one way communication from the TL to vehicles is available. Investigating the

effects of platoon formation near SIs has been addressed in [54], concluding that platoons on

major roadways should have the right of way even if this causes longer waiting times for vehicles

on minor roads. Experimental results for platoon modelling and management when approaching

SIs have been reported in [55], while [56] has studied the fuel-optimal strategies of platoons

departing SIs. An analytical model to predict delays of platoons at SIs has been developed

in [57].

As per the literature review conducted with respect to platoon formation in urban areas, very

few papers address platoon management near SIs [54–57]. These papers do not address the issue

of minimizing platoon-based idling times and number of stops at SIs.
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2.6 Fuzzy Logic Control

Fuzzy logic control (FLC) has proven to be a promising technological tool for vehicle automatic

speed control. A Fuzzy Logic Controller (FLCr) has been proposed in [58] to automatically

control the throttle and brake of an AV, where the output of the FLCr is the pressure on the

throttle and brake pedals. Since the objective of this study is to achieve human-like driving at low

speeds, the FLCr has been shown to perform well for smooth stop-and-go driving. However, the

effect of string stability was not reduced as V2V communication is not considered in the whole

process. A lateral and longitudinal FLCr for AVs has been introduced in [59]. The longitudinal

FLCr is used for AV speed control. The AV speed control in this research consists of two main

applications. The first is a single AV speed control, where the target speed is set by the driver

beforehand. Then, another FLCr is embedded to automatically control the vehicle’s throttle

and brake to maintain the target speed. However, there is no experimental validation of this

application. The second application is a stop-and-go driving application, where two real AVs

were used to validate the stop-and-go FLCr at low speeds (i.e., a maximum of 30 km/hour).

An algorithm using an FLCr has been proposed in [60] to automatically control the speed of an

AV. The objective of this research is to make the abrupt changes in the FLCr output smoother.

This is achieved by integrating another loop in the controller structure. This proposed algorithm

is used to automatically control the throttle pressure and thus, the acceleration of the vehicle at

high speeds (e.g., from 80 km/hour to 100 km/hour); however, the control of the brake is not

included in the process.

FLC has shown to be successful for automatically controlling the speed of a single vehicle

or a platoon of vehicles mainly to keep safe headway distances between vehicles, so it has the

same fundamental idea as the CACC but with the assumption that the whole process is fully

automated (i.e., no human intervention). Therefore, speed optimization of AVs approaching a

TL for improving traffic efficiency has not been considered in the applications of FLC.
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2.7 Traffic Light Control Systems

This section provides a review of TL control systems and their impact on managing traffic. There

are mainly two TL control systems: static TL control and dynamic TL control. The mechanism

of the former depends on using a static predetermined schedule of the phase and/or cycle duration

for each direction of the intersection. The controller of this TL system is an electro mechanical

one with a dial timer to allow repetitions of fixed phase duration intervals. Since phase duration

cannot be adapted to longer/shorter intervals, this type of TL control can achieve a limited man-

agement of traffic under normal conditions. The Dynamic TL Control System (DTLCS) consists

of two main units: a detector unit to detect the volume of traffic on roadways and a control

unit to control the signal timings by giving more congested roads longer green-light times so

that congestion at SIs is alleviated [5–7]. Some research has been conducted with respect to the

development and applications of the DTLCSs.

A design of a DTLCS that relies on the use of Infra Red-Light Emitting Diode (IR-LED)

transmitters and receivers is introduced in [61] to measure the traffic volume on junction roads.

A DTLCS based on intelligent Radio-Frequency-Identification (RFID) is developed in [62]. In-

tegrated with a certain algorithm and data base approach, this developed DTLCS can handle

multi-vehicle, multi-lane, and multi-road-junction scenarios to manage traffic. The modelling

of a DTLCS as a stochastic hybrid system is introduced in [63] where online gradient estima-

tors of a cost metric are derived with respect to the controllable light cycles. The estimators are

then used to iteratively adjust the controllable cycles to efficiently manage traffic under various

traffic conditions. A DTLCS is proposed in [64] based on a traffic flow prediction model and a

Model Predictive Control (MPC) optimization method. Using sonars for dynamic TL control,

a DTLCS is addressed in [65], performing the calculation of the green and red-light times for

different lanes based on predictive machine learning algorithm. This predictive machine learning

algorithm uses historic traffic data to reinforce the dynamic behaviour of the system.
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FLC has been shown to have the capability to apply real-life rules similar to the way humans

would control traffic flow near SIs. A FLC method applied to dynamically control the signal

timings of a TL system using a microscopic simulator is presented in [66]. A TL control system

is proposed based on FLC in [67] to model unusual traffic conditions where the duration of the

green-light phase is extended or terminated depending on the number of vehicles approaching

the green-light phase and that of vehicles waiting in the queue during the red-light phase. A

FLC-based TL system is introduced in [68] to dynamically control the traffic and pedestrians at

SIs. The number of vehicles and pedestrians are estimated using cameras mounted at the SI. A

centralized FLC-based TL system is proposed in [69] to manage traffic flow at SIs with machine

vision algorithms used to report the traffic volume on the roadways. The moving traffic to and

from nearby intersections is considered in the computations of the FLC system. A FLC system is

presented in [70] with the objective of achieving smooth traffic flow by minimizing the waiting

time of vehicles at SIs. A FLC method is applied in [71] to isolated four-roadway SIs where the

decision of extending or terminating the light signal of a certain roadway is produced using a

three-level fuzzy controller model.

To model the input-output membership functions of a FLC method for dynamic TL control,

the Mamdani fuzzy logic system is posed in [72], while the Sugeno fuzzy logic system is in-

troduced in [73]. A FLC approach for dynamic TL control is developed in [74], generating the

fuzzy logic rules based on evolutionary algorithms and using real statistical traffic data. The

design and implementation of a Smart Traffic Light (STL) based on FLC is addressed in [75]

where Wireless Sensor Networks (WSNs) are used for traffic data collection. The input of the

FLC is the traffic quantity and waiting time of each lane, while the output is the priority degree

that determines the order of the green light for the different lanes. To overcome traffic problems

such as congestion, accidents, and irregularity, a TL control system based on FLC is proposed

in [76] where traffic volume and queue length information is obtained using WSNs and image

processing techniques. An intelligent TL control system using a statistical multiplexing method
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algorithm is proposed in [77]. The functionality of this statistical multiplexing algorithm is based

on statistical information obtained by using the conservation law of vehicles and traffic density

on the four roadways. A hierarchical WSN is installed at the intended intersection to provide the

necessary information on each roadway.

2.8 Game Theory

Game theory was introduced in the early years of the twentieth century in [78] and [79]. Several

definitions of game theory have been introduced. According to [80], game theory is “the study of

mathematical models of conflict and cooperation between intelligent rational decision makers”.

A theoretic game is defined in [81] as a “description of strategic interaction that includes the

constraints on the actions that the players can take and the players’ interests but does not specify

the actions that the players do take”. Game theory categorizes two types of games: 1) non-

cooperative games and 2) cooperative games.

Non-cooperative games provide a detailed model of strategic actions that players can take,

so these games provide the analysis of one player’s action or response given other players’ an-

ticipated actions. The case where no player wishes to unilaterally change the current strategy,

provided that the other players do not change their current strategies, is called the state of equi-

librium. These games model the best strategy or response of every player to the strategies of

other players such that an equilibrium state is found. The most known equilibrium used to repre-

sent the solution to these games is Nash Equilibrium (NE) [81]. However, in strictly competitive

games, such as zero-sum games, a pure NE does not exist. In addition, in pure strategy games

where the associated utilities are deterministic, an NE may not exist. When the players can have

mixed (i.e., stochastic/probabilistic) strategies, the expected payoffs are statistically computed.

In such cases, a mixed NE always exists, even for n-player games [79] [81].
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On the other hand, cooperative games concentrate on the modelling of outcomes that result

when the players form groups or teams. Once the players come to a situation in which every-

one gets at least as much payoff as they do without interacting or cooperating with the others,

a binding agreement between the players is made by which they are committed to implement

certain strategies. Finding a fair allocation for the joint cost or payoff is the main challenge in

cooperative games. The set of all feasible allocations is called the core. The core was first math-

ematically defined for n-player non-zero-sum games in [82]. Many issues need to be resolved,

such as determining how the cost/revenue is distributed between the players. Another issue with

cooperative games is the necessity to prove whether the game is balanced or not. If there is at

least one fair allocation to the joint cost/revenue, then the core is not empty. In this case the game

is said to be balanced [83].

2.8.1 Shortest Path and Congestion Games

Shortest-path and congestion problems have been mathematically modeled as games using game

theory. A shortest-path game with transferable utility (TU) is introduced in [84]. The focus of

this research is on the allocation of profits generated by the coalitions of players that own nodes

in a road network. The objective of players owning nodes on a path is to transport goods through

the path with a minimum cost. A shortest-path game is presented in [85] where players can own

road segments in a road network. Each player in the game receives a non-negative reward if

he/she transports a good from the source to the destination. Congestion games, first described

in [86], are viewed usually as non-cooperative resource allocation games. Congestion games

are considered to be potential games in which players’ payoffs are influenced by the resources

that players use and are dependant on the number of players that share these resources. For

instance, in symmetric-network congestion games (i.e., all the players have the same source and

destination), paths between the source and destination are considered resources that are shared by
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the travelers using them. A model is presented in [87] showing that players who share resources

(i.e., routes) can form coalitions to selfishly compete against each other to maximize their values.

If the coalitions are able to maximize the payoffs of their participants, the gain will outweigh the

losses they might cause to each other. A discussion is conducted in [88] about the similarities

between cooperative congestion games and their non-cooperative counterparts, where important

issues are demonstrated, such as the existence of and the convergence to a pure strategy NE.

2.8.2 Dynamic Traffic Light Control Games

Game theory has also been applied to the dynamic TL control problem. A model is introduced

in [89] for TL system control based on a Markov Chain game with the objective of minimizing

the queue lengths at multiple SIs. A two-player cooperation game is proposed in [90] for TL

signal timing control applied to a two-phase SI. Similar research to [89] is presented in [91]

where a non-cooperative game to model the TL signal timing control problem is introduced

based on game theory and modeled as a finite controlled Markov Chain. However, the TL model

in [91] is applied to a single SI. Based on Cournot’s Oligopoly game, a game theory model is

presented [92]. A novel game theory optimization algorithm is proposed in [93] for TL signal

timing control, where the Nash Bargaining (NB) [94] is used to find the optimal strategy of the

TL signal timing control problem.

Noticeably, the development of game theory and its applicability to the transportation prob-

lems have been limited to shortest-path, congestion and dynamic TL control games. Therefore,

game theory has not yet been developed and applied for vehicle speed optimization to allow

vehicles to cooperate with each other and with TLs, coordinating their speed actions when ap-

proaching an SI to minimize idling times and stop numbers.
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2.9 Summary

This chapter has presented a broad background on AVs, including their environmental, econom-

ical, and road safety impacts, as well as the comfort provided when using them in the transporta-

tion system. It also briefly discussed challenges and related issues associated with the growth

of AV technology and the automation of the transportation system, such as purchase and own-

ership costs, privacy and security concerns, and legislation concerns. A review of the existing

research on optimal speed computation for vehicles approaching a TL has been addressed. A

background has been presented to explore speed control models, such as ACC and CACC for

vehicle platoons with a research review focusing on vehicle platooning formation near SIs. In

addition, research that relies on the use of FLC to control the speeds of AVs by automatically

controlling the pressure on the throttle and brake was reviewed. Existing research conducted on

DTLCSs addressing a variety of techniques and approaches including FLC has been addressed.

Finally, background on game theory being applied to analyze the conflicting interests of multi-

agent systems has been conducted. Special attention has been given to the applicability of game

theory to transportation problems, and the research conducted on shortest-path, congestion, and

dynamic TL control games.

It has been shown that despite the diversity of research in the area of vehicle optimal-speed

computation and dynamic TL control, existing research does not fully solve the problem of min-

imizing the vehicles’ idling times and number of stops at SIs. Interestingly, the approaches and

models proposed for optimal speed computation to minimize the idling times and number of stops

of vehicles at TLs have been limited to considering a single-vehicle optimal speed computation.

Therefore, cooperation between multiple vehicles to minimize the idling times and number of

stops at TLs has not been addressed yet. In addition, integration of cooperative-vehicle speed

optimization with dynamic TL control such that both could cooperate and coordinate their ac-

tions to improve traffic efficiency and thus minimize the average idling times and number of
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stops has not been addressed yet. In this thesis, it is argued that a cooperative speed optimization

scenario, developed and modelled using game theory, in which AVs approaching a TL could

cooperate with one another and with the TL would be an effective mechanism to minimize the

vehicles’ idling times and number of stops, and thus improve traffic efficiency near SIs.
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Chapter 3

A Cooperative Framework for

Autonomous Vehicle Speed Optimization

In this chapter, the idling time and stop number minimization problem for AVs approaching a TL

is stated to illustrate the complexity associated with it. Then, the AV speed optimization process

is viewed as a theoretic game between players (i.e., AVs). The stability of the formulated AV

speed optimization game is also discussed. Following that, a Cooperative Speed Optimization

Framework (CSOF) is proposed to model the AV speed optimization as a cooperative process.

This framework relies on Linear Programming (LP) and game theory, consisting of three mod-

ules to address issues of AV individual rational speed optimization, information and conflict

recognition, and cooperative speed optimization decision making. Furthermore, a cooperative

bargaining model, based on the Marginal Contribution Principle (MCP), is introduced to allow

AVs to trade their rights of passing SIs with less delay. Finally, simulation is conducted to test

and validate the performance of the CSOF under various traffic conditions investigating the av-

erage idling times, average number of stops, and average energy consumption as AVs approach

SIs. The results obtained from the simulation tests are reported and discussed.
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3.1 Problem Statement

3.1.1 Signalized Roadway Intersection Setting

Consider, as an illustrative example, the two-lane four-roadway SI in Figure 3.1. For simplicity,

assume that the TL control system has a two-phase static cycle where East-West roadways are one

phase and North-South roadways are the other phase. Each phase has a signal design of Green-

Yellow-Red; however, for simplicity, the yellow-light time is assumed to be part of the green-

light-time duration. The key TL parameters are the green-light-time duration Tg, the red-light-

time duration Tr, and the TL cycle duration Tc = Tg +Tr. These parameters are assumed to be

constant, e.g., Tg = 24 sec, Tr = 36 sec, and Tc = 60 sec. Assume that there is V2I communication

such that the vehicles heading toward the TL can receive signal timing information and that every

AV is conducting speed optimization re-planning to have a chance of meeting the green-light

time.

Definition 1. Speed optimization re-planning is a game in which each AV performs speed op-

timization every time step t. There is a probability p that the AV will proceed according to the

previous strategy at time step t − 1 and a probability (1− p) that it will move to a different

strategy (i.e., adopt a different speed).

To illustrate the complexity of the problem, consider a scenario where for a certain cycle,

the arrival and maximum departure rates of a certain roadway at the TL are λ = 0.25 veh/sec

and µ = 0.333 veh/sec, respectively [95]. Therefore, on this particular roadway, the number

of AVs arriving during the red time is Narr = λTr = (0.25)(36) = 9 veh, while the maximum

number of AVs that can depart the TL during the green time is Ndep = µTg = (0.333)(24) = 8

veh. Making this setting, assume that the TL has just turned green for the East-West directions.

Consider the case of two AVs travelling on the West roadway performing speed optimization
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Figure 3.1: A simple example of a traffic light scenario.

re-planning. Taking the queue size into account, according to the computations by these AVs,

each of them can pass within the current green light. Since only one AV can pass through, the

other will experience unexpected delay, waiting for the next green light. Hence, AVs negatively

impact the objectives of each other.

This example is a simple scenario that consists of a two-player competitive game with one

TL, so the delay-time cost may not be significant. However, scaling up this example to N players,

multiple TLs along a certain path, and many other types of cost factors will result in a much more

complicated scenario. A solution to this example may require finding a cooperative agreement

between the players such that one player re-optimizes its own speed to meet the next green light

in exchange of some form of compensation, allowing the other player to pass through smoothly.
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3.1.2 Problem Formulation

Consider a group of AVs travelling within a locality with m TLs. Each AV with index AVi

contemplates speed optimization to minimize its idling times at TLs from an initial location p0i

to a final destination p f i. The trip from p0i to p f i is made on a path, P(p0i, p f i), constructed

from a set of road segments ending with TLs, L = {L1,L2, . . . ,Lm}. The speed vi(t) of each AVi

belongs to a set of feasible speeds, V = {v̄1, v̄2, . . . , v̄ f }. The cost of the trip for AVi on a road

segment L j, where j = 1,2, . . . ,m, denoted by CL j
sv (i), explicitly models its idling time. For AVi,

the cost of travelling over road segment L j incurred by choosing a time indexed sequence of

velocities, sv, is defined as follows:

CL j
sv (i) =

 ti i f stop

0 i f no stop
(3.1)

where ti is the idling time of AVi at the TL positioned at the end of road segment L j. The total cost

for AVi, incurred over a path P(p0i, p f i) that is composed of the road segments LP
1 , . . . ,L

P
NT L
∈ L

(sequentially), is the summation of idling times at all TLs along the path, i.e.,

CP
sv(i) =

NT L

∑
j=1

C
LP

j
sv (i). (3.2)

where NT L is the number of TLs on the path P, and sv denotes the sequence of velocities for road

segment LP
j . The overall aim is to minimize CP

sv for each AVi. To provide a sub-optimal solution

to the above overall task, we follow a decentralized approach and consider each road segment

L j ∈ L of the locality separately. We propose a Time Token Allocation Algorithm (TTAA) for

the TL and a cooperative distributed conflict resolution scheme for the vehicles in each such L j.

For player AVi, the optimal speed value in the set of possible speeds may lead to a time token
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τi within the green light. The time token τi is the index of a time window assigned by the TL

using the TTAA. For player AVi, the cost associated with τi is the minimum (e.g., player AVi will

pass through the TL without stopping, CL j
sv (i) = 0).

We define a cooperative speed optimization game, G. In this game, AVs with conflicting allo-

cated time tokens agree to take certain speed actions to resolve the conflict. For each player AVi,

there is a finite non-empty set of speed actions V . There is an idling time cost, CL j
sv (i), associated

with each sequence of actions sv. Action sequences are associated with a preference relationship

such that CL j
sv∗(i)<CL j

sv (i) means sv∗ � sv j (i.e., the sequence of actions sv∗ is preferred over that

sv as it incurs less cost).

3.2 Stability of the Speed Optimization Game

An important aspect in developing a solution to any game is understanding the game properties.

For non-cooperative games, stability is the most important property, while for cooperative games,

balancedness is the most important one. In non-cooperative games, stability reflects the existence

of a solution to the game. In other words, if an NE exists, then the game is stable. In cooperative

games, though, the existence of the solution is reflected by the balancedness. If the core (i.e.,

the set of feasible payoff/cost allocations other than which no subset of players can achieve

better outcome) is not empty, the game is balanced. In general, non-cooperative games can

be considered as part of cooperative games. Many non-cooperative games have some form of

interaction between players. For instance, when players exchange information and reveal their

payoffs prior to the game, players are cooperating to some extent. In addition, the theory of

repeated games in non-cooperative games studies and analyzes the possibility of cooperation in

perpetual relationships [96]. In such games, players may agree to swerve (i.e., lose) a game but

in return gain a reward such as a promise to allow them to win next time they play the game.
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Since there is a solution to the optimization function each AV is attempting to solve, each

AV will have an optimal action. The chosen actions of AVs are considered pure strategies, and

therefore, there always exists pure equilibrium. A pure equilibrium means that no AV wishes

to unilaterally change its optimized solution. However, this is true only for non-strictly com-

petitive games. As the game progresses, AVs compete to gain resources such that one AV’s

gain is another AV’s loss. Therefore, by considering the speed optimization re-planning game

(Definition 1), it can be proven that a solution exists.

A mixed strategy game, which always has a mixed equilibrium, is a game in which the

strategies available to the players are not deterministic but are regulated by probabilistic rules

[96] [94]. Thereby, from Definition 1, it is concluded that there is a probability distribution

over all the strategies available to every AV in the game. Hence, the speed optimization re-

planning game is a mixed strategy game for which a mixed equilibrium always exists. Thus, it

has been established that there is a solution to the formulated speed optimization game, proving

that equilibrium exists and the game is stable.

3.3 The Cooperative Speed Optimization Framework

Schematics of the CSOF we propose to solve the speed optimization re-planning game are pro-

vided in Figure 3.2. To formulate and conduct the AV speed optimization as a cooperative pro-

cess, this framework relies on LP and game theory. It consists of three modules to address (i) AV

individual rational speed optimization, (ii) information and conflict recognition, and (iii) coop-

erative speed optimization decision making. The CSOF is designed to function on multiple-lane

roadways with two essential rules. First, AVs using the CSOF in free motion can smoothly over-

take each other on the roadway to comply to certain speed actions resulting from their interaction

and cooperation. Second, under certain traffic conditions such as when overtaking is not possible,
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a safe following distance between consecutive AVs is maintained. Consecutive AVs are modeled

to maintain a minimum time gap of two seconds in order to avoid collision [98] [99]. All the

AVs are identical in length and have an average length of 5 m.

Figure 3.2: Schematic depiction of the cooperative speed optimization framework.

3.3.1 Autonomous Vehicle Speed Optimization Module

The objective of this module is to provide each player (i.e., vehicle), AVi, with the optimal speed

at every time step t. Based on the Time to Intersection T T Ii and using the TTAA, the TL may al-

locate τi to AVi, an integer value indicating the index of a time window during which AVi can pass

the intersection smoothly. The speed vi(t) of AVi at time step t is a function of the traffic density

D(L j) on road segment L j. The linearity of the relation between traffic density and speed under
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mild generic assumptions is justified in [100], concluding that as traffic concentration/density

increases, speed decreases. The maximum speed AVi can travel at, vmax, will only occur when

there are no other vehicles on the roadway. In general, the speed of AVi goes to zero as the road

reaches the maximum density, vi(t) converges to 0 as D(L j) converges to Dmax(L j). Therefore,

considering a linear relation between the traffic density and speed, the speed vi(t) of AVi with

respect to the traffic density D(L j) on road segment L j is

vi(t) = vmax

(
1−

D(L j)

Dmax(L j)

)
(3.3)

AVi is allocated a token τi only if T T Ii falls within the upcoming green-light time, i.e., T T Ii≤
Rg or Rr < T T Ii ≤ Rr +Tg where Rg and Rr are the remaining green-light and red-light times

respectively. For AVi approaching a TL, the speed that minimizes the idling-time cost is found as

follows:

Light is Green

As AVi receives upcoming signal information from the TL, indicating that the current light is

green, there are three possible cases in terms of T T Ii and Rg:

• Case 1: T T Ii ≤ Rg. Using the current speed, AVi will be able to pass through within the

remaining green-light time. The TL allocates a time token τi to AVi. Thereby, AVi maintains

its speed to pass during the assigned time token.
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si = vi(t)

sub ject to :

vi(t)≤ di(t)/ai

vi(t)≥ di(t)/bi

vi(t)≤ vmax

vi(t)≥ vmin

where T T Ii = di(t)/vi(t) sec, di(t) is the distance of AVi to the stop line of the TL at time

step t, si is the optimal speed of AVi at time step t +1, and vmax and vmin are the maximum

and minimum speed limits on the road segment respectively, while ai and bi represent the

lower and upper boundaries of the allocated time token respectively.

ai = (τi−1)
1
µ

(3.4)

bi = τi
1
µ

(3.5)

where µ is the departure rate in veh/sec.

• Case 2: Rg +Tr ≥ T T Ii > Rg. The vehicle is not allocated a time token, and the speed of

the vehicle is optimized so that T T Ii is sufficient to meet the next green light.
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si = min vi(t)

sub ject to :

vi(t)≤ di(t)/(Rg +Tr +Tq)

vi(t)≥ di(t)/(Rg +Tr +Tg)

vi(t)≤ vmax

vi(t)≥ vmin

where Tq is the time needed to clear all the vehicles in the queue, and it is found as follows:

Tq =
n(t)
µ

(3.6)

where n(t) denotes the number of vehicles currently in the queue. If the current speed does

not allow AVi to be part of the green-light time but the maximum speed of the roadway does,

the speed optimization system will accelerate the speed of AVi such that it is allocated a

token.

si = max vi(t)

sub ject to :

vi(t)≤ di(t)/ai

vi(t)≥ di(t)/bi

vi(t)≤ vmax

vi(t)≥ vmin

• Case 3: Rg +Tr +Tg ≥ T T Ii > Rg +Tr. AVi will maintain its current speed as T T Ii leads
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AVi to be part of the green-light of the next cycle; However, AVi will not yet be allocated a

time token.

si = vi(t)

sub ject to :

vi(t)≤ vmax

vi(t)≥ vmin

Light is Red

If the information received by the vehicle from the TL indicates that the current light is red, there

are three possible cases in terms of T T Ii and Rr:

• Case 1: T T Ii < Rr. AVi will not be allocated a time token, and its speed is optimized such

that it will meet the next green light.

si = min vi(t)

sub ject to :

vi(t)≤ di(t)/(Rr +Tq)

vi(t)≥ di(t)/(Rr +Tg)

vi(t)≤ vmax

vi(t)≥ vmin

• Case 2: Rr < T T Ii≤ Rr +Tg. AVi is allocated a time token within the upcoming green-light

time.
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si = vi(t)

sub ject to :

vi(t)≤ di(t)/(Rr +ai)

vi(t)≥ di(t)/(Rr +bi)

vi(t)≤ vmax

vi(t)≥ vmin

• Case 3: T T Ii > Rr +Tg. AVi is not allocated a time token and its speed is optimized to meet

the green-light of the next cycle.

si = min vi(t)

sub ject to :

vi(t)≤ di(t)/(Rr +Tg +Tr +Tq)

vi(t)≥ di(t)/(Rr +Tr +2Tg)

vi(t)≤ vmax

vi(t)≥ vmin

Energy Consumption Model

In this thesis, all the AVs involved in the cooperative process are assumed to be Electric Au-

tonomous Vehicles (EAVs); therefore, the energy consumption model presented in [101] has

been modified to compute the instant energy consumed by every AV at time step t. The problem

of battery constraint (i.e., it is not possible to recuperate energy into the battery, regenerate en-

ergy from downhill edges and during deceleration phases into the battery, if the battery is already
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fully charged) is solved by dynamically modifying and adjusting the energy cost. The energy re-

generated from downhill edges and deceleration phases is stored into the available free capacity

of the battery until the battery is full. The rest of any regenerative energy is lost. The total energy

cost consumed by AVi at time step t consists of multiple sub-costs as follows:

• Potential Consumed/Gained Energy: the potential energy ECP
i (t) at time step t is con-

sumed from the battery during the uphill travel and is gained into the battery during the

downhill travel. The potential consumed and gained energies are

ECPC
i (t) =

1
η
[m g u(t)] (3.7)

ECPG
i (t) =−η [m g u(t)] (3.8)

where η is the efficiency of AVi, m is the mass of AVi, g is the gravity factor, and u(t) is the

elevation of the road segment at time step t. In addition, we define the following parame-

ters: Cmax is the battery maximum capacity; J is the battery charge level, where J ≤Cmax;

U is the remaining free capacity of the battery, where U =Cmax− J; and ∆ is the amount

of energy consumed or gained at time step t. Therefore, this potential consumed/gained

energy takes the following value:

ECP
i (t) = max{∆,−U} (3.9)

• Loss of Energy: the loss of energy at time step t, which is always consumed from the

battery, occurs due to aerodynamic and rolling resistances.

ECloss
i (t) =

1
η
[ fr m g ld(t)+

1
2

ρ As ar v2
i (t) ld(t)] (3.10)
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where fr is the friction coefficient, ld(t) is the distance between the current and previous

locations, ρ is the air density coefficient, As is the cross sectional area of AVi, and ar is the

air drag coefficient. This loss of energy takes the following value:

ECloss
i (t) = ∆ (3.11)

• Acceleration/Deceleration Energy: the acceleration energy ECac
i (t) at time step t is con-

sumed from the battery as AVi accelerates to a higher speed while the deceleration energy

ECdc
i (t) at time step t is recuperated and stored into the battery as AVi comes to a lower

speed.

ECac
i (t) =

1
η

Pwr
i tac (3.12)

ECdc
i (t) =−ηPwr

i tdc (3.13)

where Pwr
i is the power of the electric motor of AVi, while tac and tdc are the times taken

by AVi during acceleration and deceleration respectively. During acceleration/deceleration

phases, this type of energy takes the following value:

ECad
i (t) = max{∆,−U} (3.14)

• Energy Consumed by On-Board Electric Devices: this energy is not path related and is

consumed directly from the battery at time step t by the on-board electric devices such as

air conditioner, windshield wipers, etc.

ECed
i (t) =

n

∑
j=1

Ped
i ( j) ted

i ( j) (3.15)
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where Ped
i ( j) is the power withdrawn at time step t by the electric device j and ted

i ( j) is

the time that device j takes in use.

Therefore, taking into consideration the driving style factor DS to model different driving

modes, the total energy cost consumed by AVi at time step t is computed as

ECT
i (t) = [ECP

i (t)+ECloss
i (t)+ECad

i (t)]∗DS (3.16)

3.3.2 Information and Conflict Recognition Module

In this module, AVs are recognized as rational players based on their interests, preferences and

threat to other players. If two or more players are allocated the same time token, the TL informs

them that they have a conflict. Players with conflicting time tokens communicate to share their

strategies and associated costs. Consequently, they start to negotiate to find a binding agreement

based on which they can cooperate and agree on certain speed actions. Once an agreement is

reached, all the players abide by the rules to apply those actions.

3.3.3 Cooperative Decision Making Module

In this module, the final speed optimization decisions are made. Speed assignments, resource

allocation, and cooperative speed optimization decisions are finalized. The input to this module

is in the form of various strategic speeds and associated costs. The cooperative game notion in

this module is based on the assumption that players, representing the AVs, can reach a binding

agreement with which they apply certain strategic actions. Once a decision is made, all the play-

ers involved in the game, with no exception, follow the decision. The speed optimization game

played in this module is conducted in conjunction with the information and conflict recognition
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module described earlier. The idling-time cost to a player is guaranteed not to be greater than

what it would be without cooperation, asserting the following rationality axiom.

Axiom 1. At time step t, there exists an optimal strategy vk for player AVi such that CL j
vk (i) ≤

CL j
v j (i), ∀ k, j ∈V (i.e., the cost associated with this optimal strategy is less than or equal to that

associated with any other strategy player AVi can take). However, player AVi is free to choose

any other strategy that might yield a higher cost, but only in exchange for a reward.

The above-stated axiom permits that a player may give some of its resources to other players

for the benefit of the group rather than the individual but only in exchange for a reward. This

proposed cooperative module also includes the TL rather than only the vehicles. Once an AV

is within range of the communications radio (e.g., DSRC), it will communicate with the TL to

inquire about the current light signal and queue information, and also request a time token within

the upcoming green-light time. The TL allocates time tokens to the players using Algorithm 1.

In Algorithm 1, V IN is the AV identification number, Nq is the number of vehicles currently in

the queue, Tsd is the slot (i.e., time token) duration, and Tslot is the time token location in the TL

memory. According to this algorithm, the TL gives priority in allocating tokens to the queued

AVs. The rest of the green-light time is segmented as tokens and offered to the approaching AVs.

When two players are allocated the same time token, one of them will initiate the negotiation

to start the game. Players with conflicting tokens will share their available strategies and asso-

ciated costs, listing the costs caused by the conflict rather than the expected ones. It is assumed

that each AV has a mode property, which may take one of three values at a time: Rush Mode,

Normal Mode, or Relaxed Mode.

• Rush Mode: is used for urgent and emergency situations (e.g., the AV must be at the

hospital shortly).

• Normal Mode: is used when there is no emergency; the AV may yield the road to others.
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• Relaxed Mode: is used when there is plenty of time. The AV would yield the road to other

vehicles comfortably.

Algorithm 1 : Single Roadway Time Token Allocation Algorithm
Input: V INi,T T Ii ; Output: τi

1: if Light is Green then

2: if (T T Ii ≤ Rg) then

3: for j = Nq +1 : Ndep do

4: a = T sd ∗ ( j−1);

5: b = T sd ∗ j;

6: if (T T Ii ≥ a & T T Ii ≤ b) then

7: T slot(1, j) =V INi;

8: τi = j;

9: break;

10: end if

11: end for

12: else

13: τi = 0;

14: end if

15: else

16: if (T T Ii < Rr) then

17: τi = 0;

18: else if (T T Ii > Rr +(T sd ∗Nq) & T T Ii ≤ Rr +Tg) then

19: for j = Nq +1 : Ndep do

20: a = Rr +T sd ∗ ( j−1);

21: b = Rr +T sd ∗ j;

22: if (T T Ii ≥ a && T T Ii ≤ b) then

23: T slot(1, j) =V INi;

24: τi = j;

25: break;

26: end if

27: end for

28: else

29: τi = 0;

30: end if

31: end if

Different integers, e.g., 0, 1, and 2, are used to represent the modes Relaxed, Normal, and Rush
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respectively. Players first play the game based on the mode type. The vehicle AVi using the

highest mode value, M(AVi), wins (i.e., uses the current time token), while the one using the mode

with the smaller value loses (i.e., slows down and requests a different time token). However, the

TL grants the loser a credit point and deducts a credit point from the winner. The winner of the

mode-based game is determined as

AVwinner = max(M(AV1),M(AV2)) (3.17)

If any two players have the same mode value, they will decide the winner based on the credit

points, CP(AVi), they have. The one with the most will eventually win the game. Again, a credit

point is deducted from the winner, and a credit point is granted to the loser. In this case, the

winner is determined as

AVwinner = max(CP(AV1),CP(AV2)) (3.18)

If both players have the same mode value and credit point, a random number-generation proce-

dure between the TL and the players is conducted to resolve the conflict. Each of the players as

well as the TL generates a random number. The one whose generated number, RN(AVi), is closer

to that of the TL, RN(T L), wins the current time token but loses a credit point. The other gains

a credit point and requests a different token. The winner of the game is determined as follows:

RN1 = |RN(T L)−RN(AV1)| (3.19)

RN2 = |RN(T L)−RN(AV2)| (3.20)
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AVwinner =

 AV1 i f RN1 < RN2

AV2 otherwise
(3.21)

Figure 3.3: Cooperative speed optimization logic

Figure 3.3 illustrates the cooperative decision-making logic used in this module. To further

clarify the cooperative speed optimization game, an example of two AVs approaching a TL is

presented next.

Example 1. Consider the problem setting of Section 3.1.1 and assume that the TL has just turned

green for the East-West directions. After communicating with the TL, the two AVs, approaching

the TL from the West, have been allocated, at time step t, the same and only-remaining time token.

Both vehicles will have only two strategies to choose from; v1(t)AVi corresponding to using the
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current time token and v2(t)AVi corresponding to minimizing speed and requesting a token within

the next green light, as summarized in Table 3.1.

Table 3.1: Action and response table of a two-player game

Players/Strategies v1(t)AV2 v2(t)AV2

v1(t)AV1 (CL j
v1(t)

(1),CL j
v1(t)

(2)) (CL j
v1(t)

(1),CL j
v2(t)

(2))

v2(t)AV1 (CL j
v2(t)

(1),CL j
v1(t)

(2)) (CL j
v2(t)

(1),CL j
v2(t)

(2))

When the players choose the same strategy resulting in the use of strategy profile (CL j

v1(t)
(1),CL j

v1(t)
(2))

or (CL j

v2(t)
(1),CL j

v2(t)
(2)) , the cost is high for both of them. When either of them chooses the optimal

strategy while the other chooses the second preferred strategy resulting in the use of strategy pro-

file (CL j

v2(t)
(1),CL j

v1(t)
(2)) or (CL j

v1(t)
(1),CL j

v2(t)
(2)) , the game is stable. In this case, the strategy profile

has an NE. The NE is defined based on the NE concept [81] [94] as follows:

Definition 2. A Nash Equilibrium of a strategic game G is a strategy profile in which every

player AVi ∈ G replies to the other players’ actions, using the action that incurs the minimum

cost/maximum profit.

Hence, the binding agreement between the players would enforce them to choose different strate-

gies as doing so leads to the optimal conflict-resolution solution. The player who wins the current

time token is decided as described earlier, which is based on the mode and credit point values.

The player with the poorer mode or credit point value will agree to swerve but in return get a

credit point and so have a greater chance to win next time. A numerical representation of such a

game is shown in Table 3.2.
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Table 3.2: Action and response table of a two-player game

Players/Strategies v1(t)AV2 v2(t)AV2

v1(t)AV1 (4,4) (0,2)

v2(t)AV1 (2,0) (3,3)

Multi-Phase Cooperative Speed Optimization Game

When more than two vehicles are allocated the same time token, a multi-phase cooperative proce-

dure is implemented to resolve the conflict. For each player, cooperating with every other player

makes the process extremely complex. Therefore, the multi-phase game is composed of two-

player sub-games. In each sub-game, only two players cooperate to find their acceptable joint

strategies. Then, the winners of the two-player sub-games will play another sub-game to deter-

mine the winner of the only available time token. To further clarify the multi-phase cooperative

speed optimization game, an example of four AVs is presented next.

Example 2. Let us recall Example 1 but consider a case in which four AVs are approaching the

TL from the West direction. In the first phase of this multi-phase game, two two-player sub-games

are played as described earlier; as a result, a winner is nominated from each sub-game, G1 and

G2. For instance, if AV1 and AV3 are the winners of the two-player sub-games, then the optimum

solutions resulting from these sub-games would state the strategies as follows:

V G1 = {v1(t)AV1,v2(t)AV2} (3.22)

V G2 = {v1(t)AV3,v2(t)AV4} (3.23)
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After playing the second phase of the game, if AV1 wins over AV3, the final strategy assignment

will take the following form:

V G = {v1(t +1)AV1,v2(t +1)AV2,v2(t +1)AV3,v2(t +1)AV4} (3.24)

Therefore, a credit point will be deducted from AV1, and each of the losing players, AV2, AV3 and

AV4, will receive a credit point from the TL and minimize its own speed to meet the next green

light.

3.4 Cooperative Credit-Point Bargaining

This section introduces the concept of bargaining in cooperative games to allow AVs, sharing

common interest, to come into groups and trade credit points. AVs, heading toward a TL, may

trade credit points to help players, with low credit point balance, increase their balance and thus,

maximize their chance of winning time tokens. If an AV has extra credit points or if it is not truly

in rush to pass without delay, it may offer to sell credit points to others that are in need for those

points. Hence, AVs that are in rush, but have no enough credit point balance to pass through the

TL without any delay, have a chance to buy credit points on the way and thereby, maximize their

chance of winning tokens and passing through without any delay.

The typical team-based cooperative game consists of a set of players, willing to get together

in a group, and a characteristic function, which specifies the values created by different subsets of

players. Within the context of this research, the set of all players interested to trade and perform

transactions is called the grand coalition, while the different subsets of players within the grand

coalition are called sub-coalitions. A cooperative game is a tuple of two elements (N, f ), where

N = {AV1, . . . ,AVn}, is a finite set of AVs willing to trade credit points, and f is a function that
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maps subsets S ⊆ N to their total value induced when the members of S come together to trade

credit points.

If a player is selling a credit point and receiving equal offers from multiple buyers, a random

number generation procedure is conducted to determine who buys the point. In this case, the

player whose generated number is closer to that of the seller will buy the point. The other case

is when the seller is receiving non-equal offers from multiple buyers. To clarify the conceptual

formulation of the AVs’ characteristic function of the bargaining game for the latter case, an

example is presented next.

Example 3. Consider three AVs, N = {AV1,AV2,AV3}, heading toward a TL, where AV1 is a

seller of a credit point, while AV2 and AV3 are two buyers. Consider the case that AV1 has only

one credit point to sell at $3 and each of the buyers contemplates to buy at most one credit point.

AV2 is willing to pay $5, while AV3 is willing to pay $8. The characteristic function, f , of this

game is defined as follows:

f ({AV1}) = f ({AV2}) = f ({AV3}) = 0

f ({AV1,AV2}) = 5−3 = 2

f ({AV1,AV3}) = 8−3 = 5

f ({AV2,AV3}) = 0

f ({AV1,AV2,AV3}) = 8−3 = 5

In the above formulation, it is noted that no player can create any value on its own because no

transaction can take place. When players AV1 and AV2 come together and transact, the total value

is the difference between the credit point cost and the buyer’s offer, which in this case is $2.

Players AV2 and AV3 cannot create any value when getting together since each of them is a buyer

(i.e., no transaction can take place). Finally, the value created by the grand coalition, including
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AV1, AV2 and AV3, is $5. Although there are two buyers in the game, AV1 can transact only with

one of them; consequently, the rational player would transact with the buyer that is offering a

higher price. In this case, it is AV3.

The important point now is how to fairly split or divide the overall value, $5, created by the

grand coalition, f ({N}). Bargaining in cooperative games has been recognized as a feasible

method to fairly divide the overall value created by the players [97] [102]. The solution concept

in coalitional cooperative games is the core, and bargaining can be used to find at least one

allocation or division of values, which satisfies the core conditions. In order to address how the

bargaining concept is applied to the credit point trade problem, the marginal contribution concept

is addressed.

3.4.1 The Marginal Contribution

The marginal contribution concept [103] provides the analytical reasoning of bargaining. Let

N\AVi be the subset of N that contains all the AVs except AVi. The marginal contribution of AVi

is f ({N})− f ({N\AVi}) and denoted by MCAVi . For example, the marginal contributions of the

previously defined game are

MCAV1 = f ({N})− f ({N\AV1}) = 5−0 = 5

MCAV2 = f ({N})− f ({N\AV2}) = 5−5 = 0

MCAV3 = f ({N})− f ({N\AV3}) = 5−2 = 3

Definition 3. An allocation, (xav1,xav2, ...,xavn), which is a collection of numbers representing

the division of the overall value, where xavi indicates the value received by AVi, is individually

rational if xavi ≥ f ({AVi}), ∀ i ∈ {1,2, . . . ,n}.

Definition 4. An allocation, (xav1 ,xav2, ...,xavn), is efficient if ∑
n
i=1 xavi = f ({N}).
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Definition 5. An individually rational and efficient allocation, (xav1,xav2, ...,xavn), satisfies the

Marginal Contribution Principle if xavi ≤MCAVi, ∀ i ∈ {1,2, . . . ,n}.

To see how the overall value can be fairly divided among the players, we recall Example 3. Since

player AV2 has zero marginal contribution, Definition 5 poses that this player will not receive any

value. Player AV3 has a marginal contribution of $3 ,so it cannot receive more than this value

and player AV1 can receive at most $5 of value. Since it is assumed that the players are perfectly

rational, player AV1 will sell the credit point to AV3 because it has offered a higher price. Besides,

AV3 has to pay at least $5 in order to secure the credit point; However, the price at which both

players agree to finalize the transaction may be any price between $5 and $8. Therefore, one

possible allocation of the core is ($5,$0,$0). As can be noted, bargaining does not specify all

the divisions of the overall value. Hence, all the possible allocations, which represent the core

elements, must be found.

3.4.2 The Core

The core is the solution concept of coalitional cooperative games, containing the set of all feasible

payoff/cost allocations other than which no subset or coalition of players can achieve better

outcome. The most common approach in the literature that deals with finding the core elements

is the Shaply Value [104]. However, within this research, an Artificial Intelligence (AI) technique

is used to find the core elements. Let x(S) be the sum of the values received by the AVs in the

subset S, such that

x(S) = ∑
i∈S

xavi (3.25)

According to [103], the core has two main properties, summarized in the following theorems.
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Theorem 1. An allocation, (xav1,xav2, ...,xavn), is part of the core if it is efficient and every subset

S of N is individually rational such that x(S)≥ f ({S}) is satisfied.

Proof. let S include only AVi such that S = {AVi} for i = 1,2, . . . ,n

Noticeably, x{AVi}= xavi both represent the values received by AVi.

Therefore, the condition x(S) ≥ f ({S}) is in fact the individual rationality condition xavi ≥
f ({AVi)}.

In addition, let the marginal contribution of a subset S of N be MCS = f ({N})− f ({N\S}).

Theorem 2. An allocation, (xav1,xav2, ...,xavn), is part of the core if it is efficient and every subset

S of N satisfies the Marginal Contribution Principle x(S)≤MCS.

Proof. Using the individual rationality condition, consider N\S

x(N\S)≥ f ({N\S}) (3.26)

x(N\S) = x(N)− x(S) (3.27)

By efficiency, we have

x(N) = f ({N}) (3.28)

Substituting (3.27) into (3.26)
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x(N)− x(S)≥ f ({N\S}) (3.29)

Substituting (3.28) into (3.29)

x(S)≤ f ({N})− f ({N\S}) = MCS (3.30)

Therefore, the core of the cooperative credit point bargaining game is defined as follows:

{(xav1,xav2 , ...,xavn) : ∑
i∈N

xavi = f ({N}), and x(S)≥ f ({S}), ∀ S ∈ N} (3.31)

where f ({S}) is the sum of the values of the members of S prior to playing the game, and x(S)

is the sum of the values received by each of the members of S. To find the core elements, we

propose that the problem is formulated as a Constraint Satisfaction Problem (CSP). The most

common CSP solving techniques are Backtracking Search and Local Search [105]. For instance,

the feasible allocations in Example 3 are the points (xav1,xav2,xav3), such that

xav1 + xav2 + xav3 = 5

sub ject to :

xav1 + xav2 ≥ 2

xav1 + xav3 ≥ 5

xav2 + xav3 ≥ 0

xav1 ≥ 0, xav2 ≥ 0, xav3 ≥ 0
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The domains of xav1 , xav2 and xav3 are

dom(xav1) = {any value between 0 and 5}

dom(xav2) = {any value between 0 and 5}

dom(xav3) = {any value between 0 and 5}

By solving this problem as a CSP, the core of the game is

Core = {(xav1 ,xav2,xav3) :
i=3

∑
i=1

xavi = f ({N}), and x(S)≥ f ({S}), ∀ S ∈ N}

Core = {($2,$0,$3)($3,$0,$2)($4,$0,$1)($5,$0,$0)}.

3.5 Simulation Tests and Results

Simulation was conducted to test and validate the performance of the proposed CSOF in a de-

tailed MATLAB environment using the concept of Object Oriented Programming (OOP). A two-

lane roadway sub-network containing three SIs was chosen in Waterloo, ON, Canada, to conduct

the simulation (Figure 3.4). The SIs are as follows: SI1, Westmount Road North with Columbia

Street West; SI2, Westmount Road North with Bearinger Road; and SI3, Northfield Drive West

with Weber Street North. Every SI has a static TL system such that TL1, TL2, and TL3 for SI1,

SI2, and SI3 respectively. Each TL control system has a two-phase cycle where the East-West

roadways are one phase and South-North roadways are the other phase. Each phase has a signal

design of Green-Yellow-Red; however, for simplicity, the yellow-light time is assumed to be part

of the green-light-time duration. To enhance safety, one second of red-light time is given to all

the roadways between every two consecutive phases.
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In order to overcome randomization and capture the real behaviour of traffic, the simulation

was run for more than three hours. The maximum and minimum speed limits on any roadway

in the network are vmax = 60 km/hour and vmin = 10 km/hour respectively where the maximum

number of vehicles a road segment may have is assumed to be 85% of the maximum density,

Dmax(L j).

Figure 3.4: A sub-network with three signalized intersections.

AVs are generated randomly into the network based on Poisson Distribution (PD) from ten

generation points determined in advance. The amount of traffic to make left/right turns or move

straightforward at every SI was specified in percentage prior to the AV generation process such

56



that traffic is equally distributed throughout the network and every SI receives equal random

arrivals through its roadways. The generated AVs travel at an average speed of 50 km/hour until

they get within the activation distance (i.e., the distance at which the vehicles get within the

V2I communication range and start cooperating). The activation distance was fixed at 500 m.

The performance of the CSOF is compared to a Non-Cooperative Speed Optimization algorithm

(NCSO) (i.e., the vehicles individually and independently compute their optimal speeds). Once

they are within range, AVs start speed optimization, based on CSOF or NCSO, to catch the

green light when they arrive at the TL. The NCSO algorithm is a complete speed optimization

procedure that includes all the possible scenarios based on road and signal timing constraints.

Besides, it takes into consideration the queue lengths at every roadway when computing the

optimal speeds. Therefore, the NCSO algorithm represents a higher benchmark than the stat-of-

art in the literature, where queue lengths are not taken into account most of the time.

Figures 3.5, 3.6, and 3.7 show the total average idling time, total average number of stops,

and total average energy consumption at SI1, SI2, and SI3, comparing the CSOF to the NCSO al-

gorithm. As can be seen, in under-saturation traffic conditions (i.e., the number of arriving AVs is

within the TL capacity), the two techniques on average achieve nearly the same average values of

idling times and number of stops. As the traffic volume increases to reach over-saturation traffic

conditions (i.e., the number of arriving AVs is greater than the TL capacity), CSOF outperforms

NCSO by achieving lower average idling times and average number of stops. This is because

the conflicting passing times of vehicles through the intersections are resolved by CSOF. All the

AVs using CSOF, meant to arrive during the green-light time, are allocated time tokens before

reaching the intersections. As such, when they arrive, they are able to pass through smoothly

during their allocated times. In addition, due to the road and signal timing constraints, the AVs

that could only arrive at the intersections during the red-light times were not allocated time to-

kens before reaching the intersections. These AVs joined the queues with less waiting times.

As mentioned previously, the time needed to clear the queue is excluded from that available as
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time tokens to the approaching AVs. The figures show that as the number of AVs approaching

the intersections increases, the average idling times and number of stops become greater. The

reductions in average idling times that have been achieved by CSOF when compared to NCSO

for SI1, SI2, and SI3 are summarized in Tables 3.3, 3.4, and 3.5 respectively.

Figure 3.5: Total average idling time at SI1, SI2, and SI3.

Figure 3.6: Total average number of stops at SI1, SI2, and SI3.
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Table 3.3: Reduction in average idling time at signalized intersection 1.

AVs (veh/hour) 300 600 900 1200 1500 1800

NCSO (sec) 0.0344 0.6417 4.6417 5.9479 6.1433 7.5194

CSOF (sec) 0.0344 0.4188 1.2729 1.8547 2.3975 2.9791

Reduction (%) 0 35 73 69 61 60

Table 3.4: Reduction in average idling time at signalized intersection 2.

AVs (veh/hour) 300 600 900 1200 1500 1800

NCSO (sec) 0.0196 0.1533 4.2899 4.9364 5.5783 6.5815

CSOF (sec) 0.0174 0.0565 0.3732 0.8435 1.3683 2.4757

Reduction (%) 11 63 91 83 75 62

Table 3.5: Reduction in average idling time at signalized intersection 3.

AVs (veh/hour) 300 600 900 1200 1500 1800

NCSO (sec) 0.1174 0.1348 4.0920 4.6674 5.9448 6.1098

CSOF (sec) 0.0478 0.0978 0.4094 0.7739 1.6835 2.5674

Reduction (%) 59 27 90 83 72 58

In addition, CSOF has achieved lower average energy consumption. With CSOF, as soon as

a vehicle is allocated a time token, it maintains its speed to pass the intersection smoothly during

its allocated token. Hence, in general there are less speed variations using CSOF. To justify
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this, Figure 3.8 captures the speed trajectories of six AVs approaching SI1 from the Westmount

Road North direction from the moment they joined the activation distance until they passed the

stop line of the intersection. On average, the reductions in speed variations using CSOF are not

significant as compared to NCSO. As a result, the energy savings of AVs using CSOF have not

been significant as reported in Figure 3.7. It can be noticed in Figure 3.7 that in general, the

energy consumption of AVs does not increase as the number of AVs approaching SIs increases.

This is because it is assumed that the electric motor an AV operates is able to regenerate energy

during downhill and deceleration phases. In addition, the energy consumption model, presented

in Section 3.3.1, depends on many road and environment factors when computing the total energy

consumption at every time step; hence, the energy consumption may not have a linear relation

with the increasing number of AVs.

Figure 3.7: Total average energy consumption of vehicles approaching SI1, SI2, and SI3.

Furthermore, the total average idling time and number of stops achieved by CSOF were

investigated with respect to the V2I activation distance for SI2. It is assumed that the V2I com-

munication radio is available in a range of up to 800 m away from the intersection, so it was

varied from 200 m to 800 m in steps of 100 m. Figure 3.9 depicts the total values of average

idling times and number of stops achieved by CSOF.
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Figure 3.8: Speed trajectories of six vehicles approaching intersection 1, (a) vehicles using the CSOF, (b) vehicles

using the NCSO.

It is seen that the optimal point of activation is near 500 m. At shorter distances, some AVs

arrive during the red-light time due to insufficiency of the time available to get allocated tokens,

or reallocated tokens after playing a game, and to adjust speeds accordingly for low average

values of idling times and stop numbers. At further activation distances, the average idling times

and stop numbers slightly increase. This is due to the speed limit and signal timing constraints

the AVs have to deal with as soon as they join the activation distance and start the token allocation

process. Hence, the best allocation of tokens apparently occurs at an activation distance near 500

m.
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Figure 3.9: Activation distance analysis for intersection 2, (a) total average idling time, (b) total average number of

stops.

3.6 Summary

This chapter has presented the idling time and stop number minimization problem of AVs ap-

proaching an SI. A simple example has been addressed to demonstrate how AVs could negatively

impact each other’s plans. Then, the speed optimization process for AVs approaching a TL has

been formulated as a cooperative theoretic game. The game defined the players, their available

actions, and the costs associated with their actions. In addition, it has been proven that equilib-

rium in the formulated game exists and the game is stable. Furthermore, a cooperative speed
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optimization framework, CSOF, has been presented to formulate the AV speed optimization as

a cooperative process. This framework consists of three modules addressing issues of AV ra-

tional speed optimization, information and conflict recognition, and cooperative speed decision-

making. Thus, the proposed framework describes the problem from a single and multiple AVs’

point of view. It is argued that when AVs approaching a TL interact and cooperate with each

other, the average idling times and number of stops at the TL can be minimized, improving

traffic efficiency. Moreover, this chapter introduced an AV bargaining approach to allow AVs,

sharing common interest, to get together and trade credit points so that AVs could maximize their

chances of passing through the TL without delay. Simulation tests have been conducted to test

and validate the performance of CSOF and obtained results are reported. The CSOF was com-

pared under various traffic conditions to a non-cooperative speed optimization, NCSO, algorithm

where AVs individually conduct speed optimization. It is concluded that the CSOF outperformed

the NCSO by achieving lower values of total average idling times, average number of stops and

average energy consumption.
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Chapter 4

Cooperative Autonomous Vehicle-Dynamic

Traffic Light Control System

In this chapter, a Cooperative Autonomous Vehicle-Dynamic Traffic Light Control (CAV-DTLC)

system is introduced. The hypothetical concept behind this system is that incorporating the

dynamic TL functionality with the AVs, cooperating based on the CSOF, would achieve further

minimization of average idling times and number of stops. The proposed CAV-DTLC has the

capability to model over-saturation traffic conditions, consisting of a decision-making unit based

on a theoretic game and a control unit that relies on FLC to control the signal timings of the

TL. Simulation tests are conducted to validate the performance of the CAV-DTLC under various

traffic conditions as compared to the CSOF and results obtained from the simulation tests are

reported.
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4.1 Problem Statement

Consider a two-lane four roadway SI, as illustrated in Figure 4.1. For simplicity, it is assumed

that the TL control system has a two-phase static cycle T LS = {EW,SN}, i.e., the East-West

roadways are one phase and North-South roadways are the other phase. Each phase has a signal

design of Green-Yellow-Red; however, for simplicity, the yellow-light time is assumed to be part

of the green-light time duration. The parameters of the TL are the green-light time duration Tg,

red-light time duration Tr, and TL cycle duration Tc = Tg +Tr. These parameters are assumed to

be constant, e.g., Tg = 22 sec, Tr = 28 sec, and Tc = 50 sec. We assume that the TL has fixed

maximum arrival and departure rates, λ and µ in veh/sec, respectively. Therefore, the maximum

number of AVs that can arrive at the TL from each roadway during the red time is Narr = λTr

vehs, and the maximum number of AVs that can depart the TL from each roadway during the

green-light time is Ndep = µTg vehs.

Consider a set of AVs, N = {AV1,AV2, . . . ,AVn}, travelling toward the SI from each direc-

tion and receiving signal-timing information from the TL through V2I communication. Further

assume that the AVs in N have the capability to conduct the following cooperative speed opti-

mization game:

Definition 6. The cooperative speed optimization game is a game in which a set of AVs, N =

{AV1,AV2, . . . ,AVn}, heading toward a TL, cooperate and reach a binding agreement to imple-

ment certain speed actions. In this game, an AVi ∈ N, travelling toward a TL from any direction,

either is allocated a time token τi, an integer value indicating a time window within the green

light, during which it passes the TL smoothly or agrees to slow down to meet the green light of

the next cycle in return of a compensation.
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Figure 4.1: An example scenario of autonomous vehicles approaching a static-signal-timing traffic light.

Given the above setting, the problem of interest is to minimize CL j
sv (i), i.e., the idling-time

cost of every AVi ∈N at T LS that is located at the end of road segment L j, when N < Ndep for one

roadway phase, e.g., SN ∈ T LS, but N > Ndep for the other phase EW ∈ T LS such that less AVs

on EW ∈ T LS experience unexpected delay, waiting for the next green light to pass through.

To clarify the extent of the problem, consider a certain cycle where λ = 0.393 veh/sec and

µ = 0.455 veh/sec. Thus, for this particular cycle, Narr = λTr = (0.393)(28) = 11 veh, and

Ndep = µTg = (0.455)(22) = 10 veh. Now, let us consider the moment at which the TL has just

turned green for EW ∈ T LS. Let two AVs travelling on the East roadway play a cooperative speed

optimization game. Since there is only one token τi available at the TL, one of these AVs must

come to a complete stop and wait for the next green light to pass through. This simple two-AV
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example shows that cooperation between the AVs alone is not fully effective for the minimization

of idling times and stop numbers, requiring the incorporation of a dynamic TL system into the

AV-cooperative process.

4.2 Cooperative Autonomous Vehicle-Dynamic Traffic Light

Control

The objective of introducing the CAV-DTLC system is to achieve further minimization of idling

times and number of stops for AVs approaching a SI. The fundamental concept of CAV-DTLC

is to incorporate the dynamic TL functionality into the cooperative process the AVs conduct

based on the CSOF. Generally, the dynamic TL system has the ability to adjust the signal timings

according to the traffic volumes on the roadways, which has shown better results than the static

TL system.

Figure 4.2: Schematic depiction of the cooperative autonomous vehicle-dynamic traffic light control system.

As depicted in Figure 4.2, the CAV-DTLC system we propose consists of a theoretic-game

Decision-Making Unit (DMU) that decides whether the green-light time for a certain phase
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should be extended or not, and an FL-based Control Unit (CU) to generate the signal-timing

commands. It is assumed that there is reliable V2I communication capability; therefore, the TL

periodically receives information about the traffic volumes of each phase (i.e., the TL receives

reliable information about the number of vehicles, within the distance of communication, will-

ing to pass through). The decision of green-light time extension and control of the signal timings

are performed only once for every green-light phase after a certain predefined time interval has

elapsed (e.g., ∆t = 5sec) from the realization of over-saturation traffic conditions.

4.2.1 Decision Making Unit

Through the DMU, the TL decides, based on the traffic volume of a certain signal phase, whether

the green-light time should be extended or not. The decision to extend or not extend the green-

light time is made based on a game formulated as a two-player game including the Green-Light

Phase (GLP) and the Red-Light Phase (RLP). Thus, the set of players in the game is

N = {GLP,RLP} (4.1)

Generally, for each player i ∈ N, we define a non-empty set of m actions Ai = {a1, . . . ,am}
(i.e., the set of strategies available to player i), and a preference relation %i on Ai. In addition, Ai

is associated with a non-empty set of m costs Ci = {c1, . . . ,cm} such that c j ∈Ci is incurred by

taking action a j ∈ Ai, where j = 1, . . . ,m. If player i prefers a j over ak, ∀ j,k ∈ Ai, i.e., a j %i ak,

then c j ≤ ck,∀ j,k ∈Ci. Making this setting, each player i∈N, in the proposed game, can have an

action of either Extra or Not Extra AVs (i.e., Extra AVs means that there are more AVs willing to

pass through than the TL capacity). Therefore, the actions possible for each player in the game

are

68



GLP =

 EXg if NGLP > Ndep

NEXg otherwise
(4.2)

RLP =

 EXr if NRLP > Ndep

NEXr otherwise
(4.3)

where, NGLP is the number of AVs in the GLP, NRLP is the number of AVs in the RLP, EXg means

extra AVs in the GLP, NEXg means no extra AVs in the GLP, EXr means extra AVs in the RLP,

and NEXr means no extra AVs in the RLP.

Table 4.1: Decision-making action table.

YE ⇒ E

Players and Strategies EXr NEXr

EXg (0,1) (0,1)

NEXg (1,2) (2,3)

YNE ⇒ NE

Players and Strategies EXr NEXr

EXg (2,0) (3,0)

NEXg (0,0) (0,0)

The proposed game, described in Table 4.1, consists of two sub-games, namely, Extension

game E and No Extension game NE. In Table 4.1, the numerical values, 0, 1, 2 and 3, represent

the costs incurred by the DMU when taking the actions of E or NE based on NGLP and NRLP.

The DMU produces the final output YDMU after conducting a two-stage decision-making process.

First, each sub-game produces the strategy profile cost that represents the given input values.
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Then, the DMU produces YDMU based on the concept of Nash Equilibrium (NE) [81], comparing

the two strategy profiles resulting from the first stage, i.e., the DMU produces a strategy profile

YDMU in which each player i ∈ N replies to the action cost of the other player, c−i, using the

action that incurs the minimum cost. Thus, the final output of the DMU is

YDMU =

 (c−i,ci) if ∑(c−i,ci)≤ ∑(c− j,c j)

(c− j,c j) otherwise,∀ci ∈CE&c j ∈CNE
(4.4)

Figure 4.3: Block diagram of the fuzzy logic control system.
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4.2.2 Control Unit

FLC has been shown to have the capability to apply real-life rules similar to the way humans

would control traffic flow near SIs as traffic is mostly not deterministic and tends to be subjective,

approximate and qualitative. Thus, it allows inexact traffic data to be manipulated to reflect

varying degrees of truth such that more realistic signal timings can be applied. The block diagram

of the FLC system, introduced to implement the signal timings of the CAV-DTLC system, is

depicted in Figure 4.3, where the input variables to the FLC system are the number of extra AVs

in the GLP, NEXg , and the number of extra AVs in the RLP, NEXr . The output of the FLC system

is the amount by which the green-light time is extended, E.

Fuzzification

Fuzzification is used to establish the membership degrees of the FLC input/output variables,

where the crisp values are represented by membership functions. The membership function maps

the elements of the input/output variable onto numerical values in the interval [0,1]. We define a

fuzzy set including the membership function grades for each input variable. The fuzzy sets of all

possible values of the input variables, NEXg and NEXr , respectively, are defined as follows:

Sg =
µg(EXg1)

NEXg1

+
µg(EXg2)

NEXg2

+ · · ·+
µg(EXg f )

NEXg f

(4.5)

Sr =
µr(EXr1)

NEXr1

+
µr(EXr2)

NEXr2

+ · · ·+
µr(EXr f )

NEXr f

(4.6)

where µg(EXgi) ∈ [0,1] represents the membership-function grade of the element NEXgi
of the

fuzzy set Sg, and µr(EXri) ∈ [0,1] is the membership-function grade of the element NEXri
of
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the fuzzy set Sr. Each input variable is represented by four linguistic descriptive memberships,

Zero, Few, Medium, and Many, to model the numbers of extra AVs in the GLP and RLP. The

membership functions of the fuzzy sets Sg and Sr, which are designed to be trapezoidal, are

depicted in Figures 4.4 and 4.5 respectively.

Figure 4.4: Membership functions of extra vehicles in the green-light phase.

Figure 4.5: Membership functions of extra vehicles in the red-light phase.

The output of the FLC system determines by how much the green-light time is extended. We

define a fuzzy set, SE , to model the output variable E as follows:
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SE =
µE(E1)

E1
+

µE(E2)

E2
+ · · ·+

µE(E f )

E f
(4.7)

where µE(Ei) ∈ [0,1] represents the membership-function grade of the element Ei of the fuzzy

set SE . The output variable is represented by five linguistic descriptive memberships, Zero, Very

Short, Short, Medium, and Long, to model the extension time of the green light. The membership

functions of the fuzzy set SE , designed to be trapezoidal, are depicted in Figure 4.6.

Figure 4.6: Membership functions of green light extension.

Fuzzy Inference System

We define a set of if-then fuzzy inference rules to be the essential operation of the Fuzzy Inference

System (FIS). The fuzzy inference rules connect the input-output fuzzy variables, providing a

Rule Base (RB) based on which the decision of green-light time extension is made. The rule

base of the FIS is as follows:

• Rule Base

If NEXg is Zero and NEXr is Zero, then E is Zero

If NEXg is Zero and NEXr is Few or Medium or Many, then E is Zero

73



If NEXg is Few and NEXr is Zero, then E is Short

If NEXg is Medium or Many and NEXr is Zero, then E is Long

If NEXg is Few and NEXr is Few, then E is Short

If NEXg is Few and NEXr is Medium or Many, then E is Very Short

If NEXg is Medium and NEXr is Few, then E is Medium

If NEXg is Medium and NEXr is Medium or Many, then E is Short

If NEXg is Many and NEXr is Few, then E is Medium

If NEXg is Many and NEXr is Medium or Many, then E is Short

To calculate the membership grades of possible values of the fuzzy output variable E, the

Mamdani Fuzzy Model (MFM) is used in the FIS. The MFM is designed to process two input

membership grades for NEXg and NEXr , and produce one output membership grade for E. In the

MFM, the composition/aggregation of the fuzzy variables is conducted based on the max-min

operator. The output of the MFM is produced as the fuzzy membership function

µF(E) = max
k=1→rbt

[min(µg(EXg),µr(EXr))] (4.8)

where k denotes the case number of the RB, and rbt denotes the total number of cases of the RB.

Defuzzification

The output of the MFM in the FIS is a fuzzy value that is represented by a membership function.

This value is defuzzified to provide the crisp value for the extension of the green-light time, E.

The defuzzification method used in this thesis is the Centroid Method (CM) [106]. The CM

computes the center of gravity of the membership function resulting from the MFM. If the FLC
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system decides to extend the green-light time for a certain phase, the defuzzified extension time

Tex is segmented and offered as time tokens to be available to the approaching AVs. The AVs

can be allocated tokens based on the TTAA. The number of tokens Ntkn that can be added to the

current tokens of a roadway is found as follows:

Ntkn =
Tex

Ttkd
(4.9)

where Ttkd = 1
µ

is the token duration in sec/veh.

4.3 Simulation Tests and Results

Simulation was conducted to investigate the performance of the proposed CAV-DTLC system.

The simulation was performed in MATLAB using the concept of OOP. The road network used

to conduct the simulation tests is the same one presented in Section 3.5 (Figure 3.4), containing

three SIs in Waterloo, ON, Canada. The SIs are SI1, SI2, and SI3 with TL systems of TL1, TL2,

and TL3 respectively. To overcome randomization in traffic behavior, the simulation was run for

more than two hours.

The performance of the CAV-DTLC was compared to those of the CSOF and NCSO. With

NCSO, there is no cooperation as the AVs individually and independently perform speed opti-

mization to meet the green-light time. With CSOF, cooperation is performed only among the

AVs, while with CAV-DTLC, the AVs cooperate among themselves and with the dynamic TL

system. A PD model was used to generate the AVs randomly into the road network. In order

to show the difference between the three techniques in terms of performance, some roadways

were given more traffic than others during the vehicle random generation process. The activation

distance of the communication radio was fixed at 500 m. The metrics used to validate the per-
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formance of the three techniques are the total average idling times and total average number of

stops at the defined SIs.

Figures 4.7 and 4.8 illustrate the total average idling times and total average number of stops

with respect to the increasing traffic volume at SI1, SI2, and SI3, comparing CAV-DTLC with

CSOF and NCSO. It can be seen from the figures that the CAV-DTLC, where the dynamic TL in-

teracts and cooperates with the cooperative AVs, has outperformed the CSOF, where cooperation

is performed only between the AVs, and the NCSO, where there is no cooperation between the

AVs. This is because the unnecessary stops and delays are reduced in the CAV-DTLC scenario

via the dynamic functionality of the TLs.

Figure 4.7: Total average idling time at SI1, SI2, and SI3.

A remarkable observation is that in under-saturation traffic conditions, there is not much

difference in the total average idling times and stop numbers achieved by the three techniques.

However, as the traffic volume increases until it reaches the over-saturation traffic conditions,

the difference between the three techniques in terms of total average idling times and stop num-

bers becomes clear. Thus, the CAV-DTLC has proven to be more efficient in terms of traffic

management, achieving lower average values of idling times and stop numbers.
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Figure 4.8: Total average number of stops at SI1, SI2, and SI3.

Tables 4.2, 4.3, and 4.4 illustrate the reductions in average idling times that have been achieved

by the CAV-DTLC at SI1, SI2, and SI3 respectively as compared to the CSOF.

Table 4.2: Reduction in average idling time at signalized intersection 1.

AVs (veh/hour) 300 600 900 1200 1500 1800

CSOF (sec) 0.0194 0.3798 0.9465 1.0663 1.4232 1.6202

CAV-DTLC (sec) 0.0145 0.2698 0.4177 0.1901 0.2669 0.5421

Reduction (%) 25.00 28.98 55.86 82.17 81.24 66.54

Table 4.3: Reduction in average idling time at signalized intersection 2.

AVs (veh/hour) 300 600 900 1200 1500 1800

CSOF (sec) 0.0081 0.1613 0.3863 1.2516 1.6795 2.7243

CAV-DTLC (sec) 0.0065 0.1161 0.1153 0.3149 0.5619 0.7477

Reduction (%) 20 28 70 75 67 73
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Table 4.4: Reduction in average idling time at signalized intersection 3.

AVs (veh/hour) 300 600 900 1200 1500 1800

CSOF (sec) 0.0129 0.1379 0.4685 1.0489 1.5929 2.1633

CAV-DTLC (sec) 0.0032 0.1153 0.1438 0.1 0.1769 0.3013

Reduction (%) 75 16 69 90 89 86

Furthermore, Figure 4.9 depicts a snapshot of the input-output of the FIS. As can be seen in

the figure, in this case, a roadway with green-light has got 10 extra AVs, while another roadway

with red-light has got only 1 extra AV. Therefore, the green-light phase was extended by 10.5 sec.

This extension portion was segmented as tokens and made available to the AVs in the green-light

phase. Hence, the minimization of the total average idling times and number of stops has been

more efficient with the CAV-DTLC scenario.

Figure 4.9: Input-output of fuzzy inference system.
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4.4 Summary

This chapter has introduced a cooperative AV-TL control system, CAV-DTLC, consisting of

decision-making and control units. The proposed system has the ability to adjust the signal

timings under different traffic conditions. The decision-making unit is a theoretic game formu-

lated by the TL to decide whether the green-light time for a certain phase/roadway should be

extended, while a fuzzy logic controller is embedded in the control unit to determine by how

much the green-light time should be extended. The purpose of proposing the cooperative AV-TL

system is to allow the TL to be dynamic such that it interacts and cooperates with the cooperative

AVs, while the objective is to achieve further minimization of the total average idling times and

number of stops at SIs. Simulation tests were conducted to investigate the performance of the

CAV-DTLC as compared to the CSOF and NCSO. It has been demonstrated that the CAV-DTLC

outperforms the CSOF and NCSO by achieving lower average values of idling times and number

of stops under various traffic conditions.

79



Chapter 5

Platoon-based Autonomous Vehicle Speed

Optimization near Signalized Intersections

This chapter addresses the AV cooperation in urban areas through platoon formation, in particular

the impacts of AV platoon formation on average idling times and number of stops at SIs. A

Platoon-based Autonomous Vehicle Speed Optimization Scheme (PAVSOS) is proposed to allow

AVs, approaching an SI, to decide in a decentralized manner whether to be part of the platoon

or not such that the average idling times and number of stops are minimized. The PAVSOS

relies on V2V and V2I communication and consists of an LP speed optimization procedure to be

conducted by the leading AV and an Intelligent Vehicle Decision Making Algorithm (IVDMA).

Simulation tests are conducted and analysis results are reported, investigating the performance of

the PAVSOS in terms of average idling times and average number of stops at an SI in comparison

with two other AV platoon scenarios.
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5.1 Problem Statement

Consider the intersection depicted in Figure 5.1 as a single-lane, four-roadway SI. For simplicity,

assume the TL control system has a two-phase static cycle T LS = {EW,SN}, where East-West

roadways are one phase and North-South roadways are the other phase. Assume that a number

of AVs connected in a platoon, Np = {AV1,AV2, . . . ,AVn}, are travelling toward the intersection

from the West roadway direction. The TL parameters are defined as follows: green-light-time

duration, Tg; red-light-time duration, Tr; and TL cycle duration, C, where C = Tg +Tr.

Figure 5.1: An example scenario of a platoon approaching a signalized intersection

As the objective of the platoon is to be connected, the problem of interest is to minimize CP
it ,

i.e., the average idling-time cost of the platoon at an SI when Np > Ndep and Np ≤ Ndep. First,
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assuming that there is no V2I communication available, if the number of AVs in the platoon

is greater than the number of AVs that can pass through the intersection within the green-light

time of a single cycle (i.e.,Np > Ndep), then some of the platoon AVs will certainly stop and

experience delay. If the number of AVs in the platoon is less than or equal to those that can pass

through the intersection within the green-light time of a single cycle (i.e.,Np ≤ Ndep), then some

of the platoon AVs still may experience delay. This delay occurs because at least the leading AV

is not optimizing its speed based on the TL signal-timing information.

Second, assuming that there is V2I communication and that only the leading AV is able to

optimize its own speed based on the TL signal timing and its own Time-to-Intersection, T T IL,

such that it has a great chance to meet the green-light time when arriving at the intersection. In

this case, the following AVs are controlling their speeds based on the leader’s speed. Considering,

Np ≤ Ndep, if the leading AV takes less time to reach the intersection than the remaining green-

light time, T T IL≤Rg, not necessarily the last vehicle in the platoon does, (e.g.,T T In >Rg). As a

result, some of the platoon AVs may still stop and experience delay. Therefore, the minimization

of idling time and stop-and-go driving of a platoon of AVs is a complex problem that requires

intelligent algorithmic tools to allow the platoon-AV members to connect/disconnect based on

individual interests.

5.2 Platoon-based Autonomous Vehicle Speed Optimization

Scheme

In this Section, we propose the Platoon-based AV Speed Optimization Scheme (PAVSOS) to

minimize the average idling times of platoons of AVs approaching SIs. PAVSOS consists of an

LP speed optimization procedure to be conducted by the leading AV and an intelligent decision-

making algorithm, IVDMA, to be run by every following AV such that the platoon can have a
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greater chance of meeting the green-light time when arriving at the intersection. The objective of

the IVDMA is to enable the following AVs to reason and decide whether it is efficient for them

to be part of the platoon or not. The logic of the PAVSOS is depicted in Figure 5.2.

Figure 5.2: Logic of platoon-based autonomous vehicle speed optimization scheme

5.2.1 Platoon Formation and Control

It is assumed that the AV platoons are formed and being controlled using a unidirectional string-

stable CACC [107] [108]. Constant headway time is maintained between consecutive AVs where
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the relative distance measured from AVi to AVj is defined as

di j(t) = xi(t)− x j(t) (5.1)

5.2.2 Leading-Autonomous-Vehicle Speed Optimization

Computing the optimal speed for the platoon leading-AV, AVL, when approaching an SI is subject

to some constraints such as time to intersection, T T IL , maximum and minimum speed limits on

the roadway, vmax and vmin, current light signal, and queue size. The optimal speed of AVL at time

step t travelling toward a TL (i.e., the speed that minimizes the idling-time cost of the leader at

time step t) can be found through linear programming as follows:

Light is Green

As AVL receives upcoming signal information from the TL, indicating that the current light is

green, there are three possible cases in terms of T T IL and Rg:

• Case 1: T T IL ≤ Rg. In this case, using the current speed, AVL will be able to pass through

within the remaining green-light time.

sL = vL(t)

sub ject to :

vL(t)≤ dL(t)/Tq

vL(t)≥ dL(t)/Tg

vL(t)≥ vmin

vL(t)≤ vmax
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where T T IL = dL(t)/vL(t) sec, vL(t) is the speed of AVL at time step t, dL(t) is the distance

of AVL to the stop line of the TL at time step t, sL is the optimal speed of AVL at time step

t +1.

• Case 2: Rg +Tr ≥ T T IL > Rg. In this case, the speed of the vehicle is optimized over the

distance to the TL so that T T IL is sufficient to meet the next green light.

sL = min vL(t)

sub ject to :

vL(t)≤ dL(t)/(Rg +Tr +Tq)

vL(t)≥ dL(t)/(Rg +Tr +Tg)

vL(t)≥ vmin

vL(t)≤ vmax

In addition, if the current speed does not allow AVL to be part of the current green-light time

but the maximum speed of the roadway does, the speed optimization system will accelerate

the speed of AVL to pass cautiously during the current green-light time.

sL = max vL(t)

sub ject to :

vL(t)≤ dL(t)/Tq

vL(t)≥ dL(t)/Tg

vL(t)≥ vmin

vL(t)≤ vmax

• Case 3: Rg +Tr +Tg ≥ T T IL > Rg +Tr. In this case, AVL will maintain its current speed as
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T T IL leads it to be part of the next green-light time.

sL = vL(t)

sub ject to :

vL(t)≤ dL(t)/(Rg +Tr +Tq)

vL(t)≥ dL(t)/(Rg +Tr +Tg)

vL(t)≥ vmin

vL(t)≤ vmax

Light is Red

If the information received by AVL from the TL indicates that the current light is red, there are

three possible cases in terms of T T IL and Rr:

• Case 1: T T IL ≤ Rr. In this case, the speed of AVL is optimized such that AVL will meet the

upcoming green-light time.

sL = min vL(t)

sub ject to :

vL(t)≤ dL(t)/(Rr +Tq)

vL(t)≥ dL(t)/(Rr +Tg)

vL(t)≥ vmin

vL(t)≤ vmax

• Case 2: Rr < T T IL ≤ Rr +Tg. In this case, AVL will maintain its current speed to smoothly

86



pass within the upcoming green-light time.

sL = vL(t)

sub ject to :

vL(t)≤ dL(t)/(Rr +Tq)

vL(t)≥ dL(t)/(Rr +Tg)

vL(t)≥ vmin

vL(t)≤ vmax

• Case 3: T T Ii > Rr +Tg. In this case, the speed of AVL is optimized to meet the green-light

time of the next cycle.

sL = min vL(t)

sub ject to :

vL(t)≤ dL(t)/(Rr +Tg +Tr +Tq)

vL(t)≥ dL(t)/(Rr +Tr +2Tg)

vL(t)≥ vmin

vL(t)≤ vmax

5.2.3 Intelligent Vehicle Decision-Making Algorithm

In this section, the IVDMA is introduced (Algorithm 2) to allow the platoon-following AVs to

check their status as they are connected to the platoon. As such, the objective of minimizing the

average idling time for the platoon as a whole can be achieved. Through V2V communication,

AVs can share their T T Is. The IVDMA is run by every follower in the platoon in order to be able

to decide whether being part of the platoon would minimize its own idling time or not. If not,
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then the follower can disconnect from the platoon and become a leader for its followers, forming

a new platoon. The new leader then is able to communicate with the TL and run the speed

optimization linear program and thus, have a better chance of meeting the green-light time.

Algorithm 2 : Intelligent Vehicle Decision-Making Algorithm for Vehicle j
Receive information from TL

if Light is Green then

if T T I j−1 ≤ Rg and T T I j > Rg then

Disconnect from platoon

optimize speed accordingly

else

Keep headway time

end if

else

if T T I j−1 ≤ Rr +Tg and T T I j > Rr +Tg then

Disconnect from platoon

optimize speed accordingly

else

Keep headway time

end if

end if

5.3 Simulation Tests and Results

In order to test and validate the performance of PAVSOS, simulation was conducted. The simula-

tion was performed in MATLAB using the concept of OOP. An SI of single-lane four-roadways

was built (Figure 5.3). The TL control system is a two-phase system with East-West roadways

as one phase and South-North roadways as another phase. The maximum and minimum speeds

allowed on the roadways are Vmax = 60 km/hour and Vmin = 10 km/hour respectively. The TL

parameters are as follows: Green-light time, Tg = 24 sec; Red-light time, Tr = 36 sec; Cycle time,

C = Tg+Tr = 60 sec. For simplicity, the yellow-light time is neglected and assumed to be part of

the green-light time. AVs are generated randomly through each roadway direction according to
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PD. AVs travel through the intersection in a straightforward movement (i.e., no left and/or right

turns allowed). In order to capture the real behaviour of traffic, the simulation was run for more

than three hours. The headway time between every two consecutive vehicles in the platoon is set

to 2 sec.

Figure 5.3: A signalized intersection of single-lane four-roadways

The performance metrics used to investigate the performance of PAVSOS are average idling

time and average number of stops. The platoon that uses PAVSOS is compared to two other

platoons. The first is a regular platoon of AVs assumed to be connected through a CACC with

no V2I communication. In this platoon, there is no speed optimization being implemented, so

it is named No Speed Optimization Platoon (NSOP). The average speed of this platoon is set

to the maximum speed allowed on the roadway, Vmax. The second is a regular platoon of AVs
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assumed to be connected through a CACC with only the leading-AV communicating with the

TL and implementing speed optimization. This platoon is named Leader only Speed Optimiza-

tion Platoon (LSOP). The platoon that functions based on PAVSOS is named Intelligent Vehicle

Speed Optimization Platoon (IVSOP).

The results are depicted in two graphs and one table. Comparing the three platoon scenar-

ios, Figures 5.4 and 5.5 illustrate the average idling times and number of stops for the whole

intersection with respect to the number of platooned AVs. The number of vehicles is varied from

a platoon of two vehicles up to twelve vehicles. As can be seen in the graphs, LSOP has out-

performed NSOP, while IVSOP has outperformed both NSOP and LSOP, achieving lower total

average idling times and number of stops. Based on the performance validation, the reductions

being achieved in terms of average idling times between IVSOP with the NSOP and LSOP are

illustrated in Table 5.1.

Figure 5.4: Total average idling time in three hours
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Figure 5.5: Total average number of stops in three hours

Table 5.1: Reduction in average idling time at the signalized intersection.

Number of Vehicles 2 3 4 5 6 7 8 9 10 11 12

IVSOP vs. NSOP (%) 100 98 96 96 94 93 92 91 91 88 81

IVSOP vs. LSOP (%) 99 60 50 50 41 41 37 45 60 59 51

5.4 Summary

This chapter has introduced a speed optimization scheme, PAVSOS, to minimize delay and stop-

and-go driving for connected AV platoons at SIs. The scheme relies on V2V and V2I commu-

nication capabilities so that vehicles could receive signal timing and queue information from

TLs. It includes a speed optimization LP technique and intelligent decision-making algorithm,

IVDMA, to allow the platoon-AV members to decide in a decentralized manner whether it is

efficient to part of the platoon or not. The platoon functioning based on PAVSOS was compared

to two other platoons to validate its performance. The first is a platoon that does not perform any

speed optimization, NSOP. The second is a platoon that has only the leading AV communicat-
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ing with the TL through V2I communication and performing speed optimization, LOSP. It has

been reported that the platoon using the PAVSOS outperformed the two other platoon scenarios,

achieving lower average idling times and number of stops.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

AVs are expected to eventually have major positive impacts on the transportation systems by

reducing driver stress and public transportation cost; improving the mobility of non-drivers, the

disabled and elderly people; reducing accident risk; increasing road capacity; and reducing park-

ing costs. However, in general, these positive impacts are expected to raise the number of vehicles

on the roads. Long idling times of AVs at SIs, which may lead to congestion, will be a major

cause of significant fuel waste and time delay. This thesis has analyzed and modelled the problem

of idling time and stop number minimization of AVs at SIs as a cooperative speed optimization

process.

Extensive background information and a comprehensive literature review on AVs in general

and vehicle speed optimization techniques in particular were addressed, showing the challenges

facing the wide adoption of AVs as well as the outstanding issues to be dealt with to achieve
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further idling time and stop number minimization and thus improve traffic efficiency at TLs. In

this regard, vehicle-centric speed optimization scenarios, explaining how AVs would act selfishly

and negatively impact each other’s goals, were demonstrated. In addition, the problem was

viewed and formulated as a cooperative game between the AVs, and game theory was proven to

have the potential to model and analyze the interaction and coordination of AVs’ strategic speed

actions.

Following the game theoretic formulation, a Cooperative Speed Optimization Framework

(CSOF) was proposed to perform the cooperative speed optimization process between AVs ap-

proaching a TL. The proposed CSOF consists of three main modules to address issues of AV-

centric speed optimization, information gathering and conflict recognition, and cooperative de-

cision making. In the AV-centric speed optimization module, a Linear Programming (LP) speed

optimization procedure is performed to provide every AV with the optimal speed such that the

idling time and number of stops at the TL are minimized. In addition, within the process of find-

ing optimal speeds, AVs can request and own time tokens within the green light during which

they can smoothly pass through. Therefore, via this module, AVs satisfy the rationality condi-

tion in the sense that each would know the optimal speed choice among all possible speeds. In

the information and conflict recognition module, AVs are recognized as rational players. AVs

with conflicting time tokens are contacted by the TL to start a negotiation process to resolve the

conflict. Thus, AVs with conflicting tokens communicate with each other to share their speed

strategies and associated costs. In the cooperative decision-making module, the final token al-

locations are made and speed assignments are finalized. AVs are assumed to abide by the rules

and can reach binding agreements, based on which, the time token conflicts are resolved. AVs

involved in a conflict would accept the need to swerve and decelerate their speeds, requesting

different time tokens, only in exchange for rewards. The TL can reward AVs that accept los-

ing the game, which maximizes their chances to win the next time they have a conflict. Thus,

the theory of the cooperative decision-making module was conceptualized and formulated as a
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repeated game, representing cooperation between the AVs in ongoing token allocation conflicts.

Furthermore, a cooperative credit point bargaining model was introduced to allow AVs to

trade credit points as they are travelling toward an SI. AVs heading toward an SI can come into

groups to sell and buy credit points. The theoretical concept of this model is to allow AVs that are

in rush to pass through without delay but have no enough credit points to buy credit points and use

them to pass through smoothly without delay. AVs with extra credit points and/or are not in rush

to pass through can sell credit points to those in need. Simulation tests were conducted to test and

validate the performance of the CSOF under various traffic conditions. A sub-network consisting

of three SIs in the neighbourhood of the University of Waterloo, ON, Canada was chosen to

conduct the simulation tests. The performance of the CSOF was compared to a Non-Cooperative

Speed Optimization (NCSO) technique with which AVs independently and individually perform

speed optimization to meet the green light of a TL. The results reported in this thesis demonstrate

the effectiveness of the CSOF by achieving lower average values of idling times and number

of stops under various traffic conditions. Due to the less speed variations resulting from AVs

using the CSOF, the CSOF has also shown less energy consumption as compared to the NCSO

technique.

Moreover, this thesis has proposed a Cooperative Autonomous Vehicle-Dynamic Traffic

Light Control (CAV-DTLC) system based on game theory and fuzzy logic control. The CAV-

DTLC system consists of a decision making and control units. It has the ability to adjust the sig-

nal timings of the TL under different traffic conditions. The decision-making unit is a theoretic

game formulated by the TL to decide whether the green-light time for a certain phase/roadway

should be extended, while a fuzzy logic controller is embedded in the control unit to determine

by how much the green-light time should be extended. The purpose of proposing the CAV-DTLC

is to allow the TL to be dynamic such that it interacts and cooperates with the cooperative AVs,

while the objective is to achieve further minimization of the average idling times and number of

stops at SIs. Simulation tests were conducted to investigate the performance of the CAV-DTLC
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as compared to the CSOF and NCSO. It has been demonstrated that the CAV-DTLC has outper-

formed the CSOF and NCSO by achieving lower average values of idling times and number of

stops under various traffic conditions.

Besides, this thesis has proposed a Platoon-based Autonomous Vehicle Speed Optimization

Scheme (PAVSOS) with the aim to minimize idling times and number of stops for connected-

AV platoons at SIs. The scheme relies on V2V and V2I communication capabilities so that

AVs could receive signal timing and queue information from TLs. It includes a speed optimiza-

tion technique and intelligent decision-making algorithm to minimize the platoon average idling

times and number of stops at SIs. Simulation tests were conducted to validate the performance

of the PAVSOS. The AV platoon functioning based on PAVSOS was compared to two other

platoon scenarios. The first is No Speed Optimization platoon (NSOP), which has no V2I com-

munication and thus, no speed optimization being implemented. The second is a Leader only

Speed Optimization Platoon (LSOP) with which only the platoon leading AV implements speed

optimization when approaching an SI to meet the green-light time. It has been reported in the re-

sults that the platoon using the PAVSOS outperformed the two other platoon scenarios, achieving

lower average idling times and number of stops.

6.2 Future Research

One important point to be investigated in the near future is the implementation and testing of the

proposed techniques under various traffic conditions using a larger road network with different

geometrical designs of SIs and various cycle/phase signal-timing settings. Since the current

geometrical design of SIs is limited to two-lane roadways with no independent left and right

lanes, SIs with independent left and right lanes will be considered. Besides, the design of the

cycle/phase timings will be developed to more complicated scenarios such that TL cycles with
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more than two phases are implemented. For instance, the traffic making left turns at an SI

might have its own phase and thereby have its own time token schedule. Having completed the

experimentation design and settings, real-life traffic data will be used to test and validate the

comparative performance between the CAV-DTLC with CSOF and NCSO.

Memory and time complexities of the proposed techniques are another important point to

investigate. It is important to verify how much memory space is needed and how much time is

taken by the TL system to manage the token allocation process. Another question to raise is how

costly it is in terms of memory space to keep a record of Vehicle Identification Numbers (VINs)

for AVs passing an SI as this might be beneficial for security and safety purposes. In addition,

what ways are possible to keep the token allocation process efficient and reasonably inexpensive

in terms of memory and time usage. It is also important to investigate the computational cost of

the speed optimization, conflict resolution, and token allocation processes and find out strategies

and means to overcome any expensive computational costs.

Signal-timing coordination between neighbouring TL systems over a large area is signifi-

cantly important research point to be addressed so as to help minimize the idling times and stop

numbers of AVs at SIs. According to the novel development of techniques introduced in this the-

sis, the TL signal-timing system has been limited to a dynamic phase-based timing adjustment.

With signal-timing coordination between neighbouring TL systems, the dynamic timing adjust-

ment is performed to the cycles such that, based on traffic volume conditions, certain phases

may be expanded beyond the cycle timing limit. Therefore, a cycle-based dynamic-TL control

system will be proposed to allow TL systems over a large area to coordinate their dynamic cycle-

based signal-timing settings such that global minimization of idling times and stop numbers is

achieved. The performance analysis of such a cycle-based dynamic-TL system will be compared

with that of the techniques introduced in this thesis (i.e., CAV-DTLC and CSOF).
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