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Abstract

This work studies the framework of systems with subsystems, which has

numerous practical applications, including system reliability estimation, sen-

sor networks, and object detection. Consider a stochastic system composed of

multiple subsystems, where the outputs are distributed according to many of

the most common distributions, such as Gaussian, exponential and multino-

mial. In Chapter 1, we aim to identify the parameters of the system based

on the structural knowledge of the system and the integration of data inde-

pendently collected from multiple sources. Using the principles of maximum

likelihood estimation, we provide the formal conditions for the convergence of

the estimates to the true full system and subsystem parameters. The asymp-

totic normalities for the estimates and their connections to Fisher information

matrices are also established, which are useful in providing the asymptotic or

finite-sample confidence bounds.

The maximum likelihood approach is then connected to general stochas-

tic optimization via the recursive least squares estimation in Chapter 2. For
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ABSTRACT

stochastic optimization, we consider minimizing a loss function with only noisy

function measurements and propose two general-purpose algorithms. In Chap-

ter 3, the mixed simultaneous perturbation stochastic approximation (MSPSA)

is introduced, which is designed for mixed variable (mixture of continuous and

discrete variables) problems. The proposed MSPSA bridges the gap of dealing

with mixed variables in the SPSA family, and unifies the framework of simul-

taneous perturbation as both the standard SPSA and discrete SPSA can now

be deemed as two special cases of MSPSA. The almost sure convergence and

rate of convergence of the MSPSA iterates are also derived. The convergence

results reveal that the finite-sample bound of MSPSA is identical to discrete

SPSA when the problem contains only discrete variables, and the asymptotic

bound of MSPSA has the same order of magnitude as SPSA when the prob-

lem contains only continuous variables. In Chapter 4, the complex-step SPSA

(CS-SPSA) is introduced, which utilizes the complex-valued perturbations to

improve the efficiency of the standard SPSA. We prove that the CS-SPSA iter-

ates converge almost surely to the optimum and achieve an accelerated conver-

gence rate, which is faster than the standard convergence rate in derivative-

free stochastic optimization algorithms.

Primary Reader and Advisor: James C. Spall

Second Reader: Fei Lu
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Chapter 1

System Identification

1.1 Introduction

Consider a stochastic system composed of multiple subsystems, where both

the full system and the subsystems have general binary or non-binary outputs.

The framework of systems with subsystems is proposed and studied in a series

of papers (see, e.g., Spall, 2008, 2009, 2010, 2012, 2013a,b, 2014; Maranzano

and Spall, 2010a,b, 2011) with a focus on reliability estimation. In particular,

previous literature considers a stochastic system composed of multiple subsys-

tems, where each subsystem can generate binary (“0” or “1”) outputs, and the

full system can generate binary or non-binary outputs based on a special case

of the exponential family distributions (e.g., Bernoulli or Gaussian).

One key motivation of combining full system and subsystem outputs is to

1



CHAPTER 1. SYSTEM IDENTIFICATION

overcome the situation, where the full system outputs are difficult or infeasible

to collect. Such a difficulty often arises when the full system operation requires

the destruction of itself (e.g., missile launches or collision tests) or the full sys-

tem is costly to operate (e.g., large-scale grid or power plant). The subsystem

tests, on the other hand, are typically more feasible to obtain and much less

expensive (e.g., local neighborhood tests or low-level component tests). While

the full system outputs can reflect the general information of the entire system,

the outputs from each subsystem can also reflect some partial information on

the system. Although the full system outputs alone can provide some level of

estimates for the parameter of interest at the full system level, being able to

use all the data from both the full system and the subsystem can significantly

improve the overall understanding and improve the accuracy of the required

estimates. As shown in Spall (2014), better parameter estimations and tighter

uncertainty bounds can be achieved by integrating data from different sources

than by using the full system data alone. Figure 1.1 shows the conceptual

illustration of the framework.

The framework of systems with subsystems appears in many fields, includ-

ing system reliability estimation, sensor networks, object detection, and trans-

portation networks. Let us now mention several applications under the frame-

work of systems with subsystems. For system reliability assessment, Reese

et al. (2011) considers a weapons-system surveillance program with multi-

2



CHAPTER 1. SYSTEM IDENTIFICATION

Figure 1.1: Conceptual illustration of the system with subsystems

ple components (i.e., subsystems) arranged in a series system, where the full

system and subsystem measurements represent the lifetime data and are as-

sumed to follow different Weibull distributions. The integration of multilevel

heterogeneous data (analogous to the full system and subsystem measure-

ments here) is investigated in Peng et al. (2013) for system reliability analy-

sis, where different distribution assumptions are made depending on the data

types, including binomial distribution for pass-fail data, Weibull distribution

for lifetime data, and normal distribution for degradation data. Wilson et al.

(2007) considers a case study in missile reliability that focuses on the assess-

ment of a high fidelity launch vehicle intended to emulate a ballistic missile

threat. In their work, the full system represents high-level mission events (i.e.,

launch, boost, booster separation, etc.) and the subsystems correspond to var-

ious parts that have to operate in concert to accomplish those high-level mis-
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sions. The distribution assumptions include Dirichlet distribution and multi-

nomial distribution. In a fault diagnosis problem, Zhou et al. (2012) constructs

an Internet-based three-tank system to detect the potential leakage within the

system. The end-to-end measurement of the water flow is analogous to the full

system. Each subsystem output reflects whether the water level within each

tank is beyond a pre-specified threshold. A simplified version of this problem

is studied in Hernández and Spall (2015), where the full system output follows

a normal distribution with known variance.

In transportation networks, Zhao and Spall (2016) aims to estimate the

travel time in urban traffic by collecting test data from Google Maps. By iden-

tifying the transportation network from origin to destination through a specific

route as a full system and the traffic link as the subsystem, Zhao and Spall

(2016) assumes the full system outputs follow a log-normal distribution and

the subsystem outputs follow a Bernoulli distribution.

In spatial search problems, the location of an object can be interpreted as a

two-dimensional vector represented by angle and range. The full system corre-

sponds to a direct measurement of the object. On the subsystems level, multi-

ple sensors are installed in an area of interest. Each sensor can then actively

monitor the activity with its local neighborhood and produce binary outputs to

indicate if an object is present or a certain measurement is beyond a specified

threshold. A problem of vehicle tracking with an autonomous interception over

4
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a region is considered in Sharp et al. (2005). Multiple sensors spread out the

entire region and each sensor can detect if the object is approaching or depart-

ing from itself. On the full system level, a pursuer could directly measure the

object by installing a range sensor. The goal is to integrate the sensor data

with the pursuer information for path estimation and interception of the in-

truder. In wireless sensor networks, Son et al. (2006) designs and implements

a surveillance system for forest fires, where several sensors are installed in the

forest to monitor temperature, humidity, and smoke. Those sensors are analo-

gous to the subsystems in our framework. For the full system, the traditional

infrared sensor system or satellite system can suggest potential forest fire lo-

cations on a much larger scale. Integrating the information from both sources

can improve the detection of forest fires. A cooperative target tracking problem

using multiple unmanned aerial vehicles (UAVs) as a mobile sensor network

is studied in Sun et al. (2016), where a Doppler radar that can cover a very

large area is the full system and the multiple UAVs that are flying in differ-

ent orbits are the subsystems. A problem of assessing the privacy level in an

information-sharing scheme is studied in Nekouei et al. (2018). In their work,

the local processes, which can generate noisy information only for their own

sensors, are corresponding to our subsystems, and the common process, which

can be simultaneously observed by all the local sensors, is corresponding to our

full system. Other attack-detection works focus on monitoring and diagnosis

5
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of cyber-physical systems. One example includes attacks against process con-

trol in sensor networks, where the subsystems correspond to the local sensors,

actuators, or control processing units (Cárdenas et al., 2011).

Other examples of “systems of systems” include airplane formation flight

(Wolfe et al., 1996), flocks of systems (Brockett, 2010), and vehicle platooning

(Oncu et al., 2012; Knorn and Middleton, 2013). For fault detection, Boem

et al. (2017) proposes a methodology based on a distributed network, where

a large-scale system is composed of many interconnected subsystems. It is

shown that in the case of variables shared among more than one subsystem,

the fault detectability can be improved. Such an idea is similar to the work in

this paper, where the overall estimation is improved by integrating information

among systems.

1.1.1 Our Contribution

This work aims to identify the parameters of the full system and the sub-

systems based on knowledge of how the system and subsystems relate to each

other, as well as the integration of the data independently collected from mul-

tiple sources. The challenges of integrating data often arise from three dif-

ferent aspects: i) data from different sources may have different probability

distributions; ii) the sample sizes for each data source could be different and

there might be no samples at all for some subsystems; iii) the relationship be-

6
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tween the full system and subsystem distribution parameters could be very

complicated and it might be difficult to find an explicit function. We consider

the approach of using maximum likelihood estimation (MLE), which has been

studied in Spall (2014) to identify the unknown “success” probabilities of the

subsystems and the mean parameter of the full system. Other approaches,

such as the use of Bayesian methods to integrate the multilevel data, are dis-

cussed in Guo and Wilson (2013), Li et al. (2017) and Guo et al. (2018). Aside

from issues related to how to specify weighting parameters, prior distributions,

and hyperprior distributions, Bayesian methods usually require multivariate

numerical integration, typically carried out with Markov chain Monte Carlo

methods, which is time-consuming to complex systems. Numerical optimiza-

tion, on the other hand, is often sufficient for finding the MLEs by solving the

likelihood equations in most applications.

The main technical aspects that distinguish this work from standard re-

sults for the conventional MLEs come in two ways. First, each subsystem and

the full system is allowed to have its own sample size. Some of the subsystems

may even have no samples. The lack of an appropriate single sample size pre-

cludes the use of the most standard results on the convergence and asymptotic

distributions in Spall (2005, Section 13.3) and Serfling (2009, Section 4.2). Sec-

ond, different distributional assumptions are made on each subsystem and the

full system. Because of the different distribution assumptions, it is possible

7



CHAPTER 1. SYSTEM IDENTIFICATION

to achieve the convergence result and asymptotic normality only for the full

system parameter, while nothing can be said for the subsystem parameters.

Note that this seemingly inconsistent result holds even when all the subsys-

tem distributions are identical. The standard theory of MLEs is applicable

only in the special case where no subsystem outputs are generated and the full

system outputs are independently and identically distributed (i.i.d.). In gen-

eral, however, the subsystem sample sizes are not all zero and we expect to

collect subsystem outputs to improve the overall estimates. Therefore, some

subtle technical analysis is required to handle the different sample sizes and

the different distributional assumptions. Although this work assumes the full

system outputs are i.i.d., it can be further generalized to the independently

and non-identically distributed (i.n.i.d.) case. Using the principles of MLE, we

provide the formal conditions for the convergence of the estimates to the true

full system and subsystem parameters. The asymptotic normalities for the

estimates and the connections to Fisher information matrices (FIMs) are also

established, which are useful in providing the asymptotic or finite-sample con-

fidence bounds. The general framework studied in this work not only provides

a more realistic model but also presents the most general case in the static

settings.

The remainder of this Chapter is organized as follows: Section 1.2 discusses

the generalization of the distribution assumption on the full system outputs

8
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along with the convergence of the parameter estimate. Section 1.3 discusses

the generalization of the distribution assumption on the subsystem outputs.

It also covers the convergence and asymptotic distribution of the parameter

estimate. A numerical study, which includes both simulation experiences and

real applications, is provided in Section 1.4, and conclusions are made in Sec-

tion 1.5.

1.2 General Full System with Binary Subsystems

In Spall (2014), the subsystem outputs are assumed to have a Bernoulli

distribution and the full system outputs y are distributed according to spe-

cial case of the exponential family probability density (or mass) function, i.e.,

pk(y|ρ) = exp[ak(ρ)y+ bk(ρ)+ ck(y)], where ρ represents the unknown mean out-

put value of the full system, ak(ρ), bk(ρ) and ck(y) are all real-valued functions

with ak(ρ) and ck(ρ) being differentiable for all k. One natural extension is to

consider the situation where there may be multiple parameters of interest in

the full system. Further, the parameter of interest in the full system may be

beyond only the mean of the output and the probability density function may

include a sufficient statistic that is a function of y, not just y itself. For example,

in a one-parameter case, the full system output could follow a chi-square distri-

bution, which is widely used in quality and reliability engineering. Note that in

9



CHAPTER 1. SYSTEM IDENTIFICATION

this case, the sufficient statistic becomes log y and the probability density func-

tion discussed in Spall (2014) is no longer applicable. In the multi-parameter

case, the full system output could follow a normal distribution with unknown

mean and variance. Such a distribution is used to model the build-up of toler-

ances or life distribution of high-stress components. Another example includes

the Weibull distribution with the shape and scale parameters, commonly used

in applications such as failure time of components subjected to fatigue, schedul-

ing inspection, or preventive maintenance activities. Our work also covers the

gamma distribution with the shape and rate parameters, which is often used to

model the time between maintenance actions or the failure time of the system

with standby units.

1.2.1 Problem Formulation

Let us now consider the general formulations for the likelihood function and

the score vector. Consider a system with J ≥ 1 subsystems, which could be ar-

ranged in series, parallel, or any other form. It is assumed that the test data

collected from each subsystem and the full system are statistically indepen-

dent. Note that each subsystem is not necessarily functioning independently

from each other when operating as a part of the full system.

Each subsystem is assumed to follow a Bernoulli distribution. Let the un-

known parameter vector θ = [ρ1, . . . , ρJ ]
T , where ρj is the success probability

10
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for the j-th subsystem for j = 1, . . . , J . Denote Xj as the number of successes

and nj as the sample size; then the likelihood function of the j-th subsystem is

p(Xj; ρj) =

(︃
nj

Xj

)︃
ρ
Xj

j (1− ρj)nj−Xj .

For the full system, assume it has the following exponential family probability

density function with a natural parameter vector η = [η1, . . . ,ηq]
T , q ≥ 1

p(y;η) = exp[η · T (y)− A(η) +G(y)], (1.1)

where A(η) and G(y) are real-valued differentiable functions and the vector

T (y) = [T1(y), . . . , Tq(y)]
T . Let θ∗ = [ρ∗1, . . . , ρ

∗
J ]

T and η∗ = [η∗1, . . . ,η
∗
q]

T be the

true but unknown parameters of the subsystems and full system, respectively.

Note that (1.1) is the canonical form of the exponential family and T (y) is

the natural sufficient statistic of the family. Let us mention some important

properties of this canonical exponential family that will be very useful in the

later proof of convergence. If the support of η is defined to be E , then E is

convex and the function A(η) is also convex. Denote η∗ as the true parame-

ter. We have E[T (y)] = A′(η∗), where A′(η∗) = [∂A(η∗)/∂η1, . . . , ∂A(η
∗)/∂ηq]

T

(Bickel and Doksum, 2001, Theorem 1.6.3 and Corollary 1.6.1). If the nat-

ural parameter space, E , is open, then these following arguments are equiv-

alent: (i) η is identifiable, (ii) η → A′(η) is a one-to-one function on E and

11
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(iii) A(η) is strictly convex on E (Bickel and Doksum, 2001, Theorem 1.6.4).

This general exponential family distribution includes several special cases. For

the normal distribution with unknown mean µ and variance σ2, the natural

parameter is η = [µ/σ2,−1/(2σ2)]
T , with sufficient statistics T (y) = [y, y2]T ,

A(η) = −η21/(4η2) + 1/(2 log |1/(2η2)|), and G(y) = −1/(2 log(2π)). For gamma

distribution with shape parameter α and rate parameter β, the natural pa-

rameter is η = [α− 1,−β]T , with sufficient statistics T (y) = [log y, y]T , A(η) =

log Γ(η1 + 1)− (η1 + 1) log(−η2), and G(y) = 0.

Let {Yk}nk=1 represent the i.i.d. observations (the test data) from the full sys-

tem. Assume that all the subsystems and the full system data are independent.

Then, the log-likelihood function L(θ) can be written as

L(θ) = L({Yk}nk=1 , {Xj}pj=1 ;θ)

=
n∑︂

k=1

[η · T (Yk)− A(η)] +
J∑︂

j=1

[Xj log ρj + (nj −Xj) log(1− ρj)]

+ constant, (1.2)

where the constant term does not depend on θ. Note that the structure of the

system, i.e., the relationship of the subsystems to the full system, is not ex-

plicitly reflected in the general expression of (1.2). As we show below, however,

the full system parameter vector η is uniquely determined by the subsystem

parameter vector θ and that is how the structure of the system enters into

12
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the likelihood function. Hence, one goal is to estimate the parameter vector η

based on the available data Y = [Y1, . . . , Yn]
T and X = [X1, . . . , XJ ]

T .

We now show how to formulate the maximum likelihood optimization prob-

lem. Let Θ be the feasible region for the parameters of interest, θ, appearing

in the subsystems. The MLE can then be found by solving the following opti-

mization problem

θ̂ = argmax
θ∈Θ

L(θ)

subject to f(θ,η) = 0,

where f : Rp+q → Rq is a function defined by the structure of the system and

reflecting the relationship between θ and η. Also define fi to be the i-th com-

ponent of f , such that f(θ,η) = [f1(θ,η), . . . , fq(θ,η)]
T . Suppose that f(·, ·) is a

continuously differentiable function with respect to θ and η in some open set of

Rp+q. Consider a fixed point θ′ ∈ (0, 1)p and a corresponding point η′ such that

f(θ′,η′) = 0. If the matrix ∂f(θ′,η′)/∂ηT with components [∂f(θ′,η′)/∂ηT ]ii′ =

∂fi(θ
′,η′)/∂ηi′ for i = 1, . . . , q and i′ = 1, . . . , q is invertible, by the implicit func-

tion theorem (Apostol, 1974, Section 13.4), there exists an open neighborhood

of θ′, an open neighborhood of η′, and a unique continuously differentiable

function h : Rp → Rq such that for all θ is this neighborhood, we have η = h(θ)

13
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with components ηi = hi(θ) for i = 1, . . . , q. The Jacobian matrix is

h′(θ) = −
[︃
∂f(θ,η)

∂ηT

]︃−1
∂f(θ,η)

∂θT
, (1.3)

where ∂f(θ,η)/∂ηT is a q × q invertible matrix and ∂f(θ,η)/∂θT is a q × p

matrix. Hence, the Jacobian matrix h′(θ) is a q × p matrix with components

[h′(θ)]ij = h′
ij(θ) = ∂ηi/∂ρj for i = 1, . . . , q and j = 1, . . . , J .

Since θ̂ is the MLE of θ, by the invariance property of the MLE (Bickel

and Doksum, 2001, Problem 2.2.16), we have that η̂ = h(θ̂) will also be the

MLE of h(θ) = η. Here, we give an example to show that there may exist an

explicit form of h. This example is a simplified version of the work in Zhao

and Spall (2016). Assume that in a series system, each output from subsys-

tem j is Bernoulli distributed with mean ρj for j = 1, . . . , p, and each out-

put from the full system is normally distributed with mean µ =
∑︁J

j=1 ρj and

σ2 =
∑︁J

j=1 ρj(1− ρj). In terms of the natural parameters, we have η1 = h1(θ) =∑︁J
j=1 ρj/

∑︁J
j=1 ρj(1− ρj) and η2 = h2(θ) = −1/[2

∑︁J
j=1 ρj(1− ρj)].

In general, the MLE can be found by solving ∂L(θ)/∂θ = 0 assuming the

existence of the above-mentioned function h(θ) = η. The score vector ∂L(θ)/∂θ

14
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has the following general form

∂L
∂θ

=
n∑︂

k=1

⎡⎢⎢⎢⎢⎢⎢⎣
∑︁q

i=1
∂ηi
∂ρ1

· Ti(Yk)− ∂A(η)
∂ρ1

...∑︁q
i=1

∂ηi
∂ρJ

· Ti(Yk)− ∂A(η)
∂ρJ

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
X1

ρ1
− n1−X1

1−ρ1

...

XJ

ρJ
− nJ−XJ

1−ρJ

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the multi-variable chain rule implies that for j = 1, . . . , J

∂A(η)

∂ρj
=

q∑︂
i=1

∂ηi
∂ρj

∂A(η)

∂ηi
=

q∑︂
i=1

h′
ij(θ)A

′
i(η), (1.4)

where h′
ij(θ) = ∂ηi/∂ρj and A′

i(η) = ∂A(η)/∂ηi. Substituting the above terms

into (1.4), the score vector may be written as

∂L
∂θ

=
n∑︂

k=1

⎡⎢⎢⎢⎢⎢⎢⎣
∑︁q

i=1 h
′
i1(θ)[Ti(Yk)− A′

i(η)]

...∑︁q
i=1 h

′
ip(θ)[Ti(Yk)− A′

i(η)]

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
X1

ρ1
− n1−X1

1−ρ1

...

XJ

ρJ
− nJ−XJ

1−ρJ

⎤⎥⎥⎥⎥⎥⎥⎦

= h′(θ)T

[︄
n∑︂

k=1

[T (Yk)−A′(η)]

]︄
+

⎡⎢⎢⎢⎢⎢⎢⎣
X1

ρ1
− n1−X1

1−ρ1

...

XJ

ρJ
− nJ−XJ

1−ρJ

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.5)

where the Jacobian matrix h′(θ) may be computed according to (1.3) when h(θ)

is not explicitly available. Note that η is a function of θ. Hence solving the

score equation, ∂L(θ)/∂θ = 0, reflects a careful balancing between the full
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system and the subsystems. Because of the general form for h(θ), the solu-

tion of ∂L(θ)/∂θ = 0 is usually found numerically. Even though it is possible

that solving (1.5) may lead to a local maximum, finding MLEs by solving the

score equation is a standard practice in system identification and related ar-

eas. When there exists enough subsystem data, using [X1/n1, . . . , XJ/nJ ]
T as a

starting point for a standard optimization algorithm may help in finding MLE

of θ.

1.2.2 Convergence

This subsection proves the convergence result of the full system vector pa-

rameter η. As argued in Section 1.1.1, due to the different sample sizes, the

classic MLE convergence theory does not apply. Nonetheless, it is shown below

that under some reasonable assumptions, the MLEs for η will converge to the

true parameter value, η∗.

Let us first show the derivation of the FIM, which is usually used in deter-

mining whether or not the subsystems and full system parameters are locally

identifiable. Moreover, it is also used to construct confidence regions for MLE

when the relevant sample size is sufficiently large. By the definition of the FIM

for a differentiable log-likelihood function, we have

FN(θ) = E
[︃
∂L(θ)
∂θ

· ∂L(θ)
∂θT

]︃

16
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where ∂L(θ)/∂θT = [∂L/∂θ]T . Assume the existence of the unique continu-

ously differentiable function h(θ). Using natural parameters and the expo-

nential family probability density function (1.1), the FIM is I(η) = A′′(η)

with [A′′(η)]i,i′ = ∂2A(η)/∂ηiηi′. By the classic change-of-variable technique,

the FIM can be re-written in terms of the subsystems parameter vector θ,

i.e., I(θ) = h′(θ)TI(η)h′(θ) (Bickel and Doksum, 2001, Section 1.6.4). Let

N = n +
∑︁J

j=1 nj be the total sample size. Since the full system data are in-

dependent of the subsystems data, the general form of the Fisher information

matrix for the entire system has the additive form:

FN(θ) = nh′(θ)TI(η)h′(θ) + JN(θ), (1.6)

where

JN(θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
n1

ρ1(1−ρ1) · · · 0

... . . . ...

0 · · · nJ

ρJ (1−ρJ )

⎤⎥⎥⎥⎥⎥⎥⎦ .

When nj > 0 for j = 1, . . . , J , it is clear that FN(θ) is positive definite and when

n ≥ 0 the first term is positive semi-definite. More importantly, it matches the

intuition that more data leads to less uncertainty about of estimates.

Theorem 1.1 (Wang and Spall, 2017). Suppose JN(θ) has full rank and the

implicit function theorem on f(·, ·) holds. Assume that n > 0 and nj > 0 for

17



CHAPTER 1. SYSTEM IDENTIFICATION

j = 1, . . . , J . Then FN(θ)
−1 is given by

FN(θ)
−1 =− nJN(θ)

−1h′(θ)T [I(η)−1 + nh′(θ)JN(θ)
−1h′(θ)T ]−1h′(θ)JN(θ)

−1

+ JN(θ)
−1.

Remark 1.1. From (1.6), a sufficient condition for FN(θ) to have full rank is

either h′(θ)TI(η)h′(θ) or JN(θ) has full rank. Assume the number of param-

eters for the full system is no greater than the number of parameters for the

subsystem, i.e., q ≤ J , which is common in practice and further assume that

∂f(θ,θ)/∂θT has full row rank. By (1.3), since ∂f(θ,η)/∂ηT is an invertible

matrix, we see that h′(θ) has full row rank, which implies h′(θ)TI(η)h′(θ) has

full rank as well. Now if n > 0, FN is guaranteed to have full rank.

Proof. Because n > 0 and nj > 0 for j = 1, . . . , J , we can decompose JN(θ)
−1

into JN(θ)
−1 = JN(θ)

−1/2[JN(θ)
−1/2]T , where

JN(θ)
−1/2 =

⎡⎢⎢⎢⎢⎢⎢⎣
ρ
1/2
1 (1−ρ1)1/2

n
1/2
1

· · · 0

... . . . ...

0 · · · ρ
1/2
J (1−ρJ )1/2

n
1/2
J

⎤⎥⎥⎥⎥⎥⎥⎦ .

Hence, h′(θ)JN(θ)
−1h′(θ)T can be written as a product of two matrices, i.e.,

[h′(θ)JN(θ)
−1/2][h′(θ)JN(θ)

−1/2]T , which is clearly a positive semi-definite ma-

trix. Also note that I(η) is positive definite, since it is the FIM of the canonical
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exponential family (Bickel and Doksum, 2001, Example 3.4.5). Therefore, the

term I(η)−1 + nh′(θ)JN(θ)
−1h′(θ)T is positive definite and invertible. After us-

ing the fact that JN(θ) is also invertible and applying the matrix inversion

lemma (Spall, 2005, Appendix A), the result follows.

Recall that θ̂ and η̂ are the corresponding MLEs of θ and η. Before pre-

senting Theorem 1.2 below on the convergence of η̂, let us define some notation

that will be used in the later proof. Define the index s ∈ {1, . . . , J} such that

lim supN→∞(ns/nj) ≤ 1 for j = 1, . . . , J , where note that it possible that n → ∞

and nj → ∞ for j = 1, . . . , J .

Theorem 1.2 (Wang and Spall, 2017). Assume the parameter space of θ is the

open set Θ = (0, 1)p and the existence of the unique continuously differentiable

function h(θ) = η with the bounded Jacobian matrix, i.e., ∥h′(θ)∥ < ∞. Fur-

ther assume the limits exist (including bounded and unbounded) for any ratios

among the full system and subsystem sample sizes. Finally, assume θ̂ exists,

satisfies ∂L(θ)/∂θ = 0, and is unique. Then, η̂ a.s.→ η∗ in each of the following

three cases: i) n → ∞ and nj = 0 for j = 1, . . . , J ; ii) n < ∞ and ns → ∞; iii)

n → ∞ and ns → ∞.

Proof. All the limits below are as N → ∞ and the convergence results are in

a.s. sense.

Case i) When n → ∞ and nj = 0 for j = 1, . . . , J , there is no subsystem data

and the sample size of the full system goes to infinity. Under this case, η̂ is just
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the MLE of the canonical exponential family defined in (1.1). Hence, η̂ exists,

is unique, and η̂ a.s.→ η∗ (Bickel and Doksum, 2001, Theorem 2.3.1 and 5.2.2).

Case ii) When n < ∞ and ns → ∞, the subsystem sample sizes go to infinity

and the full system sample size is finite. Note that this contains a special case,

where there is no full system data, i.e., n = 0. When 0 < n < ∞ and at least

one subsystem has non-zero data, the score vector in (1.5) will be a mixture of

two parts, i.e., the full system and the subsystems, and the classic MLE theory

cannot apply. Also, note that ns → ∞ implies nj > 0 for all j. Using the fact

that ∂L(θ)/∂θ = 0 at θ̂, we have for j = 1, . . . , J

n∑︂
k=1

[︄
q∑︂

i=1

[Ti(Yk)− A′
i(η̂)]h

′
ij(θ̂)

]︄
+

Xj

ρ̂j
− nj −Xj

1− ρ̂j
= 0. (1.7)

Define T̄ = (1/n)
∑︁n

k=1 T (Yk) with components Tī for i = 1, . . . , q. It is easy

to see that only the term Ti(Yk) in (1.7) depends on k and it can be written as

n

q∑︂
i=1

[T̄ i(Yk)− A′
i(η̂)]h

′
ij(θ̂) +

Xj

ρ̂j
− nj −Xj

1− ρ̂j
= 0.

Since n > 0 and nj > 0 for all j, simplifying the above equation yields that for

j = 1, . . . , J,

ρ̂j − X̄j =
n

nj

r̂j

q∑︂
i=1

[T̄ i(Yk)− A′
i(η̂)]h

′
ij(θ̂),

where X̄j = Xj/nj and r̂j = ρ̂j(1− ρ̂j) for j = 1, . . . , J . Applying the mean-value
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expansion to η̂i = hi(θ̂) around the vector X̄ = [X̄1, . . . , X̄J ]
T for i = 1, . . . , q, we

get

η̂i = hi(X̄) + h′
i·(θ̃

(i)
)(θ̂− X̄), (1.8)

where h′
i·(θ̃

(i)
) is the i-th row of h′(θ) evaluated at θ̃

(i)
that lies on the interior

of the line segment between θ̂ and the vector X̄ (Fleming, 2012, Page 86).

The superscript (i) on θ̃ is necessary, since for each different i the mean value

expansion about η̂i may require a different θ̃. Substituting the term (θ̂− X̄) in

(1.8) gives

η̂i = hi(X̄) + h′
i·(θ̃

(i)
)

⎡⎢⎢⎢⎢⎢⎢⎣
n
n1
r̂1
∑︁q

l=1[T̄ l − A′
l(η̂)]h

′
l1(θ̂)

...

n
nJ
r̂J
∑︁q

l=1[T̄ l − A′
l(η̂)]h

′
lp(θ̂)

⎤⎥⎥⎥⎥⎥⎥⎦
= hi(X̄) +

q∑︂
l=1

[T̄ l − A′
l(η̂)]h

′
i·(θ̃

(i)
)BN(θ̂)h

′
l·(θ̂)

T ,

where BN(θ̂) = diag [nr̂1/n1, . . . , nr̂J/nJ ]. Combining all the expansions about

η̂i for i = 1, . . . , J , it is convenient to express the above into the following matrix

form

KN [A
′(η̂)− T̄ ] = h(X̄)− η̂, (1.9)

where KN = h′(θ̃)BN(θ̂)h
′(θ̂)T is a q × q matrix. Note that for a finite sample,

θ̃ does not necessarily equal θ̂, which implies that KN may not be a positive

semi-definite matrix. Since n < ∞ and ns → ∞, we have BN(θ̂) → 0 and
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the boundedness of h′(θ) implies KN → 0. Therefore, the left-hand side of

(1.9) converges to 0. Moreover, using the law of large numbers (LLN) on the

subsystems data implies that X̄ → θ∗ a.s. Again, by the continuity of h(θ) at

θ∗, we have η̂ a.s.→ η∗.

Case iii) When n → ∞ and ns → ∞, the sample sizes of both the full

system and subsystems go to infinity. Using the similar technique as in case

ii), applying the mean-value expansion on A′(η̂) = A′(h(θ̂)) gives

[I + Ã
′′
KN ][A

′(η̂)− T̄ ] = [A′(h(X̄))−A′(η∗)]− Ã
′′
KN [T̄ −A′(η∗)], (1.10)

where each row of Ã
′′

is evaluated at a possibly different interior point of the

line segment between h(θ̂) and the vector h(X̄). Note that the right-hand side

of (1.10) goes to zero, since under this case, we must have T̄ → A′(η∗) and

h(X̄) → h(θ∗) = η∗ by LLN. By the uniqueness of θ̂, we have A′(η̂)−A′(η∗) →

0. Since A′(·) is a one-to-one function (Bickel and Doksum, 2001, Theorem

1.6.4), it is clear that η̂ a.s.→ η∗.

Remark 1.2. To completely finish the discussion for N → ∞ subject to n+ns →

∞, we also need to show the convergence under the case, n → ∞ and ns < ∞.

As shown in case i) above, when there is an unbounded amount of full system

data but no subsystems data, we have shown that η̂ → η∗. By providing more

subsystems data, it is intuitive to see that η̂ still converges to η∗, since the full
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system data will dominate the likelihood function. Eventually, when ns → ∞,

where both the full system and subsystems have an unbounded amount of data,

we can show that η̂→ η∗.

1.3 General Subsystems

In previous works of Spall (2014) and Wang and Spall (2017), the subsystem

outputs are distributed according to a Bernoulli distribution. The binary as-

sumption on the subsystems, however, remains a crucial assumption and limits

the use of the framework in practice. Hence, this section considers the general

exponential family distribution assumptions on both the full system and sub-

system outputs, which makes the previous work in Spall (2014) and Wang and

Spall (2017) special cases and allows the framework to be more broadly ap-

plicable for more practical applications, especially when subsystems are non-

binary. It is also worth noting that the proof techniques in Spall (2014) and

Wang and Spall (2017) are no longer directly applicable in this extension due

to the non-binary assumptions on the subsystems. Hence this section provides

a new method to present the formal convergence results and the asymptotic

distributions of the MLEs under the most general case in static-parametric

estimation. Although the discussion here assumes the system outputs i.i.d.,

one can consider the generalization to i.n.i.d. case by using probability density
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function: pk(y|η) = exp[η · Tk(y) − Ak(η) + Gk(y)] with Ak(η) and Gk(y) being

real-value differentiable functions and Tk(y) being the sufficient statistic.

1.3.1 Problem Formulation

Consider again a complex system that is composed of J ≥ 1 subsystems,

which can be arranged in series, parallel or any other form, and the test data

are collected statistically independently from all data sources. Assume the

full system follows an exponential family distribution with a vector parameter

η = [η1, . . . ,ηq]
T . Given the full system data Y , the log-likelihood function has

the standard canonical form

LF (Y ;η) = η · TF (Y )− AF (η) +GF (Y ), (1.11)

where AF (·) and GF (·) are real-value differentiable functions and the compo-

nents of vector TF (Y ) are the natural sufficient statistics corresponding to the

full subsystem. We use the script F to explicitly indicate the notations are

for the full systems. Although it is a little bit unconventional, we think this

is the best approach to avoid overly cumbersome notations. Analogously, for

j = 1, . . . , J , assume the j-th subsystem has an exponential family distribution

with a natural parameter vector θj = [θ
(1)
j , . . . , θ

(pj)
j ]T . Given the subsystem
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data Xj, the log-likelihood function has the standard canonical form

Lj(X
j;θj) = θj · Tj(X

j)− Aj(θj) +Gj(X
j), (1.12)

where Aj(·) and Gj(·) are real-value differentiable functions and the vector

Tj(X
j) is the natural sufficient statistic corresponding to the j-th subsystem.

Denote the vector of all the system parameters as θ = [θT
1 , . . . ,θ

T
J ]

T and let

θ∗ = [[θ∗
1]

T , . . . , [θ∗
J ]

T ]T and η∗ = [η∗1, . . . ,η
∗
q]

T be the true but unknown parame-

ters of the subsystems and full system, respectively. To reflect the connection

between the full system and subsystem parameters, we introduce a function

f : Rp+q → Rq with p =
∑︁J

j=1 pj such that f(θ,η) = [f1(θ,η), . . . , fq(θ,η)]
T = 0.

Note that the function f(·, ·) is defined by the structure of the system. Assume

all the full system data {Yk}nF
k=1 and the subsystem data {X1

k}
n1
k=1, . . . , {XJ

k }
nJ
k=1

are all independent from each other, the overall log-likelihood function L(θ)

can be expressed by combining (1.11) and (1.12) as

L(θ) = L({Yk}nF
k=1, {X

1
k}

n1
k=1, . . . , {X

J
k }

nJ
k=1;θ)

= nF [η · T̄ F − AF (η)] +
J∑︂

j=1

nj[θj · T̄ j − Aj(θj)] + constant, (1.13)

where T̄ F = (1/nF )
∑︁nF

k=1 TF (Yk), T̄ j = (1/nj)
∑︁nj

k=1 Tj(X
j
k) for j = 1, . . . , J , and

the constant term does not depend on θ. Note that we express the overall log-

likelihood function L(θ) in (1.13) as a function of θ since the relationship of the
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subsystems to the full system is implicitly reflected in f(θ,η), and we require

the full system parameter η to be uniquely determined by the subsystem pa-

rameters θ. Denote Θ as the feasible region of the subsystem parameters θ.

Similar to Section 1.2.1, we can formulate the maximum likelihood optimiza-

tion problem as

θ̂ = argmaxθ∈Θ L(θ)

subject to f(θ,η) = 0.

(1.14)

Again, using the implicit function theorem, we can have a unique system struc-

tural function h : Rp → Rq such that h(θ) = η with its Jacobian matrix h′(θ)

following (1.3), and we denote η̂ = h(θ̂).

In general, assume the existence of the function h(θ) = η, then the MLE θ̂

is often founded by solving the score equation L′(θ) = ∂L(θ)/∂θ = 0. In our

setting, the score vector L′(θ) has the following general form,

L′(θ) =

nF∑︂
k=1

[︃
h′(θ)TTF (Yk)−

∂AF (η)

∂θ

]︃
+

⎡⎢⎢⎢⎢⎢⎢⎣
∑︁n1

k=1[T1(X
1
k)−A′

1(θ1)]

· · ·∑︁nJ

k=1[TJ(X
J
k )−A′

J(θJ)]

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.15)

where ∂AF (η)/∂θ = [[∂AF (η)/∂θ1]
T , . . . , [∂AF (η)/∂θJ ]

T ]T is a p-dimensional vec-

tor, and A′
j(θj) = [∂Aj(θj)/ ∂θ

(1)
j , . . . , ∂Aj(θj)/∂θ

(pj)
j ]T is a pj-dimensional vec-

tor for j = 1, . . . , J . Using the multivariate chain rule, the l-th component of
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∂AF (η)/∂θ is

[︃
∂AF (η)

∂θ

]︃
l

=

q∑︂
i=1

∂AF (η)

∂ηi

∂ηi
∂[θ]l

=

q∑︂
i=1

[h′(θ)]i,l[A
′
F (η)]i, (1.16)

where A′
F (η) = [∂AF (η)/∂η1, . . . , ∂AF (η)/∂ηq]

T is a q-dimensional vector, and

we use [A′
F (η)]i to denote its i-th component. Substituting (1.16) into (1.15),

the p-dimensional score vector L′(θ) can be written as

L′(θ) = nFh
′(θ)T [T̄ F −A′

F (η)] +

⎡⎢⎢⎢⎢⎢⎢⎣
n1Ip1 · · · 0

... . . . ...

0 · · · nJIpJ

⎤⎥⎥⎥⎥⎥⎥⎦ [T̄ S −A′
S(θ)], (1.17)

where T̄ S = [T̄
T
1 , . . . , T̄

T
J ]

T is a p-dimensional vector and A′
S(θ) = [A′

1(θ)
T , . . . ,

A′
J(θ)

T ]T is another p-dimensional vector. Because η is a function of θ, solving

the score equation L′(θ) = 0 requires a careful balance between the first and

second term corresponding to the full system and the subsystems, respectively.

Because of the general expression of h(θ), the solution of L′(θ) = 0 is usually

found numerically. Even though it is possible (perhaps likely) for the solution

to be only a local maximum, finding MLEs by solving the score equation is a

standard practice in system identification and related areas. When there exists

enough subsystem data, using the solution of A′
j(θj) = T̄ j for j = 1, . . . , J ,

as the starting point in standard optimization algorithm can help to find the
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overall solution of L′(θ) = 0.

1.3.2 Convergence

In this subsection, we provide the formal convergence proof in terms of

the estimate of full system and subsystem parameters in Theorem 1.3 below.

Let N = nF +
∑︁J

j=1 nj be the total number of sample size. Because of the

different samples sizes among the subsystems, we need to identify the slow-

est increasing subsystem sample size in order to prove the convergence as

well as the asymptotic normality. Let the index s ∈ {1, . . . , J} be such that

limN→∞ ns/nj ≤ 1 for all j such that nj > 0. The index s may not be unique, as

arises, for example, when the subsystem sample sizes are the same (so s may

be any value in {1, . . . , J}). Note that either ns < ∞ or ns → ∞ may occur when

N → ∞, depending on the system under study.

Assumption 1.1 (Subsystems). For j = 1, . . . , J , denote Θj as the parameter

space of the natural parameter θj. Assume the output of the j-th subsystem

follows the canonical exponential family distribution described in (1.12), where

the natural parameter space Θj ⊆ Rpj is open and the family is of rank pj.

Further assume for any observed data vector xj ∈ Rpjx and any pj-dimensional

vector cj ̸= 0, P(cj · Tj(X
j) > cj · Tj(x

j)) > 0. Denote Θ = Θ1 × · · · × ΘJ ⊆ Rp

with p =
∑︁J

j=1 pj as the parameter space of all the subsystem parameters θ.

Assumption 1.2 (Full System). Assume there exists a system structure function
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h(·) and denote E = {η = h(θ) : θ ∈ Θ} such that E is open and h(θ) = η is

continuously differentiable. Assume the output of the full system follows the

canonical exponential family distribution described in (1.11), where the natural

parameter space E ⊆ Rq is open and the family is of rank q. Further assume for

any observed data vector y and the q-dimensional vector cF ̸= 0, P(cF ·TF (Y ) >

cF · TF (y)) > 0.

Remark 1.3. All the assumptions are necessary to guarantee the existence of

MLE (Bickel and Doksum, 2001, Theorem 2.3.1), and are similar to those in

Spall (2014). Recall that despite of the classical MLE properties for exponential

family (Bickel and Doksum, 2001, Proposition 2.3.1 and Theorem 5.2.2), the

log-likelihood function in (1.13) is not a special case of exponential family when

both the full system and subsystems have non-zero data sizes. Hence, one focus

here is to prove that the estimates θ̂ and η̂ are still consistent and asymptotically

normally distributed, even though the classical theorems of convergence in MLE

are not directly applicable.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Further assume that all the

data are collected independently with the overall log-likelihood function. Fi-

nally, assume the limits exist (including bounded and unbounded) for any ra-

tios among the full system and subsystem sample sizes. When N → ∞ subject to

nF + ns → ∞, we have

η̂
P→ η∗.
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Proof. The condition nF + ns → ∞ holds if and only if one of the following two

cases holds: i) limN→∞ nF/ns < ∞ or ii) limN→∞ nF/ns = ∞. All the limits below

are as N → ∞. Before analyzing each case, denote Dj(θj) = E[Lj(X
j,θj)] for

any θj ∈ Θj and j = 1, . . . , J , and denote DF (η) = E[LF (Y ,η)] for any η ∈ E .

It is easy to see that the law of large numbers (LLN) guarantees that, for any

ε > 0,

lim
nj→∞

P

(︄
sup
θj∈Θj

| 1
nj

nj∑︂
k=1

Lj(X
j
k,θj)−Dj(θj)| ≥ ε

)︄
= 0 for j = 1, . . . , J, (1.18)

and

lim
nF→∞

P

(︄
sup
η∈E

| 1
nF

nF∑︂
k=1

LF (Yk,η)−DF (η)| ≥ ε

)︄
= 0 (1.19)

Since θ∗
j for j = 1, . . . , J and η∗ are the true parameter values, they are also

corresponding to the unique maximizer of Dj(θ) for j = 1, . . . , J and DF (η),

respectively (Bickel and Doksum, 2001, Theorem 2.3.1). Hence, we have for

any ε > 0,

sup
∥θ∗j−θj∥≥ε

Dj(θj) < Dj(θ
∗
j) for j = 1, . . . , J, (1.20)

and

sup
∥η∗−η∥≥ε

DF (η) < DF (η
∗). (1.21)

Now, let us discuss the convergence of θ̂ under each case.

Case i) limN→∞ nF/ns < ∞: Under this case, we must have nj > 0 and
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nj → ∞ for j = 1, . . . , J . When nF = 0, there is no full system data and (1.13)

becomes a separable function in terms of the subsystem parameters θ1, . . . ,θJ .

Hence, for j = 1, . . . , J , the estimate θ̂j is simply the standard MLE of the log-

likelihood function defined in (1.12). By Bickel and Doksum (2001, Theorem

2.3.1 and 5.2.2), θ̂j exists, is unique, and θ̂j
P→ θ∗

j for j = 1, . . . , J and conse-

quently η̂ P→ η∗.

Now assume nF > 0. Since ns represent the sample size of the slowest

increasing subsystem, we proceed by considering the following two subcases:

a) 1 ≤ limN→∞ nj/ns < ∞ for j = 1, . . . , J and b) there exists some j such that

limN→∞ nj/ns = ∞.

Subcase i-a) limN→∞ nF/ns < ∞ subject to 1 ≤ limN→∞ nj/ns < ∞ for j =

1, . . . , J : Denote

D(θ) = nFDF (η) +
J∑︂

j=1

njDj(θj). (1.22)

From the definition of L(θ) in (1.13), we have that

sup
θ∈Θ

|L(θ)−D(θ)| ≤ sup
θ∈Θ

{︄
nF

⃓⃓⃓⃓
⃓ 1nF

nF∑︂
k=1

LF (Yk,η)−DF (η)

⃓⃓⃓⃓
⃓

+
J∑︂

j=1

nj

⃓⃓⃓⃓
⃓ 1nj

nj∑︂
k=1

Lj(X
j
k,θj)−Dj(θj)

⃓⃓⃓⃓
⃓
}︄

≤ nF sup
η∈E

{︄⃓⃓⃓⃓
⃓ 1nF

nF∑︂
k=1

LF (Yk,η)−DF (η)

⃓⃓⃓⃓
⃓
}︄

+
J∑︂

j=1

nj sup
θj∈Θj

{︄⃓⃓⃓⃓
⃓ 1nj

nj∑︂
k=1

Lj(X
j
k,θj)−Dj(θj)

⃓⃓⃓⃓
⃓
}︄
. (1.23)
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Given that limN→∞ nF/ns = 0 and limN→∞ nj/ns < ∞ for j = 1, . . . , J , it is easy

to see that (1.23), together with (1.18) and (1.19), implies for any ε > 0,

P
(︃
sup
θ∈Θ

1

ns

|L(θ)−D(θ)| ≥ ε
)︃

→ 0. (1.24)

Recall that θ̂ is the maximizer of L(θ) by the definition in (1.14). Therefore,

given any ε > 0 and the fact that L(θ̂) ≥ L(θ∗), we must have that the event

θ̂ ∈ {θ : ∥θ − θ∗∥ ≥ ε} implies the event sup∥θ−θ∗∥≥ε(1/ns)[L(θ) − L(θ∗)] ≥ 0.

Hence,

P(∥θ̂− θ∗∥ ≥ ε) ≤ P

(︄
sup

∥θ−θ∗∥≥ε

1

ns

[L(θ)− L(θ∗)] ≥ 0

)︄
. (1.25)

Moreover, for any δ > 0, we have

P

(︄
sup

∥θ−θ∗∥≥ε

1

ns

[L(θ)− L(θ∗)]− sup
∥θ−θ∗∥≥ε

1

ns

[D(θ)−D(θ∗)] > δ

)︄
→ 0, (1.26)

since the event within the probability operation on the left-hand side of (1.26)

implies the event supθ∈Θ (1/ns)[L(θ) − D(θ)] > δ/2, which has the probability

P(supθ∈Θ(1/ns)[L(θ)−D(θ)] > δ/2) → 0 from (1.24). Using (1.20) and (1.21), we

see that

sup
∥θ−θ∗∥≥ε

D(θ) ≤ nF sup
η∈E

DF (η) + sup
∥θ−θ∗∥≥ε

J∑︂
j=1

njDj(θj) < D(θ∗),

where ∥θ−θ∗∥ ≥ ε guarantees that there exists some j such that ∥θj −θ∗
j∥ ≥ ξ
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for some ξ > 0 and sup∥θj−θ∗j∥≥ξ
Dj(θj) < Dj(θ

∗
j). Hence, by choosing

2δ = − lim
N→∞

sup
∥θ−θ∗∥≥ε

1

ns

[D(θ)−D(θ∗)] > 0,

we have (1.26) becomes

P

(︄
sup

∥θ−θ∗∥≥ε

1

ns

[L(θ)− L(θ∗)] > −δ

)︄
→ 0,

which, combining with (1.25), leads to

P(∥θ̂− θ∗∥ ≥ ε) ≤ P

(︄
sup

∥θ−θ∗∥≥ε

1

ns

[L(θ)− L(θ∗)] ≥ 0

)︄

≤ P

(︄
sup

∥θ−θ∗∥≥ε

1

ns

[L(θ)− L(θ∗)] > −δ

)︄
→ 0. (1.27)

Hence, we conclude θ̂ P→ θ∗ and consequently η̂ P→ η∗.

Subcase i-b) limN→∞ nF/ns < ∞ subject to there exists some j such that

limN→∞ nj/ns = ∞: Denote the index set J1 = {j : limN→∞ nj/ns < ∞} and

J2 = {j : limN→∞ nj/ns = ∞}. Rewrite the overall log-likelihood function as

L(θ) = L(1)(θ) +
∑︁

j∈J2
L(2)

j (θj) with

L(1)(θ) =

nF∑︂
k=1

LF (Yk,η) +
∑︂
j∈J1

nj∑︂
k=1

Lj(X
j
k,θj) +

∑︂
j∈J2

ns∑︂
k=1

Lj(X
j
k,θj),

L(2)
j (θj) =

nj∑︂
k=ns+1

Lj(X
j
k,θj).
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Since L(θ∗) = L(1)(θ∗) +
∑︁

j∈J2
L(2)

j (θ∗
j) and the event relationships

{︄
sup

∥θ−θ∗∥≥ε
L(1)(θ) +

∑︂
j∈J2

L(2)
j (θj) ≥ L(1)(θ∗) +

∑︂
j∈J2

L(2)
j (θ∗

j)

}︄

⊆

{︄
sup

∥θ−θ∗∥≥ξ
L(1)(θ) ≥ L(1)(θ∗)

}︄⋃︂{︄⋃︂
j∈J2

{︄
sup

∥θj−θ∗j∥≥ξ
L(2)

j (θj) ≥ L(2)
j (θ∗

j)

}︄}︄

(1.28)

for some ξ > 0 depending on ε such that ξ→ 0 as ε→ 0, we have (1.28) implies

P(∥θ̂− θ∗∥ ≥ ε)

≤ P

(︄
sup

∥θ−θ∗∥≥ε
L(θ)− L(θ∗) ≥ 0

)︄

= P

(︄
sup

∥θ−θ∗∥≥ε
L(1)(θ) +

∑︂
j∈J2

L(2)
j (θj)− L(1)(θ∗)−

∑︂
j∈J2

L(2)
j (θ∗

j) ≥ 0

)︄

≤ P

(︄
sup

∥θ−θ∗∥≥ξ
L(1)(θ)− L(1)(θ∗) ≥ 0

)︄
+
∑︂
j∈J2

P

(︄
sup

∥θj−θ∗j∥≥ξ
L(2)

j (θj)− L(2)
j (θ∗

j) ≥ 0

)︄

= P

(︄
sup

∥θ−θ∗∥≥ξ

1

ns

[L(1)(θ)− L(1)(θ∗)] ≥ 0

)︄

+
∑︂
j∈J2

P

(︄
sup

∥θj−θ∗j∥≥ξ

1

nj − ns

[L(2)
j (θj)− L(2)

j (θ∗
j)] ≥ 0

)︄
. (1.29)

From (1.27), we have that the first probability on the right-hand side of (1.29)

goes to 0 since limN→∞ nj/ns < ∞ for any j ∈ J1. Moreover, for any j ∈ J2,

standard MLE theory implies for any ξ > 0,

P
(︂⃦⃦⃦

argmaxθj∈Θj
L(2)

j (θj)− θ∗
j

⃦⃦⃦
≥ ξ

)︂
→ 0
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and using the fact that limN→∞ nj/(nj − ns) = 1, we must have

P

(︄
sup

∥θj−θ∗j∥≥ξ

1

nj − ns

[L(2)
j (θj)− L(2)

j (θ∗
j)] ≥ 0

)︄
→ 0

as well. Therefore, all the probabilities on the right-hand side of (1.29) go to 0

implying P(∥θ̂− θ∗∥ ≥ ε) → 0, i.e., θ̂ P→ θ∗ and consequently η̂ P→ η∗.

Case ii) limN→∞ nF/ns = ∞: Under this case, we must have nF > 0 and

nF → ∞. When nj = 0 for j = 1, . . . , J , there is no subsystem data and (1.13)

becomes a function in terms of the full system parameter η. Hence, the esti-

mate η̂ is simply the standard MLE of the log-likelihodd function defined in

(1.11). By Bickel and Doksum (2001, Theorem 2.3.1 and 5.2.2), η̂ exists, is

unique, and η̂ P→ η∗. Now assume nj > 0 for some j and let us again proceed

by considering the following two subcases: a) limN→∞ nF/nj > 0 for j = 1, . . . , J

and b) there exists some j such that limN→∞ nF/nj = 0.

Subcase ii-a) limN→∞ nF/ns = ∞ subject to limN→∞ nF/nj > 0 for j =

1, . . . , J : Given limN→∞ nF/nj > 0 or equivalently limN→∞ nj/nF < ∞ for j =

1, . . . , J , similar to how (1.24) is derived, for any ε > 0, we have

P
(︃
sup
θ∈Θ

1

nF

|L(θ)−D(θ)| ≥ ε
)︃

→ 0. (1.30)

Note also that {θ : θ ∈ Θ} = {θ : η ∈ E} by Assumption 1.2 and we consider

below the set {θ : ∥η − η∗∥ ≥ ε} since it is possible that limN→∞ nj/nF = 0 for
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some or all j. Given θ̂ = argmaxθ∈Θ L(θ), for any ε > 0, the event θ̂ ∈ {θ :

∥η− η∗∥ ≥ ε} implies supθ:∥η−η∗∥≥ε(1/nF )[L(θ)− L(θ∗)] ≥ 0 and hence

P(∥η̂− η∗∥ ≥ ε) ≤ P

(︄
sup

θ:∥η−η∗∥≥ε

1

nF

[L(θ)− L(θ∗)] ≥ 0

)︄
. (1.31)

Note that the set {θ : ∥η− η∗∥ ≥ ε} is different from the set {θ : ∥θ− θ∗∥ ≥ ε}

used in case i). Similar to the proof in case i), for any δ > 0, we have

P

(︄
sup

θ:∥η−η∗∥≥ε

1

nF

[L(θ)− L(θ∗)]− sup
θ:∥η−η∗∥≥ε

1

nF

[D(θ)−D(θ∗)] > δ

)︄
→ 0, (1.32)

since the event within the probability operation on the left-hand side of (1.32)

implies supθ:η∈E (1/nF )|L(θ)−D(θ)| > δ/2 with P(supθ:η∈E(1/nF )|L(θ)−D(θ)| >

δ/2) → 0 from (1.30). Using (1.20) and (1.21), we see that

sup
θ:∥η−η∗∥≥ε

D(θ) ≤ nF sup
∥η−η∗∥≥ε

DF (η) +
J∑︂

j=1

nj sup
θj∈Θj

Dj(θj) < D(θ∗).

Hence, by choosing 2δ = − limN→∞ supθ:∥η−η∗∥≥ε(1/nF )[D(θ) − D(θ∗)] > 0, we

have

P

(︄
sup

θ:∥η−η∗∥≥ε

1

nF

[L(θ)− L(θ∗)] > −δ

)︄
→ 0,
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which, combining with (1.31), leads to

P(∥η̂− η∗∥ ≥ ε) ≤ P

(︄
sup

θ:∥η−η∗∥≥ε

1

nF

[L(θ)− L(θ∗)] ≥ 0

)︄

≤ P

(︄
sup

θ:∥η−η∗∥≥ε

1

nF

[L(θ)− L(θ∗)] > −δ

)︄
→ 0, (1.33)

i.e., η̂ P→ η∗.

Subcase ii-b) limN→∞ nF/ns = ∞ subject to there exists some j such that

limN→∞ nF/nj = 0: Denote the index set J3 = {j : limN→∞ nF/nj > 0} and

J4 = {j : limN→∞ nF/nj = 0}. Similar to the proof in case i), rewrite the overall

likelihood function as L(θ) = L(3)(θ) +
∑︁

j∈J4
L(4)

j (θj) with

L(3)(θ) =

nF∑︂
k=1

LF (Yk,η) +
∑︂
j∈J3

nj∑︂
k=1

Lj(X
j
k,θj) +

∑︂
j∈J4

nF∑︂
k=1

Lj(X
j
k,θj),

L(4)(θj) =

nj∑︂
k=nF+1

Lj(X
j
k,θj).

Since L(θ∗) = L(3)(θ∗) +
∑︁

j∈J4
L(4)(θ∗

j) and the event relationships

{︄
sup

θ:∥η−η∗∥≥ε
L(3)(θ) +

∑︂
j∈J4

L(4)
j (θj) ≥ L(3)(θ∗) +

∑︂
j∈J4

L(4)
j (θ∗

j)

}︄

⊆

{︄
sup

θ:∥η−η∗∥≥ε
L(3)(θ) ≥ L(3)(θ∗)

}︄⋃︂{︄⋃︂
j∈J4

{︄
sup

∥θj−θ∗j∥≥ξ
L(4)

j (θj) ≥ L(4)
j (θ∗

j)

}︄}︄
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for some ξ > 0 depending on ε such that ξ→ 0 as ε→ 0, we have

P(∥η̂− η∗∥ ≥ ε)

≤ P

(︄
sup

θ:∥η−η∗∥≥ε
L(θ)− L(θ∗) ≥ 0

)︄

= P

(︄
sup

θ:∥η−η∗∥≥ε
L(3)(θ) +

∑︂
j∈J4

L(4)
j (θj)− L(3)(θ∗)−

∑︂
j∈J4

L(4)
j (θ∗

j) ≥ 0

)︄

≤ P

(︄
sup

θ:∥η−η∗∥≥ε
L(3)(θ)− L(3)(θ∗) ≥ 0

)︄

+
∑︂
j∈J4

P

(︄
sup

∥θj−θ∗j∥≥ξ
L(4)

j (θj)− L(2)
j (θ∗

j) ≥ 0

)︄

= P

(︄
sup

θ:∥η−η∗∥≥ξ

1

nF

[L(3)(θ)− L(3)(θ∗)]

)︄

+
∑︂
j∈J4

P

(︄
sup

∥θj−θ∗j∥≥ξ

1

nj − n
[L(4)

j (θj)− L(4)
j (θ∗

j)] ≥ 0

)︄
, (1.34)

where we have the first probability on the right-hand side of (1.34) goes to 0

since limN→∞ nj/nF < ∞ for j ∈ J3. Moreover, for j ∈ J4, standard MLE theory

implies for any ξ > 0,

P
(︂⃦⃦⃦

argmaxθj∈Θj
L(4)

j (θj)− θ∗
j

⃦⃦⃦
≥ ξ

)︂
→ 0

and using the fact that limN→∞ nj/(nj − nF ) = 1, we must have

P

(︄
sup

∥θj−θ∗j∥≥ξ

1

nj − nF

[L(4)
j (θj)− L(4)

j (θ∗
j)] ≥ 0

)︄
→ 0
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as well. Therefore, all the probabilities on the right-hand side of (1.29) go to 0

implying P(∥η̂− η∗∥ ≥ ε) → 0, i.e., η̂ P→ η∗.

1.3.3 Asymptotic Distribution

This subsection provides the derivation of the asymptotic normality of η̂.

Such an asymptotic distribution is useful in computing uncertainty bounds as

well as the rate of convergence. Since the variance-covariance matrix in the

asymptotic distribution is often closely related to the Fisher information matrix

(FIM), we first derive the FIM of the overall log-likelihood function in (1.13) and

then show the asymptotic distribution based on FIM.

Denote L′
F (Yk;η) = ∂LF (Yk;η)/∂η and L′

j(X
j
k;θj) = ∂Lj(X

j
k;θj)/∂θj for

j = 1, . . . , J . Further denote FF (θ) and Fj(θj) for j = 1, . . . , J as the FIM for the

full system and the j-th subsystem, respectively. The standard MLE theory

(Bickel and Doksum, 2001, Theorem 5.3.5) on canonical form of exponential

family distributions in (1.11) and (1.12) implies that

FF (θ) = E
[︃
∂LF (Y ;η)

∂θ

∂LF (Y ;η)

∂θT

]︃
= h′(θ)TA′′

F (η)h
′(θ), (1.35)

Fj(θj) = E
[︁
L′

j(X
j;θj)L′

j(X
j;θj)

T
]︁
= A′′

j (θj) for j = 1, . . . , J, (1.36)

where (1.35) is due to the change-of-variable technique with A′′
F (η) being the

FIM of the full system under the natural parameter η such that [A′′
F (η)]a,b =
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∂2AF (η)/∂ηa∂ηb for a, b = 1, . . . , q, and (1.36) is with [A′′
j (θj)]a,b = ∂2Aj(θj)

/∂θ
(a)
j ∂θ

(b)
j for a, b = 1, . . . , pj. Also note that A′′

F (η) = E
[︁
L′

F (Y ;η)L′
F (Y ;η)T

]︁
.

Furthermore, denote

L′′
F (Yk;η) =

∂2LF (Yk;η)

∂η∂ηT
,

L′′
j (X

j
k;θj) =

∂2Lj(X
j
k;θj)

∂θj∂θT
j

for j = 1, . . . , J.

Then, we have the following alternative expressions of (1.35) and (1.36) as

FF (θ) = −E
[︃
∂2LF (Y ;η)

∂θ∂θT

]︃
, (1.37)

Fj(θj) = −E
[︁
L′′

j (X
j;θj)

]︁
for j = 1, . . . , J. (1.38)

Since the overall log-likelihood function in (1.13) is the sum of the log-likelihood

function of full system data and the log-likelihood function of the subsystem

data, it is easy to see that the F (θ), the FIM of the overall system, has the

form

F (θ) = E[L′(θ)L′(θ)T ] = nFFF (θ) +

⎡⎢⎢⎢⎢⎢⎢⎣
n1F1(θ1) · · · 0

... . . . ...

0 · · · nJFJ(θJ)

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.39)

where F (θ) is positive definite whenever nj > 0 for j = 1, . . . , J , since both
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A′′
F (η) and A′′

j (θj) for j = 1, . . . , J are positive definite matrices.

Now, we are ready to present the formal asymptotic normality of η̂ as below.

Assumption 1.3 (Score Vector). Assume that the estimate θ̂ defined in (1.14)

satisfies L′(θ̂) = 0.

Theorem 1.4. Let Assumptions 1.1–1.3 hold and let N → ∞ subject to nF+ns →

∞. Then i) if 0 ≤ limN→∞ nF/ns < ∞

√
nF + ns(η̂− η∗)

D→ N

(︄
0,h′(θ∗)T

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

h′(θ∗)

)︄
;

ii) if limN→∞ nF/ns = ∞ subject to nj → ∞ for j = 1, . . . , J and if

λi

(︄
nF

ns

J∑︂
j=1

h′
j(θ

∗)[A′′
j (θ

∗
j)]

−1h′
j(θ

∗)T

)︄
= O

(︃
nF

ns

)︃
,

for i = 1, . . . , q, where λi(·) denotes the i-th eigenvalue of the argument, then

√
nF (η̂− η∗)

D→ N

(︄
0,h′(θ∗)T

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

h′(θ∗)

)︄
;

and iii) if limN→∞ nF/ns = ∞ subject to nj < ∞ for j = 1, . . . , J , then

√
nF (η̂− η∗)

D→ N
(︁
0,A′′

F (η
∗)−1

)︁
.

Proof. Similar to the proof of Theorem 1.3, all the limits below are as N → ∞.
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Similar to the proof of Theorem 1.3, we proceed by considering the following

two cases: i) limN→∞ nF/ns < ∞ and ii) limN→∞ nF/ns = ∞ subject to nj → ∞

for j = 1, . . . , J ; and iii) limN→∞ nF/ns = ∞ subject to nj < ∞ for j = 1, . . . , J .

Case i) limN→∞ nF/ns < ∞: Under this case, we have nj → ∞ for all j =

1, . . . , J . To discuss the behavior of nF , we consider two subcase: a) nF → ∞

and b) nF < ∞.

Subcase i-a) limN→∞ nF/ns < ∞ subject to nF → ∞: Recall that θ̂ is a

maximizer of L(θ) satisfying L′(θ̂) = 0. First denote L′′(θ) = ∂2L(θ)/∂θ∂θT as

the second derivative of the overall log-likelihood function with the expression

L′′(θ) =

nF∑︂
k=1

∂2LF (Yk;η)

∂θ∂θT
+

⎡⎢⎢⎢⎢⎢⎢⎣
∑︁n1

k=1L
′′
1(X

1
k ;θ1) · · · 0

... . . . ...

0 · · ·
∑︁nJ

k=1 L
′′
J(X

J
k ;θJ)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then, using the score vector in (1.17) and applying the mean value theorem on

L′(θ̂) around θ∗, we have

0 = L′(θ̂) = L′(θ∗) + L̃′′ · (θ̂− θ∗), (1.40)

where L̃′′
is a p×p matrix with its i-th row being the i-th row of L′′(θ) evaluated

at some (possibly different) θ̃
(i)

that lies on the line segment between θ̂ and θ∗.

To get the asymptotic normality of θ̂, dividing both sides of (1.40) by
√
nF + ns,
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we get [︃
− 1

nF + ns

L̃′′
]︃√

nF + ns(θ̂− θ∗) =
1√

nF + ns

L′(θ∗). (1.41)

For the term in the bracket on the left-hand side of (1.41), we can express L̃′′

as

L̃′′
= L̃′′

F +

⎡⎢⎢⎢⎢⎢⎢⎣
L̃′′

1 · · · 0

... . . . ...

0 · · · L̃′′
J

⎤⎥⎥⎥⎥⎥⎥⎦
and using θ̂ P→ θ∗ from Theorem 1.3 gives

1

nF

L̃′′
F

P→ lim
nF→∞

1

nF

nF∑︂
k=1

∂2LF (Yk;η
∗)

∂θ∂θT
, (1.42)

1

nj

L̃′′
j

P→ lim
nj→∞

1

nj

nj∑︂
k=1

L′′
j (X

j
k;θ

∗
j) for j = 1, . . . , J. (1.43)

Since nF → ∞, nj → ∞ for j = 1, . . . , J , LLN further implies that

1

nF

nF∑︂
k=1

∂2LF (Yk;η
∗)

∂θ∂θT

P→ E
[︃
∂2LF (Y ;η∗)

∂θ∂θT

]︃
, (1.44)

1

nj

nj∑︂
k=1

L′′
j (X

j
k;θ

∗
j)

P→ E
[︁
L′′

j (X
j;θ∗

j)
]︁

for j = 1, . . . , J. (1.45)

Hence, combining (1.42)–(1.45) and using (1.37) and (1.38), we have

1

nF

L̃′′
F

P→ FF (θ
∗) and

1

nj

L̃′′
j

P→ Fj(θ
∗
j) for j = 1, . . . , J.
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Now, since limN→∞ nF/ns < ∞ implies limN→∞ nj/(nF + ns) > 0 for j = 1, . . . , J ,

we see that limN→∞ F (θ∗)/(nF +ns) is positive definite and hence non-singular.

Therefore, multiplying the term in the bracket on the left-hand side of (1.41)

by [limN→∞ F (θ∗)/(nF + ns)]
−1, we have it converge to the identity matrix since

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1 [︃
− 1

nF + ns

L̃′′
]︃

P→
[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

lim
N→∞

⎡⎢⎢⎢⎢⎢⎢⎣
nF

nF + ns

FF (θ
∗) +

⎡⎢⎢⎢⎢⎢⎢⎣
n1

nF+ns
F1(θ

∗
1) · · · 0

... . . . ...

0 · · · nJ

nF+ns
FJ(θ

∗
J)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
=

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1 [︃
lim

N→∞

F (θ∗)

nF + ns

]︃
= Ip. (1.46)

For the term on the right-hand side of (1.41), the standard asymptotic nor-

mality theorem for exponential family distribution (Bickel and Doksum, 2001,

Theorem 5.4.3) gives

1
√
nF

nF∑︂
k=1

∂LF (Yk;η
∗)

∂η
=

√
nF [T̄ F −A′

F (η
∗)]

D→ N (0,A′′
F (η

∗)),

1
√
nj

nj∑︂
k=1

L′
j(X

j
k;θ

∗
j) =

√
nj[T̄ j −A′

j(θ
∗
j)]

D→ N(0,A′′
j (θ

∗
j)) for j = 1, . . . , J,

where the change-of-variable technique (Bickel and Doksum, 2001, Theorem
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5.4.2) further implies

1
√
nF

nF∑︂
k=1

∂LF (Yk;θ
∗)

∂θ
=

√
nFh

′(θ∗)T [T̄ F −A′
F (η

∗)]
D→ N (0,h′(θ∗)TA′′

F (η
∗)h′(θ∗)).

Recall that FF (θ
∗) = h′(θ∗)TA′′

F (η
∗)h′(θ∗) and Fj(θ

∗
j) = A′′

j (θ
∗
j) from (1.35) and

(1.36), respectively. Using the fact that all the data are independent, we see

that [︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1
1√

nF + ns

L′(θ∗)
D→ N (0,Σ) (1.47)

with the variance-covariance matrix Σ being

Σ =

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

lim
N→∞

⎡⎢⎢⎢⎢⎢⎢⎣
nF

nF + ns

FF (θ
∗) +

⎡⎢⎢⎢⎢⎢⎢⎣
n1

nF+ns
F1(θ

∗
1) · · · 0

... . . . ...

0 · · · nJ

nF+ns
FJ(θ

∗
J)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
×
[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

=

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1 [︃
lim

N→∞

F (θ∗)

nF + ns

]︃ [︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

=

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

.

Hence, multiplying both sides of (1.41) by [limN→∞ F (θ∗)/(nF + ns)]
−1, the re-

sults in (1.46) and (1.47) imply

√
nF + ns(θ̂− θ∗)

D→ N

(︄
0,

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1
)︄
.
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Finally, since h′(θ) exists and is non-zero, applying the delta method on η =

h(θ) gives

√
nF + ns(η̂− η∗)

D→ N

(︄
0,h′(θ∗)T

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

h′(θ∗)

)︄
.

Subcase i-b) limN→∞ nF/ns < ∞ subject to nF < ∞: Note that this subcase

is equivalent to limN→∞ nF/ns = 0 subject to nF < ∞. Using the condition that

∂L(θ̂)/∂θ = 0, the score vector from (1.17) implies that

nFh
′(θ̂)T [T̄ F −A′

F (η̂)] =

⎡⎢⎢⎢⎢⎢⎢⎣
n1Ip1 · · · 0

... . . . ...

0 · · · nJIpJ

⎤⎥⎥⎥⎥⎥⎥⎦ [A′
S(θ̂)− T̄ S]. (1.48)

Since nj > 0 for j = 1, . . . , J , multiplying both sides of (1.48) by diag(Ip1/
√
n1,

. . . , IpJ/
√
nJ) gives

⎡⎢⎢⎢⎢⎢⎢⎣
nF√
n1
Ip1 · · · 0

... . . . ...

0 · · · nF√
nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T [T̄ F−A′
F (η̂)] =

⎡⎢⎢⎢⎢⎢⎢⎣
√
n1Ip1 · · · 0

... . . . ...

0 · · · √
nJIpJ

⎤⎥⎥⎥⎥⎥⎥⎦ [A′
S(θ̂)−T̄ S].

(1.49)

Adding and subtracting the right-hand side of (1.49) by [
√
n1A

′
1(θ

∗
1)

T , . . . ,
√
nJ
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A′
J(θ

∗
J)

T ]T and rearranging terms, we get

⎡⎢⎢⎢⎢⎢⎢⎣
√
n1Ip1 · · · 0

... . . . ...

0 · · · √
nJIpJ

⎤⎥⎥⎥⎥⎥⎥⎦ [A′
S(θ̂)−A′

S(θ
∗)]

=

⎡⎢⎢⎢⎢⎢⎢⎣
√
n1Ip1 · · · 0

... . . . ...

0 · · · √
nJIpJ

⎤⎥⎥⎥⎥⎥⎥⎦ [T̄ S −A′
S(θ

∗)] +

⎡⎢⎢⎢⎢⎢⎢⎣
nF√
n1
Ip1 · · · 0

... . . . ...

0 · · · nF√
nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦
× h′(θ̂)T [T̄ F −A′

F (η̂)]. (1.50)

Given that nj → ∞ for j = 1, ..., J , the standard CLT for exponential family

distribution gives

√
nj[T̄ j −A′

j(θ
∗
j)]

D→ N
(︁
0,A′′(θ∗

j)
)︁

for j = 1, . . . , J. (1.51)

Furthermore. since nF < ∞ and nj → ∞ implies limN→∞ nF/
√
nj = 0 for j =

1, . . . , J and T̄ 1, . . . , T̄ j are mutually independent, plugging (1.51) into (1.50)

gives

⎡⎢⎢⎢⎢⎢⎢⎣
√
n1[A

′
1(θ̂1)−A′

1(θ
∗
1)]

...

√
nJ [A

′
J(θ̂J)−A′

J(θ
∗
J)]

⎤⎥⎥⎥⎥⎥⎥⎦
D→ N

⎛⎜⎜⎜⎜⎜⎜⎝0,

⎡⎢⎢⎢⎢⎢⎢⎣
A′′

1(θ
∗
1) · · · 0

... . . . ...

0 · · · A′′
J(θ

∗
J)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Let tj = A′
j(θj) for j = 1, . . . , J . Since A′

j(·) is a one-to-one function, there

exists an inverse function [A′
j]
−1(·) such that [A′

j]
−1(tj) = θj with a Jacobian

∂[A′
j]
−1(tj)/∂tj = [A′′

j (θj)]
−1 (Bickel and Doksum, 2001, Theorem 5.3.5). Hence,

the delta method implies

⎡⎢⎢⎢⎢⎢⎢⎣
√
n1(θ̂1 − θ∗

1) · · · 0

... . . . ...

0 · · · √
nJ(θ̂J − θ∗

J)

⎤⎥⎥⎥⎥⎥⎥⎦
D→ N

⎛⎜⎜⎜⎜⎜⎜⎝0,

⎡⎢⎢⎢⎢⎢⎢⎣
[A′′

1(θ
∗
1)]

−1 · · · 0

... . . . ...

0 · · · [A′′
J(θ

∗
J)]

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
given θj = [A′

j]
−1(A′

j(θj)) for j = 1, . . . , J . Further, using the delta method one

more time on η = h(θ), we have

√
nF + ns(η̂− η∗)

D→ N

⎛⎜⎜⎜⎜⎜⎜⎝0,h′(θ∗)T

⎡⎢⎢⎢⎢⎢⎢⎣
limN→∞

n1

nF+ns
F1(θ

∗
1) · · · 0

... . . . ...

0 · · · limN→∞
nJ

nF+ns
FJ(θ

∗
J)

⎤⎥⎥⎥⎥⎥⎥⎦

−1

h′(θ∗)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(1.52)

Recall that we also have limN→∞ nF/(nF + ns) = 0 in this case. Hence it is easy

to see that (1.52) is equivalent to

√
ns(η̂− η∗)

D→ N

(︄
0,h′(θ∗)T

[︃
lim

N→∞

F (θ∗)

nF + ns

]︃−1

h′(θ∗)

)︄
.
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Case ii) limN→∞ nF/ns = ∞ subject to nj → ∞ for j = 1, . . . , J : Under

this case, we also have nF → ∞. First note that the standard MLE theory on

exponential family distribution implies that there exists a unique η̄ ∈ E such

that η̄ = argmaxη∈E
∑︁nF

k=1 LF (Yk;η) and A′
F (η̄) = T̄ F , and a unique θ̄j ∈ Θj such

that θ̄j = argmaxθj∈Θj

∑︁nj

k=1 Lj(X
j
k;θj) and A′

j(θ̄j) = T̄ j for j = 1, . . . , J . Note

that it is not necessarily true that η̄ = h(θ̄). Then, given nj > 0 for j = 1, . . . , J ,

we can rewrite the score equation in (1.48) as

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T [A′
F (η̄)−A′

F (η̂)] = A′
S(θ̂)−A′

S(θ̄). (1.53)

Since there exists a differentiable function h(·) such that η = h(θ), and both

A′
F (·) and A′

j(·) for j = 1, . . . , J are differentiable and one-to-one functions,

there must exist a differentiable function g(·) such that A′
F (η) = g(A′

S(θ)).

Denote the Jacobian of g(·) as G(·). The mean-value theorem implies that

A′
F (η̂) = g(A′

S(θ̂)) = g(A′
S(θ̄)) + G̃ · [A′

S(θ̄)−A′
S(θ̂)], (1.54)

where G̃ is a q × p matrix with its i-th row being the i-th row of G(AS(θ))

evaluated at some AS(θ̃)
(i) that lies on the line segment between AS(θ̄) and
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A′
S(θ̂) for i = 1, . . . , q. Plugging (1.53) into (1.54), we get

A′
F (η̂) = g(A′

S(θ̄)) + G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T [A′
F (η̄)−A′

F (η̂)]. (1.55)

After subtracting both sides of (1.55) by g(A′
S(θ

∗)) and rearranging the terms,

it is convenient to express (1.55) as

⎡⎢⎢⎢⎢⎢⎢⎣Iq + G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T

⎤⎥⎥⎥⎥⎥⎥⎦ [A′
F (η̂)−A′

F (η
∗)]

= G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T [A′
F (η̄)−A′

F (η
∗)] + [g(A′

S(θ̄))− g(A′
S(θ

∗))],

(1.56)

where we use that A′
F (η

∗) = g(A′
S(θ

∗)). Furthermore, applying the mean-value

theorem on A′
F (·), we have A′

F (η̂)−A′
F (η

∗) = Â
′′
F · (η̂−η∗), where Â

′′
F is a q× q

matrix with its i-th row being the i-th row of A′′
F (η) evaluated at some η̂(i) that

lies on the line segment between η̂ and η∗ for i = 1, . . . , q. Similarly, we have

A′
F (η̄) − A′

F (η
∗) = Ā

′′
F · (η̄ − η∗), where Ā

′′
F is another q × q matrix with its

i-th row being the i-th row of A′′
F (η) evaluated at some η̄(i) that lies on the line
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segment between η̄ and η∗. Hence, we have (1.56) implies

⎡⎢⎢⎢⎢⎢⎢⎣Â
′′
F + G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Â
′′
F

⎤⎥⎥⎥⎥⎥⎥⎦ (η̂− η∗)

= G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Ā
′′
F · (η̄− η∗) + [g(A′

S(θ̄))− g(A′
S(θ

∗))].

(1.57)

Since nF → ∞ and nj → ∞ for j = 1, . . . , J , the standard MLE theory on ex-

ponential family implies η̄ P→ η∗ and θ̄ P→ θ∗. Furthermore, from the proof

of Theorem 1.3, we also have θ̂ P→ θ∗ and η̂ P→ η∗. Hence, we must have

G̃
P→ G(A′(θ∗)),h′(θ̂)

P→ h′(θ∗), Ā
′′
F

P→ A′′
F (η

∗) and Â
′′
F

P→ A′′
F (η

∗). Given the

definition of g(·), we can write out g(·) and G(·) explicitly using function com-

positions as

g(A′
S(θ)) = (A′

F ◦ h ◦ [A′
S]

−1)(A′
S(θ)),

G(A′
S(θ)) = A′′

F (η)h
′(θ)[A′′

S(θ)]
−1,

where the symbol ◦ represent function composition such that f ◦ g(·) = f(g(·)).
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Hence, with G(A′
S(θ

∗)) and h′(θ∗), denote DN(θ
∗) as

DN(θ
∗)

= A′′
F (η

∗) +G(A′
S(θ

∗))

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ∗)TA′′
F (η

∗)

= A′′
F (η

∗) +A′′
F (η

∗)h′(θ∗)

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
[A′′

1(θ
∗
1)]

−1 · · · 0

... . . . ...

0 · · · nF

nJ
[A′′

J(θ
∗
J)]

−1

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ∗)TA′′
F (η

∗)

= A′′
F (η

∗) +A′′
F (η

∗)

[︄
J∑︂

j=1

nF

nj

h′
j(θ

∗)[A′′
j (θ

∗
j)]

−1h′
j(θ

∗)T

]︄
A′′

F (η
∗)

= A′′
F (η

∗)

[︄
[A′′

F (η
∗)]−1 +

J∑︂
j=1

nF

nj

h′
j(θ

∗)[A′′
j (θ

∗
j)]

−1h′
j(θ

∗)T

]︄
A′′

F (η
∗), (1.58)

where h′
j(θ) is a q × pj matrix with components [h′

j(θ)]a,b = ∂ηa/∂θ
(b)
j for j =

1, . . . , J . Note that h′(θ) = [h′
1(θ); . . . ;h

′
J(θ)]. Since A′′

F (η
∗) is positive definite

and h′
j(θ

∗)[A′′
j ]

−1(θ∗
j)h

′
j(θ

∗)T is positive semi-definite for j = 1, . . . , J , we see

DN(θ
∗) must also be positive definite and hence non-singular by Sylvester’s

law of inertia (Horn and Johnson, 2012, Theorem 4.5.8). Given the assumption

that for i = 1, . . . , q

λi

(︄
nF

ns

J∑︂
j=1

h′
j(θ

∗)[A′′
j (θ

∗
j)]

−1h′
j(θ

∗)T

)︄
= O

(︃
nF

ns

)︃
,
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we must have λi(DN(θ
∗)−1) = O(ns/nF ) and hence limN→∞ DN(θ

∗)−1 = 0.

Now, multiplying both sides of (1.57) by
√
nF + nsDN(θ

∗)−1, we have

√
nF + nsDN(θ

∗)−1

⎡⎢⎢⎢⎢⎢⎢⎣Â
′′
F + G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Â
′′
F

⎤⎥⎥⎥⎥⎥⎥⎦ (η̂− η∗)

=
√
nF + nsDN(θ

∗)−1G̃ ·

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Ā
′′
F · (η̄− η∗) (1.59)

+
√
nF + nsDN(θ

∗)−1[g(A′
S(θ̄))− g(A′

S(θ
∗))]. (1.60)

Using the fact that
√
nF + ns(η̄−η∗)

D→ N (0,A′′
F (η

∗)−1) from the standard MLE

asymptotic normality theory and the result that

DN(θ
∗)−1G̃

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Â
′′
F

= DN(θ
∗)−1

⎡⎢⎢⎢⎢⎢⎢⎣A
′′
F (η

∗) + G̃

⎡⎢⎢⎢⎢⎢⎢⎣
nF

n1
Ip1 · · · 0

... . . . ...

0 · · · nF

nJ
IpJ

⎤⎥⎥⎥⎥⎥⎥⎦h′(θ̂)T Â
′′
F

⎤⎥⎥⎥⎥⎥⎥⎦−DN(θ
∗)−1A′′

F (η
∗)

P→ Iq,
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we have terms in (1.59) converges in distribution to N (0,A′′
F (η

∗)−1) by the Slut-

sky’s theorem. For the terms in (1.60), the standard MLE asymptotic normality

theory implies √
nj(θ̄j − θ∗

j)
D→ N (0, [A′′

j (θ
∗
j)]

−1) for j = 1, . . . , J , we must have

√
nF + nsDN(θ

∗)−1[g(A′
S(θ̄))−g(A′

S(θ
∗))]

D→ N (0,0). Given the fact that asymp-

totic normality with variance-covariance matrix being 0 is equivalent to conver-

gence in probability, we claim that
√
nF + ns DN(θ

∗)−1 [g(A′
S(θ̄))−g(A′

S(θ
∗))]

P→

0. Therefore, given the assumption ns = o(nF ) in case ii), we conclude that

(1.57) implies

√
nF (η̂− η∗)

D→ N
(︁
0,A′′

F (η
∗)−1

)︁
.

Case iii) limN→∞ nF/ns = ∞ subject to nj < ∞ for j = 1, . . . , J : Under this

case, we have nF → ∞ and nj = o(nF ) for j = 1, . . . , J . Dividing both sides of

(1.13) by N , we see that

1

N
L(θ) =

nF [η · T̄ F − AF (η)] + op(1)

nF + o(nF )
. (1.61)

Since the right-hand side of (1.61) only contains η, we can express η̂ as

η̂ = argmaxη∈E
nF

nF + o(nF )
[η · T̄ F − AF (η)] + op(1),
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where the first-order optimality condition implies

nF

nF + o(nF )
[T̄ F −A′

F (η̂)] + op(1) = 0.

Therefore, by the standard MLE asymptotic normality theory on exponential

family distribution (Bickel and Doksum, 2001, Theorem 5.4.2), we have

η̂ = η∗ − nF

nF + o(nF )
A′′

F (η
∗)[T̄ F −A′(η∗)] + op

(︃
1

√
nF

)︃
+ op(1),

and

√
nF (η̂− η∗)

D→ N (0,A′′
F (η

∗)).

1.4 Numerical Study

1.4.1 Synthetic Problem

Here we provide an example that is a simpler version of the work in Zhao

and Spall (2016). Assume there exists two subsystems, whose outputs are

Bernoulli distributed with ρ∗1 = 0.4 and ρ∗2 = 0.2, respectively. The full sys-

tem output are normally distributed with mean µ∗ = ρ∗1+ρ
∗
2 = 0.6 and variance

σ2∗ = ρ∗1(1 − ρ∗1) + ρ∗2(1 − ρ∗2) = 0.4. The first numerical result focuses on the

55



CHAPTER 1. SYSTEM IDENTIFICATION

confidence interval of the estimates as the subsystem sample size goes to infin-

ity. We fixed nF = 10 and each confidence interval below is computed by 0.025

and 0.975 empirical quantiles basing on 1,000 replicates and the estimates are

found by the MATLAB “fmincon” function with the initial guess θ̂0 = [0.5, 0.5]

and parameter space Θ = [0, 1]2.

It is convincing from the Table 1.1 that subsystem parameters converge to

the true parameters and as a consequence, the convergence property also holds

for the full system parameters. Another aspect of the convergence argument is

to see what happened when the full system sample size goes to infinity. Fixed

n1 = n2 = 10, Table 1.2 verifies that the full system estimates indeed con-

verge to the true parameters. Similar to the first result, we also see that the

confidence interval becomes narrower and it is expected that as the full sys-

tem sample becomes unbounded, our maximum likelihood estimates converge

to the true parameters. The last result, Table 1.3, shows that the full system

parameters converge to the true parameters when both the full system and

subsystems sample sizes go to infinity. For simplicity, we assume the sample

sizes are equal across all the subsystems and the full system.

1.4.2 Cold-Formed Steel Shear Wall

In a second application, we apply our method to the cold-formed steel (CFS)

structural system, where the fasteners are viewed as the subsystems and the
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Table 1.1: 95% confidence interval for full system and subsystem estimates
with fixed full system sample size n = 10

ρ̂1 ρ̂2 µ̂ σ̂2

nj = 10 [0.151, 0.658] [0.000, 0.434] [0.330, 0.904] [0.244, 0.476]

nj = 102 [0.309, 0.496] [0.122, 0.275] [0.476, 0.710] [0.341, 0.439]

nj = 103 [0.370, 0.428] [0.177, 0.225] [0.563, 0.639] [0.385, 0.415]

nj = 104 [0.390, 0.410] [0.193, 0.208] [0.588, 0.613] [0.395, 0.405]

nj = 105 [0.397, 0.403] [0.197, 0.202] [0.596, 0.604] [0.398, 0.401]

Table 1.2: 95% confidence interval for full system estimates with fixed subsys-
tem sample sizes n1 = n2 = 10

µ̂ σ̂2

n = 10 [0.347, 0.878] [0.239, 0.476]

n = 102 [0.500, 0.724] [0.313, 0.445]

n = 103 [0.563, 0.639] [0.366, 0.425]

n = 104 [0.587, 0.612] [0.390, 0.418]

n = 105 [0.591, 0.604] [0.396, 0.417]

Table 1.3: 95% confidence interval for full system estimates with the same full
system and subsystem sample sizes n = n1 = n2

µ̂ σ̂2

n = nj = 10 [0.345, 0.879] [0.241, 0.474]

n = nj = 102 [0.525, 0.688] [0.360, 0.433]

n = nj = 103 [0.573, 0.626] [0.387, 0.412]

n = nj = 104 [0.592, 0.609] [0.396, 0.404]

n = nj = 105 [0.597, 0.603] [0.399, 0.401]
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shear wall is viewed as a full system. Using data independently collected from

multiple sources, we are able to provide a much better estimation of the shear

wall strength when compared with the simple one-sample estimation method

(Wang et al., 2018a).

The cold-formed steel (CFS) structural systems are commonly used for low

and mid-rise constructions. A typical CFS shear wall building with associated

shear walls is shown in Figure 1.2. A shear wall is a lateral force resistance

system to bear seismic or wind load. Commonly, wood sheathing, such as ori-

ented strand board (OSB), is screw-fastened to CFS studs and tracks to develop

lateral shear stiffness and strength.

Figure 1.2: Cold-formed steel building and shear wall

As the wall is sheared, an incompatibility exists between the CFS framing,

which is largely deforming as a parallelogram, and the wood sheathing that re-
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mains nearly rectangular and primarily undergoes rigid body translation and

rotation because of its large in-plane rigidity. The incompatibility between the

deformed frame and sheathing causes a relative displacement that must be

accommodated at the fasteners, as shown in Figure 1.3.

Figure 1.3: Cold-formed steel shear wall under lateral load

The fastener is the key subsystem in the shear wall system and it is shown

in Buonopane et al. (2015) that shear wall capacity is determined by fastener

strength. The CFS framed wood sheathed shear wall capacity is defined in the

North American Standard for Seismic Design of Cold-Formed Steel Structural

Systems (AISI-S400-15) (AISI, 2015). Shear wall capacities are based on pre-

vious shear wall experimental tests from the U.S. or Canada. For most shear

wall configurations in the design specification, the number of shear wall tests
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is very small, and the estimate is simply based on the average of all shear wall

test data.

In this experiment, the shear wall capacity is estimated based on combining

the shear wall experimental test data (full system) and the fastener test data

(subsystem). This combination of data sources should allow for more accurate

estimates than the single source above. The full system data is measured dur-

ing the shear wall loading process and it refers to the shear wall peak strength

(capacity) before failure. Shear wall capacity data are from shear wall cyclic

test at Branston et al. (2006), which is of particular interest for civil engineers

than monotonic loading results.

On the subsystem level, the data being measured are the fastener capacity

before its failure. Isolated physical tests for fasteners were conducted at Johns

Hopkins University (Peterman et al., 2014). The fasteners in the subsystem

tests are in the same loading protocol as they are in the full system shear

wall experiment. The fastener test data are provided in Table 1.4, where the

configuration is the same as it is in the shear wall.

Table 1.4: Subsystem Capacity (kip)

Fastener (m=8) 0.427 0.495 0.541 0.414
0.430 0.547 0.507 0.529

Assume the test data are collected statistically independently from all data

sources. According to Bian et al. (2017), the full system data follows a normal
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distribution. Furthermore, after conducting the Lilliefors goodness-of-fit test,

all subsystem data are assumed to follow the same log-normal distribution,

where only the mean parameter is unknown and the variance is known due to

AISI (2015). From a physical point of view, since the loading transferred to the

shear wall is carried by each fastener so the capacity of the shear wall is the

summation of fastener capacity. From results of structural analysis using civil

engineering software OpenSees (McKenna, 2011), we have made the following

assumptions on the data and derived the relationships between the full system

and subsystem, which are shown as

Subsystem: Xj ∼ LN (µS,σ
2
S),

Full system: Yk ∼ N (µF ,σ
2
F ),

where LN denotes the log-normal distribution, µF = 10.03eµS+
1
2
σ2S and σ2

F =

0.0212e4µS+2σ2S . Those relationships are obtained from a regression of 1,000 sim-

ulated systems under cyclic loading with each subsystem capacity following the

known capacity mean and standard deviation. According to AISI (2015), the ra-

tio between subsystem standard deviation and mean is set to 0.13. In terms of

the log-normal distribution parameters µS and σ2
S, we have VarX/(E[X])2 =

(eσ
2
S−1e2µS+σS)/(eµS+

1
2
σS)2 = 0.132, which gives σ2

S = 0.168.

The fmincon function in Matlab is used to find the minimizer of the con-
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strained nonlinear function −L(θ) (negative log-likelihood function). The final

estimated θ̂ is −1.1548, which gives the estimated mean of shear wall capacity,

µ̂F = 3.1871 and estimated variance of shear all capacity, σ̂2
F = 0.0022. Using

the asymptotic normal distribution, we have
√
N(µ̂F−µF ) ∼ N(0, 0.0028), which

leads to a 95% confidence interval (3.1696, 3.2047) with width 0.0350. As a com-

parison, if one only uses the full system sample from G1, it will give estimates

µ̃F = Ȳ = 2.9883, σ̃2
F = s2Y = 0.0059 and 95% confidence interval (2.9080, 3.0686)

with width 0.1606. It is worth noting that the simple average estimate falls

outside our confidence interval. It is clear that by considering both full system

and subsystem data and taking into account the connections between the full

system and subsystem, MLE reveals more information on both full system and

subsystem level. In terms of the width of confidence interval, our new method

improves the accuracy by (0.1606− 0.0059)/0.1606 = 96.33%.

1.4.3 Sensor Network

With recent developments of data collection devices, such as mobile sensors

and handheld computers, data in various forms are becoming more plentiful.

How to properly integrate all the data, however, is generally an open problem.

In this subsection, we study the integration of multilevel data for applications

in sensor networks (Wang and Spall, 2020). In particular, the proposed method

is applied to locate a target using multiple unmanned aerial vehicles and we
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present a spatial searching problem modified from Sun et al. (2016) to illus-

trate the performance of the proposed method. Consider a mobile sensor net-

work where multiple UAVs and a Doppler radar are deployed to locate a target.

Because the Doppler radar can cover a wide range of area, it is viewed as the

full system here. Denote Y = [Y1, Y2, Y3]
T as the noisy measurements of the

target generated by the Doppler radar, where the components of Y represent

the target location in the Cartesian coordinate system with the Doppler radar

at the origin. Based on Sun et al. (2016), assume a multivariate normal dis-

tribution on the Doppler measurements, i.e., Y ∼ N (µF ,ΣF ) where µF is the

unknown true location of the target and ΣF is the unknown covariance matrix.

Although using only the Doppler measurement can provide an estimate of the

target location, it is often less accurate and has a limited number of measure-

ments due to operational cost. Hence, we aim to improve the estimation by

combining the information from the individual UAV measurements.

We consider the multiple UAVs as the subsystems, where each individual

UAV can only detect a small neighborhood of itself and needs to work with

other UAVs to locate the target. One potential motivation to have local UAVs

is to make them more hidden than the broad signal, which can help to avoid

reveal source information too much, and the few signals the better in real op-

erations due to security issues. Similar to the full system outputs, assume

the subsystem outputs also follow the multivariate normal distributions, i.e.,
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X(j) = [X
(j)
1 , X

(j)
2 , X

(j)
3 ]T ∼ N (µ(j),Σ(j)), which measures the difference of two

nearest UAV positions or the difference of the target and its nearest UAV po-

sitions in the Cartesian coordinate system. Although UAVs are (of course) al-

lowed to move in space, if the time scale of the sampling is much smaller than

the time scale of the movement dynamics, we can think the positions of the

UAVs are fixed during the short sampling period. For example, denote the lo-

cations of two nearest UAVs as [l
(1)
1 , l

(1)
2 , l

(1)
3 ] and [l

(2)
1 , l

(2)
2 , l

(2)
3 ], respectively. Then,

we have µ(1)
1 = l

(2)
1 − l

(1)
1 , µ(1)

2 = l
(2)
2 − l

(1)
2 and µ(1)

3 = l
(2)
3 − l

(1)
3 . Figure 1.4 illus-

trates the framework of this location detection problem with three UAVs and

one Doppler radar. Note that we consider the measurements of the different lo-

cations between the UAVs as the subsystem measurements, not the locations of

the UAVs themselves. This is why Figure 1.4 contains three UAVs, but shows

four different X(j) for j = 1, . . . , 4. Note that depending on the location of the

target, not all the UAVs are active or reporting information about the target.

For simplicity, assume that within the detection range of every UAV, there is

only one other UAV in order to maximize the total coverage area.

Under the Cartesian coordinate system, since the Doppler radar measure-

ments can be constructed as Y =
∑︁4

j=1X
(j), we link the full system and sub-

system parameter by defining the system structure function as µF =
∑︁J

j=1 µ
(j)

and ΣF =
∑︁J

j=1Σ
(j). A similar construction can be found in Sun et al. (2016)

with the difference being on how UAVs are allowed to communicate with each
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Figure 1.4: Conceptual illustration of the sensor network: Doppler radar and
UAVs are combined to provided information on target.

other and whether the UAVs are fixed on predetermined orbits. Given a to-

tal of nF measurements for the full system and nj test measurements for the

j-th subsystem that are independent from each other, the overall likelihood

function has the form

L(θ) =− 1

2

nF∑︂
k=1

(Yk − µF )TΣF (Yk − µF )− nF

2
log(detΣF )

− 1

2

J∑︂
j=1

nj∑︂
i=1

(X
(j)
i − µ(j))TΣ(j)(X

(j)
i − µ(j))

− 1

2

J∑︂
j=1

nj log(detΣ
(j)) + constant.

We consider a case with 4 subsystems and assume the following true parameter
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values,

µ∗(1) = [−0.90, 1.42, 5.86]T ,µ∗(2) = [2.35,−0.89, 2.09]T ,

µ∗(3) = [0.35, 0.32, 1.95]T ,µ∗(4) = [0.10,−0.25, 2.033]T ,

Σ∗(1) = Σ∗(2) = Σ∗(3) = Σ∗(4) =

⎡⎢⎢⎢⎢⎢⎢⎣
12 1.2 1.2

1.2 12 1.2

1.2 1.2 12

⎤⎥⎥⎥⎥⎥⎥⎦ .

The true position values µ∗ are chosen such that the distances between the

Doppler radar and each actives UAV are 6km, 8km, and 10km, respectively,

matching the orbit radii assumptions in the numerical study of Sun et al.

(2016). The distance between the Doppler radar and the target is then chosen

to be 12km. The covariance values Σ∗ are also based on the UAVs measure-

ment noise assumptions in Sun et al. (2016).

Figure 1.5 shows the confidence interval for the target position under nF =

5 for the full system measurements and various subsystem measurements,

where for simplicity assume that all the subsystems have the same number

of measurements, i.e., n1 = n2 = n3 = n4. The solid lines represent the true

parameter values for µF
1 = 1.9,µF

2 = 0.6 and µF
3 = 11.833. The dotted lines

represent the 95% confidence interval for the true target position based on the

asymptotic normality from Theorem 1.4.

Based Figure 1.5, it is clear that by combining all the data from different
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Figure 1.5: 95% confidence intervals for the true target position based on the
asymptotic normality from Theorem 1.4. All plots assume n = 5.
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sources, the estimate of the target position becomes much more accurate as the

confidence intervals are much narrower. As more data are collected, the final

estimates are converging towards the true parameter value and the likelihood

of successfully identifying the target is significantly improved.

Another application is based on Duan et al. (2019), where the goal is to

detect the position of seven markers on the ground by integrating data from

two UAVs, i.e., a tanker UAV and a receiver UAV. Here, we consider a simpler

version of detecting only one marker, i.e., the target, on the ground since there

is no fundamental difference between the different number of markers in terms

of the general methodology. The receiver UAV flying at a lower altitude can

collect noisy measurements X(1) ∼ N (µ(1),Σ(1)) of the marker. The tanker

UAV flying at a higher altitude can collect noisy measurements Y ∼ N (µY ,ΣY )

of the marker and relative position measurements X(2) ∼ N (µ(2),Σ(2)) with

respect to the receiver UAV.

In our framework, Y is corresponding to the full system measurements and

X(1) and X(2) are corresponding to the subsystem measurements. Under the

standard Cartesian coordinate system, we have µY = µ(1) + µ(2). Assume the

following true parameter values

µ(1) = [20, 10]T ,µ(2) = [3,−8]T ,
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Figure 1.6: Tanker UAV and receiver UAV are combined to provided informa-
tion about the marker.

Σ(1) = Σ(2) = ΣY =

⎡⎢⎢⎣ 5 0.1

0.1 5

⎤⎥⎥⎦ .

We compute the distance between the estimated and the true marker position

under various full system sample size n and subsystem sample sizes n1 and n2.

The results are presented in Table 1.5 below and it is clear that as more data

are collected the estimated position becomes more accurate.

Table 1.5: Accuracy of the estimated marker position

n1 = n2 = 0 n1 = n2 = 10 n1 = n2 = 100
n = 10 0.9013 0.7291 0.3839
n = 100 0.2906 0.2472 0.2414
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1.5 Conclusion

In this chapter, we have studies the framework of the system of subsys-

tems, where we generalize the distribution assumptions on both the full sys-

tem and subsystem outputs to multivariate exponential family distribution.

With the results of this chapter, we can now apply the full system and subsys-

tems framework to a much broader class of problems than the previous studies.

The convergence and asymptotic distribution of the MLE are also established.

The proposed MLE approach has a solid theoretical foundation and works well

in this non-trivial setting, where the likelihood function is clearly not a joint

density function of i.i.d. data. For future works, one can consider further gen-

eralize the model to accommodate the time-varying effects, such as models for

deterioration or consumer behaviors. Another direction is to jointly estimate

multiple state-space models, where a user can seek to explore the relationships

between the models in order to improve the overall estimation accuracy by in-

tegrating the data from different models.
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Chapter 2

Connecting System Identification

to Stochastic Optimization

2.1 Recursive Maximum Likelihood Estimate

In the previous chapter, we see that system identification is essentially find-

ing the MLE of some likelihood function and studying its limiting behavior. If

we denote n as the number of sample points, we can write MLE as θ̂
ML
n and

the corresponding log-likelihood function being ℓn(θ) = (1/n)
∑︁n

i=1 ℓ(xi;θ) for

some log-likelihood function ℓ(xi;θ) and the sample point xi. Given the as-

sumption that all the sample points are i.i.d., we see that, under some mild

conditions, the SLLN guarantees that ℓn(θ)
a.s.→ L(θ) for some loss function

L(θ) = E[ℓ(x;θ)], where the expectation is taken over the randomness in x.
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Since ℓn(θ) is essentially a function of the sample points, it can be viewed as a

random variable. If we drop the log-likelihood function requirement on ℓ(x;θ)

and consider it as some general function, the MLE procedure is simply seeking

to find the maximum value of L(θ) (or equivalently the minimum of −L(θ))

based on the information of ℓ(xi;θ). Since ℓn(θ) is a random variable, we can

express it as ℓn(θ) = L(θ)+εn(θ) with εn(θ) being some random noise such that

E[εn(θ)] = 0. In other words, we seek to find the optimal value of L(θ) based on

its noisy measurements, which naturally fits into the framework of stochastic

optimization.

In stochastic optimization, a common procedure is to iteratively find the

optimal point of L(θ) with some noisy measurements of either the loss function

or its gradient. If we denote θ∗ as the optimal point of L(θ) and θ̂
SO
n as the

solution found by some stochastic optimization algorithm at iteration n, we see

that both θ̂
ML
n and θ̂

SO
k are seeking to approach to θ∗. Moreover, theoretical

analyses are often interested in under what conditions we can have θ̂
ML
n → θ∗

or θ̂
SO
n → θ∗, and what is the rate of the convergence.

Let us consider the recursive MLE example from Spall (2005, Chapter 3) to

better illustrate the similarities and differences between θ̂
ML
n and θ̂

SO
n . Given a

simple linear regression problem, where the sample points are modeled as

zi = hT
i θ+ vi with vi

i.i.d.∼ N (0,σ2).
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Under the independent Gaussian distribution assumption, the MLE approach

is equivalent to find the optimal value of the mean-square error such that

θ̂
ML
n = argmin ℓn(θ) = argmin

1

2n

n∑︂
i=1

(zi − xT
i θ)

2, (2.1)

with E[ℓn(θ)] = L(θ) such that L(θ) = 1/(2n)E[
∑︁n

i=1(zi−xT
i θ)

2]. It is easy to see

that (2.1) has the batch least-squares solution θ̂
ML
n = [XT

nXn]
−1XT

nZn with Xn

being the concatenated matrix of xT
i row vector and Zn = [z1, . . . , zn]

T .

To see how θ̂
ML
n in (2.1) can be related to θ̂

SO
n , we consider the Newton-

Raphson method as our stochastic optimization algorithm. From (2.1), we have

ℓn+1(θ) = n/(n+ 1)ℓn(θ) + 1/[2(n+ 1)](zn+1 − xT
n+1θ)

2 and

∂ℓn+1(θ)

∂θ

⃓⃓⃓⃓
θ=θ̂

SO
n

=
n

n+ 1

∂ℓn(θ)

∂θ

⃓⃓⃓⃓
θ=θ̂

SO
n

+
xn+1(x

T
n+1θ̂

SO
n − zn+1)

n+ 1

≈
xn+1(x

T
n+1θ̂

SO
n − zn+1)

n+ 1
,

where we roughly assume ∂ℓn(θ)/∂θ|θ=θ̂SO
n

≈ 0 despite some small discrepancy.

To write out the Newton-Raphson iteratively updating formula, we also need

to compute the Hessian of ℓn+1(θ), which gives

∂2ℓn+1(θ)

∂θ∂θT
=

1

n+ 1

n+1∑︂
i=1

xix
T
i =

1

n+ 1
(P−1

n+1 − P−1
0 ),

where P−1
n+1 = P−1

n + xn+1x
T
n+1 with some user-specified initial conditions of P0.
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If we assume P−1
0 is small relatively to P−1

n+1, the Newton-Raphson iteratively

updating formula gives

θ̂
SO
n+1 ≈ θ̂

SO
n − Pn+1xn+1(x

T
n+1θ̂

SO
n − zn+1). (2.2)

However, we see that (2.2) can also be used to express θ̂
ML
n+1 as

θ̂
ML
n+1 ≈ θ̂

ML
n − Pn+1xn+1(x

T
n+1θ̂

ML
n − zn+1) (2.3)

with some user-specified initial conditions of θ̂
ML
0 and P0 (Spall, 2005, Section

3.2.4). Therefore, it is reasonable to state that θ̂
ML
n+1 and θ̂

SO
n+1 are closely related

and share several interesting theoretical properties, such as the fast rate of

convergence. The rest of this work will focus on stochastic optimization.

2.2 Stochastic Optimization

Stochastic Optimization is a large field and there are numerous works on

developing algorithms aiming to minimize a loss function L(θ). However, the

primary focus of this work will be on algorithms that only use the noisy func-

tion measurements ℓ(θ,v), where v denotes the randomness embedded in the

function measurement. Introduced in the 1950s, Kiefer and Wolfowitz (1952)

and Blum (1954) use the standard finite-difference (FD) gradient approxima-
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tion methods to perform a gradient-descent-type algorithm to iteratively find

the optimal solution. Mathematically, at the iteration k with the estimate θ̂k,

the two-sided FD gradient approximation uses the following formula to esti-

mate the gradient of the loss function g(θ̂k) = ∂L(θ)/∂θ|θ=θ̂k by

ĝFD
k (θ̂k) =

1

2ck

⎡⎢⎢⎢⎢⎢⎢⎣
ℓ(θ̂k + cku1,v

(1+)
k )− ℓ(θ̂k − cku1,v

(1−)
k )

...

ℓ(θ̂k + ckup,v
(p+)
k )− ℓ(θ̂k − ckup,v

(p−)
k )

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.4)

where ck > 0 is the perturbation step size, uj is the vector of all zeros except

the j-th component being 1 for j = 1, . . . , p, and v
(1+)
k ,v

(1−)
k , . . . ,v

(p+)
k ,v

(p−)
k rep-

resents the total random effects. In order to get an accurate gradient approxi-

mation with respect to the true gradient g(θ̂k), the perturbation step size ck is

often chosen to be some small scalar value. It is well-known that the bias of the

FD gradient approximation satisfies E[ĝFD2
k (θ̂k)|θ̂k] − g(θ̂k) = O(c2k), where the

expectation is taken over the randomness in ℓ(θ̂k, ·). Given the noisy function

measurement ℓ(θ̂k,vk), we can denote the noisy term εk(θ̂k,vk) as

εk(θ̂k,vk) = L(θ̂k)− ℓ(θ̂k,vk),

where it is often assumed that E[εk(θ̂k + ckuj,v
(j+)
k )− εk(θ̂k − ckuj,v

(j−)
k )|θ̂k] = 0

for j = 1, . . . , p. Note that the assumptions on the noisy function measurements
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can be easily satisfied if we assume E[ℓ(θ,v)] = L(θ) for any θ, which is a com-

mon assumption for problems with zero-mean additive noise. One disadvan-

tage of the two-sided FD gradient approximation, however, is that a total of 2p

function measurements are required to construct one gradient approximation.

This makes the method less efficient for high-dimensional problems or when it

is expensive to evaluate ℓ(θ̂k, ·). A slightly improved version of the two-sided

FD gradient approximation in terms of the number of function measurements

is the one-sided FD gradient approximation, which has the formula

ĝFD1
k (θ̂k) =

1

ck

⎡⎢⎢⎢⎢⎢⎢⎣
ℓ(θ̂k + cku1,v

(1+)
k )− ℓ(θ̂k,v

(0)
k )

...

ℓ(θ̂k + ckup,v
(p+)
k )− ℓ(θ̂k,v

(0)
k )

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where v
(0)
k is the random effect of the base function measurement ℓ(θ̂k,v

0
k).

Although the number of function measurements is reduced to p + 1, the ac-

curacy of the gradient approximation is poorer since the bias now becomes

E[ĝFD1
k (θ̂k)|θ̂k] − g(θ̂k) = O(ck). Given the usual condition that the extra error

in the gradient approximation cannot be compensated by the benefit of using

less function measurements, the one-sided FD gradient approximation is less

desirable for many practical problems.

Nonetheless, since the gradient approximation requires a total of O(p) func-

tion measurements at each iteration, it is considered to be significantly less
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efficient for problems that are expensive to evaluate or have high dimensions.

To reduce the required number of function measurements, Spall (1992) pro-

poses the simultaneous perturbation stochastic approximation (SPSA) algo-

rithm, which achieves approximately the same level of accuracy as the stan-

dard FD stochastic approximation (FDSA) algorithm, but uses only two func-

tion measurements to estimate the gradient. The SP idea proposed is to gen-

erate a p-dimensional random perturbation vector ∆k = [∆k1, . . . ,∆kp]
T , where

every component of ∆k is independently and identically distributed (i.i.d.) sat-

isfying some regularity conditions specified in Spall (1992, A2′). A common, but

not mandatory, choice of ∆ is to have its every component sampled uniformly

from {−1,+1}, i.e., ∆j
i.i.d.∼ Bernoulli{−1,+1} for j = 1, . . . , p. Given the current

estimate θ̂k at the iteration k, the function is then evaluated at two design lev-

els, i.e., θ̂k + ck∆k and θ̂k − ck∆k with a non-increasing perturbation step size

of ck > 0. Formally, we have

ĝSP
k (θ̂k) =

ℓ(θ̂k + ck∆k,v
(+)
k )− ℓ(θ̂k − ck∆k,v

(−)
k )

2ck∆k

, (2.5)

where ∆−1
k or 1/∆k denotes [∆−1

k1 , . . . ,∆
−1
kp ]

T , and v
(+)
k ,v

(−)
k ∈ Rq represent the

random effects at the time of function measurements. The primary advantage

of (2.5) over FDSA lies in the dimension-free query requirement per iteration.

It is shown that the bias of the two-sided SP gradient approximation is similar
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to the two-sided FD gradient approximation, i.e., E[ĝSP
k (θ̂k)|θ̂k]− g(θ̂k) = O(c2k),

where the expectation is taken over both the randomness in ℓ(θ̂k, ·) and ∆k.

Since under a fixed total number of function measurements or a fixed total

running time, fewer function measurements leads to more algorithm iterations

and hence typically a better final estimate, the advantages of SPSA are appar-

ent. Therefore, SPSA is preferred when p is large or when ℓ(·, ·) is expensive to

evaluate.

To improve the computational cost even further, a variant of SPSA is in-

troduced in Spall (1997), which uses only one function measurement at each

iteration and has the form

ĝSP1
k (θ̂k) =

ℓ(θ̂k + ck∆k,v
(+)
k )

ck∆k

.

Note that, unlike the one-sided FD gradient approximation, there is no func-

tion measurement of ℓ(θ̂k,v
(0)
k ) and the bias of the gradient approximation is at

the same level as the two-sided SP gradient approximation, i.e., E[ĝSP1
k (θ̂k)|θ̂k]−

g(θ̂k) = O(c2k). Although the one-measurement SP gradient approximation uses

the fewest number of function measurements, it is shown to be generally less

efficient in total number of function measurements required than the two-sided

SP gradient approximation when used to iteratively minimizing the objective

function Spall (1997). The method is more useful in real time applications
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when it is necessary to get an instantaneous gradient approximation.

To use (2.5) in stochastic optimization algorithms, one can adopt the stan-

dard gradient descent scheme to iteratively update the parameter estimate as

θ̂k+1 = θ̂k − akĝ
SP
k (θ̂k), (2.6)

where ak is a non-increasing positive gain step size. Spall (1992, Proposition

1) shows that the sequence of the estimate {θ̂k}k≥0 generated by SPSA con-

verges almost surely to the optimal point for general stochastic optimization

problems where only the noisy function measurements are available. Under

some mild conditions, there is also an asymptotic normality for normalized θ̂k,

where the rate of convergence is the same as the FDSA, even though p times

fewer function measurements are used.
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Chapter 3

Mixed Simultaneous

Perturbation Stochastic

Approximation Algorithm

3.1 Introduction

In real-world stochastic optimization, recursive algorithms are often ap-

plied to iteratively seek the solutions where the underlying variables are con-

tinuous in most scenarios. However, it is also common to have mixed variables

(mixture of discrete and continuous variables), especially in engineering de-

sign and management science problems. This chapter presents a method for

mixed-variable stochastic optimization requiring only noisy values of the loss
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function. The method is based on an extension of simultaneous perturbation

stochastic approximation (SPSA) and, consequently, is efficient in multidimen-

sional problems.

Some relevant applications of mixed variable stochastic optimization in-

clude electric power capacity expansion problem (Shiina and Birge, 2003), op-

timal decision in energy operations (Wallace and Fleten, 2003), and long-term

planning of wind farms (Xiao et al., 2011). In addition, for problems of water

resource management (Hemker et al., 2008; Onwunalu and Durlofsky, 2010;

Wang et al., 2010), noisy function measurements are generated by the reser-

voir simulators given a well placement, where the integer variables are the

number and type of wells and the continuous variables are the well locations,

pumping rates, and other system parameters.

Formally, consider a real-valued mixed-variable loss function L(θ) : Zd ×

Rp−d → R, where Z and R represent the spaces of all integers and real num-

bers, respectively. The vector of interest θ is p-dimensional with the first d

components being integer-valued and the last p − d components being real-

valued (continuous). Furthermore, assume that L(·) is differentiable with re-

spect to its continuous variables. We are interested in the optimization problem

of minθ∈Θ L(θ) for Θ ⊆ Zd × Rp−d, where the solution set is denoted as

Θ∗ = argminθ∈Θ L(θ) = {θ∗ ∈ Θ : L(θ∗) ≤ L(θ) for any θ ∈ Θ}.
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Assume that only noisy function measurements ℓ(θ,v) = L(θ) + ε(θ,v) are

available, where ε(θ,v) denotes the measurement noise. The explicit form of

L(θ) is generally unavailable so that the optimization process is based only on

the noisy function measurements ℓ(θ,v), which is possibly obtained via Monte

Carlo simulations.

Solving stochastic optimization with mixed-variable variables is typically

more challenging than with only continuous or integer variables due to the

mixture structure of the feasible region and the noise in the function mea-

surements. One possible solution is to naively apply some classical general

optimization algorithms that are designed for noise-free problems. Those al-

gorithms include localized random search (Matyas, 1965), adaptive random

search (Zabinsky, 2013) and mixed-variables evolutionary programming tech-

nique (Cao et al., 2000). Another possible solution is to extend the discrete op-

timization methods with noisy function measurements to mixed variables by

proposing new candidate points containing both the discrete and continuous

variables.

A systematic literature review on discrete optimization is available in Wang

(2013) and Hill (2014), where general random search algorithms such as stochas-

tic ruler (Yan and Mukai, 1992), stochastic comparison (Gong et al., 2000) and

simulated annealing with noise (Gutjahr and Pflug, 1996) are discussed. These

iterative methods propose a candidate point based on the current estimate and
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then use some metric to determine if the proposed point should be accepted

or rejected. In practical applications where function measurements are noisy

and/or the search space is high-dimensional, these methods slow down dra-

matically and become less accurate since it becomes harder to accept a newly

proposed point. More importantly, the implicit function structure information,

such as the derivatives with respect to the continuous variables are not used.

To increase convergence rate with respect to iterations when the function is

smooth, a family of retrospective optimization algorithms for mixed-variable

variables is proposed in Wang (2012). The term retrospective optimization

means a general framework based on the sample-path approach (Chen and

Schmeiser, 2001; Pasupathy and Schmeiser, 2009; Pasupathy, 2010; Sandıkçı

et al., 2013), which is also called sample average approximation (Kleywegt

et al., 2002). Algorithms introduced in Wang (2012) are essentially continuous

search procedures embedded in a retrospective optimization framework using

dynamic simplex interpolation. During the training process, however, the total

number of function measurements is increasing exponentially with respect to

the iteration number. Moreover, separate function measurements are required

for estimating each component of the gradient of the linear interpolation.

A different approach is related to the stochastic mixed-variable program-

ming, where a good survey can be found in Sen (2010). Although the goal

is still to minimize an expected objective function with certain constraints,
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many stochastic mixed-variable programming algorithms (see, e.g., Takriti and

Birge, 2000; Guan et al., 2009; Ntaimo, 2010) require the noisy measurement

to have a finite number of realizations (scenarios) so that the stochastic prob-

lem can be converted to a deterministic problem. Hence, any expected values

can be written as a finite sum, which makes the problem deterministic. When

the noisy measurements are continuous random variables with unknown dis-

tributions, these methods become either less attractive or non-applicable.

Therefore, to efficiently handle the general mixed-variable problems with

noisy loss measurements or high-dimensional θ, we present a generic stochas-

tic optimization algorithm called the mixed simultaneous perturbation stochas-

tic approximation (MSPSA) that can efficiently minimize a mixed variable prob-

lem with only noisy loss function measurements. Our idea is based on the

SPSA algorithm (see. e.g., Spall, 1992, 2005; Bhatnagar et al., 2013), which

is particularly efficient in solving continuous stochastic optimization problems.

The benefits of MSPSA come in five ways: i) implementation is relatively easy;

ii) only two noisy loss function measurements are required at each iteration, re-

gardless of problem dimension p; iii) loss function structure information, such

as gradient or subgradient, is used implicitly; iv) noisy loss measurements are

handled properly; v) high-dimensional problems can be solved efficiently in a

rigorously justified way. The idea of simultaneous perturbation is also con-

sidered in Wang (2013) and Wang and Spall (2014), where the discrete simul-
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taneous perturbation stochastic approximation (DSPSA) is proposed to solve

problems with only discrete variables.

MSPSA formally connects SPSA and DSPSA such that both SPSA and DSPSA

can be viewed as special cases of MSPSA by varying the number of discrete

or continuous variables in the proposed algorithm. That said, there are non-

trivial aspects in both the algorithm design and the associated theory in order

to elegantly merge SPSA and DSPSA to form MSPSA. Based on the prelimi-

nary convergence result in Wang et al. (2018b), we derive the formal almost

sure convergence and rate of convergence of MSPSA under conditions similar

to those of SPSA and DSPSA. The theoretical results not only illustrate an in-

tuitive balance between the discrete and continuous variables, but also achieve

the asymptotic bounds at the same rates as SPSA and DSPSA under these re-

spective special cases.

The remainder of the chapter is organized as follows. Section 3.2 provides

the description of the algorithm. The almost sure convergence and rate of con-

vergence are derived in Section 3.3 and Section 3.4, respectively. Section 3.5

compares the rate of convergence of MSPSA with DSPSA and SPSA in the

respective limiting cases of all discrete parameters and all continuous parame-

ters. Section 3.6 presents some numerical results and the conclusions are given

in Section 3.7.
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3.2 Algorithm Description

Before presenting the details of the MSPSA algorithm, let us first discuss

the motivation of the algorithm using a simple one-dimensional discrete case.

The mixed variable case is then proposed by generalizing the discrete case

to include continuous variables. Figure 3.1 shows a one-dimensional discrete

function with a linear interpolation between every pair of neighboring integer

points.

Figure 3.1: A Continuous Extension of a One-dimensional Discrete Function

The piecewise linear function L(θ) is a continuous extension of L(θ) such

that L(θ) is continuous for θ ∈ R but only differentiable for θ /∈ Z. Denote

ḡ(θ) = L(m(θ)+1/2)−L(m(θ)− 1/2), where the midpoint m(θ) = ⌊θ⌋+1/2 with

⌊·⌋ being the flooring function. It is easy to see that ḡ(θ) is exactly the gradient

of L(·) evaluated at θ for any θ /∈ Z and it becomes one of the subgradients

of L(·) evaluated at θ for any θ ∈ Z. To estimate ḡ(θ) at any θ with noisy

measurements only, we replace L(θ) with its nosy measurement ℓ(θ, v) and
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utilize the idea of SP to construct

ĝ(θ) =
ℓ(m(θ) + ∆/2, v(+))− ℓ(m(θ)−∆/2, v(−))

∆
,

where ∆ is a random perturbation, v(+) and v(−) denote the random effects.

To ensure m(θ) ± ∆/2 ∈ Z, we assume that ∆ is a symmetrically distributed

(around 0) discrete random variable taking values on all or some of the odd

integers (e.g., Bernoulli ±1 distribution). By this construction, the gradient es-

timate ĝ(·) for the piecewise linear continuous extension L(·) is consistent with

the gradient estimate in SPSA algorithm. It is shown in He et al. (2003) that

the sequence generated by SPSA converges to the optimum for non-differentiable

convex continuous functions on a compact and convex domain. Therefore, using

the SP idea, there exists a convergent sequence for the continuous extension

function L(·).

Motivated by the one-dimensional case above, we consider a more general

case where θ ∈ Zd × Rp−d and the distribution of the random perturbation is

relaxed to a general family of distributions. The basic MSPSA algorithm is

presented as follows:

• Step 0 (Initialization): Set index k = 0. Pick an initial guess θ̂0 and

nonnegative coefficients a, c, A,α, and γ in the gain sequences ak = a/(k+
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1 + A)α and ck = c/(k + 1)γ. Construct the p-dimensional vector

Ck = [1/2, . . . , 1/2⏞ ⏟⏟ ⏞
d components

, ck, . . . , ck⏞ ⏟⏟ ⏞
(p−d) components

]T .

• Step 1 (Perturbation Vectors): Generate a d-dimensional random per-

turbation vector Λk and a (p−d)-dimensional random perturbation vector

Πk using Monte Carlo algorithms, where all the components of Λk and

Πk are independently generated from mean-zero symmetric probability

distributions satisfying regularity conditions discussed below in Assump-

tion 3.1. An effective (but not mandatory) choice is that all components

of Λk and Πk are independent symmetric Bernoulli ±1 distributed with

equal probabilities. Construct the p-dimensional vector

∆k ≡

⎡⎢⎢⎣Λk

Πk

⎤⎥⎥⎦ .

• Step 2 (Simultaneous Perturbations): Compute the simultaneous per-

turbation estimates θ̂
(+)

k and θ̂
(−)

k around the current estimate θ̂k,

θ̂
(+)

k = md(θ̂k) +Ck ⊙∆k and θ̂
(−)

k = md(θ̂k)−Ck ⊙∆k,

where md(·) is the middle point operator applied to the first d components
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of the argument, i.e., md(θ) = [⌊t1⌋ + 1/2, . . . , ⌊td⌋ + 1/2, td+1, . . . , tp]
T for

θ = [t1, . . . , tp] and ⊙ is the matrix Hadamard product.

• Step 3 (Gradient Approximation): Let ℓ(θ̂k,vk) = L(θ̂k) + εk(θ̂k,vk)

and denote

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(+)
k = L(θ̂

(+)

k )

L
(−)
k = L(θ̂

(−)

k )

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε
(+)
k = ℓ(θ̂

(+)

k ,v
(+)
k )− L(θ̂

(+)

k )

ε
(−)
k = ℓ(θ̂

(−)

k ,v
(−)
k )− L(θ̂

(−)

k )

.

Generate the simultaneous perturbation gradient approximation,

ĝk(θ̂k) =
(L

(+)
k + ε

(+)
k )− (L

(−)
k + ε

(−)
k )

2Ck ⊙∆k

, (3.1)

where we use (Ck ⊙∆k)
−1 or 1/(Ck ⊙∆k) to denote the vector of inverses

of the components of Ck ⊙∆k.

• Step 4 (Iterative Update): Use the standard SA form to update θ̂k,

θ̂k+1 = θ̂k − akĝk(θ̂k). (3.2)

• Step 5 (Iteration or Termination): Return to Step 1 with k + 1 replac-

ing k. Terminate the algorithm if there is little change of θ̂k in several

successive iterates or if the maximum allowable number of iterations has

been reached. Return the final estimate by ProjΘ(θ̂k), where ProjΘ(·) is
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the projection operator that projects the argument to the domain of the

loss function.

Remark 3.1. An important aspect of MSPSA is that the discrete and continu-

ous variables are updated simultaneously in Step 4 in contrast to a cyclic (“see-

saw”) method, where each subvector (discrete or continuous) is updated in an

alternating manner. This approach allows the algorithm to not only take just

two loss function measurements per iteration (regardless of the dimension of the

problem), but also uncover functional relationships shared between the discrete

and continuous variables.

3.3 Convergence

This section discusses the bias in ĝk(θ̂k) and presents an almost sure con-

vergence proof of the sequence {θ̂k} generated by the MSPSA algorithm. To

separate the discussions on the discrete and continuous components, let ζ ∈ Zd

and ξ ∈ Rp−d be the first d and the last p − d components of θ, respectively.

Similar notations are applied to θ̂k and θ̂
(±)

k for any k as well, i.e.,

θ =

⎡⎢⎢⎣ζ
ξ

⎤⎥⎥⎦ , θ̂k =

⎡⎢⎢⎣ζ̂k
ξ̂k

⎤⎥⎥⎦ and θ̂
(±)

k =

⎡⎢⎢⎣ζ̂
(±)

k

ξ̂
(±)

k

⎤⎥⎥⎦ .
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As mentioned above, the algorithm operates on the full vector in the updating

step, not ζ and ξ in a cyclic manner.

Because we assume that L(·) is differentiable with respect to its continu-

ous components ξ, by fixing the discrete components ζ, we can define a new

continuous loss function L(·|ζ) : Rp−d → R such that L(ξ|ζ) = L(θ) for any

θ ∈ Zd × Rp−d. Given that L(·|ζ) is continuous, we denote its gradient as

g(·|ζ) : Rp−d → Rp−d such that g(ξ|ζ) = ∂L(ξ|ζ)/∂ξ for any θ ∈ Zd × Rp−d.

Due to the existence of the discrete components, however, there is no formal

definition for the gradient of L(θ) when θ ∈ Zd×Rp−d. Hence, we introduce the

mean gradient-like expression ḡ(θ̂k) as

ḡi(θ̂k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
EFk

[︃
L(ξ̂k|ζ̂

(+)
k )−L(ξ̂k|ζ̂

(−)
k )

∆ki

]︃
if i = 1, . . . , d,

EFk

[︃
g(ξ̂k|ζ̂

(+)
k )+g(ξ̂k|ζ̂

(−)
k )

2

]︃
if i = d+ 1, . . . , p,

(3.3)

where EFk [·] = E[·|Fk] with Fk = {θ̂0, . . . , θ̂k} for all k, and the expectations

are taken over ∆k. Note that the gradients g(ξ̂k|ζ̂
(+)

k ) and g(ξ̂k|ζ̂
(−)

k ) in (3.3) are

well-defined since ζ̂
(+)

k , ζ̂
(−)

k ∈ Zd and ξ ∈ Rp−d.

The mean gradient-like expression ḡ(θ̂k) in (3.3) is a generalization of the

standard gradient for continuous loss function. When all the variables are

discrete (d = p), ḡ(θ̂k) is reduced to EFk [(L
(+)
k − L

(−)
k )/∆k], which is identical to

the mean gradient-like expression defined in Wang and Spall (2013). When all
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the variables are continuous (d = 0), ḡ(θ̂k) is reduced to the standard g(θ̂k) for

continuous problems.

3.3.1 Bias of Gradient Estimate

This subsection examines the bias in ĝk(θ̂k) relative to estimating ḡ(θ̂k).

With the following assumptions, we provide an explicit bound for the bias in

ĝk(θ̂k) and show that ĝk(θ̂k) is asymptotically unbiased as k → ∞ in Theorem

3.1 below.

Assumption 3.1 (Discrete Perturbation Vector). For all k and i, Λki can only

take odd integer values. Furthermore, Λki is independent and identically dis-

tributed, symmetrically distributed about 0, and there exists some constant BΛ

such that 1 ≤ |Λki| ≤ BΛ.

Assumption 3.2 (Continuous Perturbation Vector). For all k and i, Πki is in-

dependent and identically distributed, symmetrically distributed about 0, and

there exists some constants κ0 and κ1 such that E(|Πki|) ≤ κ0 and E(|Πki|−1) ≤ κ1.

Assumption 3.3 (Measurement Noise). For all k, EFk,∆k [ε
(+)
k − ε(−)

k ] = 0.

Assumption 3.4 (Loss Function). Assume that L(·) is defined on Θ = Zd ×

Rp−d with a unique minimal point θ∗ and is thrice-differentiable with respect

to its continuous components. For almost all θ̂k, there exists an open neigh-

borhood of ξ̂k such that for any ξ in that neighborhood, every individual ele-

ment of H(ξ|ζ̂k) = ∂2L(ξ|ζ̂k)/∂ξ∂ξT satisfies |Hij(ξ|ζ̂k)| ≤ BH for some constant
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BH and every individual element of L(3)(ξ|ζ̂k) = ∂3L(ξ|ζ̂k)/∂ξT∂ξT∂ξT satisfies

|L(3)
ijl (ξ|ζ̂k)| ≤ BT for some constant BT .

Remark 3.2. Assumption 3.1 is to ensure ζ̂
(±)

k ∈ Zd for all k. Assumptions 3.2

and 3.3 are identical to the random perturbation and noise assumptions in As-

sumption 2 of Spall (1992). In order to incorporate both the discrete and contin-

uous variables in the loss function, Assumption 3.4 provides a natural extension

of the assumptions in Spall (1992, Lemma 1) and Wang and Spall (2011, The-

orem 1).

Theorem 3.1 (Bias of Gradient Estimate). Under Assumptions 3.1–3.4, we

have

bk(θ̂k) ≡ EFk [ĝk(θ̂k)− ḡ(θ̂k)] = O(c2k) a.s. (3.4)

with the component-wise bounds |bki(θ̂k)| ≤ c2kUi such that

Ui =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
BH(p− d)2κ20, if i = 1, . . . , d,

1
6
BT {[(p− d)3 − (p− d− 1)3]κ20 + (p− d− 1)3κ30κ1} , if i = d+ 1, . . . , p.

Remark 3.3. Theorem 3.1 shows that ĝk(θ̂k) is asymptotically unbiased as k →

∞ since ck → 0, as given in Assumption 3.7 below. When all the variables are

discrete (d = p), θ̂
(±)

k contains no ck and the gradient estimate ĝk(θ̂k) becomes

unbiased for all k. When all the variables are continuous (d = 0), the explicit

bound for the bias in ĝk(θ̂k) becomes identical to Spall (1992, Lemma 1).
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Proof. Due to the different assumptions for the discrete and continuous vari-

ables in θ̂k, we proceed below by discussing the first d and last p−d components

of ĝk(θ̂k) separately. All equalities and inequalities hold a.s.

The First d Components: We show below that |bki(θ̂k)| ≤ c2kUi for i =

1, . . . , d. Under Assumption 3.4, we may expand L(ξ̂
(+)

k | ζ̂
(+)

k ) and L(ξ̂
(−)

k | ζ̂
(−)

k )

around ξ̂k to give

L(ξ̂
(+)

k | ζ̂
(+)

k ) = L(ξ̂k | ζ̂
(+)

k ) + ckg(ξ̂k | ζ̂
(+)

k )TΠk +
1

2
c2kΠ

T
kH(ξ̄

(+)
k | ζ̂

(+)

k )Πk, (3.5)

L(ξ̂
(−)

k | ζ̂
(−)

k ) = L(ξ̂k | ζ̂
(−)

k )− ckg(ξ̂k | ζ̂
(±)

k )TΠk +
1

2
c2kΠ

T
kH(ξ̄

(−)
k | ζ̂

(−)

k )Πk, (3.6)

where ξ̄(±)
k denotes the points on the line segments between ξ̂k and ξ̂

(±)

k . Plug-

ging (3.5) and (3.6) into the definition of ĝk(θ̂k) in (3.1), we have for i = 1, . . . , d,

EFk [ĝki(θ̂k)] = EFk

[︄
L(ξ̂

(+)

k | ζ̂
(+)

k )− L(ξ̂
(−)

k | ζ̂
(−)

k )

Λki

]︄
+ EFk

[︄
ε
(+)
k − ε(−)

k

Λki

]︄

= ḡi(θ̂k) + ckEFk

[︄
[g(ξ̂k | ζ̂

(+)

k ) + g(ξ̂k | ζ̂
(−)

k )]TΠk

Λki

]︄

+
1

2
c2kEFk

[︄
ΠT

k [H(ξ̄
(+)
k | ζ̂

(+)

k )−H(ξ̄
(−)
k | ζ̂

(−)

k )]TΠk

Λki

]︄
,

(3.7)

where the last term of the first equality equals 0 since EFk,∆k [ε
(+)
k − ε(−)

k ] = 0 by

Assumption 3.3 and

EFk

[︄
ε
(+)
k − ε(−)

k

Λki

]︄
= EFk

[︄
EFk,∆k [ε

(+)
k − ε(−)

k ]

Λki

]︄
= 0. (3.8)
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We then proceed to discuss the last two terms in (3.7). The second term in

(3.7) equals 0 since both Λki and ζ̂
(±)

k are independent of Πk, and E[Πk] = 0 by

Assumption 3.1. The last term in (3.7) is bounded in magnitude as

1

2
c2kEFk

⎡⎣⃓⃓⃓⃓⃓⃓∑︁p−d
m−1

∑︁p−d
n=1Πkm[Hmn(ξ̄

(+)
k | ζ̂

(+)

k )−Hmn(ξ̄
(−)
k | ζ̂

(−)

k )]Πkn

Λki

⃓⃓⃓⃓
⃓⃓
⎤⎦

≤ 1

2
c2kBHEFk

[︄
p−d∑︂
m=1

p−d∑︂
n=1

|ΠkmΠkn|

]︄
EFk

[︃
1

|Λki|

]︃

≤ 1

2
c2kBH(p− d)2κ20 = O(c2k),

where the first inequality holds since |Hmn(ξ̄
(+)
k | ζ̂

(+)

k )−Hmn(ξ̄
(−)
k | ζ̂

(−)

k )| ≤ 2BH

by Assumption 3.4 and Πk is independent of the Λki.

The Last p − d Components: We show below that |bki(θ̂k)| ≤ c2kUi for i =

d+ 1, . . . , p. Similar to (3.5) and (3.6), expanding L(ξ̂
(+)

k | ζ̂
(+)

k ) and L(ξ̂
(−)

k | ζ̂
(−)

k )

around ξ̂k to the third order gives

L(ξ̂
(+)

k | ζ̂
(+)

k ) = L(ξ̂k | ζ̂
(+)

k ) + ckg(ξ̂k | ζ̂
(+)

k )TΠk +
1

2
c2kΠ

T
kH(ξ̂k | ζ̂

(+)

k )Πk

+
1

6
c3kL

(3)(ξ̄
(+)
k | ζ̂

(+)

k )[Πk ⊗Πk ⊗Πk], (3.9)

L(ξ̂
(−)

k | ζ̂
(−)

k ) = L(ξ̂k | ζ̂
(−)

k )− ckg(ξ̂k | ζ̂
(−)

k )TΠk +
1

2
c2kΠ

T
kH(ξ̂k | ζ̂

(−)

k )Πk

− 1

6
c3kL

(3)(ξ̄
(−)
k | ζ̂

(−)

k )[Πk ⊗Πk ⊗Πk], (3.10)

where ⊗ denotes the Kronecker product and ξ̄(±)
k are the points on the line

segments between ξ̂k and ξ̂
(±)

k . Plugging (3.9) and (3.10) into the definition of
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ĝk(θ̂k) in (3.1), we have for i = 1, . . . , p− d,

EFk [ĝk,d+i(θ̂k)]

= EFk

[︄
L(ξ̂

(+)

k | ζ̂
(+)

k )− L(ξ̂
(−)

k | ζ̂
(−)

k )

2ckΠki

]︄
+ EFk

[︄
ε
(+)
k − ε(−)

k

2ckΠki

]︄

=
1

2ck
EFk

[︄
L(ξ̂k | ζ̂

(+)

k )− L(ξ̂k | ζ̂
(−)

k )

Πki

]︄
+

1

2
E

[︄
[g(ξ̂k | ζ̂

(+)

k ) + g(ξ̂k | ζ̂
(−)

k )]TΠk

Πki

]︄

+
1

4
ckEFk

[︄
ΠT

k [H(ξ̂k | ζ̂
(+)

k )−H(ξ̂k | ζ̂
(−)

k )]Πk

Πki

]︄

+
1

12
c2kEFk

[︄
[L(3)(ξ̄

(+)
k | ζ̂

(+)

k ) + L(3)(ξ̄
(−)
k | ζ̂

(−)

k )][Πk ⊗Πk ⊗Πk]

Πki

]︄
, (3.11)

where the last term of the first equality equals 0, similar to (3.8) . We then

proceed to discuss the other terms in the last equality of (3.11). The first term

in (3.11) equals 0 since Πki is independent of ζ̂
(±)

k and E[Π−1
ki ] = 0 by Assump-

tion 3.2. Similarly, the second term in (3.11) equals

1

2

p−d∑︂
j=1

E[gd+j(ξ̂k | ζ̂
(+)

k ) + gd+j(ξ̂k | ζ̂
(−)

k )]E
[︃
Πkj

Πki

]︃

=
1

2
E[gd+i(ξ̂k) | ζ̂

(+)

k ) + gd+i(ξ̂k | ζ̂
(−)

k )]

= ḡd+i(θ̂k),

and the third term in (3.11) equals

1

4
ck

p−d∑︂
m=1

p−d∑︂
n=1

E[Hmn(ξ̂k | ζ̂
(+)

k )−Hmn(ξ̂k | ζ̂
(−)

k )]E
[︃
ΠkmΠkn

Πki

]︃
= 0,
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since E[Πkj/Πki] = 0 whenever i ̸= j by Assumption 3.2. Finally, the last term

in (3.11) is bounded in magnitude by

1

12
c2kEFk

[︄⃓⃓⃓⃓
⃓ [L(3)(ξ̄

(+)
k | ζ̂

(+)

k ) + L(3)(ξ̄
(−)
k | ζ̂

(−)

k )][Πk ⊗Πk ⊗Πk]

Πki

⃓⃓⃓⃓
⃓
]︄

≤ 1

6
c2kBT

p−d∑︂
l=1

p−d∑︂
m=1

p−d∑︂
n=1

EFk

[︃⃓⃓⃓⃓
ΠklΠkmΠkm

Πki

⃓⃓⃓⃓]︃

≤ 1

6
c2kBT

{︁
[(p− d)3 − (p− d− 1)3]κ20 + (p− d− 1)3κ30κ1

}︁
= O(c2k),

where the first inequality holds since |L(3)
lmn(ξ̄

(+)
k | ζ̂

(+)

k )−L
(3)
lmn(ξ̄

(−)
k | ζ̂

(−)

k )| ≤ 2BT

for l,m, n = 1, . . . , p− d by Assumption 3.4.

3.3.2 Almost Sure Convergence

In this subsection, we establish the almost sure convergence of θ̂k to the

optimum θ∗. For the convenience of the main convergence theorem below, we

first introduce some useful notation. For all k, let Gk = {∆0, . . . ,∆k}, ∆−T
k =

(∆−1
k )T , and Ω be the set of all possible outcomes of θ̂k. Define M as the set of

all middle points such that M = {. . . ,−5/2,−3/2,−1/2, 1/2, 3/2, 5/2, . . . }. Recall

that θ = [t1, · · · , tp] and for any θ′ = [t′1, · · · , t′p] ∈ Rp, denote M (θ′) = {θ ∈ Md ×

Rp−d where |ti − t′i| ≤ 1/2 for i = 1, . . . , p}. When all the variables are discrete

(d = p), M (θ′) is the set of middle points of all unit hypercubes containing θ′

such that M(θ′) has exactly one point if θ′ lies strictly within a unit hypercube

or at most 2p points if θ′ lies on the boundary of multiple unit hypercubes (Wang
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and Spall, 2011). When all the variables are continuous (d = 0), M(θ′) is

simply the unit hypercube centered at θ′. Below are some conditions used in

the convergence result.

Assumption 3.5 (Continuous Perturbation Vector). For all k and i, assume

that E[Π−2
ki ] ≤ κ2 for some constant κ2.

Assumption 3.6 (Bounded Differences). For all k, assume that E∆k [(L
(+)
k −

L
(−)
k )2] ≤ σ2

L and E∆k [(ε
(+)
k − ε(−)

k )2] ≤ σ2
ε for some constants σL and σε.

Assumption 3.7 (Step-size Sequences). {ak} and {ck} are sequences that ak, ck >

0 for all k; ak → 0, ck → 0 as k → ∞; further,

∞∑︂
k=0

ak = ∞; and
∞∑︂
k=0

a2k
c2k

< ∞, and, if 1 ≤ d ≤ p− 1,
∞∑︂
k=0

akc
2
k < ∞.

Assumption 3.8 (Iterate Boundedness). supk ∥θ̂k∥ < ∞ a.s.

Assumption 3.9 (Search Direction). For any θ′ ∈ Rp\{θ∗}, ḡ(θ)T (θ′ − θ∗) > 0

when θ ∈ M(θ′).

Remark 3.4. Assumptions 3.5–3.8 are standard conditions similar to those in

SPSA (see, e.g., Spall, 1992, Proposition 2 and Spall, 2005, Section 7.3). Al-

though the condition
∑︁∞

k=0 akc
2
k < ∞ in Assumption 3.7 is not needed when all

the variable are continuous (d = 0), or when all the variables are discrete (at

d = p, there is no ck), it is needed here to bound the bias term bk(θ̂k) for mixed

98



CHAPTER 3. MIXED SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION ALGORITHM

variables. This condition also appears in various other stochastic approxima-

tion algorithms (see, e.g., Pflug, 2012, Theorem 5.3 and Kushner and Yin, 2003,

Theorem 5.2.1). Assumption 3.9 is a generalization of the standard search direc-

tion condition for continuous problems (Spall, 2005, Section 4.3.2) and discrete

problems (Wang and Spall, 2011, Theorem 1). Section 3.3.3 below also pro-

vides a discussion on the connection of Assumption 3.9 to the concept of discrete

convexity.

We present the formal almost sure convergence of θ̂k for unconstrained

problems in Theorem 3.2 below. For constrained problems with a general ex-

plicit inequality constraint set G = {θ ∈ Zd × Rp−d : qj(θ) ≤ 0, j = 1, . . . , s},

one can consider adding projection steps to replace θ̂
(±)

k with ProjG(θ̂
(±)

k ) or add

the corresponding penalty functions to the original objective function. Similar

approaches that are designed for continuous problems have been investigated

in Sadegh (1997) and Wang and Spall (2008).

Theorem 3.2 (Almost Sure Convergence). Under Assumptions 3.1–3.9, we have

lim
k→∞

θ̂k = θ
∗ a.s.

Proof. We first rewrite the standard SA updating form (3.2) into a generalized
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Robbins-Monro algorithm,

θ̂k+1 = θ̂k − akĝk(θ̂k) = θ̂k − ak[ḡ(θ̂k) + bk(θ̂k) + ek(θ̂k)], (3.12)

where the error term ek(θ̂k) is defined as

ek(θ̂k) = ĝk(θ̂k)− E[ĝk(θ̂k) | θ̂k].

Using Assumption 3.8, there exists Ω1 ⊆ Ω such that P (Ω1) = 1 and {θ̂k(ω)}

is a bounded sequence for any ω ∈ Ω1. By the Bolzano-Weierstrass theorem,

{θ̂k(ω)} has at least one convergent subsequence denoted by {θ̂ks(ω)}. Let

θ′(ω) be the limiting point of this convergent subsequence such that lims→∞

θ̂ks(ω) = θ′(ω). Although different convergent subsequences generally have

different limit points, it is shown below that all the convergent subsequences

have the same limiting point θ∗, which implies that the sequence {θ̂k(ω)} must

converge to θ∗ almost surely.

Consider an arbitrary convergent subsequence {θ̂ks(ω)} with its limiting

point θ′(ω). For succinctness, we suppress the notation ω for the rest of the

proof. By the recursive relationship in (3.12), it is easy to get

θ′ − θ̂ks = −
∞∑︂

i=ks

ai[ḡ(θ̂i) + bi(θ̂i) + ei(θ̂i)] for s ∈ N. (3.13)

100



CHAPTER 3. MIXED SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION ALGORITHM

Note that {
∑︁m

i=k aiei(θ̂i)}m≥k is a martingale sequence since E[ek(θ̂k)|θ̂k] =

EFk [ek(θ̂k)] = 0. Then for any η > 0, Doob’s martingale inequality (Kushner

and Clark, 1978, pp. 27) implies

P(sup
m≥k

∥
m∑︂
i=k

aiei(θ̂i)∥ ≥ η) ≤ 1

η2
E[∥

∞∑︂
i=k

aiei(θ̂i)∥2] =
1

η2

∞∑︂
i=k

a2iE[∥ei(θ̂i)∥2], (3.14)

where the last equality is because for all i < j,

E[ei(θ̂i)
Tej(θ̂j)] = E[EFj ,Gj−1 [ei(θ̂i)

Tej(θ̂j)]] = E[ei(θ̂i)
TEFj [ej(θ̂j)]] = 0.

Since E(∥ĝi(θ̂i)∥2) = E(∥ei(θ̂i)∥2) + E(∥E(ĝi(θ̂i)|θ̂k)∥2), we can further bound

(3.14) as

1

η2

∞∑︂
i=k

a2iE(∥ei(θ̂i)∥2) ≤
1

η2

∞∑︂
i=k

a2iE(∥ĝi(θ̂i)∥2).

Using the definition of ĝi(θ̂i) in (3.1), we get

E(∥ĝi(θ̂i)∥2) = E[((L(+)
i − L

(−)
i )2 + (ε

(+)
i − ε(−)

i )2)(2Ci ⊙∆i)
−T (2Ci ⊙∆i)

−1]

+ 2E[(L(+)
i − L

(−)
i )(ε

(+)
i − ε(−)

i )(2Ci ⊙∆i)
−T (2Ci ⊙∆i)

−1], (3.15)

where the second term on the right-hand size equals 0, similar to (3.8). More-

over,

E[(2Ci ⊙∆i)
−T (2Ci ⊙∆i)

−1]
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= E[Λ−2
i1 + · · ·+ Λ−2

id + (2ciΠi1)
−2 + · · ·+ (2ciΠi,p−d)

−2]

≤ d+ (p− d)
κ2

4c2i
, (3.16)

where the last inequality is by Assumptions 3.1 and 3.5. To bound the first

term on the right-hand size of (3.15), we have

E[[(L(+)
i − L

(−)
i )2 + (ε

(+)
i − ε(−)

i )2](2Ci ⊙∆i)
−T (2Ci ⊙∆i)

−1]

= E[{E∆i [(L
(+)
i − L

(−)
i )2] + E∆i [(ε

(+)
i − ε(−)

i )2]}(2Ci ⊙∆i)
−T (2Ci ⊙∆i)

−1]

≤ (σ2
L + σ2

ε)

[︃
d+ (p− d)

κ2

4c2i

]︃
.

Therefore, after dropping the 1/η2 multiplier in (3.14), we have

∞∑︂
i=k

a2iE(∥ei(θ̂i)∥2) ≤
∞∑︂
i=k

a2iE(∥ĝi(θ̂i)∥2)

≤ (σ2
L + σ2

ε)

[︄
d

∞∑︂
i=k

a2i + (p− d)κ2

∞∑︂
i=k

a2i
c2i

]︄

< ∞,

which further implies limk→∞
∑︁∞

i=k a
2
iE(∥ei(θ̂i)∥2) = 0. Hence, letting k → ∞ on

both sides of (3.14) gives

lim
k→∞

P(sup
m≥k

∥
m∑︂
i=k

aiei(θ̂i)∥ ≥ η) = 0. (3.17)
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Using Theorem 4.1.1 in Chung (2001) on almost sure convergence, (3.17) im-

plies that there exists Ω2 ⊆ Ω such that P (Ω2) = 1 and lims→∞
∑︁∞

i=ks
aiei(θ̂i(ω)) =

0 for anyω ∈ Ω2. In addition, using the result bk(θ̂k) = O(c2k) from Theorem 3.1

and
∑︁∞

k=0 akc
2
k < ∞ from Assumption 3.7, it is easy to see that there exists

Ω3 ⊆ Ω such that P (Ω3) = 1 and lims→∞
∑︁∞

i=ks
aibi(θ̂i(ω)) = 0 for any ω ∈ Ω3.

Therefore, P (Ω1 ∩ Ω2 ∩ Ω3) = 1 and for any ω ∈ Ω1 ∩ Ω2 ∩ Ω3, the terms in

(3.13) satisfy

lim
s→∞

∞∑︂
i=ks

aibi(θ̂i(ω)) = 0 and lim
s→∞

∞∑︂
i=ks

aiei(θ̂i(ω)) = 0.

Together with lims→∞ θ̂ks(ω) = θ′(ω), the above implies

lim
s→∞

∞∑︂
i=ks

aiḡ(θ̂i(ω)) = 0. (3.18)

For any convergent subsequence {θ̂ks(ω)}, we now prove by contradiction

that the limiting point θ′(ω) is the optimal point θ∗. Suppose θ′(ω) is not θ∗.

Because lims→∞ θ̂ks(ω) = θ′(ω), it is known that for any δ > 0, there exists some

S > 0 such that ∥θ̂ks(ω) − θ′(ω)∥ < δ whenever s > S. Hence, for any s > S,

md(θ̂ks(ω)) ∈ M (θ′(ω)) and ḡ(md(θ̂ks(ω)))T (θ′(ω)−θ∗) > 0 by Assumption 3.9.

Since ḡ(θ̂ks(ω)) = ḡ(md(θ̂ks(ω))), we get ḡ(θ̂ks(ω))T (θ′(ω)−θ∗) > 0. Combining
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with lims→∞
∑︁∞

i=ks
ai = ∞ from Assumption 3.7, it gives

lim
s→∞

∞∑︂
i=ks

aiḡ(θ̂i(ω))T (θ′(ω)− θ∗) = ∞.

On the other hand, multiplying both sides of (3.18) by θ′(ω)− θ∗ implies

lim
s→∞

∞∑︂
i=ks

aiḡ(θ̂i(ω))T (θ′(ω)− θ∗) = 0,

leading to a contradiction. Therefore, for anyω ∈ Ω1∩Ω2∩Ω3, all the convergent

subsequences {θ̂ks(ω)} converge to θ∗.

Now suppose {θ̂k(ω)} does not converge to θ∗. In other words, there is some

η > 0 such that infinitely many θ̂k(ω) are at a distance at least η away from θ∗,

i.e., for all K ∈ N there is an k ≥ K such that ∥θ̂k(ω) − θ∗∥ ≥ η. Denote those

infinitely many θ̂k(ω) that are away from θ∗ as a subsequence {θ̂ks(ω)}. Since

{θ̂ks(ω)} is a bounded subsequence, the Bolzano-Weierstrass theorem implies

that {θ̂ks(ω)} must contain a convergent sub-subsequence {θ̂ksℓ
(ω)}. However,

note that {θ̂ksℓ
(ω)} does not converge to θ∗ by construction and hence violates

the conclusion that all the convergent subsequences converge to θ∗. Therefore,

by contradiction, we must have the sequence {θ̂k(ω)} converging and having

only one convergent point θ∗, i.e., limk→∞ θ̂k(ω) = θ∗ a.s.
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3.3.3 Discrete Convexity

To further understand Assumption 3.9, let us consider a special case, where

all variables are discrete (d = p) and {∆ki} are independent Bernoulli random

variables taking the values ±1 with equal probabilities (a common choice of

∆ki that satisfies Assumption 3.1). Under this special case, Assumption 3.9

provides some connections to the concept of discrete convexity, which is intro-

duced in the early 1970s for non-separable functions and provides a sufficient

condition for a local optimum to be a global optimum (Miller, 1971). Other def-

initions of discrete convex functions are discussed in Favati (1990); Fujishige

and Murota (2000), and Murota and Shioura (2001), where Miller’s discrete

convexity is shown to be the most general. When p = 1, any function satisfying

Miller’s discrete convexity also satisfies Assumption 3.9. When p > 1, there are

functions that satisfy both Miller’s discrete convexity and Assumption 3.9, but

it is possible to have functions that satisfy only one or the other.

For any discrete function L(·), consider the following three general contin-

uous extensions: i) a separable function L(θ) =
∑︁p

i=1 Li(ti) with Li(·) being

the linear interpolation function within the i-th dimension; ii) a piecewise lin-

ear function that is linear within each unit hypercube; and iii) a quadratic

function L(θ) = θTAθ + bTθ + c with A, b, and c being a matrix, vector, and

scalar, respectively. Assumption 3.9 is guaranteed if the following correspond-

ing cases hold: i) L(·) is a strictly convex separable function with θ∗ ∈ Zp; ii)
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L(·) is strictly convex and linear in each unit hypercube (Hill et al., 2004); and

iii) L(θ) = θTAθ + bTθ + c, where A is a symmetric strictly diagonal domi-

nant matrix with positive diagonal values. Further details on the special cases

above can be found in Wang and Spall (2011) and Wang (2013).

3.3.4 Constrained Problems

Most discussion here pertains to the unconstrained problem. However,

MSPSA can also be used on some constrained problems, although the above

theorems do not directly apply with constraints. In particular, suppose li ≤

ti ≤ ui with li, ui ∈ Z for i = 1, . . . , d and li, ui ∈ R for i = d + 1, . . . , p. Under

this type of constrained case, the sequence {θ̂k}k≥0 generated by MSPSA could

be outside the domain. Thus we need to modify the general algorithm to han-

dle the bounded domain case. Let ψ(θ) = [ψ1(t1), . . . ,ψp(tp)]
T be the projection

mapping θ back to the set that is bounded by li and ui such that

ψi(ti) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

li if ti < li

ti if li ≤ ti ≤ ui

ui − τ if ti > ui and i ≤ d

ui if ti > ui and i > d+ 1

,
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with 0 < τ < ui − li for all i being a very small positive number (e.g., τ = 10−10).

The term τ is introduced here to make sure that for i = 1, . . . , d, the i-the

component in md(ψ(θ̂k)) is bounded by ui since ⌊ui⌋ + 0.5 > ui but ⌊ui − τ⌋ +

0.5 < ui. Besides md(ψ(θ̂k)), we also need to project θ̂
(±)

k into the feasible

domain if necessary to ensure proper function measurements. Therefore, θ̂
(±)

k

is modified to θ̂
(±)

k = ProjΘ(md(ψ(θ̂k)) ± Ck ⊙ ∆k) and Step 2 of the general

MSPSA algorithm in Section 3.2 becomes

Step 2 (Modified loss function evaluation): Compute the simultaneous per-

turbation estimates around the current estimate θ̂k,

θ̂
(+)

k = ProjΘ(md(ψ(θ̂k)) +Ck ⊙∆k),

θ̂
(−)

k = ProjΘ(md(ψ(θ̂k))−Ck ⊙∆k),

and obtain two noisy measurements of the loss function ℓ(θ̂
(+)

k ,v
(+)
k ) and

ℓ(θ̂
(−)

k ,v
(−)
k ).

Note that θ̂k is still allowed to be outside the feasible domain since no func-

tion values are collected directly at θ̂k. We deliberately make θ̂k unconstrained

by skipping the unnecessary projections to avoid any potential information

loss.
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3.3.4.1 Binary Problems

Let d = p and Θ = {0, 1}p. We now consider the important special case

of binary problems. Similar to the mixed-variable problems, the binary prob-

lems also have many practical applications, such as the feature selection prob-

lems (Aksakalli and Malekipirbazari, 2016), weighted max-cut problems (Fer-

rez et al., 2005), and a survey on the binarization of meta-heuristics designed

for continuous optimization (Crawford et al., 2017), where the search space is

transformed into a binary space.

Theorem 3.3. Given L(·) is defined on Θ = {0, 1}p with a unique minimal

point θ∗, assume that i) L(θ) is bounded for any θ ∈ Θ; ii) for all k and i, ∆ki

is independent and identically distributed following a Bernoulli distribution

taking values ±1 with equal probabilities; iii) for all k, EFk,∆k [ε
(+)
k − ε(−)

k ] = 0

and there exists some constants σ2
ε such that E∆k [(ε

(+)
k − ε(−)

k )2] ≤ σ2
ε; iv) {ak} is

a sequence that ak > 0; ak → 0 as k → ∞;
∑︁∞

k=0 ak = ∞; and
∑︁∞

k=0 a
2
k < ∞; v) for

any θ′ ∈ [0, 1]p\{θ∗}, ḡ(1p/2)
T (θ′ − θ∗) > 0, where 1p = [1, . . . , 1]T . Then

ProjΘ
(︂
lim
k→∞

θ̂k

)︂
= θ∗ a.s.

Proof. Following similar arguments in the proof of Theorem 3.2, we have

θ̂k = θ̂0 −
k∑︂

i=0

ai[ḡ(θ̂i) + bk(θ̂i) + ei(θ̂i)]. (3.19)
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Denote sgn(·) as the sign function applied to each component of the argument

vector. It is easy to see that sgn(θ′ − θ∗) = 1p − 2θ∗ ∈ {−1, 1}p for any θ′ ∈

[0, 1]p\{θ∗} and sgn(ḡ(1p/2)) = 1p − 2θ∗. Combining with limk→∞
∑︁k

i=0 ai = ∞,

we have for all j,

lim
k→∞

k∑︂
i=0

ai[ḡ(m)]j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ a.s. if t∗j = 1,

−∞ a.s. if t∗j = 0.

For the last two terms on the right-hand side (3.19), it is straightforward

to check that both {
∑︁k

i=0 aibi(θ̂i)}k≥0 and {
∑︁k

i=0 aiei(θ̂i)}k≥0 are martingales.

Hence by martingale convergence theorem and the arguments analogous to

(3.14) in Theorem 3.2, both the martingale sequences are almost surely finite

in the limit. Therefore, we conclude from (3.19) that for all j,

lim
k→∞

θ̂kj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ a.s. if t∗j = 1,

−∞ a.s. if t∗j = 0,

and ProjΘ(limk→∞ θ̂k) = θ
∗ a.s.

Because assumption v) in Theorem 3.3 is rather technical, we provide below

a sufficient and easier to understand condition. For any i, denote Ai = {∆k |

∆ki = 1 − 2t∗i } and Bi = {∆k | ∆ki = −1 + 2θ∗i }. Note that Ai ∪ Bi = {∆k |

∆kj = ±1 for all j} contains all the possible outcomes for ∆k. Since L(1p/2 +
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∆k/2)− L(1p/2−∆k/2) = −[L(1p/2 + (−∆k/2))− L(1p/2− (−∆k/2))] holds for

every possible outcome of ∆k, we have for any k and i,

ḡ(1p/2) = E
[︃
L(1p/2 +∆k/2)− L(1p/2−∆k/2)

∆k

]︃
=

1

2p

∑︂
∆k∈Ai∪Bi

L(1p/2 +∆k/2)− L(1p/2−∆k/2)

∆k

=
1

2p−1

∑︂
∆k∈Ai

L(1p/2 +∆k/2)− L(1p/2−∆k/2)

∆k

.

Recall that sgn(ḡ(1p/2)) = 1− 2θ∗, then for any i, the condition

ḡi(1p/2)(1− 2θ∗i ) =
1

2p−1

∑︂
∆k∈Ai

L(1p/2 +∆k/2)− L(1p/2−∆k/2)

1− 2θ∗i
(1− 2θ∗i )

=
1

2p−1

∑︂
∆k∈Ai

[L(1p/2 +∆k/2)− L(1p/2−∆k/2)] > 0,

is equivalent to
∑︁

∆k∈Ai
L(1p/2−∆k/2) <

∑︁
∆k∈Ai

L(1p/2+∆k/2). Since {1p/2−

∆k/2 | ∆k ∈ Ai} = {θ ∈ {0, 1}p | ti = t∗i } and {1p/2 + ∆k/2 | ∆k ∈ Ai} = {θ ∈

{0, 1}p | ti ̸= t∗i }, we conclude that in the binary case, iv) is satisfied whenever

the sum of loss function values at the points with i-th component equaling to

θ∗i has a smaller value than the sum of the loss function values at the points

with i-th component not equaling to θ∗i for all i. A sufficient condition is to

have L(θ) < L(θ′) whenever θ and θ′ are such that there are more components

ti = t∗i than t′i = t∗i .
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3.4 Rate of Convergence

In this section, we discuss the rate of convergence of MSPSA by deriving a

big-O bound to the MSE for θ̂k. The bound allows for broad objective compari-

son of MSPSA with other algorithms, not tied to specific problem settings. For

general discrete stochastic algorithms, if θ∗ is unique and the sequence {θ̂k}

contains only integer points, it is natural to study the rate of P(θ̂k ̸= θ∗) going

to 0. However, since the points in the sequence {θ̂k} generated by MSPSA are

generally not integer points, we study the mean-square error E[∥θ̂k − θ∗∥2] in-

stead. In the special case of Θ = Zp, since ∥θ̂k−θ∗∥2 ≥ 1/4 when ProjΘ(θ̂k) ̸= θ∗,

then

E[∥θ̂k − θ∗∥2] ≥ 02P(ProjΘ(θ̂k) = θ
∗) +

1

4
P(ProjΘ(θ̂k) ̸= θ∗)

=
1

4
P(ProjΘ(θ̂k) ̸= θ∗),

which provides a way to compare with other discrete optimization algorithms.

An extensive discussion on how the rate of convergence results can be used to

make formal and theoretical comparisons to random search methods such as

stochastic ruler and stochastic comparison can be found in Wang (2013, Chap-

ter 5).
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3.4.1 Explicit Upper Bound for Finite-Sample Performance

In this subsection, we derive an explicit upper bound for the mean-squared

error E[∥θ̂k−θ∗∥2] under both the finite-sample and asymptotic settings. Before

showing the main theorem, let us first consider the relationship of the mean-

squared errors between two consecutive iterations. From the main updating

formula θ̂k+1 = θ̂k − akĝk(θ̂k), we can express E[∥θ̂k+1 − θ∗∥2] as

E[∥θ̂k+1−θ∗∥2] = E[∥θ̂k−θ∗∥2]−2akE[(θ̂k−θ∗)T ĝk(θ̂k)]+a2kE[∥ĝk(θ̂k)∥2]. (3.20)

After recursively applying (3.20), we can decompose E[∥θ̂k −θ∗∥2] into an error

due to the initial condition and an error due to the cumulative effect. With the

following two assumptions on gain sequences and search direction, we present

the formal finite-sample bound result in Theorem 3.4 below.

Assumption 3.10 (Step-size Sequences). For all k, assume that the gain se-

quences have the standard form ak = a/(k + 1 + A)α and ck = c/(k + 1)γ, where

a, c,α,γ > 0, A ≥ 0, and 3γ− α/2 ≥ 0.

Assumption 3.11 (Search Direction). For all k, there exists some positive con-

stant λ such that 1− λak > 0, and E[ḡ(θ̂k)
T (θ̂k − θ∗)] ≥ λE[∥θ̂k − θ∗∥2].

Remark 3.5. Assumption 3.10 provides additional restrictions on the gain se-

quences beyond the general requirements in Assumption 3.7. In Assumption 3.11,

the condition E[ḡ(θ̂k)
T (θ̂k − θ∗)] ≥ λE[∥θ̂k − θ∗∥2] is a stochastic analogue of the
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definition of strong convexity for continuous case. When all the variables are

continuous (d = 0), we have ḡ(θ̂k) = g(θ̂k) as discussed at the beginning of

Section 3.3. Then Assumption 3.11 can be further reduced to E[g(θ̂k)
T (θ̂k −

θ∗)] ≥ λE[∥θ̂k − θ∗∥2], which is weaker than the strong convexity assumption

g(θ)T (θ − θ∗) ≥ λ∥θ − θ∗∥2 (equivalently, H(θ) ⪰ λI, i.e., the smallest eigen-

value of H(θ) is bounded below by λ for any θ (Zhou, 2018)). The condition

1−λak > 0 for all k is to guarantee a meaningful recursive relationship between

E[∥θ̂k+1 − θ∗∥2] and E[∥θ̂k − θ∗∥2], as shown later in (3.26). Since ak → 0, it is

easy to find a large K such that 1 − λak > 0 holds for all k ≥ K. By relabeling

aK as a0, we can also guarantee the condition holds for all k.

Theorem 3.4 (Finite-Sample Bound). Under Assumptions 3.1–3.8, 3.10, and

3.11, we have for all k

E[∥θ̂k − θ∗∥2] ≤ PkE[∥θ̂0 − θ∗∥2]⏞ ⏟⏟ ⏞
initialization error

+
∥U∥2

λ

a0c
4
0P0

a1c41P1

∫︂ k

0

axc
4
x

Pk

Px

dx⏞ ⏟⏟ ⏞
bias error from gradient estimate

+ (σ2
L + σ2

ε)
a20P0

a21P1

⎡⎢⎢⎢⎢⎢⎣ d

∫︂ k

0

a2x
Pk

Px

dx⏞ ⏟⏟ ⏞
cumulative error

from discrete comp.

+(p− d)κ2

∫︂ k

0

a2x
4c2x

Pk

Px

dx⏞ ⏟⏟ ⏞
cumulative error

from continuous comp.

⎤⎥⎥⎥⎥⎥⎦ ,

(3.21)
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where

Px =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{︁
λa
1−α [(1 + A)1−α − (x+ 1 + A)1−α]

}︁
if α ̸= 1,

(︁
1+A

x+1+A

)︁λa if α = 1,

(3.22)

Remark 3.6. From (3.21), we see that the explicit upper bound for finite-sample

performance is decomposed into an error due to the initial condition and an

error due to the cumulative effect, which further represents a weighted average

between the discrete and continuous components. It can be checked that Px is

continuous in terms of α using L’Hôpital’s rule (Wang, 2013, Corollary 3.1).

Corollary 3.1 below gives an alternative form of the bound in (3.21) based on

solving for the indicated integrals.

Proof. From the main updating formula θ̂k+1 = θ̂k − akĝk(θ̂k), we can express

E[∥θ̂k+1 − θ∗∥2] as (3.20). By adding and subtracting 2akE[(θ̂k − θ∗)T ḡ(θ̂k)] to

the right-hand side of (3.20) and taking expectations on both sides, we have

E[∥θ̂k+1 − θ∗∥2] = E[∥θ̂k − θ∗∥2]− 2akE[(θ̂k − θ∗)T ḡ(θ̂k)]

+ 2akE[(θ̂k − θ∗)T (ḡ(θ̂k)− ĝk(θ̂k))] + a2kE[∥ĝk(θ̂k)∥2]

≤ E[∥θ̂k − θ∗∥2]− 2λakE[∥θ̂k − θ∗∥2]

+ 2akE[(θ̂k − θ∗)T (ḡ(θ̂k)− ĝk(θ̂k))] + a2kE[∥ĝk(θ̂k)∥2]. (3.23)

After dropping the 2ak multiplier, the third term on the right-hand side of (3.23)
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is bounded as

E[(θ̂k − θ∗)T (ḡ(θ̂k)− ĝk(θ̂k))] ≤ E
[︃
∥
√
λ(θ̂k − θ∗)∥

⃦⃦⃦⃦
1√
λ
[ḡ(θ̂k)− ĝk(θ̂k)]

⃦⃦⃦⃦]︃
≤ λ

2
E[∥θ̂k − θ∗∥2] + 1

2λ
E[∥ḡ(θ̂k)− ĝk(θ̂k)∥2]

≤ λ

2
E[∥θ̂k − θ∗∥2] + 1

2λ
∥U∥2c4k, (3.24)

where the first inequality is due to Cauchy-Schwarz inequality, the second in-

equality is due to the relationship [∥
√
λ(θ̂k −θ∗)∥−∥[ḡ(θ̂k)− ĝk(θ̂k)]/

√
λ∥]2 ≥ 0,

and the last inequality is due to E[∥ḡ(θ̂k) − ĝk(θ̂k)∥]2 ≤ ∥U∥2c4k from Theorem

3.1. From (3.16), we have that E[(2Ck ◦∆k)
−T (2Ck ◦∆k)

−1] ≤ d+(p−d)κ2/(4c
2
k).

Hence, the last term on the right-hand side of (3.23) is bounded as

a2kE[∥ĝk(θ̂k)∥2] ≤ (σ2
L + σ2

ε)a
2
k

[︃
d+ (p− d)

κ2

4c2k

]︃
. (3.25)

Plugging (3.24) and (3.25) into (3.23), the recursive step k to k + 1 is bounded

as

E[∥θ̂k+1 − θ∗∥2] ≤ (1− λak)E[∥θ̂k − θ∗∥2] + ∥U∥2

λ
akc

4
k

+ (σ2
L + σ2

ε)a
2
k

[︃
d+ (p− d)

κ2

4c2k

]︃
. (3.26)
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Denote Rk = 1− λak. After recursively applying (3.26), we get

E[∥θ̂k − θ∗∥2] ≤

(︄
k−1∏︂
i=0

Ri

)︄
E[∥θ̂0 − θ∗∥2] + ∥U∥2

λ

k−1∑︂
i=0

(︄
k−1∏︂

j=i+1

Rj

)︄
aic

4
i

+ (σ2
L + σ2

ε)
k−1∑︂
i=0

(︄
k−1∏︂

j=i+1

Rj

)︄
a2i

[︃
d+ (p− d)

κ2

4c2i

]︃
. (3.27)

The rest of the proof is to bound every term on the right-hand side of (3.27) by

showing:

i)
∏︁k−1

i=0 Ri ≤ Pk,

ii)
∑︁k−1

i=0 (
∏︁k−1

j=i+1Rj)aic
4
i ≤ a0c

4
0P0/(a1c

4
1P1)

∫︁ k

0
axc

4
xPk/Pxdx,

iii)
∑︁k−1

i=0 (
∏︁k−1

j=i+1Rj)a
2
i ≤ a20P0/(a

2
1P1)

∫︁ k

0
a2xPk/Pxdx,

iv)
∑︁k−1

i=0 (
∏︁k−1

j=i+1Rj)ai/(4c
2
i ) ≤ a20P0/(a

2
1P1)

∫︁ k

0
a2xPk/(4c

2
xPx)dx.

Proof of i): Since P0 = 1, it is sufficient to show that Pk+1 ≥ PkRk for all k.

The second-order Taylor expansion implies that when α ̸= 1,

exp

(︃
− λa

1− α
(k + 1 + A)1−α

)︃[︃
1− λa

(k + 1 + A)α

]︃
≤ exp

(︃
− λa

1− α
(k + 1 + 1 + A)1−α

)︃
,

and when α = 1,

1

(k + 1 + A)λa

[︃
1− λa

k + 1 + A

]︃
≤ 1

(k + 1 + 1 + A)λa
,

both of which are the same as Pk+1 ≥ PkRk.
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Proof of ii): Because the proof of i) implies
∏︁k−1

j=i+1 Rj ≤ Pk/Pi+1 for all i, it

is sufficient to show

k−1∑︂
i=0

aic
4
i

Pk

Pi+1

≤ a0c
4
0

a1c41

P0

P1

∫︂ k

0

axc
4
x

Pk

Px

dx

for all k, where we generalizes the notations of ak and ck for k ∈ Z≥0 to ax =

a/(x + 1 + A)α and cx = c/(x + 1)γ for x ∈ R≥0. Decomposing
∫︁ k

0
axc

4
xPk/Pxdx =∑︁k−1

i=0

∫︁ i+1

i
axc

4
xPk/Pxdx, we then only need to show

akc
4
k

1

Pk+1

≤ a0c
4
0

a1c41

P0

P1

∫︂ k+1

k

axc
4
x

1

Px

dx

for all k. Because the mean value theorem for integrals implies
∫︁ k+1

k
axc

4
x/Pxdx =

ak′c
4
k′/Pk′ for some k′ ∈ [k, k + 1], it is equivalent to show

akc
4
k

ak′c4k′

Pk′

Pk+1

≤ a0c
4
0

a1c41

P0

P1

. (3.28)

For the first term on the right-hand side of (3.28),

akc
4
k

ak′c2k′
=

(︃
k′ + 1 + A

k + 1 + A

)︃α(︃
k′ + 1

k + 1

)︃4γ

≤
(︃
1 + 1 + A

1 + A

)︃α(︃
1 + 1

1

)︃4γ

=
a0c

4
0

a1c41
. (3.29)
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For the second term on the right-hand side of (3.28), when α ̸= 1,

Pk′

Pk+1

= exp

(︃
λa

1− α
[︁
(k + 1 + 1 + A)1−α − (k′ + 1 + A)1−α

]︁)︃
≤ exp

(︃
λa

1− α
[︁
(1 + 1 + A)1−α − (1 + A)1−α

]︁)︃
=

P0

P1

, (3.30)

where the inequality is due to the following two Taylor expansions:

(k + 1 + 1 + A)1−α = (k′ + 1 + A)1−α +
(1− α)(k + 1− k′)

(1 + A+ x)α
for some x ∈ [k′, k + 1],

(1 + 1 + A)1−α = (1 + A)1−α +
(1− α)

(1 + A+ x)α
for some x ∈ [0, 1],

and when α = 1,

Pk′

Pk+1

=

(︃
k + 1 + 1 + A

k′ + 1 + A

)︃λa
≤
(︃
1 + 1 + A

1 + A

)︃λa
=

P0

P1

. (3.31)

Therefore, (3.28) holds by combining (3.29)–(3.31).

Proof of iii) and iv): Similarly, observe that for any k′ ∈ [k, k + 1],

a2k
a2k′

=

(︃
k′ + 1 + A

k + 1 + A

)︃2α

≤
(︃
1 + 1 + A

1 + A

)︃2α

=
a20
a21

, (3.32)

and

a2kc
2
k′

a2k′c
2
k

=

(︃
k′ + 1 + A

k + 1 + A

)︃2α(︃
k + 1

k′ + 1

)︃2γ

≤
(︃
1 + 1 + A

1 + A

)︃2α

=
a20
a21

. (3.33)
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Combining (3.30)–(3.33), we have that iii) and iv) hold.

Finally, plugging the results of i)–iv) into (3.27) completes the proof.

In Corollary 3.1 below, we provide a finite-sample bound by solving for the

integrals in Theorem 3.4 explicitly.

Corollary 3.1 (Explicit Finite-Sample Bound). Given the Assumptions of The-

orem 3.4, for all k,

E[∥θ̂k−θ∗∥2] ≤ PkE[∥θ̂0−θ∗∥2]+ ∥U∥2

λ

a0c
4
0P0

a1c41P1

IBk +(σ2
L+σ

2
ε)
a20P0

a21P1

[dIDk +(p−d)κ2I
C
k ],

where

IBk =
ac4

λa− 4γ(1 + A)α

[︃
1

(k + 1)4γ
− Pk

]︃
,

IDk =
a2

λa− α
(1+A)1−α

[︃
1

(k + 1 + A)α
− Pk

(1 + A)α

]︃
,

ICk =
a2

4c2
[︂
λa− α−2γ

(1+A)1−α

]︂ [︃ 1

(k + 1 + A)α−2γ
− Pk

(1 + A)α−2γ

]︃
.

Remark 3.7. The superscripts B,D,C in IBk , I
D
k , ICk are used to indicate the in-

tegrals in (3.21) pertaining to the bias term, the discrete components, and the

continuous components, respectively.

Proof. Corollary 3.1 shows that to get a computable finite-sample bound on the

MSE, it is sufficient to bound the integrals in Theorem 3.4. The values of k′ in

each use below are generally different.
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i) When α ̸= 1, integration by parts implies

∫︂ k

0

λa

(x+ A+ 1)α(x+ 1)4γPx

dx =
1

(k + 1)4γPk

− 1 +

∫︂ k

0

4γ

(x+ 1)1+4γPx

dx, (3.34)

where the mean value theorem on the last integral implies

∫︂ k

0

4γ

(x+ 1)1+4γPx

dx =
4γ(k′ + A+ 1)α

(k′ + 1)

∫︂ k

0

1

(x+ A+ 1)α(x+ 1)4γPx

dx (3.35)

for some k′ ∈ [0, k]. Plugging (3.35) into (3.34) and combining the integrals

yields

∫︂ k

0

axc
4
x

Pk

Px

dx =

∫︂ k

0

ac4

(x+ 1 + A)α(x+ 1)4γ
Pk

Px

dx =
ac4

λa− 4γ(k′+A+1)α

k′+1

[︃
1

(k + 1)4γ
− Pk

]︃
.

When α = 1, applying similar integration by parts approach on
∫︁ k

0
axc

4
xPk/Pxdx

gives

∫︂ k

0

axc
4
x

Pk

Px

dx =

∫︂ k

0

ac4(x+ 1 + A)λa−1

(1 + A)λa(x+ 1)4γ
Pkdx =

ac4

λa− 4γ(k′+A+1)
k′+1

[︃
1

(k + 1)4γ
− Pk

]︃

for some k′ ∈ [0, k]. Hence,
∫︁ k

0
axc

4
xPk/Pxdx ≤ Ibk holds for 1/2 < α ≤ 1,

ii) When α ̸= 1, integration by parts implies

∫︂ k

0

λa

(x+ 1 + A)2αPx

dx =
1

(k + 1 + A)αPk

− 1

(1 + A)α
+

∫︂ k

0

α

(x+ 1 + A)1+αPx

dx,

(3.36)
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where mean value theorem on the last integral implies

∫︂ k

0

α

(x+ 1 + A)1+αPx

dx =
α

(k′ + 1 + A)1−α

∫︂ k

0

1

(x+ 1 + A)2αPx

dx (3.37)

for some k′ ∈ [0, k]. Plugging (3.37) into (3.36) and combining the integrals

yields

∫︂ k

0

a2x
Pk

Px

dx =

∫︂ k

0

a2

(x+ 1 + A)2α
Pk

Px

dx =
a2

λa− α
(k′+1+A)1−α

[︃
1

(k + 1 + A)α
− Pk

(1 + A)α

]︃
.

When α = 1, direct evaluation of
∫︁ k

0
a2xPk/Pxdx gives

∫︂ k

0

a2x
Pk

Px

dx =

∫︂ k

0

a2(x+ 1 + A)λa−2

(1 + A)λa
Pkdx =

a2

λa− 1

[︃
1

k + 1 + A
− Pk

1 + A

]︃
.

Hence,
∫︁ k

0
a2xPk/Pxdx ≤ Idk holds for 1/2 < α ≤ 1.

iii) Recall that β = α− 2γ and when α ̸= 1, integration by parts implies

∫︂ k

0

λa

(x+ 1 + A)α+βPx

dx =
1

(k + 1 + A)βPk

− 1

(1 + A)β
+

∫︂ k

0

β

(x+ 1 + A)1+βPx

dx,

(3.38)

where mean value theorem on the last integral implies

∫︂ k

0

β

(x+ 1 + A)1+βPx

dx =
β

(k′ + 1 + A)1−α

∫︂ k

0

1

(x+ 1 + A)α+βPx

dx, (3.39)

for some k′ ∈ [0, k]. Plugging (3.39) into (3.38) and combining the integrals
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yields

∫︂ k

0

a2x
c2x

Pk

Px

dx ≤
∫︂ k

0

a2

4c2(x+ 1 + A)α+β
Pk

Px

dx

=
a2

4c2
[︂
λa− β

(k′+1+A)1−α

]︂ [︃ 1

(k + 1 + A)β
− Pk

(1 + A)β

]︃
.

When α = 1, direct evaluation of
∫︁ k

0
a2xPk/(4c

2
xPx)dx gives

∫︂ k

0

a2x
4c2x

Pk

Px

dx ≤
∫︂ k

0

a2(x+ 1 + A)λa−2+2γ

4c2(1 + A)λa
Pkdx

=
a2

4c2 [λa− (1− 2γ)]

[︃
1

(k + 1 + A)1−2γ
− Pk

(1 + A)1−2γ

]︃
.

Hence,
∫︁ k

0
a2xPk/(4c

2
xPx)dx ≤ Ick holds for α ̸= 1.

3.4.2 Asymptotic Performance

Following the discussion of the upper bounds for finite-sample performance

in Theorem 3.4 and Corollary 3.1, we now consider the asymptotic performance

in the big-O sense. For all sufficiently large k, we have

Pk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(︁
k−λa)︁ if α = 1,

O
(︁
exp

(︁
− λa

1−αk
1−α)︁)︁ if α ̸= 1.

(3.40)
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Denote β = α− 2α. Plugging (3.40) into Corollary 3.1, we have

E[∥θ̂k − θ∗∥2]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(k−λa) +O(k−4γ) + dO(k−1) + (p− d)O(k−(1−2γ)) if α = 1,

O
(︁
exp

(︁
− λa

1−αk
1−α)︁)︁+O(k−4γ) + dO(k−α) + (p− d)O(k−β) if α ̸= 1.

Since the exponential term O(exp(−λak1−α/(1−α))) decreases much faster than

other terms, we further simplify E[∥θ̂k − θ∗∥2] to

E[∥θ̂k − θ∗∥2] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(k−λa) +O(k−4γ) + dO(k−1) + (p− d)O(k−(1−2γ)) if α = 1,

O(k−4γ) + dO(k−α) + (p− d)O(k−β) if α ̸= 1.

Because the discussion only pertains to the case where k is sufficiently large

and ak → 0 as k → ∞, we can choose a relatively large a such that λa > 1 while

the constraint 1 − λak > 0 in Assumption 3.11 is still satisfied. Therefore, we

can combine the two cases above to get

E[∥θ̂k − θ∗∥2] = O(k−4γ) + dO(k−α) + (p− d)O(k−β). (3.41)

Using the constraints on the values of α and γ in Assumption 3.10, we see that

the convergence rate of E[∥θ̂k −θ∗∥2] going to 0 is maximized by choosing α = 1

and γ = 1/6. This optimal convergence rate is consistent with results in SPSA
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(Spall, 1992) and DSPSA (Wang and Spall, 2013).

3.5 Comparison with DSPSA and SPSA

3.5.1 DSPSA: Fully Discrete Case

When all the variables are discrete (d = p) as discussed in Remark 3.3,

ĝk(θ̂k) is unbiased for all k, i.e., bk(θ̂k) = E[ĝk(θ̂k)− ḡ(θ̂k)|θ̂k] = 0. The recursive

formula in (3.23) becomes

E[∥θ̂k+1 − θ∗∥2] ≤ (1− 2λak)E[∥θ̂k − θ∗∥2] + p(σ2
L + σ2

ε)a
2
k, (3.42)

where the multiplier for E[∥θ̂k−θ∗∥2] is no longer 1−λak since the inner product

term 2akE[(θ̂k − θ∗)T (ḡ(θ̂k)− ĝk(θ̂k))] in (3.23) equals 0. Denote

PD
x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{︁
2λa
1−α [(1 + A)1−α − (x+ 1 + A)1−α]

}︁
if 1/2 < α < 1,

(︁
1+A

x+1+A

)︁2λa if α = 1,

and assume E[Λ−2
ki ] = τ2Λ for all k and i. Following the proofs in Theorem 3.4,

we can solve (3.42) recursively to get

E[∥θ̂k − θ∗∥2] ≤ PD
k E[∥θ̂0 − θ∗∥2] + pτ2Λ(σ

2
L + σ2

ε)
a20P

D
0

a21P
D
1

∫︂ k

0

a2x
PD
k

PD
x

dx, (3.43)
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which is identical to the finite-sample upper bound result for DSPSA (Wang

and Spall, 2013, Theorem 1). Furthermore, solving the integral term in (3.43),

we get

E[∥θ̂k − θ∗∥2] ≤ PD
k E[∥θ̂0 − θ∗∥2]

+ pτ2Λ(σ
2
L + σ2

ε)
a20P

D
0

a21P
D
1

a2

2aλ− α
(k′+1+A)1−α

[︃
1

(k + 1 + A)α
− PD

k

(1 + A)α

]︃

for some k′ ∈ [0, k], which is identical to the finite-sample upper bound result

for DSPSA (Wang and Spall, 2013, Corollary 1).

3.5.2 SPSA: Fully Continuous Case

When all the variables are continuous (d = 0), we have ḡ(θ̂k) = g(θ̂k) and

Assumption 3.11 reduced to E[g(θ̂k)
T (θ̂k −θ∗)] ≥ λE[∥θ̂k −θ∗∥2] for all k as dis-

cussed in the Remark 3.5. Following the assumptions of SPSA in Spall (1992),

let the eigenvalues of H(θ∗) be λ1 ≥ · · · ≥ λp > 0,E[Π2
ki] = σ2

Π and E[Π−2
ki ] = τ2Π

for all k and i. Given that kβ/2(θ̂k − θ∗) is asymptotically normally distributed

(Spall, 1992, Proposition 2), it is sufficient to show that kβ∥θ̂k − θ∗∥2 is uni-

formly integrable (Laha and Rohatgi, 1979, p. 138) to achieve the asymptotic

mean-squared error E[∥θ̂k −θ∗∥2] as k → ∞. The note after Spall (1992, Propo-

sition 2) also discusses the requirement of uniform integrability, but it was not

explicitly shown. Note that it is reasonable to expect that λ ≈ λp for sufficiently
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large k since θ̂k → θ∗ a.s. and H(θ̂k) → H(θ∗) a.s.

Following the proof of Theorem 3.4 and the discussion in Section 3.4.2, we

have E[∥θ̂k − θ∗∥2] = O(k−4γ) +O(k−β) from (3.41) and hence

kβE[∥θ̂k − θ∗∥2] = O(kα−6γ) +O(1).

Because a−6γ ≤ 0 from Assumption 3.10 , we must also have kβE[∥θ̂k−θ∗∥2] <

∞, i.e., kβ∥θ̂k − θ∗∥2 is uniformly integrable. Therefore, we have as k → ∞

kβE[∥θ̂k − θ∗∥2] → ∥µ∥2 + τ2Πσ2
ε

a2

4c2

p∑︂
i=1

1

2aλi − β+

, (3.44)

where β+ = β if α = 1 and β+ = 0 if α < 1, and

∥µ∥2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 3γ− α/2 > 0,

a2c4∥(aH(θ∗)− 1
2
β+I)

−1T (θ∗)∥2 if 3γ− α/2 = 0,

where the i-th component of T (θ∗) is Ti(θ
∗) = σ2

Π[L
(3)
iii (θ

∗)+3
∑︁p

j=1,j ̸=i L
(3)
ijj(θ

∗)]/6.

Note that the terms L
(3)
ijl , i, j, l all distinct, do not appear in ∥µ∥2 because the

corresponding E[∆i∆j∆l/∆i] = 0. Asymptotically, we see that both (3.41) and

(3.44) imply that E[∥θ̂k − θ∗∥2] = O(k−β).

It is also worth noting that, when all the variables are continuous, there is

no explicit differentiability requirement on the loss function. Hence, the con-
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vergence results can also be applied to non-differentiable optimization prob-

lems, which is related to the work in He et al. (2003) that uses convex analysis

to establish convergence of SPSA for non-differentiable loss function.

3.6 Numerical Study

3.6.1 Skewed-quartic Loss

In this section, we carry out a numerical experiment to check the finite-

sample bound in Corollary 3.1. Consider the following skewed-quartic loss

function (Spall, 2005, Section 6.7),

L(θ) = θTBTBθ+ 0.1

p∑︂
i=1

(Bθ)3i + 0.01

p∑︂
i=1

(Bθ)4i , (3.45)

where pB is an upper triangular matrix of 1’s and (Bθ)i represents the i-th

component of the vector Bθ. The skewed quartic loss function (3.45) has a

unique optimal value L(θ∗) = 0 at θ∗ = 0 and it has been extensively tested in

recent literature (Spall, 2005; Wang and Spall, 2011, 2013; Wang et al., 2018b).

To examine the performance in high-dimensional and noisy loss measurement

environment, we set p = 100 with Θ = Z50 ×R50 and let y(θ) = L(θ) + ε(θ) with

i.i.d. ε(θ) ∼ N (0, 25). We consider three algorithms, the proposed MSPSA, local

random search (Spall, 2005, Chapter 2), and stochastic ruler (Yan and Mukai,

1992), to minimize (3.45) with initial estimate θ̂0 = 1100, where 1p denotes the
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p-dimensional all-ones vector. Although the use of stochastic ruler for discrete

stochastic optimization has been discussed in Yan and Mukai (1992) and Al-

refaei and Andradóttir (2001), no proof of convergence for stochastic ruler in

the mixed-variable case appears to exist. Despite the lack of theoretical jus-

tification, the stochastic ruler method is well suited to the stochastic mixed

variable problem in terms of ease of implementation. In MSPSA, the gain

sequence ak and perturbation sequence ck are taken as ak = a/(1 + A + k)α

with a = 0.1, A = 500,α = 0.7, and ck = c/(1 + k)γ with c = 0.5,γ = 0.167.

Note that α = 0.7 and γ = 0.167 are nearly the smallest allowable values

according to Assumptions 3.7 and 3.10. Slower decay rates for the gain se-

quences often enhance finite-sample performance of stochastic optimization

(Spall, 2005, page 189). For all k, every component of the perturbation vector

∆k follows an independent Bernoulli ±1 distribution with equal probabilities

for each outcome. In local random search, a new candidate point is generated

as θ̂
cand
k = ProjΘ(θ̂k+dk) with dk ∼ N (0, 0.1I100). The projection operator moves

each of the first 50 components to the nearest integer and makes no changes to

the second 50 components. We set θ̂k+1 = θ̂
cand
k if y(θ̂

cand
k ) < y(θ̂k) and θ̂k+1 = θ̂k

otherwise. In stochastic ruler, a new candidate point θ̂
cand
k is uniformly sam-

pled from Θ. We then set θ̂k+1 = θ̂
new
k with probability Pr(y(θ̂

new
k ) ≤ V )Mk

with Mk = ⌊0.5 log(k + 2)⌋ + 1 and V ∼ Unif(0, L(θ̂0)) and θ̂k+1 = θ̂k other-

wise. The algorithm parameters for stochastic ruler have been tuned to achieve
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approximately optimal performance. Given a total of 5000 noisy loss func-

tion measures per replicate and averaging over 20 independent replicates, we

plot an approximation of the normalized mean-squared error for the estimate

E[∥θ̂k − θ∗∥2]/∥θ̂0 − θ∗∥2 in Figure 3.2 and the normalized error for the loss

function [L(ProjΘ(θ̂k)) − L(θ∗)]/[L(θ̂0) − L(θ∗)] in Figure 3.3. It is clear that

MSPSA performs the best among the three algorithms.

Figure 3.2: Performance of local random search, stochastic ruler, and MSPSA
for the skewed-quartic function in terms of E[∥θ̂k−θ∗∥2]/∥θ̂0−θ∗∥2 across 5000
noisy function measurements and averaged over 20 independent replicates.

3.6.2 Finite-Sample Upper Bound

To further examine the accuracy of the finite-sample upper bound provided,

we compare E[∥θ̂k −θ∗∥2] with the computable finite-sample upper bound from

Corollary 3.1. Because a very large number of iterations is typically required to
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Figure 3.3: Performance of local random search, stochastic ruler, and MSPSA
for the skewed-quartic function in terms of [L(ProjΘ(θ̂k))−L(θ∗)]/[L(θ̂0)−L(θ∗)]
across 5000 noisy function measurements and averaged over 20 independent
replicates.

see the finite-sample upper bound approaching the empirical performance for

problems with a larger dimension, we choose a modest p = 10 with Θ = Z5×R5

for the purpose of illustration. Setting θ̂0 = 110, we implement MSPSA with

the standard gain sequence ak = a/(1 + A + k)α and perturbation sequence

ck = c/(1 + k)γ where a = 0.1, A = 100,α = 0.7, c = 0.5 and γ = 0.167. The mean-

squared error E[∥θ̂k−θ∗∥2] is estimated by taking an average of 20 independent

replicates for 5000 iterations. To compute the finite-sample bound, we choose

κ0 = κ1 = κ2 = 1 since every component of ∆k follows an independent Bernoulli

±1 distribution with equality probabilities and σ2
ε = 2 since ε(θ) ∼ N (0, 1). The

rest of the parameters are estimated by computing the corresponding values

from θ̂k and taking an average of 500 independent replicates. Specifically, we
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get the following estimates: λ = 1.5, BH = BT = 0.8, and σ2
L = 15. From

Figure 3.4, we see that the finite-sample upper bound provides a reasonable

approximation for the empirical MSPSA performance, where the gap becomes

smaller as the number of iterations increase. Note that plot of finite-sample

upper bound in Figure 3.4 curves backwards in early iterations. This is due to a

conservative estimates of λ, BH , BT and σ2
L, which are taking significant effects

in the early iterations, but becomes less significant in the later iterations.

Figure 3.4: Performance of MSPSA and finite-sample upper bound for the
skewed-quartic function in terms of E[∥θ̂k − θ∗∥2] across 5000 iterations and
averaged over 20 independent replicates.
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3.6.3 Pressure Vessel Design

The pressure vessel design problem is a well-known benchmark in the field

of structural design. Initially proposed in Sandgren (1988, 1990), this problem

has been widely used in the literature to find the optimal design of a pressure

vessel under various constraints (see, e.g., Santos Coelho, 2010; Yang and Deb,

2013; Gandomi et al., 2013; Yang et al., 2013 for a summary of main results).

There are four parameters in the problem, namely, thickness of shell t1, thick-

ness of head t2, inner radius t3 and length of cylindrical section of vessel t4. The

first two parameters are discrete since the thickness can only be integer multi-

ples of 0.0625 such that t1/0.0625 ∈ {1, . . . , 99} and t2/0.0625 ∈ {1, . . . , 99}. The

last two parameters are continuous such that 10 ≤ t3 ≤ 200 and 10 ≤ t4 ≤ 200.

Denoting θ = [t1, t2, t3, t4]
T , the objective function and the constraints are as

follows

L(θ) = 0.06224t1t2t3 + 1.7781t2t
2
3 + 3.1661t21t4 + 19.84t21t3 (3.46)

subject to h1(θ) = −t1 + 0.0193t3 ≤ 0

h2(θ) = −t2 + 0.00954t3 ≤ 0

h3(θ) = −πt23t4 −
4

3
πt33 + 1296000 ≤ 0

h4(θ) = t4 − 240 ≤ 0

t1/0.0625 ∈ {1, . . . , 99}, t2/0.0625 ∈ {1, . . . , 99}
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10 ≤ t3 ≤ 200, 10 ≤ t4 ≤ 200

According to Yang et al. (2013), the global optimal value is L(θ∗) = 6059.714

at θ∗ = [0.8125, 0.4375, 42.0984, 176.6366]T . To incorporate the constraints for us-

ing MSPSA, we set Θ = {0.0625, . . . , 6.1875} × {0.0625, . . . , 6.1875} × [10, 200] ×

[10, 200] and use a penalty function method with Lagrangian multiplier λ to

minimize Lλ(θ) = L(θ)+ λ[max{h1(θ), 0}+max{h2(θ), 0}+max{h3(θ)/12960, 0}]

with an increasing λ. A similar approach of using the Lagrangian multiplier

and the max operation is considered in Kannan and Kramer (1994). The intu-

ition is that we only want to penalize for violating the constraints, and give no

reward for feasible solutions. Without the max operation, any feasible solution

has negative values of hi(θ) for i = 1, 2, 3 contributing to the objective function,

which will then dominate the objective value when λ is very large. Note that

the constraint h3(θ) ≤ 0 is normalized by dividing 12960 to ensure all the con-

straints are at the same order of magnitude and the constraint h4(θ) ≤ 0 is

dropped since it is always satisfied when θ ∈ Θ. Moreover, to test the per-

formance of the algorithms with the noisy function measurements, an i.i.d

ε(θ) ∼ N (0, 100) noise is added so that only the noisy function measurements

yλ(θ) = Lλ(θ) + ε(θ) are available. In practice, the noisy measurements can be

collected as outputs of a black-box simulation program for modeling complex

structural design, where the program itself is built based on the objective func-
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tion in (3.46). The initial condition is set to θ̂0 = [1.125, 0.625, 50, 150], as in the

previous literature.

The algorithm parameters for the three algorithms have been tuned to

achieve approximately optimal performance for each algorithm, where mul-

tiple gain sequences are tested for MSPSA, normal proposal distribution with

various variances are tested for local random search, and multiple monotoni-

cally increasing sequences {Mk} are tested in stochastic ruler. We implement

MSPSA with the standard gain sequence ak = a/(1 + A+ k)α and perturbation

sequence ck = c/(1+k)γ, where a = 0.0005 for the discrete variables, a = 0.005 for

the continuous variables, A = 100,α = 0.7, c = 1 and γ = 0.1667. For all k, every

component of the perturbation vector ∆k follows an independent Bernoulli ±1

distribution with equal probabilities. The Lagrangian multiplier is increasing

with respect to the iteration number such that λk = 1000 log(k + 2). The use of

increasing λk is also considered in Wang and Spall (2008) to solve constrained

stochastic optimization problems using SPSA algorithms. Similar to the nu-

merical study in Section 3.6.1, we choose local random search and stochastic

ruler for comparison. In local random search, a new point θ̂
new

is generated as

θ̂
new
k = ProjΘ(θ̂k + dk) with dk ∼ N (0,Σ), where Σ = diag(0.025, 0.025, 2.5, 2.5)

and the projection operator moves the argument to the nearest point within

Θ based on Euclidean distance. We keep generating θ̂
new
k until all the con-

straints are satisfied and then let θ̂
cand
k = θ̂

new
k . Finally, with the noisy function
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measurement y(θ) = L(θ) + ε(θ), we set θ̂k+1 = θ̂
cand
k if y(θ̂

cand
k ) < y(θ̂k) and

θ̂k+1 = θ̂k otherwise. In stochastic ruler, a new candidate point θ̂
cand
k is uni-

formly sampled from Θ until all the constraints are satisfied. We then set

θ̂k = θ̂
cand
k with probability Pr(y(θ̂

cand
k ) ≤ V )Mk with Mk = ⌊log(k + 2)⌋ + 1 and

V ∼ Unif(6000, L(θ̂0)) and θ̂k+1 = θ̂k otherwise. Table 3.1 and 3.2 show the

terminal estimates ProjΘ(θ̂K) and the corresponding loss values L(ProjΘ(θ̂K))

along with the normalized loss values [L(ProjΘ(θ̂K)) − L(θ∗)]/[L(θ0) − L(θ∗)].

All the results are based on 20, 000 noisy function measures per replicate and

averaged over 20 replicates.

Table 3.1: Terminal estimate of MSPSA, local random search and stochastic
ruler based on 20,000 noisy function measurements per replicate and averaged
over 20 independent replicates.

Algorithm
ProjΘ(θ̂K)

θ∗ = [0.8125, 0.4375, 42.0984, 176.6366]T

Local Random Search [0.8750, 0.5, 45.0079, 148.7725]T

Stochastic Ruler [1.125, 0.625, 50, 150]T

MSPSA [0.8125, 0.4375, 41.8324, 182.9006]T

Evaluating the constraints from the terminal estimate form Table 3.1, we

see that the estimate returned by MSPSA satisfies all the constraints with

h1(ProjΘ(θ̂K)) = −0.0051, h2(ProjΘ(θ̂K)) = −0.0384 and g3(ProjΘ(θ̂K))/12960 =

−1.2468, which are all negative as required. The MSPSA solution also correctly

finds the optimal solution for the discrete variables, i.e., thickness of shell t1

and the thickness of head t2. The third variable, inner radius t3, is also very
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Table 3.2: Terminal objective function values of MSPSA, local random search
and stochastic ruler based on 20,000 noisy function measurements per repli-
cate and averaged over 20 independent replicates.

Algorithm
L(ProjΘ(θ̂K)) Normalized Loss

L(θ∗) = 6059.714

Local Random Search 6491.868 0.113

Stochastic Ruler 9886.346 1

MSPSA 6160.702 0.026

close to the optimal value. For the last variable, length of cylindrical t4, we

note that, given the initial value of 150, the estimate is successfully moving

towards the optimal value. In contrast, local random search fails to find the

optimal value of the discrete variables and the last variable doesn’t seem to

move at all. Due to the high measurement noise relatively to L(θ∗), stochastic

ruler fails to find any estimate better than the initial estimate. Further, the

loss value drops to within 2.6% of the optimal L(θ∗) relative to L(θ̂0).

3.7 Conclusion

In this work, we propose the MSPSA algorithm to solve mixed discrete-

continuous optimization problems when only noisy values of the loss function

are available to carry out the optimization. Special cases of MSPSA include the

fully discrete setting of Wang and Spall (2011) and Wang (2013), and the origi-

nal fully continuous setting of Spall (1992). By taking advantage of “gradient-
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type” that is efficiently produced from noisy zeroth-order (loss function) infor-

mation, MSPSA can efficiently handle mixed-variable stochastic optimization

problems. The almost sure convergence and rate of convergence of the sequence

generated by MSPSA have been derived. The finite-sample bound and the

asymptotic performance are shown to enjoy an intuitive balance between the

discrete and continuous components. Further, the general rate of convergence

here reduces to the previously known rate in the special cases of all-discrete

and all-continuous parameters. The rate allows for objective performance com-

parison of MSPSA with existing or future other methods for discrete, contin-

uous, or mixed cases using only noisy loss function measurements. Overall,

MSPSA appears to be the first algorithm that is formally designed for opti-

mization in the general mixed discrete and continuous case with only noisy

“zeroth-order” information of loss functions.
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Chapter 4

Complex Simultaneous

Perturbation Stochastic

Approximation Algorithm

4.1 Introduction

Besides SPSA-based methods, another method for estimating the gradient

is the complex-step (CS) gradient approximation (Lyness and Moler, 1967),

which uses complex variables to estimate the gradient at the cost of a sin-

gle function measurement when θ ∈ R. It is shown in Squire and Trapp

(1998); Martins et al. (2001, 2003); Abreu et al. (2018); Higham (2018) that

CS gradient approximation provides a significant improvement compared with
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FDSA. Specifically, the CS gradient approximation will not suffer any numer-

ical errors, as no difference operation is involved. The numerical-error-free

characteristic of CS gradient approximation—a reliable result will be returned

regardless of the step size—can be beneficial in modern simulation and ap-

plication experiments. More advantages related to numerical stability can be

found in Martins et al. (2003). This contrasts with other methods, where the

round-off error becomes dominant for a small step size as discussed in Squire

and Trapp (1998).

To extend the CS gradient approximation to multivariate variables and

noisy function measurement environment, Nikolovski and Stojkovska (2018)

proposes the CS-FDSA, which uses the complex variable to estimate every

component of the gradient separately, at the cost of p function measurements

per iteration. Several classical testing problems from Krejić et al. (2015) are

implemented with additive real-valued Gaussian noise and complex-valued

circular noise. Regardless of the noise levels and underlying line-search al-

gorithms, CS-FDSA exhibits better and more robust performance than the

standard FDSA algorithm. To overcome the dimension-dependent number of

function measurements in CS-FDSA, while maintaining the numerical stabil-

ity and robustness, we propose the complex-step simultaneous perturbation

(CS-SP) gradient approximation. CS-SP combines the ideas of SP and CS

gradient approximation to estimate every component of the gradient simul-
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taneously by constructing a p-dimensional complex-valued random perturba-

tion vector. Based on the CS-SP gradient approximation, we also propose a

gradient-descent-type stochastic approximation algorithm called CS-SPSA. Be-

sides the numerical advantages of CS gradient approximation, it is worth not-

ing that although only one noisy function measurement is used in CS-SPSA per

iteration, the computational time of complex variable operations is typically

slower than the time of real variable operations. Due to the extra imaginary

variables, one complex number operation may take two to four times computa-

tional cost than one real number operation. Nonetheless, in terms of computa-

tional time, CS-SPSA is still considerably more favorable in high-dimensional

problems than FDSA and CS-FDSA due to the constant number of loss func-

tion measurements at each iteration. When compared with SPSA, however, the

computational time per iteration may be slower because of the involvement of

complex number operations.

For CS-SPSA to be applicable, the loss function is required to be analytic

so that the function measurement can be extended to complex space. When

the original functions (L : Rp → R and ℓ : Rp × Rq → R) are implemented by

numerical algorithms, Martins et al. (2003) explains how the operations can be

“complexified” (L : Cp → C and ℓ : Cp × Rq → C) so that the CS gradient ap-

proximation yields the correct results. Mathematically, for any θ0 ∈ Θ with Θ

being an open set in the complex plane, one can write L(θ) =
∑︁∞

n=0 βn(θ−θ0)
n,

140



CHAPTER 4. COMPLEX SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION ALGORITHM

where the coefficients β0,β1, . . . , are real numbers and the series is conver-

gence to L(θ) for θ in a neighborhood of θ0. Because of the nature of complex

numbers, it might also be difficult to implement the proposed algorithm in

the real world by interacting with the physical system, since the might be no

meaningful physical interpretation of complex numbers. However, when the

physical system is coded in computer programs (as a black box or complicated

software), our algorithm can be useful in finding the numerical value of the

parameter of interest that can be used in guiding practical problems. It is

also shown that although complex numbers are used, it only remains in the

function measurements. The estimated parameter value itself as well as the

corresponding gradient approximation are always real-valued and can carry

physical meanings. Table 4.1 provides a short summary of cases where the CS

gradient approximation can be applied or not. The complex variable operations

(e.g., basic arithmetic operations, exponentiation, logarithmic, etc.) are readily

available in many modern programming languages, such as Python, MATLAB,

R, etc.

Despite the limitations of using a complex-valued parameter for some ap-

plications, we summarize some practical problems that have been discussed

in previous literature. Several multidisciplinary programs are considered in

Martins et al. (2001), including a two-dimensional finite volume solver for Eu-

ler equations (Martins et al., 2000), a high-fidelity aero-structural solver for
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Table 4.1: Examples of Applicable and Not Applicable Applications for CS
Gradient Approximation

Applicable Not Applicable

Simulation-based optimization with
complex analytical loss functions

Physical experiments with real-
valued only parameters

Neural networks training with com-
plex analytical activation functions

Machine learning problems that
cannot be evaluated at complex
variables

Recursive maximum likelihood esti-
mation with complex analytical den-
sity function

Computer code or simulations that
cannot be evaluated at complex
variables

Optimal control with computer code
that can be evaluated at complex
variables

wing design optimization problems (Reuther et al., 1999) and supersonic vis-

cous/inviscid solver (Sturdza et al., 1999). The results presented in their work

show that the CS gradient approximation is easy to implement and can gener-

ate accurate results for sensitivity analysis. Other optimization problems in-

clude a first-order linear system with a finite L2 gain cost function and a second-

order nonlinear system with a cost function corresponding to the maximum

overshoot in response to a unit step reference demand (Kim et al., 2006). More

recently, Balzani et al. (2015) considers the numerical calculation of thermo-

mechanical problems at large strains. The multiple time-delayed differential

equations with non-smoothness sensitivities are investigated in Banks et al.

(2015). Stochastic optimization problems with complex-valued noise can also

be found in signal processing (Ciblat and Ghogho, 2004) and electrical engi-
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neering (Javidi et al., 2010).

The remainder of this chapter is organized as follows. Section 4.2 dis-

cusses how CS-SPSA can be applied in general stochastic optimization prob-

lems, along with theoretical properties such as convergence and asymptotic dis-

tribution. Section 4.3 applies CS-SPSA in model-free control problems, where

a time-varying loss function is studied and the convergence of the estimated

is shown. Numerical study and conclusion are made in Section 4.4 and 4.5,

respectively.

4.2 General Stochastic Optimization

In this section, we consider minimizing a general expected loss L(θ) =

E[ℓ(θ,v)], where θ ∈ Rp represents the parameter of interest and v ∈ Rq de-

notes a random variable or vector following some unknown distribution. The

variable v commonly stands for the random effect in the process generating the

system output or the amalgamation of various random effects. With the pres-

ence of v, we denote ℓ(θ,v) as the noisy function measurement of the expected

loss function L(θ) at some chosen parameter value θ, where the expectation in

L(θ) is taken over all randomness embodied in v. To the minimize the expected

loss L(θ), a majority of algorithms resort to finding the root to the gradient

function g(θ) = ∂L(θ)/∂θ. Often, neither L(θ) nor g(θ) can be computed ex-
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plicitly, as both the distribution of v and the form of ℓ(θ,v) remain inaccessible.

Therefore, this section proposes to use CS-SPSA to minimize L(θ) using the

noisy function measurements ℓ(θ,v) only. We show that CS-SPSA converges

to the optimal point at an accelerated rate of k−1/2, which is faster than the

standard convergence rate of k−1/3 (Spall, 1992). Furthermore, the asymptotic

results suggest that CS-SPSA achieves the same level of accuracy of SPSA as if

the user have total control of the noise in the function measurements, i.e., pure

common random numbers. In a nutshell, within the class of problems for which

complex perturbation are meaningful, CS-SPSA has the following advantages:

i) only one function measurement is required at each iteration, which is inde-

pendent of the dimension of the problem; ii) there is no round-off errors caused

by subtraction, as opposed to the case of noise-free or controlled noise function

measurements; iii) faster convergence of of k−1/2 is achieved, compared with

k−1/3 in standard stochastic optimization algorithms.

4.2.1 Algorithm Description

The CS gradient approximation estimates the gradient using complex vari-

able, applicable for noise-free evaluation and one-dimensional parameter. To

extend the CS gradient approximation to multivariate and noisy function mea-

surement settings, Nikolovski and Stojkovska (2018) proposes the following CS
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gradient estimation as

ĝCS
k (θ̂k) =

1

c

⎡⎢⎢⎢⎢⎢⎢⎣
ℑ(ℓ(θ̂k + icku1,v

(1+)
k ))

...

ℑ(ℓ(θ̂k + ickup,v
(p+)
k ))

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.1)

where ℑ(·) denotes the imaginary part of the complex argument. Similar to

FD gradient approximation, (4.1) estimates every component of the gradient

individually, giving a total of p function measurements. The CS gradient es-

timate is also used to solve optimization problems with only noisy function

measurements. However, Nikolovski and Stojkovska (2018) only considers the

non-monotone line-search methods with numerical illustrations.

Although both the FD and CS gradient approximations incur an approxima-

tion error of O(c2k), the former requires twice as many function measurements

as the latter. Besides the query efficiency, CS gradient approximation can be

much more numerically stable for small ck (Martins et al., 2003). The subtrac-

tive cancellation error hinders practitioners from achieving accurate results.

When noise-free or controlled noise (i.e., v(j+)
k = v

(j−)
k for j = 1, . . . , p in (2.4)

v
(+)
k = v

(−)
k in (2.5)) function measurements are used, because of the finite ma-

chine precision, there exists a constant c such that when ck ≤ c computers

can no longer distinguish between the function measurements at θ̂k + ckuj and

θ̂k−ckuj for j = 1, . . . , p in (2.4) or θ̂k+ck∆k and θ̂k−ck∆k in (2.5), which causes
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ĝFD
k (θ̂k) = 0 or ĝSP

k (θ̂k) = 0. Note that ck is typically very small and converges to

0 in common optimization algorithms in order to achieve an accurate gradient

approximation.

On the contrary, when controlled noise is not possible, we see that the dif-

ference of the function measurements ℓ(θ̂k + ckuj,v
(j+)
k )− ℓ(θ̂k − ckuj,v

(j−)
k ) for

all j = 1, . . . , p in (2.4) or ℓ(θ̂k + ck∆k,v
(+)
k ) − ℓ(θ̂k − ck∆k,v

(−)
k ) in (2.5) does

not converge to 0 as c goes to 0 due to the randomness of noisy function mea-

surements. As a consequence, the gradient estimate ĝFD
k (θ̂k) or ĝSP

k (θ̂k) will

explode since ck in the denominator is going to 0. It is worth noting that such

numerical issue can be resolved by not dividing ck in the gradient estimate and

using ak/ck as the gain step size. However, the gradient estimate itself remains

inaccurate and unstable, especially for sensitivity analysis where the primary

interest is the gradient estimate per se (not the solution of an associated opti-

mization problem). Although CS gradient estimate also pertains to dividing by

a small step size ck, the gradient estimate itself does not blow up. This numer-

ical superiority is credited to the fact that ℑ[ℓ(θ̂k + ickuj,v
(j+)
k )] converges to 0

for j = 1, . . . , p as ck converges to 0. This balances out the decreasing ck value

in the denominator and makes the CS gradient estimate accurate and stable.

To illustrate, we consider a toy example of estimating the gradient of L(θ) =

E[(θ − v)2], where θ ∈ R and v ∼ N(0,σ2). Using only the measurement of
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ℓ(θ,ω) = (θ−ω)2, we see that CS gradient estimate gives

ℑ[ℓ(θ+ ic, v)]

c
=

ℑ[(θ− v)2 + 2ic(θ− v)− c2]

c
= 2(θ− v),

which is exactly the gradient of ℓ(θ, v) regardless of how small c is. On the other

hand, the FD gradient estimate gives

ℓ(θ+ c, v(+))− ℓ(θ− c, v(−))

2c
=

(2θ− v(+) − v(−))(2c− v(+) + v(−))

2c

= 2

(︃
θ− v(+) + v(−)

2

)︃(︃
1− v(+) − v(−)

2c

)︃
,

which is less accurate and blows up when c is sufficiently small.

Motivated by the SP and CS gradient approximations, we propose the fol-

lowing CS-SP gradient approximation

ĝCS-SP
k (θ̂k) =

ℑ(ℓ(θ̂k + ick∆k,vk))

ck∆k

. (4.2)

The CS-SP gradient approximation (4.2) inherits the benefits of both SP and

CS gradient approximations: query advantage (requiring one function mea-

surement) and numerical stability (avoiding subtraction altogether). Note that

ℓ(θ̂k,vk) is deemed as a noisy function measurement of L(θ̂k). Similarly, we

can view ℓ(θ̂k + ick∆k,vk) as a complex-valued noisy function measurement of
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L(θ̂k + ick∆k,vk) and separate the real part and imaginary part of the noise as

εR
k (θ̂k + ick∆k,vk) = ℜ(ℓ(θ̂k + ick∆k,vk))−ℜ(L(θ̂k + ick∆k)), (4.3)

εI
k(θ̂k + ick∆k,vk) = ℑ(ℓ(θ̂k + ick∆k,vk))−ℑ(L(θ̂k + ick∆k)), (4.4)

where ℜ(·) denotes the real part of the argument. It is straightforward that

both E[εR
k (θ̂k+ ick∆k,vk)] = 0 and E[εI

k(θ̂k+ ick∆k,vk)] = 0 when the expectation

is taken over vk. Note that both εR
k (θ̂k + ick∆k,vk) and εI

k(θ̂k + ick∆k,vk) are

real-valued outputs and we can re-express ℓ(θ̂k+ick∆k,vk) in terms of (4.3) and

(4.4) as

ℓ(θ̂k+ ick∆k,vk) = L(θ̂k+ ick∆k)+ε
R
k (θ̂k+ ick∆k,vk)+ iεI

k(θ̂k+ ick∆k,vk). (4.5)

It is worth noting that the CS-SP gradient approximation relies on a fun-

damental assumption that the function measurement can be collected at the

complex-valued variable θ̂k + ick∆k. To use the CS-SP gradient approxima-

tion (4.2) in stochastic optimization algorithms, we proposed the following al-

gorithm to minimize the objective function L(θ).

• Step 0 (Initialization): Set index k = 0. Pick an initial guess θ̂0 and

nonnegative coefficients a, c, A,α, and γ in the gain sequences ak = a/(k+

1 + A)α and ck = c/(k + 1)γ.
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• Step 1 (Perturbation Vectors): Construct a p-dimensional random per-

turbation vector ∆k using Monte Carlo algorithms, where all the com-

ponents of ∆k are independently generated from a mean-zero symmetric

proability distribution satisfying certain regularity conditions.

• Step 3 (Gradient Approximation): Construct the CS-SP gradient ap-

proximation as

ĝCS-SP
k (θ̂k) =

ℑ(ℓ(θ̂k + ick∆k,vk))

ck∆k

• Step 4 (Iterative Update): Update the parameter estimate using the

standard scheme as

θ̂k+1 = θ̂k − akĝ
CS-SP
k (θ̂k) (4.6)

• Step 5 (Iteration or Termination): Return to Step 1 with k + 1 replac-

ing k. Terminate the algorithm if there is little change of θ̂k in several

successive iterates or if the maximum allowable number of iterations has

been reached.

Remark 4.1. Although the function measurement ℓ(θ̂k+ick∆k,vk) is a complex-

valued scalar, the gradient approximation ĝCS-SP
k (θ̂k) and the parameter esti-

mate θ̂k are always real-valued. We focus on the most fundamental gradient-

descent-type updating scheme as in (4.6) for this work and discuss both the the-
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oretical and empirical performance similar to SPSA, which is also implemented

in the standard updating scheme (4.6). It is worth noting that choosing ak is im-

portant for empirical performance, but we think methods for accelerating might

best be left for future work.

4.2.2 Convergence

4.2.2.1 Bias of Gradient Estimate

We examine the bias of ĝCS-SP
k (θ̂k) as an estimator of g(θ̂k) and show that the

bias goes to 0 as k → ∞. Similar to Spall (1992, Lemma 1), an explicit bound

for the bias is given in Theorem 4.1.

Assumption 4.1 (Loss Function). Assume that L(·) can be extended to a com-

plex analytic function. Further assume that, for almost all θ̂k, independently

from k, assume that there exists an open neighborhood of θ̂k in the complex

space such that for any θ in that neighborhood, |f(θ)| ≤ Bf for some positive

constant Bf .

Assumption 4.2 (Random Perturbation). For all k and j, assume that ∆kj

are independent and identically distributed, symmetrically distributed about

0. Further assume that |∆kj| ≤ κ1 for some positive constant κ1 and there ex-

ists some positive constant δ1 > 0 such that E[1/|∆kj|1+δ1 ] ≤ κ2 for some positive

constant κ2.
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Assumption 4.3 (Measurement Noise). For all k, denote the filtration Fk =

{θ0, . . . ,θk} and assume that E[εR
k (θ̂k + ick∆k,vk)|Fk,∆k] = 0 and E[εI

k(θ̂k +

ick∆k,vk)|Fk,∆k] = 0.

Remark 4.2. Assumption 4.1 contains a necessary extension of L(θ) to com-

plex space to enable Taylor expansion of analytic complex functions Squire and

Trapp (1998). The remaining regularity assumptions on L(3)(θ) and Assump-

tion 4.2 are identical to the assumptions in (Spall, 1992, Lemma 1). Assump-

tion 4.3 ensures a zero-mean noise, which holds trivially given L(θ) = E[ℓ(θ,v)]

and the definitions of εR
k (·, ·) and εI

k(·, ·) in (4.3) and (4.4).

Theorem 4.1 (Wang and Spall, 2021). Under Assumptions 4.1–4.3, we have

bk(θ̂k) = E[ĝCS-SP
k (θ̂k)− g(θ̂k) | Fk] = O(c2k). (4.7)

Remark 4.3. The bias of the CS-SP gradient approximation has the same order

O(c2k) as the SP gradient approximation (Spall, 1992, Lemma 1), where both

gradient approximations becomes asymptotically unbiased as ck → ∞.

Proof. Following the proof of Spall (1992, Lemma 1), applying Taylor expansion

to expand L(θ̂k + ick∆k) around θ̂k gives

L(θ̂k + ick∆k) = L(θ̂k) + ick∆
T
k g(θ̂k)−

1

2
c2k∆

T
kH(θ̂k)∆k + r3(θ̂k), (4.8)
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where H(θ) = ∂L(θ)/∂θ∂θT is the Hessian matrix of L(θ) and r3(θ̂k) is the

higher-order remainder term of the Taylor expansion such that

r3(θ̂k) =
∞∑︂
n=3

1

n!
(ick)

nL(n)(θ̂k)[∆k ⊗n ∆k]

with L(n)(θ̂k) being the n-th derivative of L(·) evaluated at θ̂k and ⊗ being the

Kronecker product. Then taking the imaginary part of (4.8), we obtain

ℑ(L(θ̂k + ick∆k)) = ck∆
T
k g(θ̂k) + ℑ(r3(θ̂k)). (4.9)

Now, plugging (4.5) and (4.9) into the definition of ĝCS-SP
k (θ̂k) in (4.2) yields

ĝCS-SP
k (θ̂k) =

ℑ(L(θ̂k + ick∆k) + ε
R
k (θ̂k + ick∆k,vk) + iεI

k(θ̂k + ick∆k,vk))

ck∆k

=
ck∆

T
k g(θ̂k) + ℑ(r3(θ̂k)) + ε

I
k(θ̂k + ick∆k,vk)

ck∆k

=
∆T

k g(θ̂k)

∆k

+
ℑ(r3(θ̂k))

ck∆k

+
εI
k(θ̂k + ick∆k,vk)

ck∆k

. (4.10)

Let ĝCS-SP
kj (θ̂k) and gj(θ̂k) denote the j-th component of ĝCS-SP

k (θ̂k) and g(θ̂k),

respectively. Applying the conditional expectation on both sides of (4.10), we

have for all j that

E[ĝCS-SP
kj (θ̂k)|θ̂k] = E

[︄
∆T

k g(θ̂k)

∆kj

+
ℑ(r3(θ̂k))

ck∆kj

+
εI
k(θ̂k + ick∆k,vk)

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄
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= gj(θ̂k) +
∑︂
m̸=j

E
[︃
gm(θ̂k)

∆km

∆kj

⃓⃓⃓⃓
θ̂k

]︃
+ E

[︄
ℑ(r3(θ̂k))

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄

= gj(θ̂k) + E

[︄
ℑ(r3(θ̂k))

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄
, (4.11)

where the second equality is due to Assumption 4.3 that

E

[︄
εI
k(θ̂k + ick∆k,vk)

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄
= E

[︄
E[εI

k(θ̂k + ick∆k,vk)|θ̂k,∆k]

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄
= 0,

and the last equality in (4.11) is due to

E
[︃
gm(θ̂k)

∆km

∆kj

⃓⃓⃓⃓
θ̂k

]︃
= gm(θ̂k)E[∆km]E

[︃
1

∆kj

]︃
= 0

for any m ̸= j. For the last term in (4.11), Cauchy’s integral formula and

the assumption |∆km| ≤ κ1 implies that |r3(θ̂k)| = O(c3k) and consequently

|ℑ(r3(θ̂k))| = O(c3k). Hence, using Holder’s inequality and Assumption 4.2, there

exists some positive constant δ1 that

⃓⃓⃓⃓
⃓E
[︄
ℑ(r3(θ̂k))

ck∆kj

⃓⃓⃓⃓
⃓θ̂k

]︄⃓⃓⃓⃓
⃓ ≤ 1

ck
E
[︂
|ℑ(r3(θ̂k))|

δ1+1
δ1

⃓⃓⃓
θ̂k

]︂ δ1
δ1+1

E
[︃

1

|∆kj|δ1+1

]︃ 1
δ1+1

= O(c2k).

Therefore, we conclude that bk(θ̂k) = O(c2k).

Remark 4.4. In (4.9), we see that there is no L(θ̂k) and L(2)(θ̂k) terms since

those terms are associated with the real-valued terms in the Taylor expansion,
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which become exactly 0 after applying the ℑ(·) operation. This is similar to the

two-sided SP gradient approximation, where the contributions of the L(θ̂k) and

L(2)(θ̂k) terms are also exactly 0 due to the cancellation effects. On the contrary,

the one-measurement SP gradient approximation contains L(θ̂k) in a mean-zero

term, which is not exactly 0 and causes the gradient approximation to have a

relatively large variance. A more detailed analysis on the variance and mean

squared error of FD and SP gradient approximations is available in Blakney

and Zhu (2019).

Theorem 4.1 indicates that as k → ∞, the gradient approximation ĝCS-SP
k (θ̂k)

is an asymptotically unbiased approximation of the true gradient g(θ̂k). Based

on this result, we present the almost sure convergence results of θ̂k towards

the optimal point θ∗ defined in Assumption 4.7 below.

Assumption 4.4 (Step-size Sequences). For all k, ak > 0, ck > 0 and ak →

0, ck → 0 as k → ∞;
∞∑︂
k=0

ak = ∞ and
∞∑︂
k=0

a2k
c2k

< ∞. (4.12)

Assumption 4.5 (Bounded Variances). For all k and j, assume that E[ℑ(L(θ̂k+

ick∆k))
2|∆k] < σ2

L, E[εI
k(θ̂k + ick∆k,vk)

2|∆k] < σ2
ε and E[1/∆2

kj] ≤ κ3 for some

positive constants σ2
L,σ

2
ε and κ3.

Assumption 4.6 (Iterate Boundedness). supk ∥θ̂k∥ < ∞ a.s.
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Assumption 4.7 (Stable Solution). Let θ∗ be an asymptotically stable solution

of the differential equation d(ζ(t))/dt = −g(ζ).

Assumption 4.8 (Sample Path). Let D(θ∗) = {ζ0 : limt→∞ ζ(t|ζ0) = θ∗} where

ζ(t|ζ0) denote the solution to the differential equation in Assumption 4.7. As-

sume that there exists a compact S ⊆ D(θ∗) such that θ̂k ∈ S infinitely often for

almost all same paths.

Remark 4.5. All the assumptions here follow Spall (1992, Proposiiton 1), except

for the Assumption 4.5. Minor modifications are made to accommodate ℑ(L(θ̂k+

ick∆k)) and εI
k(θ̂k + ick∆k,vk) instead of L(θ̂k ± ck∆k) and ε(θ̂k ± ck∆k,v

±
k ) as

in the standard SP gradient approximation. Assumption 4.7 also implies that

θ∗ = argminθ∈Rp L(θ).

Theorem 4.2 (Wang and Spall, 2021). Under Assumptions 4.1–4.8, we have as

k → ∞,

θ̂k → θ∗ a.s. (4.13)

Proof. First define the error term ek(θ̂k) as

ek(θ̂k) = ĝCS-SP
k (θ̂k)− E[ĝCS-SP

k (θ̂k)|θ̂k]. (4.14)

Then we can rewrite (4.6) using (4.7) and (4.14) as

θ̂k+1 = θ̂k − ak[g(θ̂k) + bk(θ̂k) + ek(θ̂k)], (4.15)
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which gives the standard form of a generalized Robbins-Monro algorithm. Fol-

lowing the proof of Spall (1992, Proposition 1), we proceed to show that

∥bk(θ̂k)∥ < ∞ for all k and bk(θ̂k) → 0 a.s., (4.16)

and

lim
k→∞

P(sup
m≥k

∥
m∑︂
j=k

ajej(θ̂k) ≥ η∥) = 0 for any η > 0, (4.17)

which are sufficient conditions for the almost sure convergence of θ̂k by Kush-

ner and Clark (1978, Lemma 2.2.1 and Theorem 2.3.1).

Using the result from Theorem 4.1 that bk(θ̂k) = O(c2k) and Assumption 4.4,

it is easy to see that (4.16) holds. To show (4.17), recall that Fk = {θ̂0, . . . , θ̂k}

and denote another filtration Gk = {∆0, . . . ,∆k} for all k. Then note that

{
∑︁m

j=k ajej(θ̂j)}m≥k is a martingale sequence since E[ek(θ̂k)|θ̂k] = E[ek(θ̂k)|Fk] =

0. Hence, Doob’s martingale inequality implies that for any η > 0,

P(sup
m≥k

∥
m∑︂
j=k

ajej(θ̂k) ≥ η∥) ≤
1

η2
E[∥

∞∑︂
j=k

ajej(θ̂j)∥2] =
1

η2

∞∑︂
j=k

a2jE[∥ej(θ̂j)∥2],

(4.18)

where the last equality holds since for any j < m,

E[ej(θ̂j)
Tem(θ̂m)] = E[E[ej(θ̂j)

Tem(θ̂m)|Fm,Gm−1]]

= E[ej(θ̂j)
TE[em(θ̂m)|Fm]]
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= 0.

Furthermore, noting that

E[ej(θ̂j)
TE[ĝCS-SP

j (θ̂j)|θ̂j]] = E[E[ej(θ̂j)|θ̂j]
TE[ĝCS-SP

j (θ̂j)|θ̂j]] = 0,

we have the relationship

E[∥ĝCS-SP
j (θ̂j)∥2] = E[∥ej(θ̂j)∥2] + E[∥E[ĝCS-SP

j (θ̂j)|θ̂j]∥2]

for all j. Hence, we can bound the right-hand side of (4.18) as

1

η2

∞∑︂
j=k

a2jE[∥ej(θ̂j)∥2] ≤
1

η2

∞∑︂
j=k

a2jE[∥ĝ
CS-SP
j (θ̂j)∥2],

where the m-th component of ĝCS-SP
j (θ̂j) can be bounded using Assumption 4.5

as

E[ĝCS-SP
jm (θ̂k)

2] = E[
[ℑ(L(θ̂k + ick∆k)) + ε

I
k(θ̂k + ick∆k,vk)]

2

c2k∆
2
km

]

≤ 2

c2k
E[

E[ℑ(L(θ̂k + ick∆k))
2|∆k] + E[εI

k(θ̂k + ick∆k,vk)
2|∆k]

∆2
km

]

≤ 2(σ2
L + σ2

ε)κ3
c2k

< ∞.
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Therefore, we conclude that (4.18) is bounded since

P(sup
m≥k

∥
m∑︂
j=k

ajej(θ̂k) ≥ η∥) ≤ min

{︄
1,

2p(σ2
L + σ2

ε)κ3
η2

∞∑︂
j=k

a2j
c2j

}︄
.

The boundedness of the second term in {·} above implies that (4.17) holds for

any η > 0.

4.2.3 Asymptotic Distribution

Theorem 4.3 below gives the formal asymptotic normality results of θ̂k un-

der the standard gain and perturbation sequences.

Assumption 4.9 (Standard Step-size Sequences). For all k, assume the gain

step size has the following standard form

ak =
a

(k + 1 + A)α
and ck =

c

(k + 1)γ
,

where a,α, c,γ > 0, A ≥ 0, and 2γ < α < 4γ.

Assumption 4.10 (Noisy Gradient). For all k and given vk, assume that ℓ(·,vk)

can be extended to a complex analytic function. Denote G(θ̂k,vk) = [∂ℓ(θ,vk)/∂θ]θ=θ̂k

with its j-th component being Gj(θ̂k,vk) for all j. Further assume that there ex-

ists some random variable v∗ such that vk → v∗ a.s. and E[G(θ̂k,vk)G(θ̂k,vk)
T |Fk]

→ E[G(θ∗,v∗)G(θ∗,v∗)T ] a.s. as k → ∞.
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Assumption 4.11 (Bounded Variances). For all k and j, assume that there ex-

ists some positive constant δ2 > 0 such that E[ℑ(L(θ̂k + ick∆k))
2+δ|∆k] < σ2

L,

E[εI
k(θ̂k + ick∆k,vk)

2+δ|∆k] < σ2
ε and E[1/|∆kj|2+δ] ≤ κ2 for some positive con-

stants σ2
L,σ

2
ε and κ2.

Remark 4.6. Assumption 4.9 is the gain and perturbation sequence assump-

tion used in standard SPSA with common random numbers. Assumption 4.10

is identical to the assumptions in Kleinman et al. (1999, Theorem 2.1), which

considers the asymptotic normality of {θ̂k} generated by SPSA with CRNs (com-

mon random numbers), i.e., v+
k = v−

k for all k. Assumption 4.11 strengthens

Assumption 4.5 used in Theorem 4.2 and is similar to Spall (1992, Assumption

A2′) with the extension to incorporate complex variables.

Theorem 4.3. Assume Assumption 4.1–4.11 hold. Then as k → ∞,

kα/2(θ̂k − θ∗)
dist→ N (0,PMP T ) , (4.19)

where P is an orthogonal matrix satisfying P TH(θ∗)P = a−1 diag(λ1, . . . , λp),

the mn-th entry of M is

Mmn = a2[P TΣP ]mn
1

λm + λn − α+
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with the mn-th entry of Σ being

Σmn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E[Gm(θ

∗,v∗)2] +
∑︁

j ̸=m σ
2
∆τ

2
∆E[Gj(θ

∗,v∗)2] if m = n,

2E[Gm(θ
∗,v∗)Gn(θ

∗,v∗)] if m ̸= n,

E[∆2
kj] = σ2

∆, E[1/∆2
kj] = τ2∆ for all j and k, and α+ = α < 2mini λi if α = 1 and

α+ = 0 if α < 1.

Remark 4.7. The rate of convergence in (4.19) can achieve an accelerated rate

of k−1/2 with α = 1, which is faster than the max allowable decay rate of k−1/3

possible in standard SPSA under typical convergence conditions found using

α = 1 and γ = 1/6. It is worth mentioning that an optimal rate of k−1/2 has

only been known to be achievable only for SPSA with pure common random

numbers (CRNs) according to Kleinman et al. (1999, Theorem 2.1). In fact, the

covariance matrix of the asymptotic normality in (4.19) is identical to Kleinman

et al. (1999, Theorem 2.1). However, using CRNs often requires the user to have

the synchronization of the random number streams used in v
(+)
k and v

(−)
k .

Proof. Following Spall (1992, Proposition 2) and Kleinman et al. (1999, Theo-

rem 2.1), this proof relies on verifying the conditions (2.2.1) – (2.2.3) in Fabian

(1968). By Assumption 4.1 and Theorem 4.2, there exists an open neighbor-

hood of θ̂k in the real space, denoted as B(θ̂k), such that H(θ) is continuous for

all θ ∈ B(θ̂k), and for sufficiently large k, we have θ∗ ∈ B(θ̂k). Therefore, ap-

160



CHAPTER 4. COMPLEX SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION ALGORITHM

plying Taylor expansion on g(θ̂k) around θ∗ and using the fact that g(θ∗) = 0,

we have

g(θ̂k) = Hk(θ̂k − θ∗), (4.20)

where Hk is a matrix with its each row being the corresponding row of H(θ̄k)

evaluated at a different θ̄k that is on the line segment of θ̂k and θ∗. Plugging

(4.20) into (4.15) and following the notations in Fabian (1968), we rewrite (4.15)

as

θ̂k+1 − θ∗

= θ̂k − θ∗ − akHk(θ̂k − θ∗)− akbk(θ̂k)− akek(θ̂k)

= [I − (k + 1 + A)−αΓk](θ̂k − θ∗) + (k + 1 + A)−3α/2Tk + (k + 1 + A)−αΦkVk,

where Γk = aHk,Tk = −a(k + 1 + A)α/2bk(θ̂k),Φk = −aI and Vk = ek(θ̂k). We

now proceed to verify Fabian (1968, Conditions 2.2.1 and 2.2.2) by showing

Γk,Tk and E[VkV
T
k |Fk] all converge almost surely.

For the term Γk, by the continuity of H(·) in Assumption 4.1 and the almost

sure convergence of θ̂k → θ∗ in Theorem 4.2, it is easy to see that Hk → H(θ∗)

almost surely and that Γk → aH(θ∗). Furthermore, since Theorem 4.1 implies

that Tk = O(kα/2−2γ) and α−4γ < 0 in Assumption 4.9, we conclude that Tk → 0

almost surely and hence Fabian (1968, Condition 2.2.1) is satisfied.
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For the last term E[VkV
T
k |Fk], we have

E[VkV
T
k |Fk]

= E[ĝCS-SP
k (θ̂k)ĝ

CS-SP
k (θ̂k)

T |Fk]− E[ĝCS-SP
k (θ̂k)|Fk]E[ĝCS-SP

k (θ̂k)|Fk]
T

=
1

c2k
E[∆−1

k (∆−1
k )Tℑ(ℓ(θ̂k + ick∆k,vk))

2|Fk]− [bk(θ̂k) + g(θ̂k)][bk(θ̂k) + g(θ̂k)]
T

=
1

c2k
E[∆−1

k (∆−1
k )TE[ℑ(ℓ(θ̂k + ick∆k,vk))

2|∆k,Fk]|Fk]

− [bk(θ̂k) + g(θ̂k)][bk(θ̂k) + g(θ̂k)]
T . (4.21)

Let us proceed to show that all the terms on the right-hand side of (4.21) con-

verge appropriately. First note that the last term of (4.21) converges to 0 since

Theorem 4.1 and 4.2 imply bk(θ̂k) = O(k−2γ) and g(θ̂k) → g(θ∗) = 0 almost

surely. Then, for the first term on the right-hand side of (4.21), similar to how

(4.9) is derived, we apply Taylor expansion on ℓ(θ̂k + ick∆k,vk) around θ̂k and

obtain

E[ℑ(ℓ(θ̂k + ick∆k,vk))
2|Fk,∆k]

= E{[ck∆T
kG(θ̂k,vk) + ℑ(R3(θ̂k,vk))]

2}

= c2kE{[∆T
kG(θ̂k,vk)]

2|∆k,Fk}+O(c4k),

where R3(θ̂k,vk) is the higher-order remainder term of the Taylor expansion

similar to (4.8) and |R3(θ̂k,vk)| = O(c3k). Hence, for the mn-th entry of E[VkV
T
k |Fk],

162



CHAPTER 4. COMPLEX SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION ALGORITHM

we have

E[VkV
T
k |Fk]mn =

p∑︂
j=1

p∑︂
l=1

E
[︃
∆kj∆kl

∆km∆kn

]︃
E[Gj(θ̂k,vk)Gl(θ̂k,vk)|Fk] + o(1),

where the o(1) term represents all the terms discussed above that are converg-

ing to 0. Using Assumption 4.2 that all ∆kj are independent and symmetrically

distribution about 0, we see that when m = n

E[∆kj∆kl/∆km∆kn] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = l = m

σ2
∆τ

2
∆ if j = l ̸= m

0 otherwise,

and when m ̸= n

E[∆kj∆kl/∆km∆kn] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = m, l = n or j = n, l = m,

0 otherwise.

Therefore, for all m and n,

E[VkV
T
k |Fk]mn

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E[Gm(θ̂k,vk)

2|Fk] +
∑︁

j ̸=m σ
2
∆τ

2
∆E[Gj(θ̂k,vk)

2|Fk] + o(1) if m = n,

2E[Gm(θ̂k,vk)Gn(θ̂k,vk)|Fk] + o(1) if m ̸= n.
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By Assumption 4.10, we have E[G(θ̂k,vk)G(θ̂k,vk)
T |Fk] → E[G(θ∗,v∗)G(θ∗,v∗)T ]

a.s. as k → ∞, which concludes that Fabian (1968, Condition 2.2.2) is satisfied.

Finally, to verify that Fabian (1968, Condition 2.2.3) holds, using both Markov

inequality and Holder’s inequality, we have for any 0 < δ′ < δ/2 and r > 0

lim
k→∞

E[1{∥Vk∥2≥rkα}∥Vk∥2] ≤ lim sup
k→∞

(︃
E[∥Vk∥2]

rkα

)︃ δ′
1+δ′

(E[∥Vk∥2(1+δ
′)])

1
1+δ′ ,

where δ is defined in Assumption 4.5. Following the arguments in Kleinman

et al. (1999, Theorem 2.1), we also have

∥Vk∥2(1+δ
′) ≤ 22(1+δ

′)[∥ĝCS-SP
k (θ̂k)∥2(1+δ

′) + ∥g(θ̂k)∥2(1+δ
′) + ∥bk(θ̂k)∥2(1+δ

′)],

where both g(θ̂k) and bk(θ̂k) are uniformly bounded for large k by Theorem 4.1.

Using the similar arguments in Spall (1992, Proposition 2), we see that As-

sumption 4.11 and fact that δ′ < δ/2 imply E[∥ĝCS-SP
k (θ̂k)∥2(1+δ

′)] = O(1). Hence,

we conclude that E[∥Vk∥2(1+δ
′)] = O(1), which shows limk→∞ E[1{∥Vk∥2≥rkα}∥Vk∥2] =

0 and Fabian (1968, Condition 2.2.3) is verified.

4.3 Model-free Control

This section proposes to use the CS-SPSA to construct model-free controllers

for non-linear stochastic systems, where both the state and measurement equa-
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tions are unknown. With no stringent model assumptions imposed on the un-

derlying systems, the controllers are constructed by function approximators

(FA), such as neural networks or polynomials. The optimal control refers to

the optimal parameters within the FA. Since the functional form of the system

remains unknown, we need to estimate the gradient to proceed with gradient-

type algorithms. This work proposes a novel estimation for the gradient using

only the system measurement, which is inspired by the simultaneous pertur-

bation stochastic approximation (SPSA) algorithm and the complex-step gra-

dient approximation. In contrast to prior work that requires at least two mea-

surements per iteration, CS-SPSA requires only one system measurement per

iteration, which makes it suitable in tracking transient systems. We also estab-

lish an almost sure convergence result for stochastic approximation algorithms

with time-varying objective functions.

Complex dynamical systems are widely applied in various fields, and it is

inevitable to manipulate the states (variables) through a set of control (vari-

ables). Optimal control is designed to locate the optimal controller in minimiz-

ing certain objective functions, such as sending a rocket to a target location

with minimal fuel consumption or maneuvering robot arms to move certain

items. When there is limited knowledge about the system, it is rather chal-

lenging to determine the dynamics of the control for a system. This scenario

commonly arises in complex physical, biological, or climate systems (Boccara,
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2010), where either the entire functional forms of the system equations are un-

known or the system equations are too complex to compute any gradient infor-

mation for optimizing the controller. As a result, we cannot apply the gradient-

based algorithms (Lasdon et al., 1967; Khaneja et al., 2005; Luo et al., 2016),

and resort to optimization schemes that use only the direct system outputs for

optimization algorithms.

Since no information about the system equations is revealed in our opti-

mization procedure, our approach is a model-free controller. By “model-free”

we mean that no explicit model assumptions is known and our output relies

on the system output only. This key characteristic contrasts with prior work in

which the hidden or implicit system assumptions are required. For example,

several fuzzy controllers (Mamdani, 1976; Buckley, 1992) have rule bases that

describe the dynamics of the system in a linguistic-type fashion. As the con-

troller depends on the past system information to generate certain actions, we

have to construct a FA to determine the control variable. Note that some vari-

ables in the objective function, such as target measurement values, may also

be included as the inputs of the controller FA. Popular choices of the FA are, for

example, neural networks, polynomials, wavelet functions, or trigonometric se-

ries. According to the well-known Stone–Weierstrass approximation theorem

(Rudin et al., 1964) and universal approximation theorem (Hornik et al., 1989;

Csáji et al., 2001; Zhou, 2020), one can approximate any continuous function
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arbitrary well with a certain class of functions. The advantages and disadvan-

tages of various function approximations are summarized in Chen and Chen

(1995); Lane et al. (1992) and Poggio and Girosi (1990). Here we consider using

polynomial as our controller FA and it can be replaced by any other valid ones.

Given that only the noisy system measurements are accessible, we con-

sider stochastic optimization algorithms to estimate the gradient. In partic-

ular, SPSA is a powerful technique to estimate function gradient using only

two noisy function measurements, regardless of the dimension of the problem

itself, which enables it to be applied in optimal control problems, especially

when every function measurement requires updating the control. For FDSA

that requires dimension-dependent measurements to estimate one gradient,

the system state variable may already evolve to a completely different value.

SPSA is first applied in Spall and Cristion (1998) to model-free optimal control

problems. Later, Zhou et al. (2008) uses an SPSA-based model-free feedback

controller in active noise control for periodic disturbances in a duct, Ahmad

et al. (2014) analyzes the model-free proportional–integral–derivative tuning

of multiple-input and multiple-output systems using SPSA, and Yuan (2008)

constructs a model-free automatic tuning method for a restricted structured

controller.

Although SPSA-based controller has been popular, it still requires two func-

tion measurements, which creates a small discrepancy in the gradient approx-

167



CHAPTER 4. COMPLEX SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION ALGORITHM

imation. The error mainly arises from the two function measurements depend-

ing on different state variable values. Consider the simple one-step-forward

quadratic tracking error Lk(θk) = E[(yk+1 − tk+1)
TAk(yk+1 − tk+1)

T + uT
kBkuk],

where Lk(·) denotes the true loss function at time k, θk represents the param-

eter in the controller FA, uk denotes the control variable, yk+1 is the system

outputs, tk+1 is the target of the state variable, and Ak and Bk are two given

positive semi-definite weighting matrices. To estimate the gradient of Lk(·),

SPSA-based methods require two consecutive noisy function measurements of

ℓ
(±)
k = (y

(±)
k+1 − tk+1)

TAk(y
(±)
k+1 − tk+1)

T + u
(±)T
k Bku

(±)
k at two simultaneously per-

turbed parameter values θ(+)
k and θ(−)

k . However, when y
(+)
k+1 and y

(−)
k+1 are far

away from each other, especially in strong transient systems, the gradient ap-

proximation becomes less reliable and may cause the system to become unsta-

ble.

4.3.1 Algorithm Description

Denote Lk : Rp → R as the generic time-varying loss function at time k.

Given the parameter of interest being θ ∈ Rp, we are interested in constructing

a parameter estimate θ̂k ∈ Rp at time k such that true loss function evaluated

at Lk(θ̂k) is minimized. Consider a general non-linear stochastic system,

xk+1 = fk(xk,uk,wk),
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yk = hk(xk,vk),

where, for the state equation, xk represents the state of the system, fk(·) is a

linear or non-linear state function, uk is the control variable, wk is the state

noise, and for the measurement equation, yk is the observed quality of the

state variable, hk(·) is a linear or non-linear measurement function, and vk

s the measurement noise. A common loss in optimal control problems is the

one-step-forward quadratic tracking error

Lk(θk) = E[(yk+1 − tk+1)
TAk(yk+1 − tk+1)

T + uT
kBkuk], (4.22)

where the given matrices Ak and Bk are often introduced to reflect the cost

on the deviation of yk+1 from the target tk+1 and penalize for large value of

uk, respectively. Note that different indices of yk+1 and uk are used in the loss

function (4.22). This is due to fact that the observation yk+1 is only available

from the unknown state variable xk+1, which is generated by evolving the sys-

tem with xk and uk. Since the control variable uk is a direct output of our

model-free FA, which is parameterized by θk, the true loss function at time k

is denoted as Lk(·) evaluated at θk. Given the system output yk+1, a natural
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choice of the noise loss function at time k becomes

ℓk(θk) = (yk+1 − tk+1)
TAk(yk+1 − tk+1)

T + uT
kBkuk.

Therefore, with only evaluations of ℓk(·), we seek to find the minimum of the

loss function L(·).

Given the loss function Lk in (4.22), denote its gradient as

gk(θk) =
∂Lk

∂θk

=
∂uT

k

∂θk

∂Lk

∂uk

.

Since the problem of minimizing a loss function can often be solved by using its

gradient information, we seek to find the solution θ∗
k of the gradient equation

gk(θk) = 0. To solve the optimization problem, first consider the parameter

estimate θ̂k at time k. In order to estimate the optimal parameter θ∗
k+1 at the

very next time step k+1, we use the standard gradient-descent-type algorithm

as

θ̂k+1 = θ̂k − akĝk+1(θ̂k)

where ak is the non-negative gain coefficient and ĝk+1(·) is denoted as the gra-

dient approximation of the true gradient gk+1(·). Note that different indices

are used for ĝk+1(·) and θ̂k, which is to emphasize the gradient is of the loss

function Lk+1(·), and we propose to use both the noise loss function ℓk+1(·) and

170



CHAPTER 4. COMPLEX SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION ALGORITHM

the current parameter estimate θ̂k to construct the gradient approximation.

Specifically, we have

ĝk+1(θ̂k) =
ℑ(ℓk+1(θ̂k + ick+1∆k+1))

ck+1∆k+1

, (4.23)

where ck is the non-negative perturbation step-size coefficient, ∆k+1 is a p-

dimensional random perturbation vector ∆k+1 = [∆k+1,1, . . . ,∆k+1,p]
T , and ℑ(·)

denotes the imaginary part of the complex argument. We use ∆−1
k+1 or 1/∆

to denote [∆−1
k+1,1, . . . ,∆

−1
k+1,p]

T , where each component of ∆k+1 is independently

and identically distributed satisfying some regularity conditions specified in

Assumption 4.14 below.

It is worth noting that the gradient approximation in (4.23) requires a noisy

function evaluation at the complex value since the perturbed parameter esti-

mate θ̂k + ick+1∆k+1 ∈ Cp. However, the gradient approximation ĝk+1(θ̂k) is al-

ways real-valued since ℓk+1(θ̂k+ick+1∆k+1) ∈ C and ℑ(ℓk+1(θ̂k+ick+1∆k+1)) ∈ R.

With the real-valued ak, ck and ∆k for all k, it is also guaranteed that θ̂k ∈ Rp

for all k.

To illustrate how the proposed gradient approximation (4.23) is used, we

present the following step-by-step guide.

Step 0 (Initialization): Set index k = 0. Pick an initial parameter es-

timate θ̂0 and the non-negative gain coefficient ak and perturbation step-size
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coefficient ck.

Step 1 (Perturbation Vector): Generate a p-dimensional random per-

turbation vector ∆k+1, where all the components of ∆k+1 are independently

generated from mean-zero symmetric probability distributions satisfying the

regularity conditions discussed in Assumption 4.14 below.

Step 2 (Gradient Estimate): Construct the gradient approximate ĝk+1(θ̂k)

according to (4.23).

Step 3 (Iterative Update): Update the parameter estimate using the

standard gradient-descent-type algorithm as

θ̂k+1 = θ̂k − akĝk+1(θ̂k) ,

Step 4 (Iteration or Termination): Return to Step 1 with k+ 1 replacing

k. Terminate the algorithm if the maximum allowable number of iterations has

been reached.

4.3.2 Convergence

This second provides the assumptions of the almost sure convergence of θ̂k

and the formal convergence theorem.

Assumption 4.12 (Step-size Sequences). For all k, assume ak > 0, ck > 0 and
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ak → 0, ck → 0 as k → ∞;

∞∑︂
k=0

ak = ∞,
∞∑︂
k=0

a2k
c2k

< ∞ and
∞∑︂
k=0

akc
2
k < ∞.

Assumption 4.13 (Loss Function). Assume that Lk(·) can be extended to a com-

plex analytic function and Lk(θ) ∈ Rp whenever θ ∈ Rp. Further assume that,

for almost all θ̂k, there exists an open neighborhood of θ̂k in the complex space

such that for any θ in that neighborhood, |f(θ)| ≤ Bf for some positive constant

Bf .

Assumption 4.14 (Perturbation Vector). Far all k and j, assume that ∆kj

are independent and identically distributed, symmetrically distributed about

0. Further assume that |∆kj| ≤ κ0 for some positive constant κ0 and there exists

some positive δ such that E[1/|∆kj|2+δ] < κ1 for some positive constant κ1.

Assumption 4.15 (Noisy Measurement). Denote the noise term as εk+1(θ̂k +

ick+1∆k+1) = ℓk+1(θ̂k + ick+1∆k+1) − Lk+1(θ̂k + ick+1∆k+1). For all k, assume

that E[εk+1(θ̂k + ick+1∆k+1)|θ̂k,∆k+1] = 0. Further assume that there exists

some positive constant δ such that E[ℑ(Lk+1(θ̂k + ick+1∆k+1))
2+δ|∆k+1] < σ

2
L and

E[ℑ(εk+1(θ̂k + ick+1∆k+1))
2+δ|∆k+1] < σ

2
ε for some positive constants σ2

L and σ2
ε.

Assumption 4.16 (Strong Convexity). For some K < ∞, assume that there

exists some positive constant ρ > 0 such that, for all k ≥ K, we have (θ −

θ∗)Tgk+1(θ) ≥ δk(ρ) with some constant δk(ρ) satisfying
∑︁∞

k=0 akδk(ρ) = ∞ when-
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ever ∥θ− θ∗∥22 ≥ ρ.

Assumption 4.17 (No Bouncing Around). Denote ḡk+1(θ̂k) = E[ĝk+1(θ̂k)|θ̂k].

For any j = 1, . . . , p and ρ > 0, assume the conditional probability P ({ḡk+1,j(θ̂k) ≥

0 i.o.} ∩ {ḡk+1,j(θ̂k) < 0 i.o.}|{|θ̂kj − [θ∗]j| ≥ ρ for all k}) = 0.

Assumption 4.18 (Non-negligible Contribution). For any τ < 0 and non-empty

S ⊂ {1, 2, . . . , p}, there exists a λ > τ such that

lim sup
k→∞

⃓⃓⃓⃓
⃓
∑︁

j /∈S(θ− θ∗)gk+1,j(θ)∑︁
j∈S(θ− θ∗)gk+1,j(θ)

⃓⃓⃓⃓
⃓ < 1 a.s. (4.24)

for all |[θ]j − [θ∗]j| < τ where j /∈ S and |[θ]j − [θ∗]j| ≥ λ when j ∈ S.

Before presenting the main almost sure convergence theorem of θ̂k, let us

first discussion the assumptions here and show how they are related to the

assumptions proposed in the previous SP-based stochastic optimization litera-

ture. Assumption 4.12 is a standard gain and perturbation step-size sequence

condition for SP-based stochastic optimization algorithm (Spall, 1992; Spall

and Cristion, 1998; Spall, 2005). Although the condition
∑︁∞

k=0 akc
2
k < ∞ is

not need in the original SPSA, it is required here to bound the bias of the

gradient approximation. This condition also appears in various stochastic op-

timization algorithms (see, e.g., Pflug, 2012, Theorem 5.3 and Kushner and

Clark, 1978, Theorem 5.2.1). The requirement of complex analytic function

in Assumption 4.13 is a much stricter assumption since it automatically im-
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plies the function to be infinitely differentiable. However, it is necessary here

to allow an appropriate Taylor expansion of Lk+1(θ̂k + ick+1∆k+1), which then

guarantees the accuracy of the SP gradient approximation. Nonetheless, the

complex analytic function assumption is still a common assumption for us-

ing the complex-step gradient approximation (see, e.g., Martins et al., 2003;

Higham, 2018; Nikolovski and Stojkovska, 2018). Assumption 4.14 on the per-

turbation vector ∆k is similar to the one used in the basic SPSA algorithm,

which can be easily satisfied by choosing ∆kj to be independently Bernoulli

±1 distributed with equal probabilities for all k and j. Assumption 4.15 is

also a standard assumption on the noise of the function measurements, which

prevents the variability of ĝk+1(θ̂k) to be too large and ensures the stabil-

ity of the algorithm. Similar assumptions with Lk+1(θ̂k + ck+1∆k+1) replacing

ℑ(Lk+1(θ̂k+ick+1∆k+1)) and εk+1(θ̂k+ck+1∆k+1) replacing ℑ(εk+1(θ̂k+ick+1∆k+1))

can be found in Spall (1992). Assumption 4.16 requires the loss function to be

strongly convex if we choose δk(ρ) = ρ∥θ − θ∗∥22. This assumption provides

a key improvement from previous work since it is a direct assumption of the

loss function itself. In comparison, the assumption in Spall and Cristion (1998)

requires (θ − θ∗)T ḡk+1(θ) ≥ δk(ρ) with ḡk+1(θ) = E[ĝk+1(θ̂k)|θ̂k]. The involve-

ment of ḡk(θ), however, makes the assumption depends on the estimate of the

algorithm and it is much harder to be examined for practical problems. As

stated in Spall and Cristion (1998), the assumption involving ḡk+1(θ) may also
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be violated when there is a strong system transition between two consecutive

noisy function measurements. In our proposed algorithm, however, since only

one noisy function measurement is collected at each iteration, there is no such

concern as long as the function is strongly convex. Assumptions 4.17 and 4.18

are both weak technical conditions to ensure the almost convergence of θ̂k.

Generally speaking, Assumption 4.17 prevents θ̂k from bouncing around θ∗

that causes the elements of ḡk+1(θ̂k) to change sign infinitely often. Assump-

tion 4.18 ensures that no element of g(θ) makes a negligible contribution to

(θ − θ∗)Tgk+1(θ) whenever [θ]j − [θ∗]j ̸= 0 for any j. A common sufficient con-

dition is to let gk+1(θ) to be uniformly bounded between 0 and ∞ whenever

[θ]j − [θ∗]j ̸= 0 for all j.

Theorem 4.4 (Wang et al., 2021). Let Assumptions 4.12–4.18 hold and there

exists a unique θ∗ such that thetabmstark → θ∗ as k → ∞. We have

θ̂k → θ∗ a.s.

Proof. Due to the page limit, we provide the sketch of the proof. It is worth

noting that the proof here largely follows Spall and Cristion (1998) with modifi-

cations due to different assumptions and the newly proposed complex-step gra-

dient approximation. Denote θ̃k = θ̂k −θ∗, we then proceed to show the almost

sure convergence by the following main three steps: i) P(lim supk→∞ ∥θ̃k∥2 =
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∞) = 0; ii) θ̃k → θ̃
∗

a.s. for some unique θ̃
∗
; iii) the limit θ̃

∗
must be the

constant zero.

Recall that Theorem 4.1 gives ḡk+1(θ̂k) − gk+1(θ̂k) = O(c2k+1). To prove the

first step, we rely on the martingale convergence theorem. From Assump-

tions 4.12–4.15 and using the relationship that E[ĝk+1(θ̂k)− ḡk+1(θ̂k)] = 0, it is

easy to see that the sequence {
∑︁k

t=0 at[ĝt+1(θ̂t)− ḡt+1(θ̂t)]}k≥0 represents a mar-

tingale sequence, where E[∥
∑︁k

t=0 at[ĝt+1(θ̂t)−ḡt+1(θ̂t)]∥22] ≤
∑︁k

t=0 E[∥at[ĝt+1(θ̂t)−

ḡt+1(θ̂t)]∥22] < ∞. Observing that

θ̂0 − θ∗ −
k∑︂

t=0

at[ĝt+1(θ̂t)− ḡt+1(θ̂t)]

= θ̃k+1 +
k∑︂

t=0

atḡt+1(θ̂t),

the martingale convergence theorem implies that θ̃k+1 +
∑︁k

t=0 atḡt+1(θ̂t) con-

verges almost surely to some integrable random variable.

Since we have shown that ḡk+1(θ̂k)− gk+1(θ̂k) = O(c2k+1), which converges to

0 as ck → 0 by Assumption 4.12, we see that (4.24) implies

lim sup
k→∞

|
∑︁

j /∈S(θ− θ∗)ḡk+1,j(θ)∑︁
j∈S(θ− θ∗)ḡk+1,j(θ)

| < 1 a.s.

Hence, using the constant λ in Assumption 4.18, we have

∪S{θ̃k,j → ∞ for j ∈ S} ⊆ ∪S,τ>0{A ∪ B},
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where the event A

A = {θ̃k,j ≥ λ for j ∈ S, θ̃k,j ≤ τ and j /∈ S}

∩ lim sup
k→∞

{akḡk+1,j(θ̂k) < 0 for j ∈ S}, (4.25)

and the event B

B = {θ̃k,j → ∞ for j ∈ S}

∩ lim inf
k→∞

{akḡk+1,j(θ̂k) < 0 for j ∈ S}c. (4.26)

For event A, there exists a subsequence {ks} such that the event C = {θ̃ks,j ≥

λ for i ∈ S} ∩ {aks ḡks+1,j(θ̂ks) < 0 for i ∈ S} is true. However, with ḡks+1(θ̂ks) −

gks+1(θ̂ks) → 0, the event C also implies θ̃
T

ksgks+1(θ̂ks) < 0 for any sufficiently

large ks, which contradicts Assumption 4.16. Hence, we must have P(A) = 0

for any τ and S. For event B, another contradiction argument can be made by

drawing conclusions from the almost sure convergence of θ̃k+1+
∑︁k

t=0 atḡt+1(θ̂t)

and Assumption 4.17 in a similar fashion as the proof in Spall and Cristion

(1998, Proposition). Therefore, we can show P(B) = 0, which further implies

that P(lim supk→∞ ∥θ̃k∥2 = ∞) = 0.
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To prove the second step, it is sufficient to show that for any j and a < b,

P(lim inf
k→∞

θ̃k,j < a < b < lim sup
k→∞

θ̃k,j) = 0. (4.27)

From the result of the first step, we note that there exists a sub-subsequence

{ksl} such that

lim sup
l→∞

|
ksl∑︂
t=0

atḡt+1,j(θ̂t)| < ∞ a.s.

If there exists some constants a and b such that lim infk→∞ θ̃k,j < a < b <

lim supk→∞ θ̃k,j, Assumption 4.17 implies that for any ρ > 0 we can choose

m > n sufficiently large such that |
∑︁ksm−1

t=ksn
atḡt+1,j(θ̂t)| ≤ ρ and |θ̃ksm ,j − θ̃ksn ,j +∑︁ksm−1

t=ksn
atḡt+1,j(θ̂t)| ≤ (b− a)/3. By picking ρ < (b− a)/3, we have

|θ̃ksm ,j − θ̃ksn ,j| ≤
2(b− a)

3
. (4.28)

However, recall that we assume θ̃ksn ,j < a < b < θ̃ksm ,j, which implies θ̃ksm ,j −

θ̃ksn ,j > b− a. Hence, by contradicting with (4.28), we must have (4.27) hold for

the second step.

For the last step, it is sufficient show that

P( lim
k→∞

θ̃k ̸= 0 and ∥
∞∑︂
t=0

atḡt+1(θ̂t)∥22 < ∞) = 0. (4.29)

Assume the event in (4.29) does hold and denote J = {j : θ̃k,j ̸→ 0 and j ∈
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{1, . . . , p}}. From the result of second step, we see that there exists some

constants L and U , and a sufficiently large K such that for any k ≥ K, we

have L ≤ |θ̃k,j| ≤ U when j ∈ J and |θ̃k,j| ≤ L when j /∈ J . Now, with

ḡk+1,j(θ̂k) = gk+1,j(θ̂k) +O(c2k) and Assumption 4.16, we have

n∑︂
t=K+1

ak
∑︂
j∈J

θ̃k,j ḡk+1,j(θ̂k) ≥
n∑︂

t=K+1

akδk(a).

However, since ḡk+1,j(θ̂k) can only change sign a finite number of times by As-

sumption 4.17, there exists some j ∈ J such that

lim sup
n→∞

|
∑︁n

t=K+1 akδk(a)∑︁n
t=K+1 akḡk+1,j(θ̂k)

| < ∞.

Hence, we can must have |
∑︁n

t=K+1 akḡk+1,j(θ̂k)| = ∞ given that
∑︁n

t=K+1 akδk(a) =

∞ by Assumption 4.16. Finally, after observing that the existence of such j ∈ J

contradicts the event in (4.29), we must have (4.29) holds, which completes the

proof.

4.4 Numerical Study

4.4.1 Synthetic Problem

In this subsection, we test the performance of the proposed CS-SPSA on a

simple synthetic problem. This loss function has also been examined in Klein-
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man et al. (1999) and Spall (2005, Example 14.8). Specifically, we consider the

following noisy function measurement,

L̂(θ) = θTθ+

p∑︂
j=1

exp(−Xjtj), (4.30)

where θ = [t1, . . . , tp]
T ∈ [0,∞)×· · ·×[0,∞), and Xj ∼ exp(ηj) is an exponentially

distributed random variable with the rate parameter ηj for j = 1, . . . , J . Using

the basic property of exponential distribution, it is easy to see that the expected

loss function has the following formula

L(θ) = E[ℓ(θ)] = θTθ+

p∑︂
j=1

ηj

ηj + tj
. (4.31)

Note that both (4.30) and (4.31) satisfy the requirements of being analytic func-

tions so that whenever θ ∈ Cp, the function outputs L(θ) ∈ C and ℓ(θ) ∈ C.

Moreover, one can also check that the CS-SP gradient approximation returns

an appropriate estimate for the true gradient when using (4.30) and (4.31).

Based on the values provided in Kleinman et al. (1999), we first consider the

case where p = 10 and η = [η1, . . . ,ηp]
T = [1.10254, 1.69449, 1.47894, 1.92617,

0.750471, 1.32673, 0.842822, 0.724652, 0.769311, 1.3986]T . The optimal esti-

mate θ∗ is computed algebraically by solving ∂L(θ)/∂θ = 0.

Setting the initial estimate θ̂0 = [1, . . . , 1]T , we compare the proposed CS-

SPSA with FDSA, SPSA and CS-FDSA. The gain sequence {ak} and perturba-
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tion sequence {ck} are chosen to have the standard form ak = a/(k+1+A) and

ck = c/(k + 1)γ for scalars a > 0, A ≥ 0, c > 0 and γ > 0. Following Spall (1992),

for all k, the distribution of the random perturbation vectors ∆k in SPSA and

CS-SPSA is set to be independent Bernoulli ±1 distribution with equal proba-

bilities. After tuning for optimal performance in terminal loss function values,

we choose a = 0.02, A = 100,α = 0.668, c = 0.2 and γ = 0.167 for all the algo-

rithms. Since each algorithm uses a different number of function measurement

per iteration, for a fair comparison under a fixed total budget or computational

resource, we present the results in terms of the number of function measure-

ments. All the algorithms are implemented using a total of 50,000 function

measurements per replicate and the results are averaged over 20 independent

replicates. Figure 4.1 shows the performance of all the algorithms in terms of

the normalized loss function error [L(θ̂k) − L(θ∗)]/[L(θ̂0) − L(θ∗)]. Figure 4.2

shows the performance of all the algorithm in terms of the normalized param-

eter estimate error ∥θ̂k − θ∗∥/∥θ̂0 − θ∗∥.

It is clear from Figure 4.1 and 4.2 that CS-SPSA performs the best among

all the algorithms. The advantage of using only one function measurement per

iteration makes CS-SPSA converge to the optimal value much faster.
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Figure 4.1: Performance of FDSA, SPSA, CS-FDSA and CS-SPSA in terms
of [L(θ̂k) − L(θ∗)]/[L(θ̂0) − L(θ∗)] across 50,000 function measurements and
averaged over 20 independent replicates.

Figure 4.2: Performance of FDSA, SPSA, CS-FDSA and CS-SPSA in terms of
∥θ̂k − θ∗∥/∥θ̂0 − θ∗∥ across 50,000 function measurements and averaged over
20 independent replicates.
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4.4.2 A Data-Driven Linear-quadratic Regulator

To examine the performance of CS-SPSA on a real-world problem, we con-

sider the following well-known data-drive linear-Quadratic regulator (LQR)

problem. Mathematically, we have

xt+1 = Axt +But +wt,

yt = xt + vt,

where xt ∈ Rn is the state vector, u ∈ Rm is the control vector, wt ∈ Rm is the

state noise, yt ∈ Rn is the measurement vector and vt ∈ Rn is the measurement

noise, and the matrices A ∈ Rn×n,B ∈ Rn×m are both system matrices. Con-

sider a linear feedback control law ut = −Kxt with K ∈ Rm×n. We can define

the parameter of interest θ as the vector form of K such that θ = vec(K) ∈ Rp

with p = mn. Our goal is to find an optimal θ such that the following linear-

quadratic regulator (LQR) cost is minimized,

L(θ) = E

[︄
xT
TQxT +

T−1∑︂
t=0

(xT
t Qxt + uT

t Rut)

]︄
,

where Q ∈ Rn×n and R ∈ Rm×m are both given positive definite matrices deter-

mined by the user to reflect the relative weights to put on the cost associated

with the state vector and the control vector. The LQR cost is generally a non-
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convex function (Fazel et al., 2018). Since the state vector xt is inaccessible

and a user can only observe the measurement vector yt, we rely on the follow-

ing noisy function measurement

ℓ(θ) = yT
TQyT +

T−1∑︂
t=0

(yT
t Qyt + uT

t Rut)

to find the optimal θ. It is also worth noting that the proposed CS-SPSA re-

quires noisy function measurements at the complex-valued θ̂k + ick∆k in order

to construct the gradient approximation ĝCS-SP
k (θ̂k). Therefore, it might not be

possible to collect data by conducting physical experiments as in real world

systems, especially when the real systems only accept real-valued inputs. The

CS-SPSA can be useful, however, when one can simulate the system in com-

puter code so that complex-valued inputs are acceptable. Since the optimal

solution found by CS-SPSA are always real values, the solution can still be

used to guide the corresponding real systems.

Following Al-Abri et al. (2020), we choose an asymptotically stable system

with K ∈ R3×4 and the parameter values,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.5 1.2 4.3 0.1

0.97 −10.3 0.4 −6.1

−9.2 1.1 −4.9 0.3

1.1 0.9 −3.4 −0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1 0.4 −0.2

−3.2 1.4 0

−0.8 0.1 3.0

−1.1 −0.9 5.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Q = I4 and R = I3.
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Both the state and measurement noises are assumed to be independent Gaus-

sian distributed such that wt ∼ N4(0, 0.1
2I4) and vt ∼ N4(0, 0.1

2I4). The LQR

cost is computed with roll out length T = 100. Using the initial state x0 =

[20, 40,−20,−10]T and the initial estimate θ̂0 = [2, . . . , 2]T , we consider the com-

parison between SPSA and CS-SPSA. With the random perturbation vector

∆k being independent Bernoulli ±1 distributed with equal probabilities. Af-

ter tuning for optimal performance of SPSA, the gain and perturbation se-

quence parameters are set to be a = 10−4, A = 100, c = 0.5,α = 0.668 and

γ = 0.167 for both SPSA and CS-SPSA. We implement both algorithms for 500

iterations each. Since the total computational times are about the same, i.e.,

SPSA and CS-SPSA takes 218.51 and 216.09 seconds, respectively, we present

the final result in terms of the number of iterations, not the number of func-

tion measurements. Figure 4.3 shows the normalized loss function value, i.e.,

[L(θ̂k) − L(θ∗)]/[L(θ̂0) − L(θ∗)], where θ∗ is the minimizer of L(θ∗) such that

L(θ∗) = 4149.3895. We can see that CS-SPSA outperforms SPSA after just 100

iterations and the advantages persist for all later iterations.
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Figure 4.3: Performances of SPSA and CS-FDSA in terms of normalized errors
in loss, i.e., [L(θ̂k)− L(θ∗)]/[L(θ̂0)− L(θ∗)], across 500 iterations and averaged
over 20 independent replicates.

4.4.3 Non-additive Noise Model

For the numerical study, we consider the non-additive noise model intro-

duced in Yaz (1987). Mathematically, we have

yk+1 =

⎛⎜⎜⎝−0.5 0.3

0 1.1

⎞⎟⎟⎠yk+1 +

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠uk +

⎛⎜⎜⎝∥yk∥2

0

⎞⎟⎟⎠wk, (4.32)

where yk,uk ∈ R2, and wk is independently Bernoulli ±0.5 distributed with

equal probabilities. As mentioned in Spall and Cristion (1998), beside the non-

additive noise term, the system can only be affected by the second components

of the control variable and the first component of yk can only be affected by

the control variable after a delay of one time period. Note that since work
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considers a model-free approach, there is no prior knowledge of the dynamics

(4.32). Hence, although the first component of uk has no affect on the system,

we still need to construct a full controller to generate both components of uk.

To test the performance of the tracking ability, we use a periodic square wave

target sequence, i.e., tk = (1, 0)T for the first five iterations of the period and

tk = (−1, 0)T for the second five iterations of the period. A quadratic loss func-

tion,

Lk(θk) = E[(yk+1 − tk+1)
TAk(yk+1 − tk+1)

T ]

with Ak = 0.5I2 is considered here. The long-run best possible root-mean-

square (RMS) error, i.e., {E[(yk+1 − tk+1)
TAk(yk+1 − tk+1)

T ]}1/2 is 1/
√
2 ≈ 0.7071.

To construct the controller, we use a second-order polynomial with the most

recent system variable and the target as the inputs, i.e., uk = f(θk;yk, tk+1).

There are a total of p = 30 parameters.

For our proposed CS-SPSA algorithm, we choose a decaying gain sequence

ak = a/(k + 1 + A)0.667 with a = 0.1, A = 10 and ck = c/(k + 1)0.167 with c = 0.05.

The initial state is set to y0 = [2, 1]T . Table 4.2 shows the RMS error at various

iterations. We can see that CS-SPSA successfully minimizes the loss function

values and, even at iteration 50, the estimated loss function error is already

close the optimal value. For SPSA and the one-measurement versions SPSA,

both algorithm fail to converge after 500 iterations. Note that the controller

FA here is much simpler than the third-order polynomial used in Spall and
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Cristion (1998), which has 70 parameters.

Table 4.2: Estimated RMS error for the non-additive noise model

Iteration Number CS-SPSA

0 2.236

50 0.790

100 0.709

500 0.708

4.5 Conclusion

Borrowing some ideas from SPSA and CS-FDSA, CS-SPSA is proposed and

established to solve stochastic optimization problems with only noisy function

measurements. Using the complex-valued noisy function measurement to esti-

mate the gradient, theoretical results suggest that the proposed CS-SPSA al-

gorithm converges almost surely at an accelerated rate of k−1/2, which is faster

than the standard convergence rate of k−1/3 and is only achievable as if CRNs

are used in SPSA. The numerical studies on a synthetic problem and the data-

driven LQR problem show that CS-SPSA delivers the best results in terms of

accuracy and robustness compared with FDSA, CS-FDSA, and SPSA. Practi-

cally, the algorithm is also shown to perform well for constructing a model-free

controller of a non-additive noise model. We note that the newly-proposed CS-
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SPSA is applicable only when the loss function can be extended to evaluate

complex parts, which may restrict its use when interacting with real-world

systems. Otherwise, SPSA remains to be the “gold standard” in general prob-

lems when the loss function evaluation outputs real-valued scalar only. For

future directions, it is also possible to consider the more generalized forms of

CS gradient approximation listed in Abreu et al. (2013) to construct the gradi-

ent approximation, such as ĝk(θ̂k) = ℑ(ℓ(θ̂k + c̃k∆̃k + ick∆k,vk))/ck∆k for a new

pair of c̃k and ∆̃k. In this work, however, as the first attempt to utilize both

the SP and CS gradient approximations, we stick to the most basic and widely

used version (4.2) for gradient approximation.
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Alrefaei, M. H. and Andradóttir, S. (2001). A modification of the stochastic

ruler method for discrete stochastic optimization. European Journal of Op-

erational Research, 133(1):160–182.

Apostol, T. M. (1974). Mathematical Analysis. Addison Wesley Publishing Com-

pany.

Balzani, D., Gandhi, A., Tanaka, M., and Schröder, J. (2015). Numerical cal-
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