104,043 research outputs found

    An Algorithm for Matching Heterogeneous Financial Databases: a Case Study for COMPUSTAT/CRSP and I/B/E/S Databases

    Get PDF
    Rigorous and proper linking of financial databases is a necessary step to test trading strategies incorporating multimodal sources of information. This paper proposes a machine learning solution to match companies in heterogeneous financial databases. Our method, named Financial Attribute Selection Distance (FASD), has two stages, each of them corresponding to one of the two interrelated tasks commonly involved in heterogeneous database matching problems: schema matching and entity matching. FASD's schema matching procedure is based on the Kullback-Leibler divergence of string and numeric attributes. FASD's entity matching solution relies on learning a company distance flexible enough to deal with the numeric and string attribute links found by the schema matching algorithm and incorporate different string matching approaches such as edit-based and token-based metrics. The parameters of the distance are optimized using the F-score as cost function. FASD is able to match the joint Compustat/CRSP and Institutional Brokers' Estimate System (I/B/E/S) databases with an F-score over 0.94 using only a hundred of manually labeled company links

    Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis

    Get PDF
    BACKGROUND: Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2(-L )distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. RESULTS: The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. CONCLUSIONS: The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems

    Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis

    Get PDF
    This work was partially supported by FCT through the PIDDAC Program funds (INESC-ID multiannual funding) and under grant PEst-OE/EEI/LA0008/2011 (IT multiannual funding). In addition, it was also partially funded by projects HIVCONTROL (PTDC/EEA-CRO/100128/2008, S. Vinga, PI), TAGS (PTDC/EIA-EIA/112283/2009) and NEUROCLINOMICS (PTDC/EIA-EIA/111239/2009) from FCT (Portugal).Background: Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2(-L) distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results: The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions: The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems.publishersversionpublishe

    Average-Case Optimal Approximate Circular String Matching

    Full text link
    Approximate string matching is the problem of finding all factors of a text t of length n that are at a distance at most k from a pattern x of length m. Approximate circular string matching is the problem of finding all factors of t that are at a distance at most k from x or from any of its rotations. In this article, we present a new algorithm for approximate circular string matching under the edit distance model with optimal average-case search time O(n(k + log m)/m). Optimal average-case search time can also be achieved by the algorithms for multiple approximate string matching (Fredriksson and Navarro, 2004) using x and its rotations as the set of multiple patterns. Here we reduce the preprocessing time and space requirements compared to that approach

    Searching by approximate personal-name matching

    Get PDF
    We discuss the design, building and evaluation of a method to access theinformation of a person, using his name as a search key, even if it has deformations. We present a similarity function, the DEA function, based on the probabilities of the edit operations accordingly to the involved letters and their position, and using a variable threshold. The efficacy of DEA is quantitatively evaluated, without human relevance judgments, very superior to the efficacy of known methods. A very efficient approximate search technique for the DEA function is also presented based on a compacted trie-tree structure.Postprint (published version
    corecore