
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

LSI-03-9-R 
 
 

Searching by Approximate Personal-Name Matching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rafael Camps y Jordi Daudé 
Departamento LSI 

Universitat Politècnica de Catalunya 
Barcelona 



       

 
 
 
1.- Introduction 
 Object 
 Errors 
 Graphic and phonetic similarity 
 First name and surnames 
 Similarity functions and search techniques  
 Historical view and state-of-the-art 
 Contributions 
 
2.- Designing a distance function: DEA 
 Distance functions 
 Metric distances 
 Discrimination 
 Positions 
 Thresholds 
 Other distance functions 
 Posiciones de las operaciones 
   
3.- Evaluating and comparing distance functions 
 Objective evaluation 
 The MiFa graphic 
 Data Volumes,  β-Factor and Precision 
 Example 
 Two surnames 
 The Recall/Precision graphic 
          Efficacy: E and J 
 Summary of the comparison between distance functions 
  
4.- Searching technique 
 Object 
 Basic algorithm for edit distances with costs 
 Improving the basic algorithm: cut-off column 
 Improving the search: trie-tree 
 Evaluation of the efficiency 
  
5.- Conclusions 
 
6 - References 
  



       

 

 

 

Searching by approximate personal-name matching 
 

 

Rafael Camps and Jordi Daudé    (April 2003) 

 
Software Department, Universitat Politècnica de Catalunya, C/ Jordi Girona 1-3, Barcelona, Spain 

08034. E-mail: rcamps@lsi.upc.edu   

 

_______________________________________________________________ 

 

 
SUMMARY 

 

We discuss the design, building and evaluation of a method to access the information of a person, 

using his name as a search key, even under the presence of errors and noises. We present a 

similarity function, the DEA function, based on the probabilities of the edit operations accordingly to 

the involved letters and their position, and using a variable threshold. The efficacy of DEA is 

quantitatively evaluated, without human relevance judgments, very superior to the efficacy of known 

methods. A very efficient approximate search technique for the DEA function is also presented based 

on a compacted trie-tree structure.  

 
KEY WORDS: approximate name searching; approximate string matching; edit distance; trie-tree  

 

 

 

1.  INTRODUCTION 

 

Object 

 

Data related to people is stored in almost all Information Systems (IS): customers, patients, 

taxpayers, drivers, authors, etc. Expansion of Internet contributes to increase the data about people 

into IS. Very often there is the need to find the data of a person in a database (DB) using his/her 

name as a search key. But we can have difficulties in finding the person because the name may 

contain errors. For example, if we look in a DB for the information of a person that we think his/her 

surname is Blasco, it may occur that in the DB that person appears as VELASCO. Therefore, we 

need that the system recognizes that both strings are probably variants or errors, one of each other. 

We also need that this approximate searching of names in the DB, is made in a sufficiently short 

time.  

 

    We use the abbreviation APNM (Approximate Personal-Name Matching) for the location of 

people by their name, in structured DB, tolerating the presence of errors.  The aim of this work is 

to present appropriate methods for APNM. 

 

Errors 

 

The experience says that in DB of IS, that are usually structured and high volume, the percentage of 

people with errors in their names is rarely below 3% and it is not unusual to reach levels close to 

30%. It is usually considered that the IS of the Spanish Public Administration, have in their DB 

around a 20% of personal records with errors in names. There are similar figures for the North 

American Administration [1]. If we suppose that names are introduced in the system via a keyword 

and the set of first name and surnames has an average of about 20 characters, then a 20% of people 

with some kind of error mean a typing error ratio of 1% approximately, which is within the usual 

limits of quality in non-verified data. According to Barker [2] 50% of personal-names introduced 



       

by Internet users, contain errors. The problem is very common in all type of applications, and in 

fields as diverse as Health Services, Marketing by mail, Customers Relationship Management, 

Justice, Treasury, Information Retrieval for libraries, Police, Census agencies, etc.  

 

    Frequently and specially in the Public Administration, the sources of data and their ways to reach 

the IS, can be very diverse and therefore the causes of errors or noise can also be numerous. These 

anomalies are usually grouped in two families, phonetics and graphics. That is, related to sounds 

(errors because of deficiencies of speech or hearing, ignorance of the language, etc) and related to 

graphics (errors in typing, in OCR devices, in the visual interpretation of manual writing, etc). The 

same anomaly can be produced by different causes.  For example; the confusion between letters M 

and N can be phonetic or a confusion because its manual writing is similar or a typing error since 

they are neighboring in qwerty keyboards.  

 

    The people involved in the use of a IS, have a good knowledge of the domain of values for most 

of the attributes of the DB: cities of the delegations, names of products, salaries, etc. In these cases 

usually they make only typing errors.  But when the domain of values is not known, as is the case 

for the surnames, many errors of all types are made. Ideas of interest on the causes of errors and 

noises can be found in [3] [4] [5] and [6]. 

 

Graphic and phonetic similarity 

 

There are two traditional approaches for the criterion or function of similarity between two strings 

of characters:  

 

 - Graphical similarity (or physical similarity). The similarity is determined by the 

character-wise comparison of both strings, processing its coincidences or differences and 

calculating a distance.   

 

- Phonetic Similarity. The words are seen as sequences of sounds. Usually the similarity is 

determined by means of some phonetic codification system (as the popular Soundex 

system [7]) whose objective is that the same code corresponds to two words, if, and only if, 

they are phonetically similar words. These systems usually consist of a set of rewriting 

rules.  The phonetic approach has been (and still is) the most used for the case of personal-

names [8] [9] [10] [5] [11] [12].  

 

We have added phonetic characteristics to a criterion of comparison of characters, as Veronis 

[3] and Zobel [13] also did. The set of the multiple causes of errors and its interaction, does not 

allow us to describe the problem in a deterministic way. This lead us to probabilistic approaches 

based on experimental data obtained from real corpora.  

 

First name and surnames 

 

In Spain, complete names are formed (according to the law) by three parts; first name and two 

surnames. There are important differences between the lexical characteristics of first names and 

those of surnames.  The number of different surnames in a DB can be very high, but the number of 

first names is rather limited.  First names usually are much more known than surnames for the 

people involved in the IS and for that reason less phonetic or interpretation errors are made in 

them.  On the contrary, first names have variants and they are abbreviated with much greater 

frequency than surnames. 

 

   For all this, in the APNM systems, first names are submitted to a different treatment than 

surnames.  Usually a dictionary is built with the acceptable first names, and all the variants and 

usual errors known until that moment, with all needed cross-references. But this is not possible 

in the case of surnames, being in them where the greater difficulty of the APNM resides. This 

work is centered in solving the problems with surnames because they are more frequent and 



       

more difficult to solve. Anomalies of the macrostructure, such as transposition between parts of 

a personal-name, are not contemplated in this work, but they are well studied in [14][15][16]. 

From now on, we will use the term name and surname indistinctly. We will use the term first 

name only when really needed. 

 

Similarity functions and search techniques 

 

There is no doubt that between the names VELASCO and BLASCO there is more proximity or 

similarity than between VELASCO and MARTIN.  In this work we will say that two names are 

similar, if with a certain probability both refer to the same person. In the pair VELASCO / BLASCO 

very probably one of the two strings is consequence of anomalies in the oral transmission or the 

writing of the other. But it is not probable that this is the case of the pair VELASCO / MARTIN. 

Note that we want to find the person that we are looking for, if it exists, independently of which of 

the two names (the one stored in the DB or the one in the query) or no one, is correct. 

 

   In practice and from a functional point of view, the APNM can appear to us with varied 

aspects. The variant that we will adopt in this work can be expressed as follows:  Given a name 

x and a set of names C1, obtain a set C2 ⊆ C1 with those names that are similar to x. The names 

from C1 as well as x, are not necessarily correct. The C2 set may be empty. We can introduce a 

parameter k to tune the similarity criterion. This variant of the problem can be expressed as a 

function:  

 

  C2 = Similars  ( x , C1 , k ) 

 

This function is based on the calculation of a measurement of dissimilarity or distance δ ( x , y ).  
In approximate searching we tend to imagine the greater or smaller proximity between two words, 

like a minor or greater distance in a certain space (using these terms in an informal way). In this 

work, we are interested on a distance that relates to the probability that x does not refer to the same 

person than y.  

 

   The C2  set could be obtained ordered by ascendant values of the distance, and k would be the 

acceptable maximum value, the threshold, of that distance.  The C1 set usually is a vocabulary of 

names existing in the DB in which we want to search.  Then,  the C2 subset obtained with the 

function Similars, will be used to access to the rest of information of the persons that have exactly 

the name x or a similar one.  

 

    In APNM we can differentiate two basic aspects; one of logical level, What criterion do we 

adopt for the similarity? and another one of more physical level, How do we implement the search? 

 

What?  We want to find a criterion or function that determines if two names are similar or 

that shows us a quantification of its similarity. That determination has to be effective, that 

is, as much correct as possible.  

 

How?  We want to find a technique that allows us to locate in a DB, in a sufficiently fast 

way, the information of all the people whose names are similar (accordingly to the 

similarity function) to the searched name. We want to find an efficient implementation of 

the Similars function. We need a suitable data structure, a search strategy in that structure 

and an efficient algorithm for the determination of similarity. To simplify we will call this 

search technique. 

 

To find a valid function, that is, "sufficiently effective", is very difficult. The problem is in finding a 

distance function δ (x,y) that captures the actual name anomalies. The methods proposed until now 
are far from achieving it. The discrepancies between the computable distances and the "reality", 

produces misidentification (false negatives) and overidentification (false positives). Distance 

functions are usually more effective than phonetic codification methods. Nevertheless, distance 



       

functions have the disadvantage that the associated search techniques are usually very inefficient, 

very time consuming. Unless for a small DB, the sequential search, analyzing all the names of the 

DB, is excessively expensive. Therefore, our basic goal is two fold: to find an effective similarity 

function, and an efficient search technique. 

 

Historical view and state-of-the-art  

 

Before 1980 some works of interest were published about the problem of the approximate 

searching of personal-names in the DB of IS, the APNM problem. We stand out Davidson [17] 

Taft [8] and Fokker [18]. But from 1980, symptoms of frustration appeared. As Hernansen [19] 

said in his PhD thesis, the problem is "exceedingly difficult", and there seems to be no way to solve 

it in a general way.  

 

    In 1980 an interesting survey was published on the very general subject of the Approximate 

String Matching (ASM), written by Hall & Dowling [20]. The APNM is discussed only slightly as 

a special case within the broad world of ASM. In 1992 another survey was published with some 

interest for the APNM field, written by Karen Kukich [21] it shows a complete "state-of-the-art" of 

ASM,  automatic correction and related subjects. 

 

    In the 90's, the term ASM, that until then was being used in its wider sense, begins to be used in a 

very restricted sense, limiting it to the study of efficient algorithms related to edit distances. The 

efficacy is not considered because in most applications (mainly in Biology) the approach is 

deterministic.  

 

    Recently, in 2001 a survey from Gonzalo Navarro [22] on the ASM subject has appeared, 

basically focused in the simple distance (the simple distance is the minimum number of edit 

operations necessary to transform a string into another).  

 

    We will now mention the works published from the early 80's, that dedicate special attention to 

the APNM problem. 

 

- Getty's Synoname and its cousins: A survey of applications of personal name-matching 

algorithms, from C.L. Borgman and S.L. Siegfred [5]. It deals with the state-of-the-art of 

APNM. It emphasizes the systems in real production and explains the multicultural 

problems of APNM that appear in an archive of History of Art (Getty Foundation). See 

also [24] and [25]. 

 

- Searching proper names in databases [12] and Retrieval effectiveness of proper name 

search methods [26] both of U.Pfeifer. It is an experimental, and subjective, comparison 

between several methods for determination of the similarity of personal-names.  

 

- Phonetic string matching: Lessons from Information Retrieval from J.Zobel and P.Dart 

[13]. It compares many criteria of similarity applicable to words, but its authors question 

the results; one of its conclusions is that the traditional method for efficacy evaluation (use 

of human judges) is not appropriate. 

 

- Similarity Searching in the CORDIS Text Database from E.G.M. Petrakis and K. 

Tzeras [27]. It compares several distance functions, for the access to the CORDIS DB 

of the European Union using personal-names. Like other works, it uses subjective 

criteria for the evaluation of efficacy (a human judge). 

 

- Matchsimile: A Flexible Approximate matching Tool for Personal Names Searching 

de G.Navarro et al [28]. This recent work, describes a commercial tool for the names 

searching.  

 



       

An interesting field, useful to APNM, is the one of names classification according to its ethnic-

linguistic origin [29]. In the IS of very multicultural contexts, with great diversity of origins, it 

can be useful to have diverse criteria of similarity and to have a classification step to direct the 

process towards the suitable criterion.   

 

Contributions 

 

Perhaps, the two more important drawbacks in the APNM area are: 

  

 - The efficacy of the proposed similarity criteria is not high enough for the needs of most 

applications. And the search techniques with highest efficacy are not efficient because they 

use to go exhaustively through all the names in the DB. On the other hand, the major 

efficiency is obtained with the criteria that has the lower efficacy (phonetic codification) 

  

- The evaluations of the efficacy are subjective (relevance judgments) [10] [5] [13] [26] 

[27]  

 

    In the next section we present the DEA similarity function. It is an edit distance function but with 

costs based on the probability of each operation, depending on the involved letters and their 

position. The distance threshold is not a fixed value but it varies with the length of the searched 

name. Its efficacy, objectively evaluated, is very high; for example, a recall of 94% produces a 

fallout of only 0.2% (section 4).  

 

    In section 4 we present an efficient similarity search technique, for the DEA distance function 

based on a compact trie-tree.  

 

 

2.  DESIGNING A DISTANCE FUNCTION: DEA 

 

Distance functions 

 

The most popular distance (or dissimilarity measure) between two character strings, is defined as 

the minimum number of edit operations, insert I, delete D and substitution S, needed to transform 
one string into the other. This distance is named simple edit distance or simple distance for short 

[22]. Transforming GIMENEZ into JIMNEEZ can not be done with less than 3 edit operations; for 

example, a S ( G  to J),  a D (of an E) and an I (of another E ). So, the simple distance between 
these two names is: 

 

  δ ( GIMENEZ , JIMNEEZ ) = 3  

 

    Note that the above transformation sequence is not the only possible one with three edit 

operations, for example the following sequence is also valid; a S (G to J),  another S (E to N) and a 
third S ( N to E, but in another position). 
 

    It is usually required that the sequence has no more than one operation in the same position. 

Otherwise, the distance would be not always computable [22] [30].  

 

    The simple distance accounts for the physical aspects of the string, so it looks more graphic than 

phonetic. But a function based on the simple distance can solve some phonetic problems, as for 

example; it can accept the omission of the sound of a final S (a D operation), the transformation 
of the sound of a B into a P (an S operation), the transformation of DE LA HOZ into DELOZ 
(this pair needs a threshold = 4 to be considered similar), etc.  

 



       

    In [31] the  transposition operation, T, was introduced, and it is often used in ASM. Additional 

operation types were proposed in [32] [33] [34] [35]. 

 

    Here we propose a distance function: DEA. It is an edit distance for which we define a 

variable threshold depending on the length of the searched name, and with variable costs 

according to a probabilistic model that tries to catch the errors that actually occur in a corpus, 

whatever the causes are. The operation costs depend on: 

 

  - the type of operation (I,D or S ) 
  - the position where the operation is applied   

  - the letters involved in the operation 

 

The calculation of a distance usually assumes a previous transformation of the characters in order to 

obtain a normalized string format that depends on the application. We apply to the names a 

normalization process that consists basically in: 

  

 a) turn lowercases to uppercases,  

 b) diacritics deletion,  

c) compact the contiguous blanks to a single one,  

d) deletion of other symbols than letters or blanks.  

 

Metric distances 

 

Although distance functions have better efficacy than the phonetic codification methods, the later 

are usually used in big volume DB because they allow the use of efficient techniques, as for 

example B-trees or hashing. With the distance functions, a sequential total search is usually applied, 

which is too much time consuming. More efficient algorithms require a metric search space, so the 

distance must be a metric distance.  

 

    Let be Σ the alphabet (the set of accepted characters). Then Σ*  is the set of all possible names, 
including the void name ε. A distance function is a metric in Σ*, if the following proprieties apply : 
 

Costs 

 

Wagner [36] defined a distance function where the three classical edit operations (I, D, S) can 
have different costs depending on the characters. For example, a substitution of an M by an N can 

have an assigned cost lower than a substitution of M by R. If the costs of the edit operations are all 

the same, the distance is metric. The cost of each operation in the simple distance is equal to 1, so 

the simple distance is always metric. 

 

    Some authors have proposed limited costs for specific applications [31] [35]. When the costs of 

the operations are not limited, it is called a generalized edit distance [37]. 

 

    The value of an edit distance δ (x,y), can be defined as the minimum cost of all the possible 
sequences that transform x into y. The cost of a sequence of operations is the sum of their costs. The 

costs of operations are non-negative real numbers, that we will note as δc. If each character is seen 

as a string of length=1, the distance between two of these strings is δc (x,y) . If we include the void 

string, ε, then: 

δ (x,x) = 0       
0 <δ (x,y)    if  x ≠ y 
δ (x,y) = δ (y,x)  
δ (x,y) + δ (y,z)  ≥  δ (x,z)      

∀x,y,z  ∈  Σ* 
 



       

 

  ∀x,y  ∈   Σ  
   Ix   cost is   δc (ε,x) 
   Dx  cost is  δc (x, ε) 
   Sxy   cost is  δc (x,y)   for   x ≠ y 
  

In almost every proposed distance, the insertion of a character into a string is functionally 

equivalent to a deletion of that character from the other string. And the substitution of x by y, is 

equivalent to the substitution of y by x. Therefore: 

 

  δc (x, ε) =   δc (ε,x) 
  δc (x,y) =   δc (y,x) 

 

How can we determine the cost that we have to assign to each elementary operation? The diversity 

of proposed answers is a sign of the difficulty of the question [38] [39] [40] [41] [33]. Some 

researchers try to solve the problem with automatic optimization techniques. For example, some of 

them apply automatic learning techniques on training corpora, using neural networks [42].  

 

    There is no doubt that the costs should depend in some way on the characteristics of the errors 

(graphic, phonetic, etc) that the system must accept. As far as any type of errors can occur and we 

do not have a total knowledge about the world to be modeled (the world of errors and variants) we 

use a probabilistic model from experimental data. We refer to the obtained costs, as DEA costs.  

 

Discrimination 

 

Most of published works about approximate searching that use weighted distances, propose costs 

inversely proportional to the probability of the operations (or to its logarithm [33]). However, this 

approach does not take into account the prior probability. The fact that in a corpus of errors there 

are more substitutions of A by E than substitutions of D by T, should be balanced  by the fact that in 

personal-names the letter A appears much more often than the letter D.   

 

    Our approach to estimate the costs is based on the discrimination concept. Let us call pairs-with-

error a set of pairs of similar names (one pair member is an erroneous version of the other) and  

pairs-without-error a set of pairs of independent names (each one refers to a different person). We 

call discrimination of an edit operation, the ratio between the probability of its occurrence in the set 

of pairs-without-error and the probability of occurrence in the set of pairs-with-error. Note that 

this idea is the same that under the name of discrimination power is used in the automatic 

classification field, where the target is to maximize the ratio between interclass differences and 

intraclass differences.  

  

   We will use as pairs-with-error corpus, a TEST file containing 10593 pairs of surnames, in such 

way that one surname is an error or variant of the other. The pairs are real cases obtained from a 

mailing company. As pairs-without-error corpus, we will use a CONTROL file containing 9345 

pairs, obtained randomly pairing surnames of a list resulting from a mix of the left hand and right 

hand surnames of the TEST pairs (without eliminating duplicates)  but deleting from CONTROL  

the pairs already existing in TEST or having δ = 0. 
 

    The discrimination Dop of an edit operation (op) is given by: 

 

)in  (op 

)in  op(

TESTPr

CONTROLPr
opD =   

 



       

The numerator of the discrimination Ds (xy) for the substitution operation, canbe approximated by 

the probability that a randomly chosen pair from CONTROL, contains a substitution of x by y. This 

probability can be estimated by: 

yy    x x,       ≠∀= )  P(x) P(yP(xy)   

                                                             

being P(x) and P(y) the relative frequencies of x and y, respectively, in the CONTROL file. Note 

that P(xy) = P(yx). 

 

    The denominator of the discrimination Ds (xy), is the probability Ps (xy) of a substitution of x by y 

obtained from the pairs in TEST. Therefore, we can obtain the discrimination Ds (xy) of a 

substitution, as: 

)(

)(
 )(

xysP

xyP
xysD =  . 

 

For the insert and delete operations we apply a similar approach. For more details see [43].  

 

    In order to be able to use an efficient search strategy (for example: to apply pruning) the distance 

should be metric [30] [43] therefore we need that the distance satisfies the triangular inequality. 

Moreover the nature of the errors in names, implies that one edit operation cannot be substituted by 

two or more operations. In other terms, we need that the cost of each operation is not greater than 

the cost of an equivalent sequence of operations. Therefore, in order to use the discriminations as 

costs of the operations, we scale them in such a way that  min(Dop) ≥ (max(Dop))/2 . 

 

Positions 

 

The costs we propose depend on the involved operation types and letters. To improve the efficacy 

we also take into account the position where the operation occur. We distinguish between the first 

position, the last position and the other positions, or general position. The probabilistic model 

consists of three confusion matrix (one for each position type) containing the probabilities of the 

1053 = 3∗(26+((262-26)/2)) different operations and three vectors with the prior probabilities of the 
characters. To obtain the 1053 costs, we transformed the set of 1053 discriminations, in such a way 

to comply the triangular inequality. 

 

Thresholds  

 

The number of errors made (the number of edit operations) is not independent of the length of the 

names: two errors in a name of 15 characters are more acceptable than two errors in a name of 4 

characters. Therefore, the parameter k , the distance threshold to choose the similarity degree, in 

the function  Similars  ( x , C1 ,  k ), should depend on the length of the name. However, the length 

of the two strings involved (the query string and the DB string) can be different. In some searching 

techniques, the value of the threshold is needed without knowing the length of the string from the 

DB. For example, that is the case of trie-trees. Then, we have decided to use the length of the query 

string. Moreover, some testing shows that the results are practically the same using the length of the 

DB string instead of the length of the query. And using the length of the shortest or the length of the 

longest, the results are a bit worse. 

 

    In order to facilitate the comparison of DEA with other functions, we have decided to define 

seven degrees of similarity; A,B,C,D,E,F and G. Each degree consist on a set of threshold values, 

one for each possible query length. We have grouped the string pairs of TEST by the length of the 

left string of the pair, and for each length the average distance is computed. The same has been 

done with the pairs of CONTROL. It seems reasonable that the threshold for each length, should be 

between these two average values. The concrete set of values for each one of the seven threshold 

degrees, have been determined after some trial-and-error.  

 



       

Other Distance Functions 

 

Through the years, a large amount of proposals have been made for the determination of the 

similarity of two words, based on the comparison of its characters. We comment now on three 

distances that we will empirically compare with the simple and DEA distances, in the next section.  

 

Bigrams: Some very popular distances between words, are based on n-grams. We tested several 

forms of distances based on bigrams and trigrams, and the best results for names were obtained 

with the following distance expression:  

 

Bxy

BxyByBx
 (x,y)

2

2−+
=δ  

 

were Bx is the number of different bigrams existing in the word x , By is the number of different 

bigrams existing in y, and Bxy is the number of different bigrams common to both words. When 

there are no common bigrams, the value of Bxy will be 0.5.  

 

Jaro: To detect coincidences of people during the processes of the US Census, a distance is used 

based on comparisons of characters, devised specifically for surnames, that we call Jaro distance 

[44]. It takes into account: a) the length of the surnames, b) transpositions of characters, c) the 

coincidences of characters (if their positions are not separated more than the half of the length of 

the shorter surname), and d) the number of similar characters. Vowels and the following pairs of 

characters are considered similar: BV   B8   CG   CK   CQ   EF   EY   Eblank   GJ   IJ   IL   IY   I1   

KX   MN   0(zero) O(letter)   PR   QC   Q0(zero)   QO(letter)   SX   SZ   S5   Sblank   UV   UW   VW   

Yblank   Z2.  

 

Editex: Zobel and Dart [13] propose a comparison function, Editex, that they tested using personal 

names. Editex is a variant of a weighted edit distance, where only three different costs exist: 

coincidence, similar and non-similar. For the insert/delete operations, the possible similarity or 

coincidence of the previous character is considered.  The letters H and W, and the duplicates of 

characters, receive a special treatment. The similarity criterion is based on the phonetic groups of 

the PHONIX codification system [45].  

 

 

3. EVALUATING AND COMPARING DISTANCE FUNCTIONS 

 

Objective Evaluations 

 

In this section five distances are compared: Simple distance, Bigrams, Jaro, Editex and DEA. The 

efficacy is related to the hits and faults in the identification of the similarity.  In the area of 

Information Retrieval (IR), relevance judgments made by human judges, are used to decide if the 

retrieved documents are relevant or not to the query. When searching people by name, this type of 

evaluation procedure is not appropriate because it is too subjective and unsteady. However, it is the 

procedure traditionally employed in the comparison of personal-name matching methods [5], [13], 

[26] and [27]. For example, in [27] the judge ("professional documentalist") is asked to apply 

subjective criteria as: "sounds about the same", "obvious typing mistake", and “pronunciation is not 

affected significantly".  

 

    In order to avoid the evaluation subjectivity, we adopt an approach based on a corpus containing 

real errors and variants, and applying again the discrimination concept. We are interested in the 

empirical evaluation of how the different distance functions are able to correctly discriminate 

between pairs-with-error (a test file) and pairs-without-error (a control file). 

 



       

    We will not use the same files (TEST / CONTROL) that were used in section 2 for the 

determination of the DEA costs, but another pair of files TESTR / CONTROLR. The file TESTR is a 

file with 519 pairs-with-error, and its origin is not related with the TEST file. The file CONTROLR 

consists of 519 pairs-without-error, obtained pairing at random the left hand surnames with the 

right hand surnames of TESTR. 

  Figure 1: Distribution of the DEA distance 

 

    Figure 1 show a line for each file, displaying the frequency distribution of the DEA distance. 

Intuitively, the discrimination between the two files is as much better as more separated are the two 

lines. Now suppose that we have all the surname pairs of both files, TESTR and CONTROLR,  

together into a single set, and we try to identify the pairs pertaining to TESTR, that is, the pairs-with-

error. If we use a distance threshold as a discrimination criterion (in the figure we suppose that the 

threshold is 3.61), a partition is produced in four sets as it is shown in figure 2 : a) pairs-with-error 

(pairs from TESTR) identified correctly as such, b) false positives pairs, that is pairs-without-error 

(pairs actually from CONTROLR) identified as pairs-with-error, c) false negatives, that is pairs-with-

error (pairs actually form TESTR) identified as pairs-without-error, d) pairs-without-error (pairs from 

CONTROLR) identified correctly as such. The total number, N, of pairs of the experiment, is the 

number of pairs in TESTR plus the number of pairs in CONTROLR.. The table of the figure2 is called 

contingency table in the hypothesis tests. 

 

 

 

 pairs-with-error        

(TESTR)  

pairs-without-error  

(CONTROLR) 

identified as 

pairs-with-error 

 Correctly identified as 

pairs from TESTR 

False 

positives 

identified as  

pairs-without-error 

False 

negatives 
Correctly identified as 

pairs from CONTROLR 

 

  

               Figure 2:  The contingency table: partition in four sets 

 

In the example of figure 1, the left hand area of the vertical line (δ= 3.61) and below the line of 
CONTROLR, is the area of the overidentified pairs or false positives. The right hand area of the 

vertical line but below the TESTR line, corresponds to misidentified pairs or false negatives. The 

discrimination is as much better as fewer anomalies of both types are produced.  

 

    The metrics we will use to quantify these anomalies are very popular in the IR field: Fallout and 

Recall:  
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- The Fallout is the probability that a pair-without-error is a false positive. It will be noted 

as F. We will also use the term overidentification with this same meaning. 

 

- The Recall, noted as R, is the probability that a pair-with-error is identified as such. Often 

we prefer to use its complement, named here with the term misidentification, defined as the 

probability that a pair-with-error is a false negative. So, misidentification = 1- R .  

 

In table 1, the values of F and 1- R  are given for the five distance functions that we are analyzing, 

and for several thresholds.    

 

The MiFa graphic  

 

In figure 3 we display the relationship between 1-R and F for our corpus: TESTR and CONTROLR. 

We have called MiFa the graphic that relates the misidentification with the fallout or 

overidentification. This graphic allows choosing the more appropriate threshold for each 

application. In the IR field, sometimes a graphic Recall/Fallout is used, though the Recall/Precision 

graphic is more popular. The MiFa graphic is widely used (under other names) in other fields as for 

example in biometrics or clinical research. 

 

    Usually, in practice, misidentification values greater than 20%(approx.), and fallout values 

greater than 2%(approx.), are unacceptable. Therefore, in figure 3 we limit the F and 1-R values to 

this interval. Into this interval, the simple distance function does not allow to tune the similarity 

criterion, the threshold, because only a single point exists, δ≤ 2, since δ≤ 1 and δ≤ 3 are out of this 
interval and the simple distance is an integer. The DEA function has several points corresponding 

to the threshold degrees we have defined depending on the lengths (see section 2) but more points 

could be defined because DEA produces, within this interval, more than 100 different distances.  

 

    The methods of phonetic codification are out of this interval. Examples:  The SOUNDEX [7] 

method has 1-R = 46.6%  F = 0.43%, and the NYSIIS system [8] has 1-R = 59.8%  F = 0.08%.   

 

    The target is to minimize both, F and 1-R. A look at figure 3, shows that DEA is the function that 

better fulfills this target. The other four functions are very similar between them. For the same level 

of misidentification (or recall), the DEA function gives 70% to 80% lower fallout than the other 

functions (within our working interval). For the same level of fallout, it gives a 40% to 55% lower 

misidentification. 

 

Figure 3.  Graphic MiFa for TESTR/CONTROLR 
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Table 1:   Evaluation of the distance functions (values in %) 

 

Function                DEA      JARO BIGRAM EDITEX SimpleDis 

Threshold      C      D      E  0.14  0.18    1.1       6       2 

Misid.    1-R 7.9 5.9 3.8 13.29 6.55 11.94 8.67 11.17 

Fallout   F 0.005 0.19 0.77 0.19 0.77 0.19 0.38 0.19 

Prec. P     β=1 99.99 99.79 99.20 99.78 99.18 99.78 99.58 99.78 

Efficacy  E   " 96.05 96.96 97.72 93.26 96.34 93.94 95.48 94.32 

   "           J    " 95.89 96.87 97.68 92.79 96.23 93.56 95.28 93.99 

Prec P   β=10-3 94.85 33.12 11.11 31.33 10.82 31.67 19.38 31.85 

Efficacy  E  " 99.98 99.80 99.22 99.79 99.22 99.79 99.61 99.79 

   "           J     " 93.46 48.99 19.91 46.03 19.4 46.59 31.97 46.89 

 

 

 

Data Volumes,  ββββ-Factor and Precision 
 

With the values of R and F alone, it is not possible to compute the volumes of the four sets of the 

partition produced by a threshold. Therefore in order to predict these volumes, for example the 

number of false positives, we will also use N, the total number of pairs, and a factor β,  expressing the 
ratio between the number of pairs-with-error and pairs-without-error. For most of applications 

involving personal-names, this β factor will have values lower than 0.01 and very often lower than  
0.001 . Now we can express the number of non-desired answers (the false positives) as a function of 

N, F and β , by :   

                                                      N 
1+β

F
 

 

See that for high N values and low β  (these are the usual conditions) the number of not-desired 
answers is very high, although the F value can look very low.  

 

    It can happen that the misidentification and the fallout are both rather low, but the ratio of  false 

positives is very high. This can be unacceptable for many applications, because of psychological 

reasons or the difficulty of handling the answer. Therefore, it may be useful to use the Precision 

metric, P, very common in IR. We can define the precision as the probability that a pair identified 

as a pair-with-error, is really a pair-with-error. So:  

 

         P =  
FR

R

+β
β

 

 

Note that if the proportion β of names in the DB similar to the searched one descends, then the 
precision will decrease. 

 

Example 

 

We will analyze here the behavior of the distance functions for a hypothetical DB containing 

records for 4 million people. To access the personal records using the first surname, we build a 

directory with all the approximately 100,000 different first surnames existing in the DB for these 

people. Suppose that the correct answer to our query in the directory should have 100 surnames. 

Then the β  factor is  β = 100/(100,000-100) ≈0.001 . 
 



       

    Now suppose that we do not accept misidentifying more than 5 surnames, that is, we need R > 

95%.  And we do not accept in the answer more than 1500 false positives, that is, F< 1.5%.  From 
figure 3 we see that there is no other solution than the DEA function with the threshold degree E. 

This point has a recall R = 1-0.038 = 96.8% and a fallout F = 0.77% (table1).   

 

    With the DEA function and the threshold degree E (DEA-E), we can expect a total answer of 

865  (=N(β R+F)/(β+1)) candidate surnames, from which only 96 can be anomalies of the searched 
surname. The other 769 surnames of the answer, are false positives. Therefore, the precision P is 

very low, P= 11.1%,  and in the answer 4 surnames are missed (false negatives). All these resulting 

values fall within the limits we have imposed to R and F.  

 

    If we use the simple distance with the threshold δ ≤ 2, we obtain a misidentification of 11.17% 
(11 false negatives) that is more than the double of the imposed limit. But the fallout value is as low 

as 0.19%. And using the Bigrams distance with a threshold ≤ 1.1 we obtain similar results.  Using 
the Jaro distance with the threshold 1.8 we obtain the same fallout, F = 0.77%, than with DEA-E, 

but the misidentification is 6.55%, almost the double of DEA-E, and off the imposed limit. 

 

    If the fallout F = 0.77% (769 false positives) is too high for our needs, and we want to reduce it 

to F = 0.19% (the same value than it has in Bigrams-1.1 , Jaro-1.4 or simple distance δ ≤ 2) we can 
use DEA but with the D threshold degree. Now we obtain only 190 not-desired surnames,  but the 

misidentification has moved from 3.8% to 5.9%. That is a bit over the imposed limit, but it still is 

much below the value obtained with the simple distance, Bigrams-1.1, or Jaro-0.14.  For DEA-D 

and β = 0.001, the precision is P = 33.12%. 
 

    For some applications, the fallout of DEA-D could still be too negative from a psychological 

point of view. Probably the user will not accept in the answer, surnames that he/she does not 

consider similar to the query. But the misidentification can go unnoticed because the user is not 

knowledgeable of which valid surnames have not been given in the answer. If the fallout of DEA-D 

is still considered excessively high, there still are more strict threshold degrees; A, B and C. With 

these threshold degrees the precision is greater than 90%,  but the misidentification is then greater 

than 7% .  

 

Two surnames 

  

Until now we considered the use of only one surname, but in Spain the norm is to have (and use) 

two surnames. We want to find all the people in the DB, having their two surnames similar to (or 

able to be confused with) the two surnames we are searching.   

       

    The ratio between the amount of people we are interested in, and the amount of people we are 

not, the new beta factor, will be labeled as β2, and is:  

  

                      β2 = 
12

2

+β
β

 

 

For  βLL < 0.1 (it's almost always the case) the new factor value is  β2 ≈ β 2 
 

    The recall for the two surnames case is 
2

2 RR = .  Therefore, the recall will descend. The new 

fallout is:  

    
12

2 2

2 +
+

=
β

β FFR
F     

 



       

Note that F2  is not only depending on the threshold (this is, on F and R) but also on β, because 
some of the overidentified people have one of the two surnames correctly identified as similar. The 

fallout also descends. For the usual values of β , the new fallout is F2 ≈ F2.  

 

     Table 2 shows the main results for the two surnames case. 

 

    The misidentification (1-R) for two surnames is twice (approximately) the value for one 

surname. DEA-E has a recall, for two surnames, of 92.54% (96.2% for one surname) that is, a 

misidentification of 7.46% (3.8% for one surname). If this recall value is not good enough for our 

application, we can raise it by using a more tolerant threshold degree; using DEA-G the recall is 

96.57%. 

 

 

             Table 2:   Evaluation of the distance functions, for two surnames (values in %) 

               Function                    DEA   JARO BIGRAM    EDITEX Simple dist 

             Threshold      E     F     G    0.32        3       1.2         4 

(one surname) 1-R 3.8 2.7 1.73 1.9 1.56 2.3 2.5 

    "     "           F 0.77 2.7 3.86 6.55 5.39 14.45 10 

      1-R2 7.46 5.327 3.43 3.76 3.056 4.54 4.94 

 F2   0.007 0.078 0.156 0.441 0.3 2.11 1.017 

 P2 1.23 0.121 0.061 0.021 0.032 0.004 0.009 

 E2 99.97 99.87 99.77 99.45 99.61 97.67 98.82 

β= 
10-3  

 J2 2.439 0.242 0.123 0.043 0.064 0.009 0.018 

 

    The fallout is lower than the case of only one surname, but now it depends on the value of β. If 
the value of β  for only one surname is 0.001 , then β2 ≈ 0.000001 and the new fallout for DEA-G is 
F2 = 0.156%. With such a small value of β2 , the precision falls down terribly: P2  is now under 1%. 

In order to obtain a precision P2 ≥ 50%  we need to use the A ,B or C threshold degrees, but then 
the recall is under 90%.  

 

    In table 2 we see that for two surnames, the DEA function gives better results than all other 

functions: for similar values of recall, a much lower fallout is produced. 

 

The Recall/Precision graphic 

 

In the IR field , in order to choose a criterion of document selection, a Recall/Precision graphic is 

usually used instead of the MiFa graphic. For a given recall level, if β decreases,  the precision 
decreases very quickly. In figure 4 we display for β = 0.001 the Recall/Precision graphic for the 
files TESTR/CONTROLR. The lines for the Bigrams and Editex functions are not displayed 

because their behavior is nearly the same than the Jaro function (see table 1). 

 

    To obtain, with β = 0.001, a precision greater than 50%, we need to accept a recall R lower than 
95%. To obtain precision values greater than 50% using the simple distance, we need a threshold 

δ=1 , but that produces a terribly low recall (58.56%).  
 

    The tension between P and R, grows when the two surnames are used. To obtain P2 values about 

50%, we need to accept a recall lower than 90%. Obviously, with greater β  values the precision is 
also greater. For example; using DEA-E and having β = 0.01 we obtain a P2 = 55% and a recall of 

96.2%, but these β  values are not very usual in practice. 



       

Figure 4: Recall/Precision graphic for β=0.001 
  

Efficacy: E and J 

 

We have seen two basic ways to evaluate the goodness or efficacy of a function: One is based on 

the pair R/F (the MiFa graphic) the other is based on the pair R/P (the Recall/Precision graphic). 

With any of these two pairs we can select the best threshold for our needs. Overlapping several 

graphics for different distance functions, we can choose the most appropriate distance for our 

problem. 

 

    It looks as a natural desire to be able to evaluate the efficacy handling a single metric instead of a 

pair. In several fields where contingency tables are used, single metrics are defined with the name 

of Efficacy or Effectivity. These metrics are not easy to use and interpret [46] [47]. The efficacy 

needed for an application is more naturally expressed by means of Recall, Fallout or Precision. In 

the IR field, when different methods are to be compared, the average of the precision P for several 

R values is often used. This requires producing the same R values for all the methods. But this is 

usually impossible in the name-matching problem.  

 

    We present in the following paragraphs the two more common metrics of efficacy used in the IR 

world: A combination of the pair R/F, and a combination of the pair R/P.  

 

    We name as Efficacy E, the probability to be right in the identification of the type of a pair of 

names, including the two types of hits; pair-with-error and pair-without-error. So: 

 

  E  
1

1

 β 

 F) (β R 

+
−+=  

 

As can be seen,  E is the average between R and 1-F,  weighted with β.  Then,  Eβ=0 = 1 - F    and   

Eβ→∞ = R .  In other words,  1-F and R are the limits of E when β  is varying.  When β < 0.01 the 
values of E are almost equal to 1-F.  

 

    We can have too many false-positives, a low precision, in spite of having a very good value of E. 

Because of this, another type of efficacy metric can be convenient related with P.  In the IR field 

the metric defined by Jardine and Rijsbergen [48] [49] under the name of Effectivity, is very usual. 

More recently it is being used also in computational linguistics [29]. We use here the letter J to 

refer to this metric and will be expressed as: 
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      J =  
PR

PR

+
2

 

 

that is, the harmonic average between the precision P and the recall R, two values that we need to 

be as high as possible. 

 

    We limit ourselves to comment here, with the help of graphics, some of the values of E and J 

obtained with the files TESTR / CONTROLR (see tables 1 and 2). In the figure 5a we represent the 

E of the DEA distance, as a function of the threshold for one and two surnames, and for β = 1  and 
β = 0.001. As E is the average between R and 1-F, weighted by β, for small values of β  we obtain 
E ≈ 1-F . So, if we use a very small F, a large E is obtained. As we work usually with β ≤ 0.001 and 
with a small F, the efficacy E is over 95%. And if two surnames are used the efficacy is over 99%.  

 

    For the case of only one surname, the DEA-F threshold degree always produces the same 

efficacy E, no matter which is the value of β. A high efficacy E does not prevent a very low 
precision. For example; for DEA-E with β = 0.001, we obtain E = 99.80% but the precision is only 
P =33.12%. If two surnames are used, the efficacy is even higher, E2 =99.97% but the precision 

falls down to P2 =1.23%. With any value of β , it is E2 > E  and  J > J2  . So, using the two 

surnames, the  efficacy E (based on F/R) increases, while the J (based on P/R) decreases. 

 

    In the figure 5b we represent the J of the DEA distance, as a function of the threshold degree.  

 

                          (1) = One surname     (2) = Two surnames 
  

              Figures 5a and 5b  : The  efficacy E and the effectivity J, for the DEA function 

 

    The single metrics of efficacy or effectivity, E or J, are not useful to compare different distances 

having different thresholds. We need to substitute the thresholds by a metric as R or F.  As can be 

seen in tables 1 and 2, if we compare the E or J values for similar values of R or F, the DEA 

method always has higher values than the other functions analyzed here. 

 

Summary of the comparison between distance functions 

 

Using a non-subjective evaluation method (unlike what is usually done) we have compared five 

approximate matching functions being used for searching personal-names. The simple edit distance 

is not an appropriate function. With the threshold δ ≤ 3 too much fallout is produced. With the 

threshold δ ≤ 1 too many false negatives (too low recall) are obtained. The threshold δ ≤ 2 still 
produces more false negatives (recall lower than 89%) but in some circumstances it can be 

accepted. No intermediate thresholds are possible.  
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    The other functions compared in this work, except DEA, are not significantly better than the 

simple distance. But the DEA function gives us important improvements, because the costs of the 

edit operations depend on the involved letters and their position, and the distance threshold is 

variable. For the same level of recall, the DEA function gives a fallout from 70% to 80% lower, 

and for the same level of fallout, it gives a misidentification from 40% to 55% lower.      

 

    When the two surnames are used, similar results are obtained, DEA is again producing higher 

values of E, J, E2 and J2., for similar values of F or R..  

 

    With the usual values of β ,  DEA-C is the threshold degree of choice for most circumstances. 
  

    The efficacy of known phonetic codification methods, is significantly lower than the efficacy of 

distance functions [43]. 

 

 

4. SEARCHING TECHNIQUE  

 

Object  

 

In the previous section we have presented the DEA function, and showed that it has higher efficacy 

than the other functions we compared with. This answers only one of the two APNM questions 

presented in section 1: which similarity criterion is to be adopted?  But now we need an answer to 

the second question: how to search, using such similarity criterion? 

 

    We need an efficient search technique, that allow us to find in a DB all the personal names that 

are similar to the query. Efficient, means fast enough; perhaps we need a response time below few 

seconds in spite of having a high volume DB and a big amount of simultaneous users. We need a 

search strategy in a data structure, and an algorithm to assess the similarity.  

 

    If the IS has a high volume DB with many users, the sequential search, looking one by one all the 

personal names, is too much inefficient, so we need a more sophisticated technique having better 

performance. But distance functions, are still resisting really efficient filters or index techniques 

[50]. In this section we propose a very efficient approximate search technique for the DEA 

function, based on a trie-tree.  

 

Basic algorithm for edit distances with costs 

 

Lots of papers have been published proposing efficient algorithms to calculate the simple distance. 

In the Navarro survey about ASM [22] only algorithms for the simple distance are included. 

Remember that simple distance means that every operation has a cost =1. The research on efficient 

techniques for more general costs is still in its first steps.  

 

    As we know, the edit distance between two strings can be defined as the minimum cost of  all the 

possible sequences of edit operations that transforms one string into the other. The cost of a 

sequence is the sum of the costs of their operations. The costs of the elementary operations, are 

non-negative real numbers that we noted in section 2 as:  

  δc (ε,x)       cost to insert the character x 
  δc (x, ε)      cost to delete the character x 
  δc (x,y)       cost to substitute x by y  (for x ≠ y) 
 

Remember that   δc (x, ε) = δc (ε,x)   and   δc (x,y) = δc (y,x) . 

 

    Almost all the algorithms proposed for the calculation of distance functions, are derived from the 

simple distance algorithm from Wagner and Lowrance [36]. This very popular algorithm is based 

on dynamic programming, so we will name it as DP algorithm. It consists of a recursion on a 



       

matrix; the DP matrix. If x and y are two strings, and m and n are their respective lengths, then 

the DP matrix has m+1 rows and n+1 columns.  

 

    See the example of figure 6, with the DP matrix for the calculation of the distance between 

x=AVERY and y=GARVEY. Suppose that all the elementary costs are equal to 1, except for the 

insert/delete of A, G and R, whose costs are:  

  

  δc (A , ε) = δc (ε , A) =  1.1 
δc (G , ε) = δc (ε , G) = 1.3   

  δc (R , ε) = δc (ε , R) =  1.08 

       Figure 6: DP matrix for a distance with costs 

 

We suppose that the transformation is from x to y, so we calculate the minimum cost to 

transform AVERY into GARVEY. Moving from one cell to the cell below it (incrementing i) 

represents a delete operation. Moving a position from a cell to the right, represents an insertion 

(incrementing  j) and the diagonal move from the cell (i -1 , ,j -1) to the cell (i , j) represents a 

substitution if xj ≠ yj . The distance is the cost of the less expensive path from cell (0,0) to cell 
(m,n). In figure 6 the set of gray cells is the less expensive path. In each cell, the minimum cost 

from (0,0) to it is displayed. In the example, the distance between the two names is 3.46 because 

this is the value of the final cell (5,6).  

 

    The calculation starts with a zero cost from the cell (0.0) and is advancing column by column, 

and into each column row by row, assigning to each cell the minimum cost to reach it. This 

recursive algorithm to fill the DP matrix can be expressed as follows: 

 

    δ (0,0) : = 0 

For example, let's see the calculation of the value for the cell (2,3) : 

        Move from (1,3) to (2,3) = Value of cell (1,3) + δc (V , ε ) →→→→  2.38+1 = 3.38 

        Move from (2,2) to (2,3) = Value of cell (2,2) + δc (ε , R ) →→→→  2+1.08 = 3.08 

        Move from (1,2) to (2,3) = Value of cell (1,2) + δc (V, R ) →→→→  1.3+1 = 2.3 

 

The value of the cell (2,3) is then 2.3 because it is the lower value of the three calculations. 

Observe that this value is the lower of its column (j=3) but this cell is not in the minimum cost 

path. (For clarity of the figure, the minimum value of each column is repeated at bottom). Note 

∀i ∈ 1..m 
∀j ∈ 1..n 
 

δ (i,j) : =   min  (δ ( i-1 , j-1)  +  δc (xi , yj)  ,   

δ ( i , j-1 )   +  δc (ε , yj)  , 
δ ( i-1, j )    +  δc (xi , ε)    ) 

yj→ G A R V E Y

 i =0 ↓ xi    0   1,3   2,4   3,48   4,48   5,48   6,48
 i =1 A   1,1    1   1,3   2,38   3,38   4,38   5,38
 i =2 V   2,1    2    2   2,3   2,38   3,38   4,38
 i =3 E   3,1    3    3    3   3,3   2,38   3,38
 i =4 R   4,18   4,08    4    3    4   3,46   3,38
 i =5 Y   5,18   5,08    5    4    4   4,46   3,46

j =0  j =1  j =2  j =3  j =4  j =5  j =6
min=
1

min=
1,3

min=
2,3

min=
2,38

min=
2,38

min=
3,38



       

that several paths with the minimum cost can exist. But here we are interested in the distance 

(the cost), not in the details of the sequence of edit operations (the path). The amount of cells to 

compute, the number of iterations of the recursion, is  n∗m. In other words, the temporal 
complexity of the algorithm is  Ο(n∗m).  
 

    Let's imagine a directory or vocabulary with the N different names existing in the DB. As can 

be seen in [43] when a single surname is considered, the number N of different spanish 

surnames as a function of the number of people, P, follows a Zipf-Mandelbrot law [51]: 

 

N = 41 P0.501 

  

Because N is much smaller than P, we will do the approximate search in the vocabulary. We can 

do a sequential search, computing for each surname y its distance to x. They are similar if δ(x,y) 
≤ threshold. With the above basic DP algorithm, the total number of columns to compute, C,  is: 

 

C = n∗N     where n is the average length of the surnames of the vocabulary 
 

    Since  n = 7 approximately, the number of columns to be computed is   C = 287 P0.501  

 

The DEA function is an edit distance function, δ (x,y) with costs. Therefore we can use the basic 
algorithm above. But the costs depend on the symbols and the position (first, general and last). 

Let's see how to compute the DEA distance between the string DEC and the string BCTR.  

Suppose that the costs of the operations are (these are not the actual DEA costs):  

 

   - Delete a D in 1st position:  0.5 

   - Substitute an E by a B (or a B by a E) in a position other than 1st or last: 0.6 

   - Insert a T in a position other than 1st or last: 0.65      

   - Insert an R in last position: 0.55 

   - All other operations: 1 

 

    In figure 7 we show the DP matrix for our example. We see that δ (DEC , BCTR) = 2.3. This 
cost is produced by a delete of a D in 1st position, plus a substitution of E by B in 2nd position, 

plus an insert of T in 3rd position, plus an insert of R in last position. We must clarify what we 

mean by "position" of an operation. For an insert, the position is the position of j. For example, 

in figure 7 the insert of the R occurs in the last position, and the insert of B occurs in 1st position. 

In a delete, the position is the position of i. In a substitution, the position is the 1st if i=j=1  and 

is the last if i=m and j=n. For example; the cost of the substitution of R by E, is not the cost of 

the last position but the cost of the general position. 

                                   Figure 7: DP matrix DP for the DEA distance 

 

 

 

 

yj→ B C T R

 i =0 ↓ xi    0    1      2    2,65     3,2
 i =1 D   0,5    1      2     3     3,55
 i =2 E   1,5   1,1    2,1     3     3,55
 i =3 C   2,5   2,1    1,1    1,75     2,3

j =0  j =1  j =2  j =3  j =4
min=1 min=1,1 min=1,75 min=2,3



       

 

Figure 8: Triangularity 

 

As we said in section 2, in order to be able to compute the edit distance, a sequence of edit 

operations cannot operate twice on the same character. If the triangularity is not observed, the 

DP algorithm can accept an insert followed by a delete of the character inserted (or insert a 

character in the position where a delete is just done).  For example,  in figure 8  if 

 

δc (E , ε)  +  δc (ε,B)   <  δc (E ,B)  

 

then the DP algorithm will adopt the cost of a delete plus the cost of an insertion.  

 

Improving the basic algorithm: cut-off column 

 

To reduce the number of cells of DP matrix to be calculated, some techniques in the context of 

ASM [52] [22] [50] have been proposed, but they are usually based on properties that stand 

when the elementary costs are all equal, as in the simple distance, but this is not the case of our 

DEA costs. For example, going through the diagonals of a DP matrix, when the cost is unique, 

you find non-decreasing values. But we see that this is not the case in figures 6 or 7. 

 

    A feature of the DP matrix is that the minimum value of the cells of every column is never 

smaller than the minimum of the previous column [53]. We can use this feature to reduce the 

number of cells to be calculated. In our case we are not interested in knowing the distances 

between strings, but in knowing if two strings are similar or not, given a threshold. Therefore, if 

while we are calculating the DP matrix cells, column by column, we find a column with a 

minimum value greater than the value of the threshold, we can already affirm that the two 

strings are not similar, so it’s not necessary to continue calculating the matrix for that pair of 

strings. This cut-off technique produces a big saving of columns to be calculated as we will see 

later.  

 

    If the vocabulary is structured as an ordered list of names, we can reuse the common prefix 

with the previous string to save column calculations. If we are searching the pattern BACI in the 

following list {ABCD , ABCE , ABCEF}, then when we will calculate the matrix for ABCE we 

can reuse the calculation of the first three columns of the previous matrix. However, to calculate 

the ABCEF matrix we cannot reuse the E from ABCE as a possible substitution of the I from 

BACI because it will have been calculated with costs of the last position and it has to be 

recalculated with the costs of the general position.  

 

    Let's suppose that while comparing BACI with ABCD, when the second column is calculated 

we detect that the two strings are not similar, so the second column is the cut-off column. Then, 

when the matrix for the string ABCE is calculated, only two columns can be reused, the third 

one not being calculated yet because of the cut-off.  

 

 

 

E 

B 

δc (E ,B) δc (E , ε) 

δc (ε,B) i=2 

j=1 

 



       

Improving the search: trie-tree 

 

Till here we have assumed that the approximate search is done by a sequential access to the 

names in the vocabulary, structured as an ordered list, and comparing each name with the 

pattern string.  

 

    The research about ASM algorithms has been strong from the 80s, but until recently, efficient 

preselection/filtering/indexing techniques have not been incorporated. For example, the first 

global vision of indexation techniques applied to ASM, has been published in 2001 [50], and it 

is almost exclusively oriented to simple distance. 

 

    We need to have a structure for the vocabulary that allows an efficient approximate searching 

applying the DP algorithm improved with the cut-off column. We selected the trie-tree as an 

appropriate structure [7] [54] [55] [56] [50].   

 

    The trie-tree is a structure where the common prefixes are not repeated: there is a node for 

each common prefix. When an exact search is done in a trie-tree, the amount of nodes to read is 

always equal to the length of the pattern string, and therefore it is independent of the number of 

strings. It is the most used structure for the exact search in dictionaries or vocabularies of text 

strings.  

 

    In our trie-tree, each leaf corresponds to a name of the vocabulary. The column-by-column 

advancement in the DP matrix, is now an advancement from the root to the leaf corresponding 

to the name being compared with the pattern. The advancement from one name to the next, is 

done by backtracking, this is, in preorder. The trie structure allows two important efficiency 

improvements: a) avoid the calculation of the columns corresponding to common prefixes, in 

addition to save their space, and b) avoid the calculation of the columns of the subtrees when 

the cut-off column is reached. Our approach is very similar to the method presented on a recent 

paper about Matchsimile [28]. 

 

    Let us see an example. We have a vocabulary with the 11 following names (containing 47 

letters): 

 

  { ANA, CAMPO, CAMPON, CAMPONA, CAMPS, CAMS, CEL, CELIA, CELO, DO, DON } 

 

In figure 9 we represent it as a trie. The last letter of each name is signaled with a [] symbol. 

There are: 

 

       20 characters (instead of 47) 

       20 edges (or pointers) 

       11 leaves (the last letters of the names) 

              7 being terminal leaves (as the final A from ANA or CAMPONA) 

              4 being intermediate leaves (as the O from CAMPO or the L from CEL) 

 

    When searching in the trie, after the determination of the similarity between a name and the 

search pattern, we will continue to determine the similarity of the next name. As this name can 

have some of its first characters equal to the previous (the common path from the root) we can 

avoid calculating the columns of  the DP matrix for these characters. 



       

    Figure 9:  Trie- tree 

 

    Let us see in the example, how a trie-tree can help us reduce the number of columns to be 

calculated. We calculate columns of the DP matrix, advancing through the tree from the root to 

the leaves. Let us suppose that we have already finished the calculation of the DP matrix for the 

pair pattern/ANA and we go to the next name, CAMPO, so we keep going through the path 

root→C→A→M→P at the same time that we calculate the corresponding columns. When 

studying the letter P we see that it is the cut-off column (if its minimum value exceeds the 

threshold) so we deduce that CAMPO is "not similar" to the pattern. Now we can skip the 

analysis of CAMPON, CAMPONA and CAMPS since all these names will be "not similar" 

because they have the common prefix CAMP. Therefore, we can skip the subtree after the P and 

reuse the calculations we have already done for CAM. Now we calculate the S column from 

CAMS. When finishing with the S from CAMS, either the result is "are similar" or is not, we will 

go on to analyze the following name, CEL, going directly to the E because the C is reused. But 

after analyzing the L from CEL we cannot reuse that column for CELIA because the L from CEL 

is in final position (L is leaf) and the costs in DEA function for last position are different to the 

other positions. We must recalculate the last column. After the analysis of the A from CELIA we 

will be able to reuse CEL to analyze the O from CELO. And after CELO we cannot reuse 

anything and we will go on to the D from DON. Etc. 

                                Figure 10:  Compacted trie-tree 

 

    In order to have an efficient search we have to try keeping the vocabulary resident in internal 

memory. For this to be possible we will use a more compact trie-tree structure. There are several 

techniques for compacting trie-trees, some are very sophisticated [57] but the most of them 
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affect considerably the performance of the search algorithm. In the implementation that we have 

chosen here, we do a very simple compaction: every character with only one edge is grouped 

with the next one. In our example, the trie-tree will be reduced as seen in figure 10. Now it will 

only have 11 edges, instead of 20.  

 

    We adopt a physical representation in memory, figure 11, where there are groups of pointers 

and groups of characters. Every group of pointers is a node. Nodes and characters follow one 

another in the same order that we will use them during the search.  

  Π  =  pointer       *  =  intermediate leaf      '  = terminal leaf 

 

Figure 11: Structure of the trie tree in memory 

 

    In our implementation, the pointers are of variable length: from 1 to 4 bytes. The two first bits 

of every pointer show its length. Therefore, pointers of 1 byte allow 64 values, and the pointers 

of 4 bytes allow 230 = 1,073,741,824 values. But in all the tries built in the tests explained a little 

bit afterwards, whatever their volume is, more than 97% of pointers have a size of only one 

byte. The pointers of more of 3 bytes are really exceptional. The average length of pointers is 

1.02 bytes. The signals that indicate if a character is leaf and if it is intermediate or terminal, are 

in the two first bits of the byte of the character. With the 6 bits left we can represent an alphabet 

of 64 symbols. 

 

    In the small example in figure 11, the vocabulary that initially had 47 characters, now 

occupies 31 bytes: 20 letters and 11 pointers (obviously all them of only one byte).  

 

    We have built tries for some files (vocabularies) of surnames:  

 

- Five files of different sizes taken randomly from a file, APELLIDOS, that contains 

74112 different surnames (correspond to 1.6 millions of Spaniard). Every file has in its 

name, the amount of surnames that it contains: A-1853, A-3705,  A-18523, A-37045, 

A-73724 

 

- Two files taken randomly from the file INTERNA, that has almost 300.000 different 

surnames from the entire world: I-74391, I-148781, I-297398 

 

- A file of North American surnames, USAlast: U-31918 

 

    The results obtained can be seen in table 3 and in figure 12. In the figure we show the volume 

of the trie depending on the number of surnames N. Note that the graphic is doubly logarithmic.  

 

    With the most usual values of N , the amount of bytes occupied by a trie is between 35% and 

50% lower than the list of surnames. A vocabulary of 74000 Spanish different surnames 

occupies, with the structure trie adopted here, only 292Kbytes.  

 

 

 

 

 

Π Π Π A N A C Π Π A M Π Π P Π Π O N A S S E L Π Π I A O D O N
                 ‘                                         *  *  ‘  ‘  ‘     *          ‘   ‘      *  ‘ 



       

                Table 3: Some figures about the trie-trees 

 

File   cList cTrie/cList  bTrie/cList  BPun/bTrie  

A- 73724 549244  37.05 %  52.94 %  30.00 % 

A- 37045 276396  44.22 %  61.41 %  27.98 % 

A- 18523 138450  50.22 %  67.95 %  26.07 % 

A-3705 27881  62.12 %  80.01 %  22.35 % 

A-1853 13751  66.14 %  84.46 %  21.67 % 

I- 297398 2195273  35.43 %  51.11 %  30.68 % 

I-148781 1099038  42.28 %  59.12 %  28.45 % 

I-74391 2195273  47.82 %  65.21 %  26.66 % 

U- 31918 220614  44.73 %  62.49%  28.44 % 

 

 cList = number of characters of the vocabulary if it was a list 

    cTrie =    "         "       "             in the trie 

   bPun =    "        "     bytes occupied by pointers 

    bTrie =    "         "       "       of  the trie 

 

 

    For a database with 20 million Spaniards, all of them with two surnames, the size of the 

vocabulary trie is around 900 Kbytes.  

 

    In figure 11 we saw that the trie-tree contains groups of pointers and groups of characters, 

alternately. Every group of pointers corresponds to a node. Every group of pointers is followed 

by the characters to go through, till the next group of pointers. The groups of pointers and the 

characters are sequenced in the same order used during the search.  

          Figure 12: Size of the trie-tree 
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          Figure 13: Nesting of subtrees in the trie-tree of figure 6 

 

In figure 13 we have drawn as rectangles the subtrees pointed out by each pointer, Π (see also 

figure 11). After the first node, there are the three rectangles pointed out by the three pointers of 

this node.  Inside the second rectangle, after the letter C (the character of the node and root of 

this subtree) appears the second group of pointers. And after it, two rectangles that correspond 

to the two pointers of this node. Etc. Our algorithm goes through this nesting in a recursive way. 

A detailed description of the algorithm is given in [43] 

 

Evaluation of the efficiency  

 

    In order to experimentally analyze the efficiency of the DEA search technique, we use the 

files obtained from APELLIDOS, INTERNA and USAlast presented above (see table 3). As 

search pattern we use ten Spanish surnames randomly chosen.  

 

    The platform used for the test is a Sun Sparc Ultra60 of 360MHz, 128Mb, a SCSI disc of 

7200 rpm and the Solaris 2.6 operating system.  

 

    We have done 700 searching tests corresponding to the ten chosen surnames for each one of 

the seven degrees of threshold (A to G) for each one of the ten files. We give here some of the 

times obtained. The time is the user-time given by Solaris and we express it in seconds (the 

system precision is limited to 10-2 seconds).  

 

       min   average   max  

APELLIDOS,  A-73724 :   

        Threshold degree A       0   0.021      0.06 

          "     D           0.02  0.061      0.13 

          "     G       0.08  0.184      0.29 

 

INTERNA, I-297389 : 

       Threshold  degree A       0.01  0.055      0.13 

     "    D       0.07  0.183      0.40 

"    G       0.27  0.646      0.97 

 

The most expensive case, the search in I-297389 using the threshold degree G, is consuming 

less than 1 second. Using the D threshold degree and the A-73724 file (the first surnames of 1.6 

millions of Spaniards) a search time of 0.061 seconds is obtained. These times are good enough 

to allow the efficient use of our algorithm in IS that demand high performance.  

 

    Now we will analyze the number of operations done on the trie by our algorithm, depending 

on the vocabulary size. The number of operations is linearly dependent on the number C of 

characters analyzed. And C is equal to the number of DP columns calculated. Therefore, we can 

express the temporal complexity or efficiency of the algorithm, directly through C. 

Π Π Π  A N A  C  Π Π  A M  Π Π  P  Π Π  O N A  S  S  E L  Π Π  I A  O    D O N



       

 

    In figure 14 (doubly logarithmic) the value of C is showed as a function of the vocabulary 

size (measured in characters) for the A, D and F threshold degrees. The continuous lines refer to 

files derived from APELLIDOS, and the discontinuous lines refer to files derived from 

INTERNA. In tables 4 and 5 some numerical details are displayed for the threshold degrees A 

and D. 

 

Figure 14: Number of columns to calculate, depending on the vocabulary size 

 

    For the most useful threshold degrees (from A to D) and for usual sizes, the percentage of 

analyzed characters (calculated columns) is between 1% and 10%. That is, only from 0.07 to 0.7 

characters for each surname of the vocabulary.  

 

 

              Table 4 :  Characters analyzed for the threshold degree A  (in %) 

 

 Chars. not analyzed because ... File Characters 

analyzed cut-off in  trie common prefix 

A-1853     9.94       78.01       12.07  

A-3705     7.71       81.77       10.57  

A-18523     3.84       89.81         6.48  

A-37045     2.67       92.67         4.79  

A-73724     1.83       95.17         3.23  

I-74391     2.49       92.80         4.86  

I-148781     1.73       95.05         3.41  

I-297398     1.15       96.84         2.21  

U- 31918     3.28       91.56         5.51  
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               Table 5 :  Characters analyzed for the threshold degree D (in %) 

 

Chars. not analyzed because ... File Characters 

analyzed cut-off in  trie common prefix 

A-1853   19.83       59.76       20.40  

A-3705   16.31       64.58       19.11  

A-18523     9.49       76.29       14.21  

A-37045     7.19       81.46       11.35  

A-73724     5.17       86.73         8.09  

I-74391     7.50       79.06       13.44  

I-148781     5.60       84.19       10.21  

I-297398     4.03       88.89         7.08  

U- 31918     8.70       78.33       12.97  

 

 

For Spanish populations between 20,000 and 20,000,000 people, using only the first surname, 

the following expression allows to estimate the number of characters to be analyzed (the 

efficiency of the algorithm): 

 

   C = K ∗  P θ 
 

where  K  and  θ   depend on the threshold degree: 
   for threshold degree A:   K  = 145.2   and   θ = 0.22    
  for threshold degree F:    K  = 62.1    and   θ = 0.366    
 

Details about loading and maintaining the trie-tree, can be found in [43]. 

 

 

5. CONCLUSIONS 

 

In the context of APNM, we presented a similarity function, the DEA function, based on the 

probabilities of the edit operations accordingly to the involved letters and their position, and using a 

variable threshold. The published works about APNM, that compare several criteria of similarity, 

produce contradictory results because they use subjective methods for efficacy evaluation. We 

compared several similarity functions using an evaluation method based on real data and without 

human relevance judgments. The results of the comparison show that the DEA function has an 

efficacy significantly higher than the known methods.  

 

    In APNM, the similarity criteria more often used are the phonetic codification methods (e.g.: 

SOUNDEX) because of their good search efficiency although their efficacy is very poor. The 

distance functions have better efficacy but a poor efficiency. For the DEA function we presented a 

really efficient search technique, based on a trie-tree structure good enough to be used in a high 

load IS. 

 

 

6. REFERENCES 

 

1 Newcombe H.B.: Handbook of record linkage. Oxford University Press, 1988. 

 

2 Barker P. An Analysis of User Input to an X-500 White Pages Directory Service. IEEE/ACM 

Trans. on Networking 1995; 3(2). 

 



       

3 Veronis J. Computerized correction of phonographic errors. Computers in Humanities 1988; 22: 

43-56. 

 

4 Berghel H et al. The logic of spelling: Applications of ASM. PC AI  1990; 4(1): 24-27. 

 

5 Borgman CL ,  Siegfried SL. Getty's Synoname and its cousins: A survey of applications of 

personal name-matching algorithms. Journal of the American Society for Information Science 

1992; 43(7): 459-476. 

 

6 Levison M. et al. The intelligent detection of second language learner errors. ALLC/ACH  1998. 

 

7 Knuth DE. The art of computer programming. Vol 3 Sorting and Searching. Ed. Addison 

Wesley  1975. 

 

8 Taft RL. Name search techniques. Bureau of Systems Development, New York State 

Identification and Intelligence System, Albany, NY (Special Rep. No 1) 1970. 

 

9 Camps R , Casas R. Codificación fonética de apellidos españoles. Novática 1975; 6. 

 

10 Camps R. Búsqueda por semejanza ortográfica o fonética. Tesina FIB, Universitat Politècnica 

de Catalunya, Barcelona, Spain 1981. 

 

11 Dart P , Zobel J. Using a pronunciation dictionary for fnetik matching. CITRI Tech. Report TR-

95-28  1995. 

 

12 Pfeifer U. et al. Searching proper names in databases. Hypertext -Information retrieval- 

Multimedia. Procee. HIM'95  1995; 259-275. 

 

13 Zobel J , Dart P. Phonetic string matching: Lessons from Information Retrieval. Proceed.19th 

Annual Intl. ACM SIGIR Conf. on R&D in IR. 1996; 166-173. 

 

14 Gaizauskas R et al.  University of Sheffield: Description of LaSIE System as used for MUC-6. 

Proceed. Sixth Message Understanding Conference (MUC-6). Morgan Kauffman 1995. 

 

15 Attwater DJ , Whittaker SJ. Issues in large-vocabulary interactive speech systems. BT Technol. 

Journal 1996; 14(1): 177-186. 

 

16 French JC et al. Applications of Approximate Word Matching in Information Retrieval. 

CIKM’97 1997; 9-15. 

 

17 Davidson L. Retrieval of misspelled names in an airlines passenger record system. Comm. 

ACM 1962; 5(3): 169-171. 

 

18 Fokker DW , Lynch MF. Application of the variety generator approach to searches of personal 

names in bibliographic databases (Pt I) Microstructure of personal author’s names. Journal of 

Library Automation  1974; 7:105-118. 

 

19 Hernansen JC. Automatic name searching in Large Data Bases of International names. PhD 

dissertation, Georgetown University 1985. 

 

20 Hall PAV , Dowling GR. Approximate String Matching. ACM Computing Surveys 1980; 

12(4): 381-402. 

 

21 Kukich K. Techniques for Automatically Correcting Words in Text. ACM Comp. Surveys 

1992; 24(4): 377-439. 



       

 

22 Navarro G. A guided tour to approximate string matching. ACM Computing Surveys 2001; 

33(1): 32-88 

 

23 Bell GB , Sethi A. Matching Records in a National Medical Patient Index. Comm.ACM 2001; 

44(9): 83-88. 

 

24 Gross A. Getty Synoname: The development of software for personal name pattern matching. 

RIAO 91 Conf. Proc. Intelligent text and image handling 1991; 754-763. 

 

25 Siegfried S , Bernstein J. Synoname: The Getty's new approach to pattern matching for 

personal names. Computers and the Humanities 1991; 25(4): 211-226. 

 

26 Pfeifer U. et al. Retrieval effectiveness of proper name search methods. Information Processing 

& Management 1996; 32(6): 667-679. 

 

27 Petrakis EGM , Tzeras K. Similarity Searching in the CORDIS Text Database Software 

Practice and Experience 2000; 13: 1447-1464. 

 

28 Navarro G et al. Matchsimile: A Flexible Approximate Matching Tool for Personal Names 

Searching. To be published in JASIST 2003; 54(1). 

 

29 Gallipi AF. Learning to recognize names across languages. COLING-96 1996; 424-429. 

 

30 Lopresti D , Wilfong G. Cross-Domain Approximate String Matching. IEEE String Processing 

and Information Retrieval Symposium 1999; 120-127. 

 

31 Lowrance R , Wagner RA. An Extension of the String-to-String Correction Problem. Journ. 

ACM  1975;22(2): 177-183. 

 

32 Oommen BJ. String alignment with substitutions, insertions, deletions, squashing and 

expansion operations. Information Science 1995; 8(3): 89-107. 

 

33 Oommen BJ , Loke RKS. Pattern recognition of strings with substitutions, insertions, deletions 

and generalized transpositions. Pattern Recognition  1997; 30(5): 789-800. 

 

34 Lee J. et al. Efficient algorithms for approximate string matching with swaps. 8th Annual 

Symposium CPM-97 Proc. 1997; 28-39. 

 

35 Leung VJ. The undecidability of the unrestricted modified edit distance. Theoretical Computer 

Science 1997; 180(1&2): 203-215. 

 

36 Wagner RA , Fischer MJ. The String-to-String Correction Problem. Journ. ACM  1974; 21(1): 

168-178. 

 

37 Kurtz R. Approximate string searching under weighted edit distance. Proc.3thd SAWSP 1996. 

 

38 Jouvet D. et al. Speaker-independent spelling recognition over the telephone. Proc.IEEE 

Intl.Conf. on Acoustics, Speech and Signal Processing 1993; 235-238 

 

39 Dagan I. et al: Contextual word similarity and estimation from sparse data. Computer Speech 

and Language 1995; 9: 123-152. 

 

40 Weigel A. et al. Lexical post-processing by heuristic search and automatic determination of the 

edit costs. ICDAR-95 1995; 857-860. 



       

 

41 Bunke H , Csirik J. Parametric String Edit Distance and its Application to Pattern Recognition. 

IEEE Trans.on Systems, Man, and Cybernetics 1995; 25(1): 202-206.  

 

42 Ristad ES , Yianilos PN. Learning String-Edit-Distance. IEEE Trans. on Pattern Analysis and 

Machine Intelligenc 1998; 20(5): 522-532. 

 

43 Camps R. Búsqueda aproximada de antropónimos en las Bases de Datos de los Sistemas de 

Información en presencia de errores. PhD dissertation, Departamento LSI, Universitat Politècnica 

de Catalunya, Barcelona (Spain), 2003. 

 

44 Winkler WE. Matching and record-linkage, chap.20 of Business Survey Methods. John Wiley 

& Sons 1995; 355-384. 

 

45 Gadd TN: PHONIX: the algorithm. Program 1990; 24(4): 363-366. 

 

46 Raghavan et al. Retrieval systems evaluation using recall and precision: Problems and answers. 

Proce. of the 12 annual International ACM-SIGIR Conf. on Research and Development in 

Information Retrieval 1989; 59-68. 

 

47 Saracevic T. Evaluation of Evaluation in Information Retrieval. ACM/SIGIR'95 1995.  

 

48 Jardine N , Rijsberjen CJ. The use of hierarchic clustering in information retrieval. Infor. Stor. 

Retr. 1971; 7. 

 

49 Rijsbergen CJ.  Information Retrieval. Ed: Butterworth Scientific Ltd, 2n ed. 1979. 

 

50 Navarro G. et al. Indexing Methods for Approximate String Matching. Bulletin of the IEEECS 

Tech. Comm. on Data Engineering 2001; 24(4): 19-27. 

 

51 Fairthorne, R.A.: Empirical hyperbolic distributions. Journal of Documentation 1969; 25(4): 

319-343. 

 

 

52 Berghel H , Roach D. An extension of Ukkonen's enhanced dynamic programming ASM 

algorithm. ACM Trans. on Inf. Sys.1996; 14(1): 94-106. 

 

53 Ukkonen E. Algorithms for approximate string matching. Information and Control 1985; 64: 

100-118. 

 

54 Gonnet GH , Baeza-Yates R. Handbook of algorithms and data structures. Addison-Wesley 

2nd ed, 1991; 251-413. 

 

55 Myers EW. A sublinear algorithm for approximate keyword searching. Algorithmica 1994; 12: 

345-374. 

 

56 Oflazer K. Error-tolerant finite-state recognition with applications to morphological analysis 

and spelling correction. Computational Linguistic 1996; 22(1): 73-89. 

 

57 Aoe J et al. A Trie Compaction Algorithm for a Large Set of Keys. IEEE Trans. on Knowledge 

and Data Eng. 1996; 8(3). 

 

 


