78 research outputs found

    A predicative variant of a realizability tripos for the Minimalist Foundation.

    Get PDF
    open2noHere we present a predicative variant of a realizability tripos validating the intensional level of the Minimalist Foundation extended with Formal Church thesis.the file attached contains the whole number of the journal including the mentioned pubblicationopenMaietti, Maria Emilia; Maschio, SamueleMaietti, MARIA EMILIA; Maschio, Samuel

    On Relating Theories: Proof-Theoretical Reduction

    Get PDF
    The notion of proof-theoretical or finitistic reduction of one theory to another has a long tradition. Feferman and Sieg (Buchholz et al., Iterated inductive definitions and subsystems of analysis. Springer, Berlin, 1981, Chap. 1) and Feferman in (J Symbol Logic 53:364–384, 1988) made first steps to delineate it in more formal terms. The first goal of this paper is to corroborate their view that this notion has the greatest explanatory reach and is superior to others, especially in the context of foundational theories, i.e., theories devised for the purpose of formalizing and presenting various chunks of mathematics. A second goal is to address a certain puzzlement that was expressed in Feferman’s title of his Clermont-Ferrand lectures at the Logic Colloquium 1994: “How is it that finitary proof theory became infinitary?” Hilbert’s aim was to use proof theory as a tool in his finitary consistency program to eliminate the actual infinite in mathematics from proofs of real statements. Beginning in the 1950s, however, proof theory began to employ infinitary methods. Infinitary rules and concepts, such as ordinals, entered the stage. In general, the more that such infinitary methods were employed, the farther did proof theory depart from its initial aims and methods, and the closer did it come instead to ongoing developments in recursion theory, particularly as generalized to admissible sets; in both one makes use of analogues of regular cardinals, as well as “large” cardinals (inaccessible, Mahlo, etc.). (Feferman 1994). The current paper aims to explain how these infinitary tools, despite appearances to the contrary, can be formalized in an intuitionistic theory that is finitistically reducible to (actually Π02 -conservative over) intuitionistic first order arithmetic, also known as Heyting arithmetic. Thus we have a beautiful example of Hilbert’s program at work, exemplifying the Hilbertian goal of moving from the ideal to the real by eliminating ideal elements

    Human-effective computability

    Get PDF

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines
    • …
    corecore