88 research outputs found

    Paraconsistency properties in degree-preserving fuzzy logics

    Get PDF
    Paraconsistent logics are specially tailored to deal with inconsistency, while fuzzy logics primarily deal with graded truth and vagueness. Aiming to find logics that can handle inconsistency and graded truth at once, in this paper we explore the notion of paraconsistent fuzzy logic. We show that degree-preserving fuzzy logics have paraconsistency features and study them as logics of formal inconsistency. We also consider their expansions with additional negation connectives and first-order formalisms and study their paraconsistency properties. Finally, we compare our approach to other paraconsistent logics in the literature. © 2014, Springer-Verlag Berlin Heidelberg.All the authors have been partially supported by the FP7 PIRSES-GA-2009-247584 project MaToMUVI. Besides, Ertola was supported by FAPESP LOGCONS Project, Esteva and Godo were supported by the Spanish project TIN2012-39348-C02-01, Flaminio was supported by the Italian project FIRB 2010 (RBFR10DGUA_02) and Noguera was suported by the grant P202/10/1826 of the Czech Science Foundation.Peer reviewe

    Truth Values in t-norm based Systems Many-valued FUZZY Logic

    Get PDF
    In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-paraconsistent

    Axiom (cc)0 and Verifiability in Two Extracanonical Logics of Formal Inconsistency

    Get PDF
    In the field of logics of formal inconsistency (LFIs), the notion of “consistency” is frequently too broad to draw decisive conclusions with respect to the validity of many theses involving the consistency connective. In this paper, we consider the matter of the axiom (cc)0—i.e., the schema ◦ ◦ϕ—by considering its interpretation in contexts in which “consistency” is understood as a type of verifiability. This paper suggests that such an interpretation is implicit in two extracanonical LFIs—Sören Halldén’s nonsense-logic C and Graham Priest’s cointuitionistic logic daC—drawing some interesting conclusions concerning the status of (cc)0. Initially, we discuss Halldén’s skepticism of this axiom and provide a plausible counterexample to its validity. We then discuss the interpretation of the operator in Priest’s daC and show the equivalence of (cc)0 to the intuitionistic principle of testability. These observations suggest that it may be fruitful for members of the LFI community to look outside the canon for evidence concerning the adoption of principles like (cc)0

    Logics of formal inconsistency

    Get PDF
    Orientadores: Walter Alexandre Carnielli, Carlos M. C. L. CaleiroTexto em ingles e portuguesTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias HumanasTese (doutorado) - Universidade Tecnica de Lisboa, Instituto Superior TecnicoResumo: Segundo a pressuposição de consistência clássica, as contradições têm um cará[c]ter explosivo; uma vez que estejam presentes em uma teoria, tudo vale, e nenhum raciocínio sensato pode então ter lugar. Uma lógica é paraconsistente se ela rejeita uma tal pressuposição, e aceita ao invés que algumas teorias inconsistentes conquanto não-triviais façam perfeito sentido. A? Lógicas da Inconsistência Formal, LIFs, formam uma classe de lógicas paraconsistentes particularmente expressivas nas quais a noção meta-teónca de consistência pode ser internalizada ao nível da linguagem obje[c]to. Como consequência, as LIFs são capazes de recapturar o raciocínio consistente pelo acréscimo de assunções de consistência apropriadas. Assim, por exemplo, enquanto regras clássicas tais como o silogismo disjuntivo (de A e {não-,4)-ou-13, infira B) estão fadadas a falhar numa lógica paraconsistente (pois A e (nao-A) poderiam ambas ser verdadeiras para algum A, independentemente de B), elas podem ser recuperadas por uma LIF se o conjunto das premissas for ampliado pela presunção de que estamos raciocinando em um ambiente consistente (neste caso, pelo acréscimo de (consistente-.A) como uma hipótese adicional da regra). A presente monografia introduz as LIFs e apresenta diversas ilustrações destas lógicas e de suas propriedades, mostrando que tais lógicas constituem com efeito a maior parte dos sistemas paraconsistentes da literatura. Diversas formas de se efe[c]tuar a recaptura do raciocínio consistente dentro de tais sistemas inconsistentes são também ilustradas Em cada caso, interpretações em termos de semânticas polivalentes, de traduções possíveis ou modais são fornecidas, e os problemas relacionados à provisão de contrapartidas algébricas para tais lógicas são examinados. Uma abordagem formal abstra[cjta é proposta para todas as definições relacionadas e uma extensa investigação é feita sobre os princípios lógicos e as propriedades positivas e negativas da negação.Abstract: According to the classical consistency presupposition, contradictions have an explosive character: Whenever they are present in a theory, anything goes, and no sensible reasoning can thus take place. A logic is paraconsistent if it disallows such presupposition, and allows instead for some inconsistent yet non-trivial theories to make perfect sense. The Logics of Formal Inconsistency, LFIs, form a particularly expressive class of paraconsistent logics in which the metatheoretical notion of consistency can be internalized at the object-language level. As a consequence, the LFIs are able to recapture consistent reasoning by the addition of appropriate consistency assumptions. So, for instance, while classical rules such as disjunctive syllogism (from A and (not-A)-or-B, infer B) are bound to fail in a paraconsistent logic (because A and (not-.4) could both be true for some A, independently of B), they can be recovered by an LFI if the set of premises is enlarged by the presumption that we are reasoning in a consistent environment (in this case, by the addition of (consistent-/!) as an extra hypothesis of the rule). The present monograph introduces the LFIs and provides several illustrations of them and of their properties, showing that such logics constitute in fact the majority of interesting paraconsistent systems from the literature. Several ways of performing the recapture of consistent reasoning inside such inconsistent systems are also illustrated. In each case, interpretations in terms of many-valued, possible-translations, or modal semantics are provided, and the problems related to providing algebraic counterparts to such logics are surveyed. A formal abstract approach is proposed to all related definitions and an extended investigation is carried out into the logical principles and the positive and negative properties of negation.DoutoradoFilosofiaDoutor em Filosofia e Matemátic

    Semantical Investigations on Non-classical Logics with Recovery Operators: Negation

    Full text link
    We investigate mathematical structures that provide a natural semantics for families of (quantified) non-classical logics featuring special unary connectives, called recovery operators, that allow us to 'recover' the properties of classical logic in a controlled fashion. These structures are called topological Boolean algebras. They are Boolean algebras extended with additional unary operations, called operators, such that they satisfy particular conditions of a topological nature. In the present work we focus on the paradigmatic case of negation. We show how these algebras are well-suited to provide a semantics for some families of paraconsistent Logics of Formal Inconsistency and paracomplete Logics of Formal Undeterminedness, which feature recovery operators used to earmark propositions that behave 'classically' in interaction with non-classical negations. In contrast to traditional semantical investigations, carried out in natural language (extended with mathematical shorthand), our formal meta-language is a system of higher-order logic (HOL) for which automated reasoning tools exist. In our approach, topological Boolean algebras become encoded as algebras of sets via their Stone-type representation. We employ our higher-order meta-logic to define and interrelate several transformations on unary set operations (operators), which naturally give rise to a topological cube of opposition. Furthermore, our approach allows for a uniform characterization of propositional, first-order and higher-order quantification (also restricted to constant and varying domains). With this work we want to make a case for the utilization of automated theorem proving technology for doing computer-supported research in non-classical logics. All presented results have been formally verified (and in many cases obtained) using the Isabelle/HOL proof assistant

    Paraconsistent probabilities: consistency, contradictions and bayes' theorem

    Get PDF
    2010/51038-0sem informaçãoThis paper represents the first steps towards constructing a paraconsistent theory of probability based on the Logics of Formal Inconsistency (LFIs). We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes' theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.This paper represents the first steps towards constructing a paraconsistent theory of probability based on the logics of formal inconsistency (LFIs). We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes' theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.189FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICO2010/51038-0sem informaçã
    corecore