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Abstract In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: 
interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is 
v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic 
is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first 
applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which 
contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-
paraconsistent. 
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1. Introduction 
Many-valued logic (Béziau, 1997; Cignoli et al, 2000; 

Malinowski, 2001; Miller and Thornton, 2008) differs 
from classical logic by the fundamental fact that it allows 
for partial truth. In classical logic, truth takes on values in 
the set {0, 1}, in other words, only the value 1 or 0, 
meaning “Yes, it's true,” or “No, it's not,” respectively. 
The authors propose a t-norm based systems Many-valued 
logics as their natural extension take on values in the 
interval [0,1]. Per definition, t-norm based systems are 
many-valued if the set of valuations is not countable and 
this set is the interval [0,1].  

Let p be the truth value of a proposition or utterance P, 
P false 0p = , P true 1p = ; P approximated E = [0,1] = {p 
∈ R | 0 ≤ p ≤ 1}.  

We design for a non-countable set F whose algebraic 
structure is at least that of a semi-ring. We lay the 
following definitions and fundamental axioms: 
Axiom 1: Any proposition P has a truth value p, element 
of a set E which is a part, not countable and stable for 
multiplication of the set F. 

These systems are basically determined by a strong 
conjunction connective VΛ  which has as corresponding 
truth degree function a t-norm V, i.e. a binary operation V 
in the unit interval which is associative, commutative, 
non-decreasing, and has the degree 1 as a neutral element. 
Let p1, p2, p3 be three truth values.  

Then:  
Axiom 2: Any proposition P is endowed with a valuation 

[ ]0,1v∈  such that ( )v V p= , V reciprocal application of 

E on [ ]0,1  subject to the following conditions: 

1). ( )1 0 0V − =  

2). ( ) ( ) ( )1 2 1 2,V p p V p V p=  
Axiom 3: V(p1,V(p2, p3)) = V(V(p1, p2), p3), 
Axiom 4: V(p1, p2) = V(p2, p1), p1≤ p2⇒ V(p1, p3) ≤ V(p2, p3), 
Axiom 5: V(p1,1) = p1. 

For all those t-norms which have the sup-preservation 
property V(p, supi pi) = supi V(p,pi), there is a standard 
way to introduce a related implication connective 

V
→  

with the truth degree function p1 
V
→  p2 = sup {p | V(p1, p) 

≤ p2}. This implication connective is connected with the t-
norm V by the crucial adjointness condition V(p1, p2) ≤ p3 
⇔ p1 ≤ (p2

V
→  p3), which determines →V uniquely for 

each V with sup-preservation property. 
The language is further enriched with a negation 

connective, ¬V, determined by the truth degree function ¬V 
p = p 

V
→  0. We have a conjunction ∧ and a disjunction ∨ 

with truth degree functions. 

 
{ }
{ }

1 2 1 2

1 2 1 2

 min , ,

 max , .

p p p p

p p p p

∧ =

∨ =
 

For t-norms which are continuous functions these 
additional connectives become even definable. Suitable 
definitions are 
 { }1 2 1 1 2min ,  V( ,  ( )) ,

V
p p p p p= →  

 { }1 2 1 2 2 2 1 1max , min , .
V V V V

p p p p p p p p=
     
    
     

→ → → →  
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For a t-norm V their sup-preservation property is the 
left-continuity of this binary function V. And the continuity 
of such a t-norm V can be characterized through the 
algebraic divisibility condition VΛ  (p1

V
→ p2) = p1 ∧ p2. 

In this work we develop a many-valued logic: known as 
quasi-paraconsistent because the contradiction cannot be 
true, but can be approximated, [ ]0,1E =  (Newton da 
Costa, in Susana Nuccetelli, Ofelia Schutte, and Otávio 
Bueno, 2010; Bueno, 2010; Carnielli and Marcos, 2001; 
Fisher, 2007; Priest and Woods, 2007). In 2013, 
Castiglioni and Ertola Biraben provide some results 
concerning a logic that results from propositional 
intuitionistic logic when dual negation is added in certain 
way, producing a paraconsistent logic that has been called 
da Costa Logic. 
Axiom 6: If P¬  truth value *p  denotes the negation or 

contradiction of P, we must have: ( )* 1V p p+ = . 

Let Pi be n propositions, i= 1,2,…, n of pi and *
ip be the 

truth values of their contradictories. Then:  
Definition 1: A compound proposition (or logical 
coordination or logical expression) of order n is a 
proposition whose truth value c is a function nf  of pi 

and *
ip . 

 ( )* * *
1 1 2 2, , , ,... ,n n nc f p p p p p p=  

nf  values in F; it determines a truth value if c E∈ .The 
condition of existence of a compound proposition defined 
by nf is c E∈ , or what is equivalent, ( ) [ ]0,1V c ∈ . 
Axiom 7: nf  is a polynomial in which each index 1, 
2, ...,n must be at least once and that all coefficients are 
equal to unity. 

Condition ( ) ( ) ( )1 2 1 2,V p p V p V p=  requires the 

stability of E for multiplication because [ ]0,1  possesses 
the stability and function V is reciprocal. 

If e designates the neutral element of the multiplication 
of truth values, we have ( ) ( ),V e e V e=  and for Axiom 2, 

( ) ( ) ( )V e V e V e= . Solution ( ) 0V e =  is to reject because 
for Axiom 2 would lead to 0e = , therefore 
remains ( ) 1V e = . 

We apply Axiom 7 and n = 2. Among polynomials f2 
are the monomial p1p2 and 1 2p p+ polynomial. 
Definition 2: The conjunction of two propositions P1 and 
P2 is compound proposition, denoted 1 2P P∧  whose truth 
value is 1 2p p . 

For definition 2 and Axiom 2, 
( ) ( ) ( ) ( )1 2 1 2 1 2v P P V p p V p V p∧ = = . 
From Axiom 2 the conjunction is commutative. 

Stability of E and [ ]0,1  for the multiplication result 

that ( )1 2 1 2, ,p p P P∀ ∀ ∃ ∧ . 
As in classical logic: 

 
( ) ( ) ( )
( ) ( )

1 2 1 2

1 2

1 1

0 0, 1,2i

v P v P v P P

v P v P P i

= = ⇔ ∧ =

= ⇒ ∧ = =
 

For definition 2, ( ) ( ) ( ) ( ) 22v P P V pp V p V p∧ = = = . 

In general, unless ( ) 0v P =  or ( ) 1v P = , the conjunction 
is not idempotent in many-valued logic. 
Definition 3: The complementarity of two propositions P1 
and P2 is compound proposition, denoted 1 2P Pℑ  whose 
truth value is 1 2p p+ . 

For axiom 1, the complementarity is commutative. It 
exists only if 1 2p p E+ ∈ . When 1 0p ≠ and 2 0p ≠ , so 
that ( )1 2 0v P Pℑ = , it is necessary that 1 2 0p p+ = , so that 
the addition of the truth values admit opposed. 

When n = 1, among the functions f1, there are 
polynomial *p p+  and monomial *pp . For axiom 6 and 

definition 3, ( ) ( )* 1v P P V p pℑ¬ = + = ; complementarity 

of the two contradictories is always true.  
Let *p p u+ = be. 

Definition 4: u is a denier of the proposition P if the 
following three conditions are fulfilled: 

a) u E∈  
b) ( ) 1;V u =  u unitary truth value (from axiom 6) 

c) *u p p E− = ∈  (from axiom 1) 
In general, these three conditions can be satisfied by a 

set of deniers of P, then the contradictory ¬P has a priori, 
once fixed p, a set of truth values p*(u); so the choice of a 
denier who, in a problem of applied logic, will determine 
the truth value of the contradictory. 
Theorem 1: If u is a denier of P, it is also a denier of ¬P. 
Proof 

Indeed, ( ) *; 1u E V u u p p E∈ = − = ∈  
Definition 5: The conjunction of a proposition and its 
contradictory is called contradiction. 

In paraconsistent logic, a contradiction is not 
necessarily false. It may be true, then: 
 ( ) ( ) ( )1 1v P P v P v P∧¬ = ⇔ = ¬ =  

2. ALGEBRA OF t-norm based Systems 
Many-valued FUZZY Logic 
Definition 6: A compound proposition of order n is called 
normal and polynomial P

nP  that determines its truth value 
is called normal if is homogeneous polynomial of degree p, 
if in any of its monomials there is repetitions of index, and 
no monomial is repeated. 
Definition 7: Normal polynomial is said to be complete 

and denoted 
_
P

nP  if includes all monomials of degree p 
allowed by combinatorial analysis. 

It is easy to see that the complete normal polynomials 
can be formed from the complementarities of 



 American Journal of Systems and Software 141 

contradictory i iP Pℑ¬  of truth value 

* , 1, 2,...,i i ip p u i n+ = = . Indeed: 

 ( )
_
1 *
n i i i

i i
P p p u= + =∑ ∑  

 ( )( )
_
2 * *

n i i j j i j
ij ij

P p p p p u u= + + =∑ ∑  

where ij refers to a combination of the two indices; 
_
2

nP includes 2 22 nC monomials of degree 2. Similarly: 

 ( )( )( )
_
3 * * *
n i i j j k k i j k

ijk ijk
P p p p p p p u u u= + + + =∑ ∑  

where ijk means a combination of three indexes; 
_
3
nP  

includes 3 32 nC  monomials of degree 3. And so on until: 

 ( )( ) ( )
_

* * *
1 1 2 2 1 2.... ...n

n n n nP p p p p p p u u u= + + + =  

which includes 2n  monomials of degree n. 
Any normal compound proposition has equal truth 

value either one of the monomials of a complete normal 
polynomial, or a combination of several of these 
monomials. 
Definition 8: A family p of normal compound 
propositions of order n contains all those derived from 

complete normal polynomial
_
p

nP . 
Within the same family, the propositions can be 

classified into groups according to the number of 

monomials of 
_
p

nP  composing P
nP . 

2.1. Normal Binary Propositions: Family 2, 
Group 1 

Group 1 is that of binary propositions whose truth value 

is the sum of an odd number of monomials
_
2

2P . 

 
_
2 * * * *

2 1 2 1 2 1 2 1 2 1 2.P p p p p p p p p u u= + + + =  

The monomials of 
_
2

2P are the respective truth values of 
the conjunctions 1 2 1 2 1 2 1 2, , ,P P P P P P P P∧ ∧¬ ¬ ∧ ¬ ∧¬  
that exist unconditionally. 
Definition 9: Polynomial * * * *

1 2 1 2 1 2 1 2 1 2p p p p p p u u p p+ + = −  
is the truth value of the proposition called incompability 
of P1 and P2 and denoted 1 2P P¬ ∨¬ . 

There is incompatibility if 1 2P P∧  admits 1 2u u  as 
denier. Then, after the axiom 6, definition 3 and definition 
4, we have: 

 ( ) ( )1 2 1 2v P P v P P¬ ∨¬ = ¬ ∧    

and the truth value of 1 2P P¬ ∨¬  is fixed, once fixed 

1 2p p , by the denier 1 2u u . 1 2P P¬ ∨¬  is commutative. 

Definition 10: * * * *
1 2 1 2 1 2 1 2 1 2p p p p p p u u p p+ + = − is the 

truth value of the compound proposition called disjunction 
of P1 and P2 and denoted 1 2P P∨ . 

There is disjunction if 1 2P P¬ ∧¬ admits 1 2u u  as denier. 
Then: 

 ( ) ( )1 2 1 2v P P v P P∨ = ¬ ¬ ∧¬    

and the truth value of 1 2P P∧ is fixed, once fixed * *
1 2p p , by 

the denier 1 2u u . 

Definition 11: * * * *
1 2 1 2 1 2 1 2 1 2p p p p p p u u p p+ + = − is the 

truth value of the proposition called implication of P2 by 
P1 denoted 1 2P P¬ ∨ or 1 2P P⇒ . 

There is implication if 1 2P P¬ ∧ admits 1 2u u  as denier. 
Then: 
 ( ) ( )1 2 1 2v P P v P P⇒ = ¬ ¬ ∧    

and the truth value of 1 2P P⇒  is fixed, once fixed *
1 2p p , 

by the denier 1 2u u . 
Condition 1 of existence: Let P1, P2 be two propositions, 

1u∃  denier of P1 and 2u∃ denier P2 such that 1 2u u  is a 
denier of 1 2P P∧ . 

Indeed, if E and function V can satisfy this condition, 
then 1 2P P¬ ∨¬ exists, but as u1 is also a denier of 1P¬  
and u2 of 2P¬ , other disjunctions may also exist. 

2.2. Normal Binary Propositions: Family 2, 
Group 2 

The truth value of a proposition of this group is the sum 

of an even number of monomials of
_
2

2P . 

Definition 12: * *
1 2 1 2p p p p+ is the truth value of the 

compound proposition called concordance and 
denoted 1 2P PΞ . 

Definition 13: * *
1 2 1 2p p p p+  is the truth value of the 

compound proposition called discordance and 
denoted 1 2P PΧ . 
Condition 2 of existence: 1 2P PΞ exists if 1u∃  denier of P1 

and 2u∃ denier P2 such that * *
1 2 1 2p p p p E+ ∈ . 

Condition 3 of existence: 1 2P PΧ exists if 1u∃  denier of 

P1 and 2u∃ denier P2 such that * *
1 2 1 2p p p p E+ ∈ . 

If conditions 2 and 3 are satisfied, then: 

 
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

v P P v P P

v P P v P P

Ξ = ¬ Χ  
Χ = ¬ ⇔  

 

We leave aside the coordination of this group whose 
respective truth values are: *

1 2 1 2 2 1p p p p u p+ = , 
*

1 2 1 2 1 2p p p p u p+ = , * * * *
1 2 1 2 1 2p p p p u p+ =  and 

* * * *
1 2 1 2 2 1p p p p u p+ = whose degrees of truth are 
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determined by the truth value of only one of the 
propositions 1 1 2 2, , ,P P P P¬ ¬ . 

2.3. Normal Binary Propositions: Family 1 

 
_
1 * *
2 1 2 1 2P p p p p= + + +  

We have defined the complementarity. 
Definition 14: *

1 2p p+ is the truth value of the inverse 
complementarity of P1 and P2 denoted 1 2P P¬ ℑ¬ . 
Condition 4 of existence: 1u∃  denier of P1 and 

2u∃ denier P2 such as if 1 2p p E+ ∉ then * *
1 2p p E+ ∈ . 

Note that in Condition 4 the truth values intervene and 
not just the deniers. Condition 4 satisfied if 1 2P Pℑ  does 
not exist, and then 1 2P P¬ ℑ¬  exists and vice versa. 

Definition 15: *
1 2p p+ is the truth value of the compound 

proposition called equivalence and denoted 1 2P P℘ .  
The denomination equivalence is due to 

that ( ) ( )1 2 2 1 1 2 1p p v P P v P P= ⇒ ℘ = ℘ = . Indeed, 
*

1 2 1 2 2p p p p u+ = − +  and *
1 2 2 1 1p p p p u+ = − + , 

( ) ( )1 2 2 1 2 1p p v P P V u= ⇒ ℘ = = and

( ) ( )1 2 1 1.v P P V u℘ = =  
Condition 4 satisfied, at least one of two equivalences 

2 1P P℘  and 1 2P P℘  exists since 2 1 1 2P P P P℘ ≡ ℑ¬ and 

1 2 1 2P P P P℘ ≡ ¬ ℑ . 
We make a summary of the main coordination in the 

following table (Table 1): 

Table 1. Table of principal normal binary propositions 
Notation Name Truth value 

1 2P P∧  Conjunction 1 2p p  

1 2P P¬ ∨¬  Incompatibility 1 2 1 2u u p p−  

1 2P P∨  Disjunction 
* *

1 2 1 2

2 1 1 2 1 2

u u p p
u p u p p p

−
= + −

 

1 2P P⇒  Implication 
( )

*
1 2 1 2

1 2 1 2 2

u u p p
u u p u p

−

= − −
 

1 2P PΞ  Concordance 
( )

* *
1 2 1 2

1 2 2 1 1 2 1 22
p p p p

u u u p u p p p
+

= − + +
 

1 2P PΧ  Discordance 
* *

1 2 1 2

2 1 1 2 1 22
p p p p

u p u p p p
+

= + −
 

1 2P Pℑ  Complementarity 1 2p p+  

1 2P P¬ ℑ¬  Inverse 
complementarity 

* *
1 2p p+  

2 1P P℘  Equivalence *
1 2 1 2 2p p p u p+ = + −  

1 2P P℘  Inverse 
equivalence 

*
1 2 1 1 2p p u p p+ = − +  

2.4. Normal propositions of order n: 1 and n 
families 

We consider only those two families and only a few of 
coordination within them. 

 
_
1 * * *

1 2 1 2... ...n n nP p p p p p p= + + + + + + +  

The sum of truth values is associative (axiom 1), but the 
complementarity is not in general. We write in all cases 

1 2 3P P Pℑ ℑ  the compound proposition whose veracity 

is 1 2 3,r p p p r E= + + ∈ . Iff 1 2P Pℑ exists 

1 2p p E+ ∈ and 2 3P Pℑ exists 1 3p p E+ ∈ there is 
associativity, resulting from the addition of the truth 

values; ( ) ( )1 2 3 1 2 3 1 2 3, ,P P P P P P P P Pℑ ℑ ℑ ℑ ℑ ℑ then have 
the same truth value 1 2 3p p p+ + . 

The complementarity of the n propositions Pi, 
commutative, is the compound proposition 

1 2 3...P P Pℑ ℑ ℑ whose truth value is 1 2 ... np p p+ + + . 
It will be even the inverse complementarity of n 

propositions, associative but not commutative in general, 
with respect to ¬Pi, denoted 1 2 3...P P P¬ ℑ¬ ℑ ℑ¬  and truth 

value * * *
1 2 ... np p p+ + + . 

If set E and function V satisfy Condition 4, so when the 
complementarity does not exist, there is the inverse 
complementarity. 

 ( )( ) ( )
_

* * *
1 1 2 2 1 2.... ...n

n n n nP p p p p p p u u u= + + + =  

Multiplication of truth values is associative; the 
conjunction is also because it is not subject to any 
condition of existence. 

 ( ) ( )1 2 3 1 2 3 1 2 3, ,P P P P P P P P P∧ ∧ ∧ ∧ ∧ ∧  

always same truth value 1 2 3p p p . 
Conjunction of n propositions Pi, commutative and 

associative, is the compound proposition denoted 
1 2 ... nP P P∧ ∧ ∧  whose truth value 1 2... np p p is one of the 

monomials n
nP . 

If condition 1 is satisfied by 2 3u u  and 1 2 3u u u , the 
incompatibility ( )1 2 3P P P¬ ∨ ¬ ∨¬ exists, then it is the 
negation by denier 1 2 3 1 2 3( )u u u u u u= of the 
conjunction ( )1 2 3P P P∧ ∧ , identical to 1 2 3P P P∧ ∧ . If 

1 2u u  satisfies condition 1, the incompatibility 

( )1 2 3P P P¬ ∨¬ ∨¬  exists and it is also the negation by 
denier 1 2 3u u u of the conjunction 1 2 3P P P∧ ∧ .It is seen that 
if the condition 1 is satisfactory wherever it is necessary, 
there is an incompatibility of P1, P2 and P3, commutative 
and associative, which is denoted 1 2 3P P P¬ ∨¬ ∨¬ and 
will have as truth value 1 2 3 1 2 3u u u p p p− .More generally, 
it may be a commutative and associative incompatibility 
of n propositions Pi, denoted as 1 2 ... nP P P¬ ∨¬ ∨ ∨¬  and 
will have as truth value 1 2 1 2... ...n nu u u p p p− .But we can 
also, as the complementarity, noted in all cases 

1 2 ... nP P P¬ ∨¬ ∨ ∨¬  the compound proposition, non-
associative in general, of veracity 1 2 1 2... ...n nu u u p p p− . 
Similarly, through a suitable choice of the deniers, it may 
be a disjunction of n propositions Pi, commutative and 
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associative sometimes, denoted 1 2 ... nP P P∨ ∨ ∨ and truth 

value * * *
1 2 1 2... ...n nu u u p p p− . 

3. t-norm based Systems Many-valued 
Logic 

The set of truth values E is interval [ ]0,1 . ; function V is 
the identity: the degree of truth is equal to the truth value. 
V does satisfy axiom 2, ( ) 1V u =  and ( ) 1V u u u= ⇒ = ; 
therefore this logic does not know a single denier, number 
1. 

Axiom 6 is written * 1p p+ = . Contradiction has a 
value ( ) ( )1v P P p p∧¬ = − .It cannot be true, it is false if 
P is false or if P is true; it is approximated if P is 
approximated but the maximum degree of truth is 0.25, 
achieved when p = 0.50. 

3.1. Normal Binary Propositions. Conditions: 1-4 

 
_
2 * * * *

2 1 2 1 2 1 2 1 2 1P p p p p p p p p= + + + =  

The four terms of 
_
2

2P  belongs to [ ]0,1 . Therefore 

( ) [ ]1 21 0,1p p− ∈  and ( ) ( ) ( ) [ ]* * * *
1 2 1 2 1 21 , 1 , 1 0,1p p p p p p− − − ∈ . 

Condition 1 is filled by the denier 1. The sum of four 

terms being 1, ( ) [ ]* *
1 2 1 2 0,1p p p p+ ∈  and 

( ) [ ]* *
1 2 1 2 0,1p p p p+ ∈ : conditions 2 and 4 are also always 

met. Finally, if 1 2 1p p+ ≥  then ( )* *
1 2 1 22 1p p p p+ = − + ≤  

because 1 2 2p p+ ≤ : condition 4 is fulfilled too. 
Truth values of the main normal binary coordinations 

are the following: 
1. Conjunction: 1 2 1 2( )v P P p p∧ =  

2. Incompatibility: 
( )

1 2 1 2

1 2 1 2

( ) 1v P P p p
P P P P
¬ ∨¬ = −

¬ ∨¬ = ¬ ∧
 

3. Disjunction: 
( )

* *
1 2 1 2 1 2 1 2

1 2 1 2

( ) 1v P P p p p p p p
P P P P

∨ = − = + −

∨ = ¬ ¬ ∧¬
 

4. Implication: 
( )

( )

*
1 2 1 2 1 2

1 2 1 2 1 2

( ) 1 1 1v P P p p p p

P P P P P P

⇒ = − = − −

⇒ = ¬ ∧¬ = ¬ ∨
 

5. Concordance: 
( )

* *
1 2 1 2 1 2

1 2 1 2

( )
1 2

v P P p p p p
p p p p

Ξ = +

= − + +
 

6. Discordance: 
( )

* *
1 2 1 2 1 1 2 1 2

1 2 1 2

( ) 2v P P p p p p p p p
P P P P

Χ = + = + −

Χ = ¬ Ξ
 

7. Equivalence1: 
*

2 1 1 2 1 2
*

1 2 1 2 1 2

( ) 1

( ) 1

v P P p p p p

v P P p p p p

℘ = + = + −

℘ = + = − +
 

                                                           
1 Only 2 1( )v P P℘  exists when 2 1p p≥ , and only 1 2( )v P P℘ exists 

when 1 2p p≥ . We can define in quasi-paraconsistent logic a unique 

8. Complementarity2: 

( )

1 2 1 2
* *

1 2 1 2

1 2

( )

( )
2

v P P p p

v P P p p
p p

ℑ = +

¬ ℑ¬ = +

= − +

 

3.2. Normal Propositions of n Order 
We have, for example, the following degrees of truth:  

1. Conjunction: 1 2 1 2( ... ) ...n nv P P P p p p∧ ∧ ∧ =  

2. Incompatibility: 

( )

1 2

1 2

1 2

1 2

( ... )
1 ...

...
...

n

n

n

n

v P P P
p p p

P P P
P P P

¬ ∨¬ ∨ ∨¬

= −

¬ ∨¬ ∨ ∨¬

= ¬ ∧ ∧ ∧

 

3. Disjunction: 
( )

* * *
1 2 1 2

1 2 1 2

( ... ) 1 ...
... ...

n n

n n

v P P P p p p
P P P P P P

∨ ∨ ∨ = −

∨ ∨ ∨ = ¬ ¬ ∧¬ ∧ ¬
 

4. Complementarities: 

 
( ) [ ]

( )
( )

1 2 1 2

1 2

1 2 1 2

1 2

( ... ) ...
... 0,1

( ... ) ...

... 1

n n

n

n n

n

v P P P p p p
iff p p p

v P P P n p p p

iff p p p n

ℑ ℑ ℑ = + + +

+ + + ∈

¬ ℑ¬ ℑ ℑ = − + + +

+ + + ≥ −

 

4. BOOLEAN REDUCTION OF t-norm 
Based Systems Many-valued FUZZY 
Logic 

The Boolean reduction of many-valued logic is to 
reduce the set of valuations [ ]0,1  to the set { }0,1 . 
Accordingly, the set E of truth values retains its neutral 
element 0, since ( )1 0 0V − =  and the set of unitary truth 
values. The result is a Boolean logic, not many-valued 
since { }0,1  is countable. 

The classical propositional algebra can be deduced 
from the evaluation of negation and that of conjunction, 
by defining from it and little by little other compound 
propositions. We already know that if the valuations of P1 
and P2 are Boolean that 1 2P P∧  is the same in many-
valued logic in classical logic. 

Regarding the negation, it follows from *p p+ , 

( )1 0 0V − = , ( )0 0V =  and ( ) 1V u =  that: 

 
( ) ( )
( ) ( )

, 0 1

, 0 1

u v P v P

u v P v P

∀ = ⇒ ¬ =

∀ ¬ = ⇒ =
 

If ( ) 1v P =  may be selected u p=  as denier 

because p E∈ , ( ) 1v p = and 0u p E− = ∈  so that: 

                                                                                               

commutative coordination known as equivalence: 

2 1 1 2 1 2( ) ( ) 1v P P v P P p p℘ = ℘ = − −  which is true iff 1 2p p= . 
2 Only 1 2( )v P Pℑ  exists when ( ) [ ]1 2 0,1p p+ ∈ , and only 

1 2( )v P P¬ ℑ¬ exists when 1 2 1p p+ ≥ . 
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( ) ( )
( ) ( )

1 0 provided that

1 0 provided that .

v P v P u p

v P v P u p

= ⇒ ¬ = =

¬ = ⇒ = =
 

The evaluation of many-valued negation may well be 
made identical to that of classical negation, choosing 
specific deniers. 

Consider some remarkable links between quasi-
paraconsistent logic and classical logic. 

4.1. Deductive Equivalence 
Concordance, equivalence and reciprocal implication of 

the quasi-paraconsistent logic just melt in classical logic in 
a single coordination that is the classic equivalence or 
equivalence deductive 1 2P P⇔ . Indeed, if p1 and p2 are 
Boolean variables  

 
( ) ( )
( ) ( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 2 1

1 2 ( )

1

v P P p p p p v P P

v P P p p v P P v P P

⇔ = − + + = Ξ

⇔ = − − = ℘ = ℘
 

Regarding the reciprocal implication, it has degree of 
truth in quasi-paraconsistent logic, by defining  

 
( ) ( )

( ) ( )
( )( )

1 2 1 2 2 1

1 2 1 2 1 2

1 2 1 2

1 2

1 1

P P P P P P

v P P p p p p

p p p p

⇔ = ⇒ ∧ ⇒

⇔ = − + +

+ − −

 

When p1 and p2 are Boolean, the third term of the last 
member is always zero (principle of non-contradiction) so 
that: 

 ( ) ( )1 2 1 2 .v P P v P P⇔ = Ξ  

4.2. Mutual Exclusion 
Discordance, complementarity and inverse 

complementarity of quasi-paraconsistent logic blend in 
classical logic in a single coordination which is the 
reciprocal exclusion. Adopting the notation of Piaget 

1 2P WP  for reciprocal exclusion we have when p1 and p2 
are Boolean: 

 ( ) ( )1 2 1 2 1 2 1 22v P WP p p p p v P XP= + − =  

 ( ) ( )1 2 1 2 1 2 1 2when 1v P WP p p v P P p p= + = ℑ + ≤   

 ( ) ( )1 2 1 2 1 2

1 2

2 ( )
when 1.

v P WP p p v P P
p p

= − + = ¬ ℑ¬

+ ≥
 

5. Conclusions 
The main objective of the authors is to establish a 

theory of truth-value evaluation for paraconsistent logics, 
unlike others who are in the literature (Asenjo, 1966; 
Avron, 2005; Belnap, 1977; Bueno, 1999; Carnielli, 
Coniglio and Lof D'ottaviano, I.M. 2002; Dunn, 1976: 
Tanaka et al, 2013), with the goal of using that logic 
paraconsistent in analyzing ideological, mythical, 
religious and mystic belief systems (Nescolarde-Selva and 
Usó-Doménech, 2013a,b,c,d; Usó-Doménech and 
Nescolarde-Selva, 2012). 

Quasi-Paraconsistent many-valued fuzzy logic includes 
the special case of classical logic. In fact, our presentation 
of the propositional many-valued algebra is developed 
according to the canons of Aristotelian logic, which 
borrow from the theory of sets. If classical logic does not 
was a special case of quasi-paraconsistent many-valued 
logic, it, mined by a fundamental inconsistency, should be 
rejected, on the spot. 

A statement is analytic for pedagogical need that of 
quasi-paraconsistent many-valued logic remains rational 
because the latter is subject to conformity with a logic that 
it encompasses, in definitive with itself. 
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ANNEX A 
We will represent in the following table a comparison between two logics: classical (CL), and t-norm based systems 

many-valued fuzzy logic (MVFL). 

Table 2. Truth table of principal normal binary propositions 
Notation Name MVFL truth values { }1 2, 0,1p p ∈  QPL truth values [ ]1 2, 0,1p p ∈  

1 2P P∧  Conjunction 1 2p p  1 2p p  
1 2P P¬ ∨¬  Incompatibility 1 21 p p−  1 2 1 2u u p p−  
1 2P P∨  Disjunction 1 2 1 2p p p p+ −  2 1 1 2 1 2u p u p p p+ −  

1 2P P⇒  Implication 1 1 21 p p p− +  ( )1 2 1 2 2u u p u p− −  

1 2P P⇔  Concordance 1 2 1 21 2p p p p− − +  ( )1 2 2 1 1 2 1 22u u u p u p p p− + +  
1 2P P  Discordance 1 2 1 22p p p p+ −  2 1 1 2 1 22u p u p p p+ −  
1 2P Pℑ  Complementarity 1 2p p+  1 2p p+  
1 2P P¬ ℑ¬  Inverse complementarity 1 22 p p− −  * *

1 2p p+  
2 1P P℘  Equivalence 1 21 p p+ −  1 2 2p u p+ −  
1 2P P℘  Inverse equivalence 1 21 p p− +  1 1 2u p p− +  

 
 


