Truth Values in t-norm based Systems Many-valued FUZZY Logic

Usó-Doménech J.L., Nescolarde-Selva J. ${ }^{*}$, Perez-Gonzaga S.
Department of Applied Mathematics, University of Alicante, Alicante, Spain
*Corresponding author: josue.selva@ua.es

Received November 28, 2014; Revised December 04, 2014; Accepted December 08, 2014

Abstract

In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval $[0,1]$. In addition, we are given a set E of truth values p , subject to certain conditions, the valuation v is $\mathrm{v}=\mathrm{V}(p)$, V reciprocal application of E on $[0,1]$. The general propositional algebra of t -norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where $\mathrm{E}=[0,1]$ and V is the identity. The result is a t -norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasiparaconsistent.

Keywords: contradiction, denier, logic coordinations, propositions, truth value
Cite This Article: Usó-Doménech J.L., Nescolarde-Selva J., and Perez-Gonzaga S., "Truth Values in t-norm based Systems Many-valued FUZZY Logic." American Journal of Systems and Software, vol. 2, no. 6 (2014): 139-145. doi: 10.12691/ajss-2-6-1.

1. Introduction

Many-valued logic (Béziau, 1997; Cignoli et al, 2000; Malinowski, 2001; Miller and Thornton, 2008) differs from classical logic by the fundamental fact that it allows for partial truth. In classical logic, truth takes on values in the set $\{0,1\}$, in other words, only the value 1 or 0 , meaning "Yes, it's true," or "No, it's not," respectively. The authors propose a t-norm based systems Many-valued logics as their natural extension take on values in the interval [0,1]. Per definition, t-norm based systems are many-valued if the set of valuations is not countable and this set is the interval $[0,1]$.

Let p be the truth value of a proposition or utterance P , P false $p=0, \mathrm{P}$ true $p=1 ; \mathrm{P}$ approximated $\mathrm{E}=[0,1]=\{p$ $\in \mathrm{R} \mid 0 \leq p \leq 1\}$.

We design for a non-countable set F whose algebraic structure is at least that of a semi-ring. We lay the following definitions and fundamental axioms:
Axiom 1: Any proposition P has a truth value p, element of a set E which is a part, not countable and stable for multiplication of the set F.

These systems are basically determined by a strong conjunction connective Λ_{V} which has as corresponding truth degree function a t-norm V , i.e. a binary operation V in the unit interval which is associative, commutative, non-decreasing, and has the degree 1 as a neutral element. Let p_{1}, p_{2}, p_{3} be three truth values.

Then:
Axiom 2: Any proposition P is endowed with a valuation $v \in[0,1]$ such that $v=V(p)$, V reciprocal application of E on $[0,1]$ subject to the following conditions:
1). $V^{-1}(0)=0$
2). $V\left(p_{1}, p_{2}\right)=V\left(p_{1}\right) V\left(p_{2}\right)$

Axiom 3: $\mathrm{V}\left(p_{1}, \mathrm{~V}\left(p_{2}, p_{3}\right)\right)=\mathrm{V}\left(\mathrm{V}\left(p_{1}, p_{2}\right), p_{3}\right)$,
Axiom 4: $\mathrm{V}\left(p_{1}, p_{2}\right)=\mathrm{V}\left(p_{2}, p_{1}\right), p_{1} \leq p_{2} \Rightarrow \mathrm{~V}\left(p_{1}, p_{3}\right) \leq \mathrm{V}\left(p_{2}, p_{3}\right)$,
Axiom 5: $\mathrm{V}\left(p_{1}, 1\right)=p_{1}$.
For all those t-norms which have the sup-preservation property $\mathrm{V}\left(p, \sup _{\mathrm{i}} p_{\mathrm{i}}\right)=\sup _{\mathrm{i}} \mathrm{V}\left(p, p_{\mathrm{i}}\right)$, there is a standard way to introduce a related implication connective \rightarrow
with the truth degree function $p_{1} \underset{V}{\longrightarrow} p_{2}=\sup \left\{p \mid \mathrm{V}\left(p_{1}, p\right)\right.$ $\left.\leq p_{2}\right\}$. This implication connective is connected with the tnorm V by the crucial adjointness condition $\mathrm{V}\left(p_{1}, p_{2}\right) \leq p_{3}$ $\Leftrightarrow p_{1} \leq\left(p_{2} \underset{V}{\longrightarrow} p_{3}\right)$, which determines \rightarrow_{V} uniquely for each V with sup-preservation property.

The language is further enriched with a negation connective, \neg_{v}, determined by the truth degree function $\neg \mathrm{v}$ $p=p \underset{V}{\longrightarrow} 0$. We have a conjunction \wedge and a disjunction \vee with truth degree functions.

$$
\begin{aligned}
& p_{1} \wedge p_{2}=\min \left\{p_{1}, p_{2}\right\} \\
& p_{1} \vee p_{2}=\max \left\{p_{1}, p_{2}\right\}
\end{aligned}
$$

For t-norms which are continuous functions these additional connectives become even definable. Suitable definitions are

$$
\min \left\{p_{1}, p_{2}\right\}=\mathrm{V}\left(p_{1},\left(p_{1} \underset{V}{\rightarrow} p_{2}\right)\right)
$$

$\max \left\{p_{1}, p_{2}\right\}=\min \left\{\left(p_{1} \underset{V}{\rightarrow} p_{2}\right) \underset{V}{\rightarrow} p_{2},\left(p_{2} \underset{V}{\rightarrow} p_{1}\right) \underset{V}{\rightarrow} p_{1}\right\}$.

For a t -norm V their sup-preservation property is the left-continuity of this binary function V. And the continuity of such a t -norm V can be characterized through the algebraic divisibility condition $\Lambda_{V}\left(p_{1} \underset{V}{\longrightarrow} p_{2}\right)=p_{1} \wedge p_{2}$.

In this work we develop a many-valued logic: known as quasi-paraconsistent because the contradiction cannot be true, but can be approximated, $E=[0,1]$ (Newton da Costa, in Susana Nuccetelli, Ofelia Schutte, and Otávio Bueno, 2010; Bueno, 2010; Carnielli and Marcos, 2001; Fisher, 2007; Priest and Woods, 2007). In 2013, Castiglioni and Ertola Biraben provide some results concerning a logic that results from propositional intuitionistic logic when dual negation is added in certain way, producing a paraconsistent logic that has been called da Costa Logic.
Axiom 6: If $\neg P$ truth value p^{*} denotes the negation or contradiction of P, we must have: $V\left(p+p^{*}\right)=1$.
Let $\mathbf{P}_{\mathbf{i}}$ be n propositions, $\mathrm{i}=1,2, \ldots$, n of p_{i} and p_{i}^{*} be the truth values of their contradictories. Then:
Definition 1: A compound proposition (or logical coordination or logical expression) of order n is a proposition whose truth value c is a function f_{n} of p_{i} and p_{i}^{*}.

$$
c=f_{n}\left(p_{1}, p_{1}^{*}, p_{2}, p_{2}^{*}, \ldots p_{n}, p_{n}^{*}\right)
$$

f_{n} values in F ; it determines a truth value if $c \in E$. The condition of existence of a compound proposition defined by f_{n} is $c \in E$, or what is equivalent, $V(c) \in[0,1]$.
Axiom 7: f_{n} is a polynomial in which each index 1 , 2, ...,n must be at least once and that all coefficients are equal to unity.

Condition $V\left(p_{1}, p_{2}\right)=V\left(p_{1}\right) V\left(p_{2}\right)$ requires the stability of E for multiplication because $[0,1]$ possesses the stability and function V is reciprocal.

If e designates the neutral element of the multiplication of truth values, we have $V(e, e)=V(e)$ and for Axiom 2, $V(e) V(e)=V(e)$. Solution $V(e)=0$ is to reject because for Axiom 2 would lead to $e=0$, therefore remains $V(e)=1$.

We apply Axiom 7 and $n=2$. Among polynomials f_{2} are the monomial $\mathrm{p}_{1} \mathrm{p}_{2}$ and $p_{1}+p_{2}$ polynomial.
Definition 2: The conjunction of two propositions P_{1} and P_{2} is compound proposition, denoted $P_{1} \wedge P_{2}$ whose truth value is $p_{1} p_{2}$.

For definition 2 and Axiom 2, $v\left(P_{1} \wedge P_{2}\right)=V\left(p_{1} p_{2}\right)=V\left(p_{1}\right) V\left(p_{2}\right)$.

From Axiom 2 the conjunction is commutative. Stability of E and $[0,1]$ for the multiplication result that $\forall p_{1}, \forall p_{2}, \exists\left(P_{1} \wedge P_{2}\right)$.

As in classical logic:

$$
\begin{aligned}
& v\left(P_{1}\right)=v\left(P_{2}\right)=1 \Leftrightarrow v\left(P_{1} \wedge P_{2}\right)=1 \\
& v\left(P_{i}\right)=0 \Rightarrow v\left(P_{1} \wedge P_{2}\right)=0, i=1,2
\end{aligned}
$$

For definition 2, $v(P \wedge P)=V(p p)=V\left(p^{2}\right)=|V(p)|^{2}$.
In general, unless $v(P)=0$ or $v(P)=1$, the conjunction is not idempotent in many-valued logic.
Definition 3: The complementarity of two propositions P_{1} and P_{2} is compound proposition, denoted $P_{1} \Im P_{2}$ whose truth value is $p_{1}+p_{2}$.

For axiom 1, the complementarity is commutative. It exists only if $p_{1}+p_{2} \in E$. When $p_{1} \neq 0$ and $p_{2} \neq 0$, so that $v\left(P_{1} \Im P_{2}\right)=0$, it is necessary that $p_{1}+p_{2}=0$, so that the addition of the truth values admit opposed.

When $\mathrm{n}=1$, among the functions f_{1}, there are polynomial $p+p^{*}$ and monomial $p p^{*}$. For axiom 6 and definition $3, v(P \mathfrak{I} \neg P)=V\left(p+p^{*}\right)=1$; complementarity of the two contradictories is always true.

Let $p+p^{*}=u$ be.
Definition 4: u is a denier of the proposition P if the following three conditions are fulfilled:
a) $u \in E$
b) $V(u)=1$; u unitary truth value (from axiom 6)
c) $u-p=p^{*} \in E($ from axiom 1$)$

In general, these three conditions can be satisfied by a set of deniers of P , then the contradictory $\neg \mathrm{P}$ has a priori, once fixed p, a set of truth values $p^{*}(u)$; so the choice of a denier who, in a problem of applied logic, will determine the truth value of the contradictory.
Theorem 1: If u is a denier of P, it is also a denier of $\neg P$. Proof

Indeed, $u \in E ; V(u)=1 u-p^{*}=p \in E$
Definition 5: The conjunction of a proposition and its contradictory is called contradiction.
In paraconsistent logic, a contradiction is not necessarily false. It may be true, then:

$$
v(P \wedge \neg P)=1 \Leftrightarrow v(P)=v(\neg P)=1
$$

2. ALGEBRA OF t-norm based Systems Many-valued FUZZY Logic

Definition 6: A compound proposition of order n is called normal and polynomial P_{n}^{P} that determines its truth value is called normal if is homogeneous polynomial of degree p, if in any of its monomials there is repetitions of index, and no monomial is repeated.
Definition 7: Normal polynomial is said to be complete and denoted $\overline{P_{n}^{P}}$ if includes all monomials of degree p allowed by combinatorial analysis.

It is easy to see that the complete normal polynomials can be formed from the complementarities of
contradictory $\quad P_{i} \mathfrak{J} \neg P_{i}$ of truth value $p_{i}+p_{i}^{*}=u_{i}, \quad i=1,2, \ldots, n$. Indeed:

$$
\begin{gathered}
\overline{P_{n}^{1}}=\sum_{i}\left(p_{i}+p_{i}^{*}\right)=\sum_{i} u_{i} \\
\overline{P_{n}^{2}}=\sum_{i j}\left(p_{i}+p_{i}^{*}\right)\left(p_{j}+p_{j}^{*}\right)=\sum_{i j} u_{i} u_{j}
\end{gathered}
$$

where ij refers to a combination of the two indices; $\overline{P_{n}^{2}}$ includes $2^{2} C_{n}^{2}$ monomials of degree 2. Similarly:

$$
\overline{P_{n}^{3}}=\sum_{i j k}\left(p_{i}+p_{i}^{*}\right)\left(p_{j}+p_{j}^{*}\right)\left(p_{k}+p_{k}^{*}\right)=\sum_{i j k} u_{i} u_{j} u_{k}
$$

where ijk means a combination of three indexes; $\overline{P_{n}^{3}}$ includes $2^{3} C_{n}^{3}$ monomials of degree 3 . And so on until:

$$
\overline{P_{n}^{n}}=\left(p_{1}+p_{1}^{*}\right)\left(p_{2}+p_{2}^{*}\right) \ldots\left(p_{n}+p_{n}^{*}\right)=u_{1} u_{2} \ldots u_{n}
$$

which includes 2^{n} monomials of degree n.
Any normal compound proposition has equal truth value either one of the monomials of a complete normal polynomial, or a combination of several of these monomials.
Definition 8: A family p of normal compound propositions of order n contains all those derived from complete normal polynomial $\overline{P_{n}^{p}}$.

Within the same family, the propositions can be classified into groups according to the number of monomials of $\overline{P_{n}^{p}}$ composing P_{n}^{P}.

2.1. Normal Binary Propositions: Family 2, Group 1

Group 1 is that of binary propositions whose truth value is the sum of an odd number of monomials $\overline{P_{2}^{2}}$.

$$
\overline{P_{2}^{2}}=p_{1} p_{2}+p_{1} p_{2}^{*}+p_{1}^{*} p_{2}+p_{1}^{*} p_{2}^{*}=u_{1} u_{2}
$$

The monomials of $\overline{P_{2}^{2}}$ are the respective truth values of the conjunctions $P_{1} \wedge P_{2}, P_{1} \wedge \neg P_{2}, \neg P_{1} \wedge P_{2}, \neg P_{1} \wedge \neg P_{2}$ that exist unconditionally.
Definition 9: Polynomial $p_{1} p_{2}^{*}+p_{1}^{*} p_{2}+p_{1}^{*} p_{2}^{*}=u_{1} u_{2}-p_{1} p_{2}$ is the truth value of the proposition called incompability of P_{1} and P_{2} and denoted $\neg P_{1} \vee \neg P_{2}$.

There is incompatibility if $P_{1} \wedge P_{2}$ admits $u_{1} u_{2}$ as denier. Then, after the axiom 6, definition 3 and definition 4, we have:

$$
v\left(\neg P_{1} \vee \neg P_{2}\right)=v\left[\neg\left(P_{1} \wedge P_{2}\right)\right]
$$

and the truth value of $\neg P_{1} \vee \neg P_{2}$ is fixed, once fixed $p_{1} p_{2}$, by the denier $u_{1} u_{2} . \neg P_{1} \vee \neg P_{2}$ is commutative.
Definition 10: $p_{1} p_{2}+p_{1} p_{2}^{*}+p_{1}^{*} p_{2}=u_{1} u_{2}-p_{1}^{*} p_{2}^{*}$ is the truth value of the compound proposition called disjunction of P_{1} and P_{2} and denoted $P_{1} \vee P_{2}$.

There is disjunction if $\neg P_{1} \wedge \neg P_{2}$ admits $u_{1} u_{2}$ as denier. Then:

$$
v\left(P_{1} \vee P_{2}\right)=v\left[\neg\left(\neg P_{1} \wedge \neg P_{2}\right)\right]
$$

and the truth value of $P_{1} \wedge P_{2}$ is fixed, once fixed $p_{1}^{*} p_{2}^{*}$, by the denier $u_{1} u_{2}$.
Definition 11: $p_{1} p_{2}+p_{1} p_{2}^{*}+p_{1}^{*} p_{2}^{*}=u_{1} u_{2}-p_{1}^{*} p_{2}$ is the truth value of the proposition called implication of P_{2} by P_{1} denoted $\neg P_{1} \vee P_{2}$ or $P_{1} \Rightarrow P_{2}$.

There is implication if $\neg P_{1} \wedge P_{2}$ admits $u_{1} u_{2}$ as denier. Then:

$$
v\left(P_{1} \Rightarrow P_{2}\right)=v\left[\neg\left(\neg P_{1} \wedge P_{2}\right)\right]
$$

and the truth value of $P_{1} \Rightarrow P_{2}$ is fixed, once fixed $p_{1}^{*} p_{2}$, by the denier $u_{1} u_{2}$.
Condition 1 of existence: Let P_{1}, P_{2} be two propositions, $\exists u_{1}$ denier of P_{1} and $\exists u_{2}$ denier P_{2} such that $u_{1} u_{2}$ is a denier of $P_{1} \wedge P_{2}$.

Indeed, if E and function V can satisfy this condition, then $\neg P_{1} \vee \neg P_{2}$ exists, but as u_{1} is also a denier of $\neg P_{1}$ and u_{2} of $\neg P_{2}$, other disjunctions may also exist.

2.2. Normal Binary Propositions: Family 2, Group 2

The truth value of a proposition of this group is the sum of an even number of monomials of $\overline{P_{2}^{2}}$.
Definition 12: $p_{1} p_{2}+p_{1}^{*} p_{2}^{*}$ is the truth value of the compound proposition called concordance and denoted $P_{1} \Xi P_{2}$.
Definition 13: $p_{1} p_{2}^{*}+p_{1}^{*} p_{2}$ is the truth value of the compound proposition called discordance and denoted $P_{1} \mathrm{X} P_{2}$.
Condition 2 of existence: $P_{1} \Xi P_{2}$ exists if $\exists u_{1}$ denier of P_{1} and $\exists u_{2}$ denier P_{2} such that $p_{1} p_{2}+p_{1}^{*} p_{2}^{*} \in E$.
Condition 3 of existence: $P_{1} X P_{2}$ exists if $\exists u_{1}$ denier of P_{1} and $\exists u_{2}$ denier P_{2} such that $p_{1} p_{2}^{*}+p_{1}^{*} p_{2} \in E$.
If conditions 2 and 3 are satisfied, then:

$$
\begin{aligned}
& v\left(P_{1} \Xi P_{2}\right)=v\left[\neg\left(P_{1} \mathrm{X} P_{2}\right)\right] \\
& v\left(P_{1} \mathrm{X} P_{2}\right)=v\left[\neg\left(P_{1} \Leftrightarrow P_{2}\right)\right]
\end{aligned}
$$

We leave aside the coordination of this group whose respective truth values are: $p_{1} p_{2}+p_{1} p_{2}^{*}=u_{2} p_{1}$, $p_{1} p_{2}+p_{1}^{*} p_{2}=u_{1} p_{2} \quad, \quad p_{1} p_{2}^{*}+p_{1}^{*} p_{2}^{*}=u_{1} p_{2}^{*} \quad$ and $p_{1}^{*} p_{2}+p_{1}^{*} p_{2}^{*}=u_{2} p_{1}^{*}$ whose degrees of truth are
determined by the truth value of only one of the propositions $P_{1}, \neg P_{1}, P_{2}, \neg P_{2}$.

2.3. Normal Binary Propositions: Family 1

$$
\overline{P_{2}^{1}}=p_{1}+p_{2}+p_{1}^{*}+p_{2}^{*}
$$

We have defined the complementarity.
Definition 14: $p_{1}+p_{2}^{*}$ is the truth value of the inverse complementarity of P_{1} and P_{2} denoted $\neg P_{1} \mathfrak{J} \neg P_{2}$.
Condition 4 of existence: $\exists u_{1}$ denier of P_{1} and $\exists u_{2}$ denier P_{2} such as if $p_{1}+p_{2} \notin E$ then $p_{1}^{*}+p_{2}^{*} \in E$.

Note that in Condition 4 the truth values intervene and not just the deniers. Condition 4 satisfied if $P_{1} \mathfrak{J} P_{2}$ does not exist, and then $\neg P_{1} \mathfrak{J} \neg P_{2}$ exists and vice versa.
Definition 15: $p_{1}+p_{2}^{*}$ is the truth value of the compound proposition called equivalence and denoted $P_{1} \wp P_{2}$.

The denomination equivalence is due to that $\quad p_{1}=p_{2} \Rightarrow v\left(P_{2} \wp P_{1}\right)=v\left(P_{1} \wp P_{2}\right)=1$. Indeed, $p_{1}+p_{2}^{*}=p_{1}-p_{2}+u_{2} \quad$ and $\quad p_{1}^{*}+p_{2}=p_{2}-p_{1}+u_{1} \quad$, $p_{1}=p_{2} \Rightarrow v\left(P_{2} \wp P_{1}\right)=V\left(u_{2}\right)=1 \quad$ and $v\left(P_{1} \wp P_{2}\right)=V\left(u_{1}\right)=1$.

Condition 4 satisfied, at least one of two equivalences $P_{2} \wp P_{1}$ and $P_{1} \wp P_{2}$ exists since $P_{2} \wp P_{1} \equiv P_{1} \mathfrak{J} \neg P_{2}$ and $P_{1} \wp P_{2} \equiv \neg P_{1} \mathfrak{J} P_{2}$.
We make a summary of the main coordination in the following table (Table 1):

Table 1. Table of principal normal binary propositions

Notation	Name	Truth value
$P_{1} \wedge P_{2}$	Conjunction	$p_{1} p_{2}$
$\neg P_{1} \vee \neg P_{2}$	Incompatibility	$u_{1} u_{2}-p_{1} p_{2}$
$P_{1} \vee P_{2}$	Disjunction	$\begin{aligned} & u_{1} u_{2}-p_{1}^{*} p_{2}^{*} \\ & =u_{2} p_{1}+u_{1} p_{2}-p_{1} p_{2} \end{aligned}$
$P_{1} \Rightarrow P_{2}$	Implication	$\begin{aligned} & u_{1} u_{2}-p_{1} p_{2}^{*} \\ & =u_{1} u_{2}-p_{1}\left(u_{2}-p_{2}\right) \end{aligned}$
$P_{1} \Xi P_{2}$	Concordance	$\begin{aligned} & p_{1} p_{2}+p_{1}^{*} p_{2}^{*} \\ & =u_{1} u_{2}-\left(u_{2} p_{1}+u_{1} p_{2}\right)+2 p_{1} p_{2} \end{aligned}$
$P_{1} \mathrm{XP} P_{2}$	Discordance	$\begin{aligned} & p_{1} p_{2}^{*}+p_{1}^{*} p_{2} \\ & =u_{2} p_{1}+u_{1} p_{2}-2 p_{1} p_{2} \end{aligned}$
$P_{1} \mathfrak{J} P_{2}$	Complementarity	$p_{1}+p_{2}$
$\neg P_{1} \mathfrak{J} \neg P_{2}$	Inverse complementarity	$p_{1}^{*}+p_{2}^{*}$
$P_{2} \wp P_{1}$	Equivalence	$p_{1}+p_{2}^{*}=p_{1}+u_{2}-p_{2}$
$P_{1} \wp P_{2}$	Inverse equivalence	$p_{1}^{*}+p_{2}=u_{1}-p_{1}+p_{2}$

2.4. Normal propositions of order n : 1 and n families

We consider only those two families and only a few of coordination within them.

$$
\overline{P_{n}^{1}}=p_{1}+p_{2}+\ldots+p_{n}+p_{1}^{*}+p_{2}^{*}+\ldots+p_{n}^{*}
$$

The sum of truth values is associative (axiom 1), but the complementarity is not in general. We write in all cases $P_{1} \Im P_{2} \Im P_{3}$ the compound proposition whose veracity
is $r=p_{1}+p_{2}+p_{3}, r \in E$. Iff $P_{1} \Im P_{2}$ exists $p_{1}+p_{2} \in E$ and $P_{2} \Im P_{3}$ exists $p_{1}+p_{3} \in E$ there is associativity, resulting from the addition of the truth values; $\left(P_{1} \mathfrak{J} P_{2}\right) \mathfrak{J} P_{3}, \quad P_{1} \mathfrak{J}\left(P_{2} \mathfrak{J} P_{3}\right), P_{1} \mathfrak{J} P_{2} \mathfrak{J} P_{3}$ then have the same truth value $p_{1}+p_{2}+p_{3}$.

The complementarity of the n propositions P_{i}, commutative, is the compound proposition $P_{1} \mathfrak{J} P_{2} \mathfrak{J} \ldots \Im P_{3}$ whose truth value is $p_{1}+p_{2}+\ldots+p_{n}$.
It will be even the inverse complementarity of n propositions, associative but not commutative in general, with respect to $\neg \mathrm{P}$, denoted $\neg P_{1} \mathfrak{I} \neg P_{2} \mathfrak{I} \ldots \mathfrak{I} \neg P_{3}$ and truth value $p_{1}^{*}+p_{2}^{*}+\ldots+p_{n}^{*}$.

If set E and function V satisfy Condition 4, so when the complementarity does not exist, there is the inverse complementarity.

$$
\overline{P_{n}^{n}}=\left(p_{1}+p_{1}^{*}\right)\left(p_{2}+p_{2}^{*}\right) \ldots .\left(p_{n}+p_{n}^{*}\right)=u_{1} u_{2} \ldots u_{n}
$$

Multiplication of truth values is associative; the conjunction is also because it is not subject to any condition of existence.

$$
P_{1} \wedge\left(P_{2} \wedge P_{3}\right),\left(P_{1} \wedge P_{2}\right) \wedge P_{3}, \quad P_{1} \wedge P_{2} \wedge P_{3}
$$

always same truth value $p_{1} p_{2} p_{3}$.
Conjunction of n propositions P_{i}, commutative and associative, is the compound proposition denoted $P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}$ whose truth value $p_{1} p_{2} \ldots p_{n}$ is one of the monomials P_{n}^{n}.

If condition 1 is satisfied by $u_{2} u_{3}$ and $u_{1} u_{2} u_{3}$, the incompatibility $\neg P_{1} \vee\left(\neg P_{2} \vee \neg P_{3}\right)$ exists, then it is the negation by denier $u_{1}\left(u_{2} u_{3}\right)=u_{1} u_{2} u_{3}$ of the conjunction $P_{1} \wedge\left(P_{2} \wedge P_{3}\right)$, identical to $P_{1} \wedge P_{2} \wedge P_{3}$. If $u_{1} u_{2}$ satisfies condition 1 , the incompatibility $\left(\neg P_{1} \vee \neg P_{2}\right) \vee \neg P_{3}$ exists and it is also the negation by denier $u_{1} u_{2} u_{3}$ of the conjunction $P_{1} \wedge P_{2} \wedge P_{3}$. It is seen that if the condition 1 is satisfactory wherever it is necessary, there is an incompatibility of $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}, commutative and associative, which is denoted $\neg P_{1} \vee \neg P_{2} \vee \neg P_{3}$ and will have as truth value $u_{1} u_{2} u_{3}-p_{1} p_{2} p_{3}$. More generally, it may be a commutative and associative incompatibility of n propositions P_{i}, denoted as $\neg P_{1} \vee \neg P_{2} \vee \ldots \vee \neg P_{n}$ and will have as truth value $u_{1} u_{2} \ldots u_{n}-p_{1} p_{2} \ldots p_{n}$. But we can also, as the complementarity, noted in all cases $\neg P_{1} \vee \neg P_{2} \vee \ldots \vee \neg P_{n}$ the compound proposition, nonassociative in general, of veracity $u_{1} u_{2} \ldots u_{n}-p_{1} p_{2} \ldots p_{n}$. Similarly, through a suitable choice of the deniers, it may be a disjunction of n propositions P_{i}, commutative and
associative sometimes, denoted $P_{1} \vee P_{2} \vee \ldots \vee P_{n}$ and truth value $u_{1} u_{2} \ldots u_{n}-p_{1}^{*} p_{2}^{*} \ldots p_{n}^{*}$.

3. t-norm based Systems Many-valued Logic

The set of truth values E is interval $[0,1]$.; function V is the identity: the degree of truth is equal to the truth value. V does satisfy axiom $2, V(u)=1$ and $V(u)=u \Rightarrow u=1$; therefore this logic does not know a single denier, number 1.

Axiom 6 is written $p+p^{*}=1$. Contradiction has a value $v(P \wedge \neg P)=p(1-p)$. It cannot be true, it is false if P is false or if P is true; it is approximated if P is approximated but the maximum degree of truth is 0.25 , achieved when $p=0.50$.

3.1. Normal Binary Propositions. Conditions: 1-4

$$
\overline{P_{2}^{2}}=p_{1} p_{2}+p_{1} p_{2}^{*}+p_{1}^{*} p_{2}+p_{1}^{*} p_{2}^{*}=1
$$

The four terms of $\overline{P_{2}^{2}}$ belongs to $[0,1]$. Therefore $\left(1-p_{1} p_{2}\right) \in[0,1]$ and $\left(1-p_{1} p_{2}^{*}\right),\left(1-p_{1}^{*} p_{2}\right),\left(1-p_{1}^{*} p_{2}^{*}\right) \in[0,1]$. Condition 1 is filled by the denier 1 . The sum of four terms being $1, \quad\left(p_{1} p_{2}+p_{1}^{*} p_{2}^{*}\right) \in[0,1] \quad$ and $\left(p_{1} p_{2}^{*}+p_{1}^{*} p_{2}\right) \in[0,1]$: conditions 2 and 4 are also always met. Finally, if $p_{1}+p_{2} \geq 1$ then $p_{1}^{*}+p_{2}^{*}=2-\left(p_{1}+p_{2}\right) \leq 1$ because $p_{1}+p_{2} \leq 2$: condition 4 is fulfilled too.

Truth values of the main normal binary coordinations are the following:

1. Conjunction: $v\left(P_{1} \wedge P_{2}\right)=p_{1} p_{2}$
2. Incompatibility: $\begin{aligned} & v\left(\neg P_{1} \vee \neg P_{2}\right)=1-p_{1} p_{2} \\ & \neg P_{1} \vee \neg P_{2}=\neg\left(P_{1} \wedge P_{2}\right)\end{aligned}$
3. Disjunction:

$$
\begin{aligned}
& v\left(P_{1} \vee P_{2}\right)=1-p_{1}^{*} p_{2}^{*}=p_{1}+p_{2}-p_{1} p_{2} \\
& P_{1} \vee P_{2}=\neg\left(\neg P_{1} \wedge \neg P_{2}\right)
\end{aligned}
$$

4. Implication:

$$
v\left(P_{1} \Rightarrow P_{2}\right)=1-p_{1} p_{2}^{*}=1-p_{1}\left(1-p_{2}\right)
$$

$$
P_{1} \Rightarrow P_{2}=\neg\left(P_{1} \wedge \neg P_{2}\right)=\neg P_{1} \vee P_{2}
$$

5. Concordance: $v\left(P_{1} \Xi P_{2}\right)=p_{1} p_{2}+p_{1}^{*} p_{2}^{*}$

$$
=1-\left(p_{1}+p_{2}\right)+2 p_{1} p_{2}
$$

6. Discordance:

$$
v\left(P_{1} \mathrm{XP} P_{2}\right)=p_{1} p_{2}^{*}+p_{1}^{*}=p_{1}+p_{2}-2 p_{1} p_{2}
$$

$$
P_{1} \mathrm{X} P_{2}=\neg\left(P_{1} \Xi P_{2}\right)
$$

$$
v\left(P_{1} \wp P_{2}\right)=p_{1}^{*}+p_{2}=1-p_{1}+p_{2}
$$

[^0]\[

$$
\begin{array}{ll}
& v\left(P_{1} \mathfrak{J} P_{2}\right)=p_{1}+p_{2} \\
\text { 8. Complementarity }
\end{array}
$$
\]

3.2. Normal Propositions of \mathbf{n} Order

We have, for example, the following degrees of truth:

1. Conjunction: $v\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right)=p_{1} p_{2} \ldots p_{n}$

$$
\begin{aligned}
& v\left(\neg P_{1} \vee \neg P_{2} \vee \ldots \vee \neg P_{n}\right) \\
& =1-p_{1} p_{2} \ldots p_{n} \\
& \neg P_{1} \vee \neg P_{2} \vee \ldots \vee \neg P_{n} \\
& =\neg\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right)
\end{aligned}
$$

2. Incompatibility:
3. Disjunction: $\begin{aligned} & v\left(P_{1} \vee P_{2} \vee \ldots \vee P_{n}\right)=1-p_{1}^{*} p_{2}^{*} \ldots p_{n}^{*} \\ & P_{1} \vee P_{2} \vee \ldots \vee P_{n}=\neg\left(\neg P_{1} \wedge \neg P_{2} \wedge \ldots \neg P_{n}\right)\end{aligned}$
4. Complementarities:

$$
\begin{aligned}
& v\left(P_{1} \mathfrak{J} P_{2} \mathfrak{J} \ldots \mathfrak{J} P_{n}\right)=p_{1}+p_{2}+\ldots+p_{n} \\
& \text { iff } \quad\left(p_{1}+p_{2}+\ldots+p_{n}\right) \in[0,1] \\
& v\left(\neg P_{1} \mathfrak{J} \neg P_{2} \mathfrak{J} \ldots \mathfrak{J} P_{n}\right)=n-\left(p_{1}+p_{2}+\ldots+p_{n}\right) \\
& \text { iff } \quad\left(p_{1}+p_{2}+\ldots+p_{n}\right) \geq n-1
\end{aligned}
$$

4. BOOLEAN REDUCTION OF t-norm Based Systems Many-valued FUZZY Logic

The Boolean reduction of many-valued logic is to reduce the set of valuations $[0,1]$ to the set $\{0,1\}$. Accordingly, the set E of truth values retains its neutral element 0 , since $V^{-1}(0)=0$ and the set of unitary truth values. The result is a Boolean logic, not many-valued since $\{0,1\}$ is countable.

The classical propositional algebra can be deduced from the evaluation of negation and that of conjunction, by defining from it and little by little other compound propositions. We already know that if the valuations of P_{1} and P_{2} are Boolean that $P_{1} \wedge P_{2}$ is the same in manyvalued logic in classical logic.
Regarding the negation, it follows from $p+p^{*}$,

$$
V^{-1}(0)=0, V(0)=0 \text { and } V(u)=1 \text { that: }
$$

$$
\begin{aligned}
& \forall u, v(P)=0 \Rightarrow v(\neg P)=1 \\
& \forall u, v(\neg P)=0 \Rightarrow v(P)=1
\end{aligned}
$$

If $\quad v(P)=1$ may be selected $u=p$ as denier because $p \in E, v(p)=1$ and $u-p=0 \in E$ so that:
commutative coordination known as equivalence: $v\left(P_{2} \wp P_{1}\right)=v\left(P_{1} \wp P_{2}\right)=1-\left|p_{1}-p_{2}\right|$ which is true iff $p_{1}=p_{2}$.
${ }^{2}$ Only $v\left(P_{1} \mathfrak{J} P_{2}\right)$ exists when $\left(p_{1}+p_{2}\right) \in[0,1]$, and only
$v\left(\neg P_{1} \mathfrak{J} \neg P_{2}\right)$ exists when $p_{1}+p_{2} \geq 1$.

$$
\begin{aligned}
& v(P)=1 \Rightarrow v(\neg P)=0 \text { provided that } u=p \\
& v(\neg P)=1 \Rightarrow v(P)=0 \text { provided that } u=p .
\end{aligned}
$$

The evaluation of many-valued negation may well be made identical to that of classical negation, choosing specific deniers.

Consider some remarkable links between quasiparaconsistent logic and classical logic.

4.1. Deductive Equivalence

Concordance, equivalence and reciprocal implication of the quasi-paraconsistent logic just melt in classical logic in a single coordination that is the classic equivalence or equivalence deductive $P_{1} \Leftrightarrow P_{2}$. Indeed, if p_{1} and p_{2} are Boolean variables

$$
\begin{aligned}
& v\left(P_{1} \Leftrightarrow P_{2}\right)=1-\left(p_{1}+p_{2}\right)+2 p_{1} p_{2}=v\left(P_{1} \Xi P_{2}\right) \\
& v\left(P_{1} \Leftrightarrow P_{2}\right)=1-\left|p_{1}-p_{2}\right|=v\left(P_{1} \wp P_{2}\right)=v\left(P_{2} \wp P_{1}\right)
\end{aligned}
$$

Regarding the reciprocal implication, it has degree of truth in quasi-paraconsistent logic, by defining

$$
\begin{aligned}
& P_{1} \Leftrightarrow P_{2}=\left(P_{1} \Rightarrow P_{2}\right) \wedge\left(P_{2} \Rightarrow P_{1}\right) \\
& v\left(P_{1} \Leftrightarrow P_{2}\right)=1-\left(p_{1}+p_{2}\right)+2 p_{1} p_{2} \\
& \quad+p_{1} p_{2}\left(1-p_{1}\right)\left(1-p_{2}\right)
\end{aligned}
$$

When p_{1} and p_{2} are Boolean, the third term of the last member is always zero (principle of non-contradiction) so that:

$$
v\left(P_{1} \Leftrightarrow P_{2}\right)=v\left(P_{1} \Xi P_{2}\right) .
$$

4.2. Mutual Exclusion

Discordance, complementarity and inverse complementarity of quasi-paraconsistent logic blend in classical logic in a single coordination which is the reciprocal exclusion. Adopting the notation of Piaget $P_{1} W P_{2}$ for reciprocal exclusion we have when p_{1} and p_{2} are Boolean:

$$
\begin{aligned}
& v\left(P_{1} W P_{2}\right)=p_{1}+p_{2}-2 p_{1} p_{2}=v\left(P_{1} X P_{2}\right) \\
& v\left(P_{1} W P_{2}\right)=p_{1}+p_{2}=v\left(P_{1} \Im P_{2}\right) \text { when } p_{1}+p_{2} \leq 1 \\
& v\left(P_{1} W P_{2}\right)=2-\left(p_{1}+p_{2}\right)=v\left(\neg P_{1} \Im \neg P_{2}\right) \\
& \text { when } p_{1}+p_{2} \geq 1 .
\end{aligned}
$$

5. Conclusions

The main objective of the authors is to establish a theory of truth-value evaluation for paraconsistent logics, unlike others who are in the literature (Asenjo, 1966; Avron, 2005; Belnap, 1977; Bueno, 1999; Carnielli, Coniglio and Lof D'ottaviano, I.M. 2002; Dunn, 1976: Tanaka et al, 2013), with the goal of using that logic paraconsistent in analyzing ideological, mythical, religious and mystic belief systems (Nescolarde-Selva and Usó-Doménech, 2013 ${ }^{\text {a,b,c,d. } ; ~ U s o ́-D o m e ́ n e c h ~ a n d ~}$ Nescolarde-Selva, 2012).

Quasi-Paraconsistent many-valued fuzzy logic includes the special case of classical logic. In fact, our presentation of the propositional many-valued algebra is developed according to the canons of Aristotelian logic, which borrow from the theory of sets. If classical logic does not was a special case of quasi-paraconsistent many-valued logic, it, mined by a fundamental inconsistency, should be rejected, on the spot.

A statement is analytic for pedagogical need that of quasi-paraconsistent many-valued logic remains rational because the latter is subject to conformity with a logic that it encompasses, in definitive with itself.

References

[1] Arruda A. I., Chuaqui R., da Costa N. C. A. (eds.) 1980 Mathematical Logic in Latin America. North-Holland Publishing Company, Amsterdam, New York, Oxford.
[2] Asenjo, F.G. 1966. A calculus of antinomies. Notre Dame Journal of Formal Logic 7. Pp 103-105.
[3] Avron, A. 2005. Combining classical logic, paraconsistency and relevance. Journal of Applied Logic. 3(1). pp 133-160.
[4] Belnap, N.D. 1977. How a computer should think. In Contemporary aspects of philosophy, ed. G. Ryle, 30-55. Oriel Press. Boston.
[5] Béziau J.Y. 1997. What is many-valued logic? Proceedings of the 27th International Symposium on Multiple-Valued Logic, IEEE Computer Society, Los Alamitos, pp. 117-121.
[6] Bueno, O. 1999. True, Quasi-true and paraconsistency. Contemporary mathematics. 39. pp 275-293.
[7] Bueno, O. 2010. Philosophy of Logic. In Fritz Allhoff. Philosophies of the Sciences: A Guide. John Wiley \& Sons. p. 55.
[8] Carnielli, W.A., Coniglio and M. Lof D'ottaviano, I.M. 2002. Paraconsistency: The Logical Way to the Inconsistent. Marcel Dekker, Inc. New York.
[9] Carnielli, W. and Marcos, J. 2001. Ex contradictione non sequitur quodlibet. Proc. 2nd Conf. on Reasoning and Logic (Bucharest, July 2000).
[10] Castiglioni, J. L. and Ertola Biraben, R. C. 2013. Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation. Logic Journal of the IGPL. Published online August 11, 2013.
[11] Cignoli, R. L. O., D'Ottaviano, I, M. L. and Mundici, D., 2000. Algebraic Foundations of Many-valued Reasoning. Kluwer.
[12] Da Costa, N., Nuccetelli, S., Schutte, O. and Bueno, O. 2010. "Paraconsistent Logic" (with (eds.), A Companion to Latin American Philosophy (Oxford: Wiley-Blackwell), pp. 217-229.
[13] Dunn, J.M. 1976. Intuitive semantics for first-degree entailments and coupled trees. Philosophical Studies 29. pp 149-168.
[14] Fisher, J. 2007. On the Philosophy of Logic. Cengage Learning. pp. 132-134.
[15] Malinowski, G. 2001. Many-Valued Logics, in Goble, Lou. Ed., The Blackwell Guide to Philosophical Logic. Blackwell.
[16] Miller, D, M. and Thornton, M. A. 2008. Multiple valued logic: concepts and representations. Synthesis lectures on digital circuits and systems 12. Morgan \& Claypool Publishers.
[17] Nescolarde-Selva, J. and Usó-Domènech, J. L. 2013á. Semiotic vision of ideologies. Foundations of Science.
[18] Nescolarde-Selva, J. and Usó-Domènech, J. L. 2013 ${ }^{\text {b }}$. Reality, Systems and Impure Systems. Foundations of Science.
[19] Nescolarde-Selva, J. and Usó-Doménech, J. 2013c. Topological Structures of Complex Belief Systems. Complexity. pp 46-62.
[20] Nescolarde-Selva, J. and Usó-Doménech, J. 2013 ${ }^{\text {d. Topological }}$ Structures of Complex Belief Systems (II): Textual materialization.
[21] Priest G. and Woods, J. 2007. Paraconsistency and Dialetheism. The Many Valued and Nonmonotonic Turn in Logic. Elsevier.
[22] Usó-Domènech, J.L. and Nescolarde-Selva, J.A. 2012. Mathematic and Semiotic Theory of Ideological Systems. A systemic vision of the Beliefs. LAP LAMBERT Academic Publishing. Saarbrücken. Germany.

ANNEX A

We will represent in the following table a comparison between two logics: classical (CL), and t-norm based systems many-valued fuzzy logic (MVFL).

Table 2. Truth table of principal normal binary propositions

Notation	Name	MVFL truth values $p_{1}, p_{2} \in\{0,1\}$	QPL truth values $p_{1}, p_{2} \in[0,1]$
$P_{1} \wedge P_{2}$	Conjunction	$p_{1} p_{2}$	$p_{1} p_{2}$
$\neg P_{1} \vee \neg P_{2}$	Incompatibility	$1-p_{1} p_{2}$	$u_{1} u_{2}-p_{1} p_{2}$
$P_{1} \vee P_{2}$	Disjunction	$p_{1}+p_{2}-p_{1} p_{2}$	$u_{2} p_{1}+u_{1} p_{2}-p_{1} p_{2}$
$P_{1} \Rightarrow P_{2}$	Implication	$1-p_{1}+p_{1} p_{2}$	$u_{1} u_{2}-p_{1}\left(u_{2}-p_{2}\right)$
$P_{1} \Leftrightarrow P_{2}$	Concordance	$1-p_{1}-p_{2}+2 p_{1} p_{2}$	$u_{1} u_{2}-\left(u_{2} p_{1}+u_{1} p_{2}\right)+2 p_{1} p_{2}$
$P_{1} \Uparrow P_{2}$	Discordance	$p_{1}+p_{2}-2 p_{1} p_{2}$	$u_{2} p_{1}+u_{1} p_{2}-2 p_{1} p_{2}$
$P_{1} \Im P_{2}$	Complementarity	$p_{1}+p_{2}$	$p_{1}+p_{2}$
$\neg P_{1} \Im \neg P_{2}$	Inverse complementarity	$2-p_{1}-p_{2}$	$p_{1}^{*}+p_{2}^{*}$
$P_{2} \wp P_{1}$	Equivalence	$1+p_{1}-p_{2}$	$p_{1}+u_{2}-p_{2}$
$P_{1} \wp P_{2}$	Inverse equivalence	$1-p_{1}+p_{2}$	$u_{1}-p_{1}+p_{2}$

[^0]: ${ }^{1}$ Only $v\left(P_{2} \wp P_{1}\right)$ exists when $p_{2} \geq p_{1}$, and only $v\left(P_{1} \wp P_{2}\right)$ exists when $p_{1} \geq p_{2}$. We can define in quasi-paraconsistent logic a unique

