966 research outputs found

    Strict functionals for termination proofs

    Full text link

    Strong normalisation for applied lambda calculi

    Full text link
    We consider the untyped lambda calculus with constructors and recursively defined constants. We construct a domain-theoretic model such that any term not denoting bottom is strongly normalising provided all its `stratified approximations' are. From this we derive a general normalisation theorem for applied typed lambda-calculi: If all constants have a total value, then all typeable terms are strongly normalising. We apply this result to extensions of G\"odel's system T and system F extended by various forms of bar recursion for which strong normalisation was hitherto unknown.Comment: 14 pages, paper acceptet at electronic journal LMC

    Polynomial Interpretations for Higher-Order Rewriting

    Get PDF
    The termination method of weakly monotonic algebras, which has been defined for higher-order rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years. We adapt and extend this method to the alternative formalism of algebraic functional systems, where the simply-typed lambda-calculus is combined with algebraic reduction. Using this theory, we define higher-order polynomial interpretations, and show how the implementation challenges of this technique can be tackled. A full implementation is provided in the termination tool WANDA

    Some applications of logic to feasibility in higher types

    Full text link
    In this paper we demonstrate that the class of basic feasible functionals has recursion theoretic properties which naturally generalize the corresponding properties of the class of feasible functions. We also improve the Kapron - Cook result on mashine representation of basic feasible functionals. Our proofs are based on essential applications of logic. We introduce a weak fragment of second order arithmetic with second order variables ranging over functions from N into N which suitably characterizes basic feasible functionals, and show that it is a useful tool for investigating the properties of basic feasible functionals. In particular, we provide an example how one can extract feasible "programs" from mathematical proofs which use non-feasible functionals (like second order polynomials)

    Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

    Full text link
    Type systems certify program properties in a compositional way. From a bigger program one can abstract out a part and certify the properties of the resulting abstract program by just using the type of the part that was abstracted away. Termination and productivity are non-trivial yet desired program properties, and several type systems have been put forward that guarantee termination, compositionally. These type systems are intimately connected to the definition of least and greatest fixed-points by ordinal iteration. While most type systems use conventional iteration, we consider inflationary iteration in this article. We demonstrate how this leads to a more principled type system, with recursion based on well-founded induction. The type system has a prototypical implementation, MiniAgda, and we show in particular how it certifies productivity of corecursive and mixed recursive-corecursive functions.Comment: In Proceedings FICS 2012, arXiv:1202.317

    The Light Lexicographic path Ordering

    Full text link
    We introduce syntactic restrictions of the lexicographic path ordering to obtain the Light Lexicographic Path Ordering. We show that the light lexicographic path ordering leads to a characterisation of the functions computable in space bounded by a polynomial in the size of the inputs
    • …
    corecore