
Calculational Semantics: Deriving
Programming Theories from Equations
by Functional Predicate Calculus

RAYMOND T. BOUTE

INTEC, Ghent University

The objects of programming semantics, namely, programs and languages, are inherently formal,

but the derivation of semantic theories is all too often informal, deprived of the benefits of formal

calculation “guided by the shape of the formulas.” Therefore, the main goal of this article is to

provide for the study of semantics an approach with the same convenience and power of discov-

ery that calculus has given for many years to applied mathematics, physics, and engineering. The

approach uses functional predicate calculus and concrete generic functionals; in fact, a small part

suffices. Application to a semantic theory proceeds by describing program behavior in the simplest

possible way, namely by program equations, and discovering the axioms of the theory as theorems

by calculation. This is shown in outline for a few theories, and in detail for axiomatic semantics,

fulfilling a second goal of this article. Indeed, a chafing problem with classical axiomatic semantics

is that some axioms are unintuitive at first, and that justifications via denotational semantics are

too elaborate to be satisfactory. Derivation provides more transparency. Calculation of formulas

for ante- and postconditions is shown in general, and for the major language constructs in par-

ticular. A basic problem reported in the literature, whereby relations are inadequate for handling

nondeterminacy and termination, is solved here through appropriately defined program equations.

Several variants and an example in mathematical analysis are also presented. One conclusion is

that formal calculation with quantifiers is one of the most important elements for unifying contin-

uous and discrete mathematics in general, and traditional engineering with computing science, in

particular.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications;

D.2.4 [Software Engineering]: Software/Program Verification; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming Languages]: Language Con-

structs and Features; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and

Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Program-

ming Languages; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs;

F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic; F.4.3 [Mathemati-
cal Logic and Formal Languages]: Formal Languages

General Terms: Algorithms, Design, Documentation, Languages, Standardization, Theory,

Verification

Additional Key Words and Phrases: Assignment, axiomatic semantics, calculational reasoning,

Author’s address: R. T. Boute, INTEC, Universiteit Gent, Sint-Pietersnieuwstraat 41, B-9000 Gent,

Belgium; email: boute@intec.UGent.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0164-0925/06/0700-0747 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006, Pages 747–793.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55753144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

748 • R. T. Boute

functional predicate calculus, generic functionals, intuitive semantics, loops, nondeterminacy,

strongest postcondition, termination, weakest antecondition, formal semantics, programming the-

ories, functional predicate calculus

1. INTRODUCTION

1.1 Goal: Bringing Formal Calculation into Semantic Theories

1.1.1 Formal Calculation. “Formal” means that expressions are handled
on the basis of their form (syntax) by precise calculation rules, unlike informal
handling on the basis of their interpretation (semantics) in some application
domain.

As noted by Dijkstra [2000], Gries and Schneider [1993], Gries [1996], and
many others [Dean and Hinchey 1996], formal calculation rules provide signif-
icant guidance in expression manipulation, as nicely captured by the maxim
“Ut faciant opus signa” (let the symbols do the work) of the Mathematics of
Program Construction conferences [Boiten and Möller 2002]. In other domains
as well, we found the parallel syntactic intuition derived from regular practice
with formal calculation an invaluable complement to the more common seman-
tic intuition, especially when the latter is not yet mature, for example, when
exploring new or unfamiliar domains.

Spectacular feats of formality are known in physics [Wigner 1960], Dirac’s
work being a salient example. More modestly, any student who enjoys classical
physics will recall the excitement felt when calculus gave insight where intu-
ition was clueless. In this process, we can identify three (often intertwined and
alternating) phases:

(1) Express system behavior by equations that use only the basic laws.

(2) By formal calculation, derive consequences or explore issues that are not
clear.

(3) Interpret the (intermediate, final) results of the calculations to feed
intuition.

We forgo the custom of stressing obvious caveats, and just mention some further
benefits of formal calculation: exploring ramifications, side-issues, refinements
and other variants, and confirming or correcting intuitive ideas by “gedanken-
experiments.”

1.1.2 Example: Colliding Balls. We choose this example because its style of
modelling systems by the states ‘before’ and ‘after’ will appear again in program
equations.

Newton’s Cradle is a desk adornment with five identical steel balls hanging
in a straight row from a frame by pairs of strings in V-shape to inhibit lateral
movement (Figure 1). If a number of balls at one end is moved away (keeping
the strings taut) and released, after the collision the same number of balls will
move away at the other end (and then fall back; the process repeats itself until

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 749

Fig. 1. Newton’s Cradle and a variant.

all energy is spent due to inevitable losses). We consider a variant with two
balls of mass m and M .

With obvious conventions, the state s is a pair of velocities: s = v, V . The
states �s just before and s′ just after collision are related by conservation of mo-
mentum and, neglecting losses, conservation of energy, respectively. Combined
into one relation R,

R (�s, s′) ≡ m · �v + M · �V = m · v′ + M · V ′

∧ m · �v2

2
+ M · �V 2

2
= m · v′2

2
+ M · V ′2

2
. (1)

Letting a := M/m, and assuming v′ �= �v and V ′ �= �V to discard the trivial case,
we obtain by elementary high school algebra:

R (�s, s′) ⇐ v′ − �v = a · (�V − V ′) ∧ v′ + �v = �V + V ′ .

Solving the righthand side as an equation with unknown s′ for given �s yields

R (�s, s′) ⇐ v′ = −a − 1

a + 1
· �v + 2 · a

a + 1
· �V ∧ V ′ = 2

a + 1
· �v + a − 1

a + 1
· �V . (2)

We consider two particular cases, assuming �s = w, 0 (state just before the
collision).

— Case a = 1. Then, v′ = 0 and V ′ = w, so s′ = 0, w (the balls “switch roles”).

— Case a = 3. Then v′ = −w/2 and V ′ = w/2, hence s′ = −w/2, w/2. Assuming
the collision took place at the lowest position, the balls move to the same

height h (with h = w2

8·g), and return to collide at the same spot with �s =
w/2, −w/2, for which (2) yields s′ = −w, 0. Starting with the next collision,
the cycle repeats.

The crux is that mathematics is not used as just a “compact language” (a lay-
man’s view of mathematics), but that calculation yields insight hard to obtain
by intuition.

1.1.3 A Dichotomy in Applied Mathematics. In situations illustrated by
the example, reasoning is guided by symbolic calculation in an essentially for-
mal way. This is common fare in physics and engineering as far as concerns
algebra or calculus. It also explains why engineers so readily adopt software
tools in these areas.

Yet, the formal calculations in differential and integral calculus sharply differ
from the very informal style of the logical arguments usually given to support
them.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

750 • R. T. Boute

Indeed, Taylor [2000] notes that the usual informal δ-ε proofs in analysis
texts obscure the logical structure of the arguments, so “examiners fully deserve
the garbage they get in return.” He attributes the problem to syncopation, that
is, using mathematical symbols (especially quantifiers) as mere shorthands for
natural language, for example, ∀ and ∃ abbreviating “for all” and “there exists,”
respectively. This leaves predicate logic unexploited as a calculation tool for
everyday mathematical practice.

1.1.4 Logic in Theories of Program Semantics. Literature samples [Gordon
2003; Loeckx and Sieber 1984; Meyer 1991; Winskel 1993] show that, with very
rare exceptions [Dijkstra and Scholten 1990], the same happens in program
semantics: predicate logic and quantifiers are used as mere notation, not as a
true calculus.

If logic is “assumed known” or outlined at all, it is the traditional variant:
not shown in action, and with proofs as informal as in analysis or left to the
reader as “too lengthy.” The consequences are more severe than in calculus,
since the application of language semantics to practical problems is formal
logic, as well. In such an incomplete conceptual setting, tools cannot be readily
adopted. Identifying the cause is equally important.

Logic is suffering from the historical accident of never having had the oppor-
tunity to evolve into a proper calculus for humans [Dijkstra 2000; Gries 1996]
before attention shifted to automation. In this way, an important, even crucial,
evolutionary step is being skipped [Ravaglia et al. 1999].

Without the ability to do logic formally by “hand” calculation guided by the
shape of the formulas, and especially when intuition is clueless, the use of math-
ematics in computing science can never achieve the effectiveness and sense of
discovery provided by, for instance, the use of calculus in physics [Wigner 1960].

Hence, we want to make the benefits of formal calculation available to the
theory of semantics, not just to the applications where it is obligatory, or even
automated.1

1.1.5 Objectives. For a (new) formalism2 to be a valuable intellectual in-
vestment, it must provide the following epistemological benefits.

(a) Have wide applicability: covering many different fields. As Bass [2003]
notes, “[relief] [in coping with the monumental growth of usable knowledge] is
found in the use of abstraction and generalization [by] simple unifying concepts.
This process has sometimes been called ‘compression.’ Reducing fragmentation
is a crucial issue.”

(b) Handle simple things simply: in target areas, the formalization of con-
ceptually simple topics should be equally simple (or perhaps reveal hidden
complexities).

(c) Let the symbols do the work: the formal rules should disclose to program-
ming and logic the benefits long appreciated in calculus as used in physics
[Wigner 1960].

1Incidentally, this dichotomy exists for most automated tools: The object of automation is very

formal, but the exposition and derivation of the theory and algorithms are very informal.
2By formalism, we always mean a language (or notation) together with formal manipulation rules.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 751

1.1.6 Approach. The preceding objectives are met correspondingly as
follows.

(a) We use a formalism covering both continuous (e.g., analysis) and discrete
mathematics (including programs), rather than yet another specialist logic.
The main elements are a functional predicate calculus [Boute 2002, 2006] and
a small theory of concrete generic functionals [Boute 2003]. In fact, only a minor
part of either will suffice for this article.

(b) Program behavior3 is described in arguably the simplest possible way,
namely by program equations having the same flavor as, for instance, equations
in physics as exemplified by Equation (1), and circuit equations in electronics.

(c) Calculation enables deriving the axioms of postulational theories as theo-
rems without knowing them in advance but by discovering them, guided by the
rules.

We illustrate this for a few theories, with special attention paid to axiomatic
semantics because it is the most classical, yet in its usual formulation leaves so
many unanswered questions. Our approach will cover, in about a dozen pages
with detailed proofs, a terrain requiring tenfold in other formalisms that leave
proofs to the reader.

1.1.7 Related Work. Clearly, what basically distinguishes our work from
that of others is the exploitation of formal calculation, guided by the shape
of the formulas. Most similar in this respect is the predicate calculus from
Dijkstra and Scholten [1990], but the latter is neither intended nor convenient
for continuous mathematics. We mention some semantic theories that most
resemble ours in objectives or technical aspects.

Hehner’s [1999, 2004] theory is the only formulation of program behavior that
does justice to the simplicity of basic language constructs in the same way as
program equations. The similarity between the formulations and the fact that
they arose independently are strong indications that they provide perhaps the
simplest description of program behavior possible. Some necessary technical
differences are discussed later. Termination is also handled very differently.

Axiomatic semantics [Hoare 1969; Dijkstra 1976; Dijkstra and Scholten
1990] is the theory chosen to be calculationally derived in detail because
its formulation has been passed on nearly unchanged among generations
[Dijkstra 1976; Cohen 1990; Meyer 1991], yet the axioms have remained
rather more opaque than necessary. Some are un- or even counterintuitive at
first, as noted by Gries and Schneider [1993], Gordon [2003], and others. The
typical plausibility arguments given in words can equally well lead to other
axioms that afterwards would turn out to model programs incorrectly.

Certain treatments make the axioms plausible via denotational semantics
at the introductory level, as in Gordon [2003] and Meyer [1991], or the more
advanced level [Loeckx and Sieber 1984; Winskel 1993], but at the cost of consid-
erable technical detail in the intermediate phases, “leaving proofs to the reader”
and tradeoffs between space and coverage. For instance, Gordon [2003] observes

3Strictly speaking, “program behavior” should be seen as a succinct way of saying “behavior of the

program’s execution on an abstract computer” (model for a reliable computer/compiler combination).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

752 • R. T. Boute

that simple relational formulations cannot handle nondeterminism and termi-
nation, and refers to more advanced work using power domains [Plotkin 1980]
for a solution. Our approach shows how a separate equation for termination
suffices.

1.1.8 Overview. Section 2 introduces the mathematical conventions suf-
ficient to make the article self-contained. Section 3 illustrates our very first
derivation of the “axioms” for assignment from an equation, unveiling all “mys-
teries” by formal calculation. Further sections generalize the idea. Section 4
presents a framework that formalizes program behavior in the simplest possi-
ble way by program equations. Section 5 shows how to express more abstract
theories in this framework. Section 6 is an extended example showing how the
axioms of axiomatic semantics are discovered by calculation. Finally, Section 7
further discusses some extensions, relations to other theories, and an example
in continuous mathematics. The conclusion (Section 8) discusses the crucial
role of formal calculation with quantifiers in unifying discrete and continuous
mathematics.

2. CONVENTIONS AND FORMAL CALCULATION RULES

Our formalism, common to continuous and discrete mathematics, consists of
two parts: generic functionals [Boute 2002, 2003] and functional predicate cal-
culus [Boute 2002, 2006]. The cited documents explain the formalism in its
generality, and show how the wide scope is achieved.

Practical applications in a diversity of domains require the complete formal-
ism. However, for the current purpose, namely the calculational derivation of
semantic theories, only a small part will suffice summarized here in a few para-
graphs. The legend (f , g functions, X , Y sets, P , Q predicates, etc.) is clear
from the context.

2.1 Simple Expressions, Substitution, and Proposition Calculus

2.1.1 Simple Expressions. These are either (i) identifiers (constants, vari-
ables) or (ii) function applications (prefix, infix). Examples are: c, succ x, x + y ,
x ⇒ y . We adopt the usual conventions, making certain parentheses optional.
Infix operator precedence, in decreasing order, is: domain-specific (e.g., arith-
metic +), relational (e.g., ≤, =), and logical; for these: ∧, ∨ (equal precedence),
then ⇒, and lowest ≡.

Substitution is the most basic syntactic operation on expressions [Boute
2002; Gries and Schneider 1993]. Letting d and e be expressions and v a vari-
able, we write d [v

e for the expression obtained from d by substituting e for every
occurrence of v, for instance, (x + y)[x

u·v = (u · v + y). Parallel substitution is
similar, as in (x + y)[

x, y
u·v,z = (u ·v+ z). An important use is instantiation: If p is a

theorem (i.e., derived without hypotheses), then p[v
e is a theorem [Boute 2002;

Gries and Schneider 1993].

2.1.2 The Calculational Style. Equational calculation, that is, formal cal-
culation with = only, is based on the equivalence properties of = (reflexivity,
symmetry, transitivity) and Leibniz’s principle (replacing subexpressions by

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 753

equal subexpressions). Transitivity justifies chaining equalities in the calcula-
tional style:

expression0 = 〈Justification0〉 expression1

= 〈Justification1〉 expression2

The justification is an instantiated theorem, Leibniz’s principle, or both com-
bined. Up to the explicit justification discipline, this style is familiar from
high school. Chaining by other relations (with compatible direction) also uses
transitivity.

2.1.3 Proposition Logic. Logic is likewise made calculational, ≡, ⇒ , and
⇐ taking the roles of =, ≤, and ≥, respectively. As Gries [1996] notes, most logic
texts present for formal logic just the axioms, elaborate technicalities (model
theory), and then drop it all to handle further topics (e.g., cardinal and ordinal
numbers) informally!

Calculational proposition logic (or proposition calculus) establishes a rich
collection of algebraic laws that makes formal logic practical for routine use,
and also by hand. Overviews can be found in Boute [2002] and Gries and
Schneider [1993]. As in algebra, it pays off to introduce names for often-used
rules (distributivity, isotony, etc.). Most of these are well-known, except
perhaps for shunting:

Shunting ⇒: x ⇒ y ⇒ z ≡ y ⇒ x ⇒ z
Shunting ∧ : x ⇒ y ⇒ z ≡ x ∧ y ⇒ z

Note that ⇒ is not associative, but by convention, x ⇒ y ⇒ z stands
for x ⇒ (y ⇒ z). Given the precedences, the second rule is actually
(x ⇒ (y ⇒ z)) ≡ ((x ∧ y) ⇒ z).

Since it is advantageous to embed logic in arithmetic [Boute 1993], our logic
constants are 0, 1, rather than F, T, but for this article either convention is
adequate.

2.2 Sets, Functions, Generic Functionals, and Predicate Calculus

2.2.1 Sets. We treat sets formally, with the basic operator ∈ and calculation
rules defined or derived via proposition logic, such as x ∈ X ∩ Y ≡ x ∈ X ∧ x ∈
Y . The empty set ∅ has the axiom x �∈ ∅; the singleton set injector ι has the
axiom x ∈ ι y ≡ x = y .

2.2.2 Bindings. This is a technicality to cover before proceeding. A binding
has the general form i : X ∧. p (the ∧. p is optional). It denotes no object by itself,
but introduces or declares a (tuple of) identifiers(s) i, at the same time specifying
that i ∈ X ∧ p. For instance, n : Z ∧. n ≥ 0 is interchangeable with n : N. As
explained elsewhere [Boute 2002, 2006], the common practice of overloading
the relational operator ∈ with the role of binding, as in {x ∈ Z | x < y}, can lead
to ambiguities; therefore, we always use : for binding.

Variables are identifiers bound in an abstraction binding . expression (see the
following).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

754 • R. T. Boute

2.2.3 Functions. A function is not defined via its representation as a set of
pairs (the function’s graph), but as basic concept in its own right, characterized
by a domain (D f for function f) and a mapping (image f x for x in D f).

For functions, the syntax of (i) identifiers and (ii) applications is augmented
by (iii) abstraction and (iv) tupling, bringing the total of language constructs to
four.

Ad (iii): abstraction, of the form binding . expression, is typed lambda-
abstraction without redundant λ. It denotes a function with d ∈ D (v : X ∧.
p . e) ≡ d ∈ X ∧ p[v

d for the domain and d ∈ D (v : X ∧. p . e) ⇒ (v : X ∧. p . e) d =
e[v

d for the mapping. We do not go into technicalities; the substitution rules are
as in lambda calculus.

A trivial example is in specifying the constant function definer (•) by X • e =
v : X . e, assuming v �∈ ϕ e (v not free in e). Particular forms are: the empty
function ε with ε = ∅ • e (any e) and the one-point function definer �→ with
d �→ e = ι d • e.

Abstractions may contain free variables (bound in outer contexts). Example:
with y : Z as context, x : Z ∧. x ≥ y . x − y has domain {x : Z | x ≥ y} and range N.

Ad (iv): a tuple is any function with domain of the form n, the n first nat-
urals. Tupling is the notation e, e′, e′′ (any number of expressions separated
by commas), denoting a function with D (e, e′, e′′) = 3 for the domain and
(e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ and (e, e′, e′′) 2 = e′′ for the mapping. Further-
more, τ e = 0 �→ e.

2.2.4 Generic Functionals. Generic functionals [Boute 2002, 2003] are
general-purpose operators on functions. They differ from familiar variants by
not restricting the argument functions, but instead, precisely defining the do-
main of the result. We use them to support point-free expression.

Direct extension (̂) extends any (infix) operator 	 to an operator 	̂ on
functions:

f 	̂ g = x :D f ∩ D g ∧. (f x, g x) ∈ D () . f x 	 g x. (3)

Example: if f and g are number-valued, (f +̂ g) x = f x + g x for any x in
D f ∩ D g .

Often, half direct extension (i.e., only one argument being a function) is
wanted:

f ↼	 x = f 	̂ (D f • x) and x ⇀	 f = (D f • x) 	̂ f . (4)

Composition (◦), with g ◦ f = x :D f ∧. f x ∈ D g . g (f x), covers direct exten-
sion () for single-argument functions: g f = g ◦ f . Example: ¬ P = ¬ ◦ P .

For function typing, a generic ×[Boute 2003, 2006] generalizes the Carte-
sian product. Here, we just note ×(X • Y) = X → Y and ×(X , Y) = X × Y .

Function filtering (↓) supports transition between pointwise and point-free
styles; set filtering is similar. Convenient shorthands for f ↓ P and X ↓ P are
f P and X P , respectively.

f ↓ P = x :D f ∩ D P ∧. P x . f x X ↓ P = {x : X ∩ D P | P x}. (5)

This suffices for now; other generic functionals will be mentioned in passing.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 755

Table I. Distributivity Laws for Quantification

Name of the Rule Point-Free Form Letting P := v : X . p with v �∈ ϕ q
Distributivity ∨/∀ q ∨ ∀ P ≡ ∀ (q ⇀∨ P) q ∨ ∀ (v : X . p) ≡ ∀ (v : X . q ∨ p)

L(eft)-distrib. ⇒/∀ q ⇒ ∀ P ≡ ∀ (q ⇀⇒ P) q ⇒ ∀ (v : X . p) ≡ ∀ (v : X . q ⇒ p)

R(ight)-distr. ⇒/∃ ∃ P ⇒ q ≡ ∀ (P ↼⇒ q) ∃ (v : X . p) ⇒ q ≡ ∀ (v : X . p ⇒ q)

P(seudo)-dist. ∧/∀ q ∧ ∀ P ≡ ∀ (q ⇀∧ P) q ∧ ∀ (v : X . p) ≡ ∀ (v : X . q ∧ p)

Table II. Algebraic Laws for Quantification

Name Point-Free Form Pointwise Form

Distrib. ∀/∧ ∀ (P ∧̂ Q) ≡ ∀ P ∧ ∀ Q ∀ (x : X . p ∧ q) ≡ ∀ (x : X . p) ∧ ∀ (x : X . q)

One-point rule ∀ P=e ≡ e ∈ D P ⇒ P e ∀ (v : X . v = e ⇒ p) ≡ e ∈ X ⇒ p[v
e

Trading ∀ PQ ≡ ∀ (Q ⇒̂ P) ∀ (x : X ∧. q . p) ≡ ∀ x : X . q ⇒ p
Nesting ∀ Q ≡ ∀ (∀ ◦ Q c) ∀ (x, y : X × Y . p) ≡ ∀ (x : X . ∀ y : Y . p)

Transp./Swap ∀ (∀ ◦ R) ≡ ∀ (∀ ◦ R TT) ∀ (x : X . ∀ y : Y . p) ≡ ∀ (y : Y . ∀ x : X . p)

2.2.5 Functional Predicate Calculus. Predicates are B-valued functions,
where B := {0, 1}. Relations are predicates on tuples (allowing infix notation, as
in x R y).

The quantifiers ∀, ∃ are predicates over predicates: for any predicate P , define

∀ P ≡ P = D P • 1 ∃ P ≡ P �= D P • 0 . (6)

Letting P be v : X . p yields familiar expressions of the form ∀ v : X . p. The
abstraction may contain free variables, for example, ∀ x : Z . y < x2 in the
context of y : Z is a Boolean expression (type B) that depends on y , and
∀ y : Z . y < 0 ≡ ∀ x : Z . y < x2. Note: abstraction parses to the end, so this
reads ∀ y : Z . (y < 0 ≡ ∀ x : Z . y < x2).

For every algebraic law, most elegantly stated in point-free form, a corre-
sponding pointwise (familiar looking) form is obtained by substituting abstrac-
tions for P .

An example is duality or generalized De Morgan’s law: Recalling that
¬ P = ¬ ◦ P , we have ¬ ∀ P = ∃ (¬ P) or, in point-wise form, ¬ (∀ v : X . p) ≡
∃ v : X . ¬ p.

An extensive collection of laws and their derivation can be found in Boute
[2002, 2005]. All derivations are based on the single definition of function equal-
ity and on predicates being functions, which is why the calculus is called func-
tional. For this article, a remarkably small part of the collection of laws suffices.

Table I lists the main distributivity laws (all have duals, not listed). As writ-
ten in Table I, by lack of space, pseudodistributivity ∧/∀ assumes D P �= ∅.
In general, (p ∧ ∀ P) ∨ D P = ∅ ≡ ∀ (p ⇀∧ P). Also, ϕ e is the set of
free identifiers in e. Table II lists some more laws, which will be used later.
As written in Table II, distributivity ∀/∧ assumes D P = D Q . In general,
∀ P ∧ ∀ Q ⇒ ∀ (P ∧̂ Q); if D P = D Q , the converse holds. In the last two
lines, Q : X × Y → B and R : X → Y → B. Generic transposition (TT) satisfies
(x : X . y : Y . e) TT = y : Y . x : X . e and c is currying.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

756 • R. T. Boute

2.3 Conventions for Use in Programming Theories

2.3.1 Design Choices. In most semantic formalisms used in practice, as-
sertions, ante- and postconditions, etc., are expressions with program (and per-
haps auxiliary) variables, for example, x > 3 and x > 7 in the Hoare triple
{x > 3} x := x + 4 {x > 7}.

Incidentally, we prefer the prefix “ante” over “pre” for several reasons: Latin-
ist concerns (“ante” and “post,” both with the accusative), common usage (A.M.
and P.M.), and convenience (short symbols for often-used concepts physicists
use m for mass, v for velocity, etc., so we use a and p for ante- and postconditions,
respectively).

In the (relatively) standard terminology of logic, said expressions would
be called propositions. Yet, some semantic theories refer to wa [[x := x + 4]]
as a predicate transformer. Depending on the case, forms like x >

7 are either just called predicates [Hoare and Jifeng 1998], or made
into predicates by taking all operators (e.g., >) as defined on structures
[Dijkstra and Scholten 1990].

We shall do neither, but, to keep our formalism generally applicable (also out-
side computing) with little explanation, we respect common nomenclature: As
in Section 2.1, propositions are Boolean expressions (perhaps with quantifiers),
and predicates are Boolean-valued functions. Propositions can be made into
predicates by abstraction, for example, P := v : X . p. Applications of predicates
are propositions, for example, P w ≡ p[v

w.
Predicates support a more pure style using application (e.g., P w), whereas

working with propositions requires substitution (e.g., p[v
w), a metalevel notion.

Predicate transformers, for example, Q : (X → B) → (Y → B), map mathemat-
ical objects, but proposition transformers like wa [[x := x + 4]] map syntactic
forms, for example, x > 7 to x > 3. For P : B → B, clearly p ⇒ P (p ∧ q) ≡
p ⇒ P q, but for a transformer T : B → B, on the syntactic category B of
Boolean expressions, p ⇒ T (p ∧ q) ≡ p ⇒ T q is clearly wrong (define, e.g.,
T p = ∀ x : X . p for all p : B), so caution is needed.

Our approach is unifying and hence, supports both styles. In view of direct ap-
plicability (a/p-conditions as propositions), we use the propositional style first.
The cost of making calculation as convenient as it is for predicates is the need
for the brief explanation to follow. An additional benefit is obviating the often
overemphasized but unnecessary distinction in “flavor” between mathematical
and program variables.

2.3.2 Variables. Variables are just identifiers, and we freely borrow the
program variables to use them mathematically. When referring to different
states in the same equation, the age-old practice of using markings ensures
disambiguation, as illustrated by using �s and s′ in the mechanics example of
Equation (1).

Thus, the propositional style becomes just a matter of economy by variable
reuse, doing mathematics (calculational reasoning) with program variables. For
program variable v, we write �v for the alias of v before execution of a command,
and v′ for the alias after execution. This allows freely using both aliases in
one equation without ambiguity. Accordingly, we write �e for expression e in

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 757

which every program variable v is properly replaced by the corresponding �v,
and similarly for e′.

In particular, let s be syntactic shorthand for the tuple of all program vari-
ables. Example: if s = x, y, then by the preceding convention �s = �x, �y and
s′ = x′, y′. Observe also that �e = e[s

�s and e′ = e[s
s′ as a property of parallel

substitution.
Substitutions and variable changes of this kind are familiar practice in en-

gineering mathematics and systems modelling, but here we use them in a sys-
tematic way.

We shall see how calculation about semantics is now reduced to general
predicate calculus and general-purpose calculation rules, requiring no “special”
logics.

3. CALCULATING ASSIGNMENT AXIOMS FROM EQUATIONS

This first calculation, whose smooth development motivated the rest of this
work, was meant to eradicate the mysterious looking elements from the as-
signment axiom.

Indeed, axiomatic semantics for assignment is unintuitive at first and even
seems “backward,” as noted by Gordon [2003], Gries and Schneider [1993], and
others. It is puzzling to students, and intuitive arguments remain vague and
unsatisfactory.

The difficulty is aggravated by the fact that certain “forward”-looking special
cases are also correct, such as {v = d } v:=e {v = e[v

d }, if v �∈ ϕ d . Also puzzling
to intuition are the dissimilar formulas for the weakest ante- and the strongest
postcondition: Given postcondition p, the weakest antecondition is p[v

e , and
given antecondition a, the strongest postcondition is ∃ (u : V . v = ev

u ∧ a[v
u).

Calculation from a simple intuitive equation will be shown so as to fully
clarify all.

3.1 Deriving ap-Semantics from Program Equations

3.1.1 The Equation for Assignment. Let v be of type V , as specified by the
declarations in the program. The equations for an assignment of the form v:=e
are

w′ = �w ∧ v′ = �e, (7)

where w : W is a variable not subject to assignment. In calculations, we found
that one such w represents all, so let S := W × V be the state space and s be w, v.
Later, we will write this more generically. Equation (7) reflects intuitive under-
standing of program behavior in a style familiar from physics and engineering,
as in Equation (1).

3.1.2 Floyd-Hoare Semantics. The usual axioms, resembling “pulling a
rabbit out of a hat,” can be replaced by a straightforward definition via pro-
gram equations.

We shall define a Hoare-triple {a} c {p} for a command c by formalizing the
usual informal legend, namely, “for every possible execution of c starting in a

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

758 • R. T. Boute

state satisfying a, the state after this execution satisfies p,” in a direct, intuitive
way.

The informal notion “possible execution of c” is made precise as saying that
the pair �s, s′ satisfies the program equations for c, written formally as Rc (�s, s′)
with suitable predicate Rc on S2. Hence, the set of “possible executions of c” is
(S2)Rc

, and the intuitive legend for Hoare-triples can be formalized by translit-

erating it as {a} c {p} ≡ ∀ (�s, s′) : (S2)Rc
. �a ⇒ p′, or by trading and nesting (see

Table II),

Definition 3.1. {a} c {p} ≡ ∀ �s : S . ∀ s′ : S . Rc (�s, s′) ⇒ �a ⇒ p′.

From Equation (7), Rv:=e (�s, s′) ≡ w′=�w ∧ v′=�e (for S := W × V , s := w, v). We
calculate

{a} v:=e {p}
≡ 〈Def. 3.1〉 ∀ (�w, �v) : W × V . ∀ (w′, v′) : W × V . w′ = �w ∧ v′ = �e ⇒ �a ⇒ p′

≡ 〈Nest, swap〉 ∀ �w : W . ∀ w′ : W . ∀ �v : V . ∀ v′ : V . w′ = �w ∧ v′ = �e ⇒ �a ⇒ p′

≡ 〈Shunt ∧〉 ∀ �w : W . ∀ w′ : W . ∀ �v : V . ∀ v′ : V . w′ = �w ⇒ v′ = �e ⇒ �a ⇒ p′

≡ 〈Ldist. ⇒/∀〉 ∀ �w : W . ∀ w′ : W . w′ = �w ⇒ ∀ �v : V . ∀ v′ : V . v′ = �e ⇒ �a ⇒ p′

≡ 〈1-pt. rule〉 ∀ �w : W . ∀ �v : V . ∀ v′ : V . v′ = �e ⇒ �a ⇒ p′[w′
�w

≡ 〈Change var.〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v
�v ⇒ a[v

�v ⇒ p[v
v′

Hence we found the following theorem.

THEOREM 3.2. {a} v:=e {p} ≡ ∀ w : W . ∀ �v : V . ∀ v′ : V . v′=e[v
�v ⇒ a[v

�v ⇒ p[v
v′

3.1.3 Calculating the Weakest Antecondition. We calculate a into an
antecedent:

{a} v:=e {p} ≡ 〈Thm. 3.2〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′=e[v
�v ⇒ a[v

�v ⇒ p[v
v′

≡ 〈Shunting ⇒〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . a[v
�v ⇒ v′=e[v

�v ⇒ p[v
v′

≡ 〈Ldist. ⇒/∀〉 ∀ w : W . ∀ �v : V . a[v
�v ⇒ ∀ v′ : V . v′=e[v

�v ⇒ p[v
v′

≡ 〈One-pt. rule〉 ∀ w : W . ∀ �v : V . a[v
�v ⇒ e[v

�v∈ V ⇒ p[v
e[v�v≡ 〈Hypothesis〉 ∀ w : W . ∀ �v : V . a[v

�v ⇒ p[v
e[v�v≡ 〈Change var.〉 ∀ w : W . ∀ v : V . a ⇒ p[v

e .

The hypothesis is that v := e is type correct, namely, ∀ �v : V . e[v
�v∈ V , to be

verified by static type checking; otherwise, the result is a ⇒ e ∈ V ⇒ p[v
e . This

proves

THEOREM 3.3. {a} v:=e {p} ≡ ∀ s : S . a ⇒ p[v
e .

So p[v
e is, at most, as strong as any antecondition a. Also, p[v

e is an antecondition
since {p[v

e} v:=e {p} ≡ ∀ s : S . p[v
e ⇒ p[v

e . This justifies defining operator wa by

Definition 3.4. wa [[v:=e]] p ≡ p[v
e .

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 759

3.1.4 Calculating the Strongest Postcondition. Here, we make p a
consequent:

{a} v:=e {p} ≡ 〈Thm. 3.2〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v
�v ⇒ a[v

�v ⇒ p[v
v′

≡ 〈Shunting ∧〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v
�v ∧ a[v

�v ⇒ p[v
v′

≡ 〈Swap ∀/∀〉 ∀ w : W . ∀ v′ : V . ∀ �v : V . v′ = e[v
�v ∧ a[v

�v ⇒ p[v
v′

≡ 〈Rdist. ⇒/∃〉 ∀ w : W . ∀ v′ : V . ∃ (�v : V . v′ = e[v
�v ∧ a[v

�v) ⇒ p[v
v′

≡ 〈Change var.〉 ∀ w : W . ∀ v : V . ∃ (�v : V . v = e[v
�v ∧ a[v

�v) ⇒ p.

The variable �v cannot be eliminated. Considerations, as before, justify

Definition 3.5. sp [[v:=e]] a ≡ ∃ �v : V . v = e[v
�v ∧ a[v

�v.

3.1.5 Interesting Excursions. More examples illustrate how formal calcu-
lation effortlessly yields answers where informal reasoning or intuition is plod-
ding. The first justifies the “forward” rule {v = d } v := e {v = e[v

d }, provided
v �∈ ϕ d .

{v = d } v:=e
{
v = e[v

d

}
≡ 〈Thm. 3.2〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v

�v ⇒ �v = d [v
�v ⇒ v′ = e[v

d [v
v′

≡ 〈v �∈ ϕ d 〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v
�v ⇒ �v = d ⇒ v′ = e[v

d
≡ 〈Leibniz, bis〉 ∀ w : W . ∀ �v : V . ∀ v′ : V . v′ = e[v

�v ⇒ �v = d ⇒ e[v
�v= e[v

�v
≡ 〈p ⇒ 1 ≡ 1〉 1.

The second excursion investigates to what extent “bouncing” ante- and post-
conditions yields the original assertion, that is, does sp c (wa c p) = p and
wa c (sp c a) = a, or similar? Here, we assume c is v:=e. Calculation yields the
answer:

sp c (wa c p) ≡ 〈Def. wa (3.4)〉 sp c
(
p[v

e

)
≡ 〈Def. sp (3.5)〉 ∃ �v : V . p[v

e [v
�v ∧ v = e[v

�v
≡ 〈Substitut.〉 ∃ �v : V . p[v

e[v�v
∧ v = e[v

�v

≡ 〈Leibniz〉 ∃ �v : V . p[v
v ∧ v = e[v

�v
≡ 〈Dist. ∧/∃〉 p ∧ ∃ �v : V . v = e[v

�v

wa c (sp c a) ≡ 〈Def. sp (3.5)〉 wa c
(∃ �v : V . a[v

�v ∧ v = e[v
�v
)

≡ 〈Def. wa (3.4)〉 (∃ �v : V . a[v
�v ∧ v = e[v

�v
)
[v
e

≡ 〈Substitut.〉 ∃ �v : V . a[v
�v ∧ e = e[v

�v.

Hence, we have proved the following, where c is the assignment v:=e.

THEOREM 3.6. (a) sp c (wa c p) ≡ p ∧ ∃ �v : V . v = e[v
�v ;

(b) wa c (sp c a) ≡ ∃ �v : V . a[v
�v ∧ e = e[v

�v.

Of course, we have the weaker forms sp c (wa c p) ⇒ p and a ⇒ wa c (sp c a).
Example: with declaration y : int, let c := [[y := y2 + 7]] and p := [[y > 11]]

and q := [[y < 7]] and a := [[y > 2]]. Then the following calculations are

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

760 • R. T. Boute

instructive.

sp c (wa c p) ≡ 〈Thm. 3.6.a〉 p ∧ ∃ �v : V . v = e[v
�v

≡ 〈Def. p, V , e〉 y > 11 ∧ ∃ x : Z . y = x2 + 7 (stronger than p!)

sp c (wa c q) ≡ 〈Thm. 3.6.a〉 q ∧ ∃ �v : V . v = e[v
�v

≡ 〈Def. q, V , e〉 y < 7 ∧ ∃ x : Z . y = x2 + 7

≡ 〈Dist. ∧/∃〉 ∃ x : Z . y < 7 ∧ y = x2 + 7

≡ 〈Leibniz〉 ∃ x : Z . x2 + 7 < 7 ∧ y = x2 + 7

≡ 〈Arithmetic〉 ∃ x : Z . x2 < 0 ∧ y = x2 + 7

≡ 〈∀ x : Z . x2 ≥ 0〉 ∃ x : Z . 0 ∧ y = x2 + 7
≡ 〈0 ∧ p ≡ 0〉 ∃ x : Z . 0
≡ 〈∃ (X • 0) ≡ 0〉 0 (strongest of all propositions)

wa c (sp c a) ≡ 〈Thm. 3.6.b〉 ∃ �v : V . a[v
�v ∧ e = e[v

�v
≡ 〈Def. a and e〉 ∃ x : Z . x > 2 ∧ y2 + 7 = x2 + 7
≡ 〈Arithmetic〉 ∃ x : Z . x > 2 ∧ (x = y ∨ x = −y)
≡ 〈Distr. ∧/∨〉 ∃ x : Z . (x = y ∧ x > 2) ∨ (x = −y ∧ x > 2)
≡ 〈Distr. ∃/∨〉 ∃ (x : Z . x = y ∧ x > 2) ∨ ∃ (x : Z . x = −y ∧ x > 2)
≡ 〈One-pt. rule〉 (y ∈ Z ∧ y > 2) ∨ (−y ∈ Z ∧ −y > 2)
≡ 〈Arithmetic〉 (y ∈ Z ∧ y > 2) ∨ (y ∈ Z ∧ y < −2)
≡ 〈Distr. ∃/∨〉 y ∈ Z ∧ (y > 2 ∨ y < −2) (compare with a)

We emphasized logic (illustrating the algebraic style of the calculation) over
arithmetic (where algebraic calculation is commonplace). When calculational
logic has become familiar, steps can be skipped in the same way as in algebra
and analysis.

4. DESCRIBING BEHAVIOR BY PROGRAM EQUATIONS

We formalize program behavior in the simplest possible way that allows ex-
pressing (Section 5) and deriving (Section 6) other, more “abstract” theories.

4.1 Program Equations for State Changes

4.1.1 Principle. The goal is formulating program behavior in the simplest
way possible. The result is compact, clear, without extraneous elements, and
its similarity to an independently developed formulation [Hehner 1999, 2004]
indicates that this has been achieved.

Many of our design decisions are based on the following analogy with circuits.

Aspect modelled Circuits Programs

Behavior of components Device equations Equations for
assignment

Behavior of interconnections Kirchhoff ’s laws Equations for
composition, etc.

The style is both denotational and operational, obviating the traditional
distinctions. The axiomatic style [Dijkstra 1976] for describing and deriving
programs is covered by calculation.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 761

Table III. Intuitive Understanding of Program Behavior

Name Syntax (Command c) Intuitive Behavior

Assignment v := e Assign to variable v the value e.

No change skip Leave all variables as they are.

Composition c′ ; c′′ Do c′ and then do c′′.
Choice if i : I . bi -> c′

i fi For one of the bi that holds, do c′
i .

Repetition do b -> c′ od If b holds, do c′ and start again, else skip.

Table IV. Formalization by Program Equations

Name Syntax (Command c) Rc (�s, s′) or Equivalent Program

(a) Assignment v := e s′ = �s[
�v�e

(b) No change skip s′ = �s
(c) Composition c′ ; c′′ ∃ s • Rc′ (�s, s) ∧ Rc′′ (s, s′)
(d) Choice if i : I . bi -> c′

i fi ∃ i : I . �bi ∧ Rc′
i
(�s, s′)

(e) Repetition do b -> c′ od if b -> (c′ ; c) ¬ b -> skip fi

4.1.2 States. In the denotational view [Gordon 2003; Loeckx and Sieber
1984; Winskel 1993], a state is a function s : Variable → Value.

The following more directly reflects the program view. We let the state space
S be the Cartesian product induced by the variable declarations in a way that
is most elegantly expressed by generic functionals [Boute 2003, 2006]. Here, a
self-evident example suffices:

Given: declaration var x : int, b : bool
Derived: state space S = Z × B

state tuple s = x, b

We shall use s as the shorthand for the tuple of all program (and auxiliary)
variables, v as the shorthand for a subtuple, and Sv for its type, in particular,
S = Ss.

Often we abbreviate s : S . e as s • e. Clearly, (s • e) r = e[s
r for any r in S,

and (s • e) s = e; the latter choice of variables is sometimes exploited in the
sequel.

4.1.3 Program Behavior. The “logical” behavior of a program (command)
c is formalized by a function R : C → S2 → B, with Rc (�s, s′) specifying the
possible executions of c starting in �s and terminating in s′. Other program
aspects can be expressed similarly [Boute 1988].

We choose Dijkstra’s [1976] guarded command language as a running exam-
ple for its rich characteristics, including nondeterminacy, with few constructs.

The syntax and intuitive behaviors of these constructs are shown in Table III.
Clearly, in the name c′ for (families of) commands, the accent is not a state mark-
ing. The header “intuitive behavior” reflects the programmer’s understanding,
but the entries can also be seen as language or machine (compiler + computer)
specifications.

Formalization by equations is shown in Table IV, using only simple relations,
no special logics or semantic theories. Note how directly the equations reflect
intuitive understanding. This is an optimal common ground for comparing lan-
guage designs.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

762 • R. T. Boute

We briefly point out a technicality. In specifying Rc, quantification is un-
derstood: ∀ �s • ∀ s′ • Rc (�s, s′) ≡ (defining expression). In (b) and (c), and in more
abstract theories, �s, s, s′ may be just dummies. In (a) and (d), which involve �v,
�e, �bi, the symbol s is the tuple of program variables, which is important when
instantiating. This is illustrated in the first of the following remarks on (a), (d),
and (e).

ad (a) Assignment is assumed generalized to multiple assignment, with v a tu-
ple of variables and e a tuple of expressions (matched in length and type). The
first equation in Table IV takes this in its stride. Substitutions are illustrated
by

Ri,j := i+j,j+k ((�i, �j, �k, �l), (i′, j′, k′, l′))

≡ i′, j′, k′, l′ = �i + �j, �j + �k, �k, �l,

where k and l represent variables not appearing to the left of the := sign.

ad (d) In the choice construct, is the prefix operator for choice, b a family of
propositions (on program variables), and c′ a family of commands. The do-
main I is an indexing set, say, n for n alternatives. As in Boute [2002, 2006],
when appropriate, a prefix operator F has a variadic infix version f defined
by e f e′ f e′′ = F (e, e′, e′′). In particular, b0 -> c′

0 b1 -> c′
1 b2 -> c′

2 = i :
3 . bi -> c′

i, etc.
A variant is defined by if b then c′ else c′′ fi = if b -> c′ ¬ b -> c′′

fi; here, b is just a proposition. Similarly, if bthen c fi = if b -> c ¬
b -> skip fi.

ad (e) In the repetition construct, b is a proposition. For c := [[do b -> c′ od]],
c = if b , then c′; c fi. The recursive form raises interesting issues discussed
later.

4.1.4 Brief Note on Algebraic Issues. Equivalence of programs (com-
mands), with respect to a behavioral model M : C → Sk → B, is defined by
c ∼M c′ ≡ M c = M c′.

Given the basic status of R, we define c ≈ c′ ≡ c ∼R c′. Finally, we write
c � c′ if c and c′ are fully interchangeable (in Leibniz’s sense) in the considered
theory.

Nearly all (imperative) languages have a command like skip, either explicit
or via any assignment v := v. It is both a left and right identity of composi-
tion: skip ; c ≈ c and c ; skip ≈ c, assuming the composition equation from
Table IV.

On algebraic grounds, it is also useful to have (at least conceptually) a com-
mand acting as a left and right zero. To this effect, one can introduce abort
with equation Rabort (s, s′) ≡ 0, indeed resulting in abort ; c ≈ abort and
c ; abort ≈ abort. The name reflects that the set (S2)Rabort of possible exe-
cutions is empty.

Establishing or preserving useful algebraic properties provides guidance in
design.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 763

Table V. Program Equations for State Change Augmented by Termination

Syntax Behavior (Program Equations or Equivalent Program)

Command c State Change Rc (�s, s′) Termination Tc
�s

v := e s′ = �s[
�v�e 1

skip s′ = �s 1

abort 0 0

c′ ; c′′ ∃ s • Rc′ (�s, s) ∧ Rc′′ (s, s′) Tc′ �s ∧ ∀ s • Rc′ (�s, s) ⇒ Tc′′ s
if i : I . bi -> c′

i fi ∃ i : I . �bi ∧ Rc′
i
(�s, s′) ∃ (i : I . �bi) ∧ ∀ i : I . �bi ⇒ Tc′

i
�s

do b -> c′ od if ¬ b -> skip b -> (c′ ; c) fi

4.2 Program Equations for Theories with Termination

4.2.1 Termination Equations. Such equations for the guarded command
language are shown in the rightmost column of Table V, expressed via
T : C → S → B. For maximal practical relevance, we made the design de-
cision that termination should be guaranteed, not just possible. This is re-
flected in an intuitively clear fashion by the equation for composition: Tc′ ;c′′ �s ≡
Tc′ �s ∧ ∀ s • Rc′ (�s, s) ⇒ Tc′′ s.

We never attempt to express termination via the state change relation. This
avoids problems, as we discovered later by reading Gordon [2003], who observes
that termination for nondeterminacy cannot be adequately handled just by a
state change relation. As we shall see, in our approach, introducing T suffices.

4.2.2 Algebraic Issues. Assume � defined by c � c′ ≡ c ∼R c′ ∧ c ∼T c′.
We consider the consequences of requiring abort to be a left and right zero of ;
w.r.t. �. If we specify Tabort

�s ≡ 0, the left zero property abort ; c � abort
is immediate. The right zero property c ; abort � abort is immediate for the
contribution of R, but, because T [[c ; abort]] �s ≡ Tc

�s ∧ ∀ s • Rc (�s, s) ⇒ T abort s,
this also requires

Tc
�s ⇒ ∃ s • Rc (�s, s). (8)

As we shall see, this is equivalent to the law of the excluded miracle [Dijkstra
1976], or LEM. In Dijkstra [1976], although not in Dijkstra and Scholten [1990],
LEM is required for all commands. For instance, for the choice construct it is
ensured by ∃ i : I . �bi in the image definition of T.

5. EXPRESSING THEORIES VIA PROGRAM EQUATIONS

Here, we show how other, sometimes more “abstract,” theories are expressed
via program equations. Calculational derivation of properties is discussed in
Section 6.

5.1 Hehner’s Practical Theory of Programming

Confluence in viewpoints justifies special attention to the approach in Hehner
[1999, 2004], called to our attention by B. Möller after the first ideas reported
in this article were elaborated upon.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

764 • R. T. Boute

Table VI. Main Constructs for A Practical Theory of
Programming

Name Syntax and Semantics

Assignment v := e ≡ s′ = s[v
e

No action ok ≡ s′ = s
Composition p ; q ≡ ∃ t • p[s′

t ∧ q[s
t

Choice if b then p ≡ (b⇒ p) ∧ (¬ b⇒ s′ = s)

The level of abstraction is the same as for program equations. As men-
tioned, the similarity suggests that the simplest possible formulation has been
obtained.

There are differences, however. In Hehner’s approach, constructs stand for
their own semantics,4 namely, propositions about the state before and after
execution, using VDM conventions. The relation with our formulation could
be expressed by c ≡ Rc (s, s′). The main language constructs are defined in
Table VI, translated into our conventions for the sake of uniformity. For in-
stance, in Hehner [1999, 2004], assignment is defined by x := e ≡ x ′ = e∧ y ′ =
y ∧ . . . ∧ z ′ = z and “no action,” written ok in the language, by ok ≡ x ′ =
x ∧ y ′ = y ∧ . . . ∧ z ′ = z.

As we shall see later, the beauty of this language is that it carries its own
theory, requiring only proposition and predicate calculus. One calculates di-
rectly with program constructs, a feature previously found only in functional
programming.

5.2 Expressing ap-Conditions in terms of Program Equations

5.2.1 Formalizing Intuitive Understanding of Floyd-Hoare Semantics. We
write B for the set of propositions, and a : B and p : B for ante- and postcondi-
tions, respectively.

For partial correctness, that is, ignoring termination issues, Definition 3.1
formalizes the informal legend of Hoare triples, and is recalled here for easy
reference.

Definition 5.1. {a} c {p} ≡ ∀ �s • ∀ s′ • Rc (�s, s′) ⇒ �a ⇒ p′.

Note that �a ⇒ p′ gives anteconditions the flavor of sufficient conditions, or al-
ternatively, reflects goal-directed thinking about programs. More will be said
regarding this later.

For total correctness, we require termination, expressed in an intuitively
clear way by Term in Definition 5.2, and use this in Definition 5.3 for Hoare
triples.

Definition 5.2. Termc a ≡ ∀ �s • �a ⇒ Tc
�s.

Definition 5.3. [a] c [p] ≡ {a} c {p} ∧ Termc a.

5.2.2 Defining Weakest Ante- and Strongest Postconditions. We define
� : B2 → B with q � p ≡ ∀ s • q ⇒ p. This is read “q is at least as strong as p.”

4Some readers may cringe at this, but if it is done properly, as is the case here, it is harmless.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 765

Informally, a weakest antecondition for a given command c and postcondition
p is an antecondition wa that is at least as weak as any antecondition. Formally,
writing 〈 〉 generically for either [] or {}, 〈wa〉 c 〈p〉 ∧ ∀ a : B . 〈a〉 c 〈p〉 ⇒ a � wa.
We make metalevel quantification over B explicit so that, by predicate calculus,
we can prove

(a) uniqueness, namely, if wa and wa′ are weakest anteconditions, then
wa ≡ wa′;

(b) the equivalent form ∀ a : B . 〈a〉 c 〈p〉 ≡ a � wa (both left as exercises).
Similarly, the strongest postcondition for given antecondition a and command

c is a proposition sp satisfying ∀ p : B . 〈a〉 c 〈p〉 ≡ sp � p.
Each has a liberal variant, where 〈 〉 is {}, and a strict variant, where 〈 〉 is [].
Summarizing in terms of relations isspc and isspc, both of type B2 → B:

wa iswac p ≡ ∀ a : B . 〈a〉 c 〈p〉 ≡ a � wa ; (9)

sp isspc a ≡ ∀ p : B . 〈a〉 c 〈p〉 ≡ sp � p. (10)

6. CALCULATING THEOREMS IN A PROGRAMMING THEORY

Here, we show how algebraic properties of a programming theory are calcu-
lationally derived from the theory’s formulation by program equations. The
examples illustrate how the calculations indeed directly lead to the discovery
of theorems without knowing them in advance. We emphasize this by stating
the theorems after calculating them.

The discovered algebraic properties constitute the basic rules for using the
theory in the derivation or verification of programs in actual practice. They
can be cast in the same form and thereby offer the same level of abstraction
as their common formulation, but calculating them as theorems from a more
elementary basis yields a vast improvement in understanding.

In an article we can give the complete detailed calculations for one theory
only. For the reasons stated earlier, we chose weakest ante- and strongest post-
conditions. The calculations start with language-independent properties, and
then turn to individual constructs of Dijkstra’s guarded command language.

6.1 Calculating a General Theory for ap-Conditions

6.1.1 Calculating Weakest Antecondition Operators. To match the shape of
Equation (9), namely, 〈a〉 c 〈p〉 ≡ ∀ s • a ⇒ wa, we must make a the antecedent
in Definition 5.1.

{a} c {p} ≡ 〈Def. 5.1〉 ∀ �s • ∀ s′ • Rc (�s, s′) ⇒ �a ⇒ p′

≡ 〈Shunting ⇒〉 ∀ �s • ∀ s′ • �a ⇒ Rc (�s, s′) ⇒ p′

≡ 〈Ldistr. ⇒/∀〉 ∀ �s • �a ⇒ ∀ s′ • Rc (�s, s′) ⇒ p′

≡ 〈Change var.〉 ∀ s • a ⇒ ∀ s′ • Rc (s, s′) ⇒ p′

The consequent ∀ s′ • Rc (s, s′) ⇒ p′ suggests defining wla : C → B → B by

Definition 6.1. wla c p ≡ ∀ s′ • Rc (s, s′) ⇒ p′ .

So, by the calculation, wla c p is the weakest liberal antecondition for p, recorded
as

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

766 • R. T. Boute

THEOREM 6.2. {a} c {p} ≡ a � wla c p.

For the strict variant we follow the same strategy, also reusing previous results.

[a] c [p] ≡ 〈Dif. 5.3〉 {a} c {p} ∧ Termc a
≡ 〈Thm. 6.2, Def. 5.2〉 ∀ (s • a ⇒ wla cp) ∧ ∀ (�s • �a ⇒ Tc

�s)
≡ 〈Change var.〉 ∀ (s • a ⇒ wla cp) ∧ ∀ (s • a ⇒ Tc s)
≡ 〈Distrib. ∀/∧〉 ∀ s • (a ⇒ wla cp) ∧ (a ⇒ Tc s)
≡ 〈Ldistr. ⇒/∧〉 ∀ s • a ⇒ wla cp ∧ Tc s

The consequent wla cp ∧ Tc s suggests defining wa : C → B → B by

Definition 6.3. wa cp ≡ wla cp ∧ Tc s.

So, by the calculation, wa cp is the weakest antecondition for p, recorded as

THEOREM 6.4. [a] c [p] ≡ a � wa cp.

6.1.2 Calculating Strongest Postcondition Operators. To match the shape
of Equation (10), namely, 〈a〉 c 〈p〉 ≡ ∀ s • sp ⇒ p, we must make p the conse-
quent in Definition 5.1.

{a} c {p} ≡ 〈Def. 5.1〉 ∀ �s • ∀ s′ • Rc (�s, s′) ⇒ �a ⇒ p′

≡ 〈Shunting ∧〉 ∀ �s • ∀ s′ • Rc (�s, s′) ∧ �a ⇒ p′

≡ 〈Swapping ∀〉 ∀ s′ • ∀ �s • Rc (�s, s′) ∧ �a ⇒ p′

≡ 〈Rdist. ⇒/∃〉 ∀ s′ • ∃ (�s • Rc (�s, s′) ∧ �a) ⇒ p′

≡ 〈Change var.〉 ∀ s • ∃ (�s • (Rc (�s, s) ∧ �a) ⇒ p

The antecedent ∃ �s • Rc (�s, s) ∧ �a suggests defining slp : C → B → B by

Definition 6.5. slp c a ≡ ∃ �s • Rc (�s, s) ∧ �a ,

So, by the calculation, slp c a is the strongest liberal postcondition for a, recorded
as

THEOREM 6.6. {a} c {p} ≡ slp c a � p.

For the strict variant, we try the same strategy, but the shape of the formulas
does not allow going beyond [a] c [p] ≡ Termc a∧∀ s • slp c a ⇒ p, justifying only

Definition 6.7. sp is defined conditionally by Termc a ⇒ (sp c a ≡ slp c a).

6.1.3 Algebraic Properties. We just provide a few samples from a rich the-
ory.

(1) Theorems 6.2 and 6.6 yield, by transitivity of ≡,

THEOREM 6.8. slp c a � p ≡ a � wla c p.

If relations � : X 2 → B and � : Y 2 → B and functions F : X → Y and
G : Y → X satisfy F x � y ≡ x � G y , this property is called a Galois
connection; F is the lower adjoint and G is the upper adjoint [Backhouse
2002]. Theorem 6.8 shows that slp c is the lower and wla c the upper adjoint
in a Galois connection. Theorem 6.4 has no counterpart for sp c, hence wa c
has no lower adjoint.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 767

(2) Definition 6.1 implies wla c 1 ≡ 1 and, using Definition 6.3, wa c 1 ≡ Tc s
and wa c p ≡ wa c 1 ∧ wla c p. This cleanly links our predicate Tc to the
theory in Dijkstra and Scholten [1990], yielding wa c p ≡ wa c 1 ∧ wla c p in
another way.

(3) Definition 6.3 shows that requiring wa c 0 ≡ 0, Dijkstra’s law of the ex-
cluded miracle (LEM) amounts to Tc

�s ⇒ ∃ s′ • Rc (�s, s′), as announced ear-
lier. It has been noted, for example, in Nelson [1989], that requiring LEM
may be overly restrictive.

(4) Defining the conjugate f ∗ of a proposition transformer f by f ∗ (¬ p) ≡
¬ (f p), clearly (wla c)∗ p ≡ ∃ s′ • Rc (s, s′)∧ p′, and, assuming LEM, wa c p ⇒
(wla c)∗ p.

Conversely, c is called deterministic iff ∀ p : B . ∀ s : S . (wla c)∗ p ⇒ wa c p
[Dijkstra and Scholten 1990]. This naming is justified by proving
that, if c is deterministic and satisfies LEM, then ∃ f : STc → S . ∀
�s : STc . ∀ s′ : S . Rc (�s, s′) ≡ s′ = f �s. One way to show this is by taking p :=
[[s = t]] and invoking function comprehension [Boute 2002, 2006].

(5) Some other algebraic properties, derived by easy calculation from the oper-
ator definitions, are the following; w(l)a is a generic name for both wla and
wa.

w(l)a skip p ≡ p (11)

p � q ⇒ w(l)a c p � w(l)a c q (12)

w(l)a c (p ∨ q) ⇐ w(l)a c p ∨ w(l)a c q (13)

w(l)a c (p ∧ q) ≡ w(l)a c p ∧ w(l)a c q (14)

wa c (p ∧ q) ≡ wla c p ∧ wa c q (“Borrowing”) (15)

If c is deterministic and LEM holds, then w(l)a c (p∨q) ≡ w(l)a c p∨w(l)a c q.
Similarly, for the strongest postcondition (considering slp only),

slp skip a ≡ a (16)

a � b ⇒ slp c a � slp c b (17)

slp c (a ∧ b) ⇒ slp c a ∧ slp c b (18)

slp c (a ∨ b) ≡ slp c a ∨ slp c b (19)

6.1.4 On Dummies and Shorthands. The shape of the formulas shows that
Hoare-triples are most elegantly expressed by the symmetric dummies �s, s′, but
that variable changes are reduced by choosing s, s′ for w(l)a-related formulas
and �s, s for s(l)p-related ones. We shall often use the latter choices in the sequel.
For w(l)a-related formulas, we also introduce r : C → B and t : C → B to obtain
shorthands via

Definition 6.9. r c ≡ Rc (s, s′) and t c ≡ Tc s .

The burden of these extra operators is rewarded by convenience and style issues
(elaborated on later), and is hopefully mitigated by having chosen matching
letters.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

768 • R. T. Boute

6.2 Application to Assignment (Embedding in the General Case)

Assignment can be multiple, that is, v in v := e can be a tuple of variables and e
a matching tuple of expressions. As one of the reviewers observed, a parallel op-
erator improves readability, as it allows writing x, y := d , e as x := d || y := e.

Table V yields Rv:=e (�s, s′) ≡ s′ = �s[
�v
�e , from which wla and slp are calculated

using Definitions 6.1 and 6.5 by the method shown in Section 3, with similar
results:

wla [[v:=e]] p ≡ p[v
e and slp [[v:=e]] a ≡ ∃ �v : Sv . a[v

�v ∧ v = e[v
�v. (20)

Since Tv:=e s ≡ 1, these are also strict. Also, wa [[skip]] p ≡ p and sp [[skip]]
p ≡ p.

6.3 Calculations for Composition

The relevant program equations from Table V are recalled for easy reference
as

Definition 6.10. (a) Rc′; c′′ (�s, s′) ≡ ∃ s • Rc′ (�s, s) ∧ Rc′′ (s, s′) ;
(b) Tc′; c′′ �s ≡ Tc′ �s ∧ ∀ s • Rc′ (�s, s) ⇒ Tc′′ s.

We tacitly change �s, s′ to s, s′ in antecalculations and to �s, s in postcalcu-
lations. A remaining dummy can be reused as an auxiliary dummy, for ex-
ample, to write Definition (6.10.a) as Rc′; c′′ (s, s′) ≡ ∃ �s • Rc′ (s, �s)∧Rc′′ (�s, s′) or
Rc′; c′′ (�s, s) ≡ ∃ s′ • Rc′ (�s, s′)∧Rc′′ (s′, s).

6.3.1 Weakest Antecondition. We start by calculating wla [[c′; c′′]] p.

wla [[c′; c′′]] p ≡ 〈Def. wla (6.1)〉 ∀ s′ • Rc′; c′′ (s, s′) ⇒ p′

≡ 〈Def. R (6.10.a)〉 ∀ s′ • ∃ (�s • Rc′ (s, �s) ∧ Rc′′ (�s, s′)) ⇒ p′

≡ 〈R-distrib. ⇒/∃〉 ∀ s′ • ∀ �s • Rc′ (s, �s) ∧ Rc′′ (�s, s′) ⇒ p′

≡ 〈Swap ∀, shunt ∧〉 ∀ �s • ∀ s′ • Rc′ (s, �s) ⇒ Rc′′ (�s, s′) ⇒ p′

≡ 〈L-distrib. ⇒/∀〉 ∀ �s • Rc′ (s, �s) ⇒ ∀ s′ • Rc′′ (�s, s′) ⇒ p′

≡ 〈Def. wla (6.1)〉 ∀ �s • Rc′ (s, �s) ⇒ (wla c′′ p)[s
�s

≡ 〈Def. wla (6.1)〉 wla c′ (wla c′′ p)

Hence we have derived the following.

THEOREM 6.11. wla [[c′; c′′]] p ≡ wla c′ (wla c′′ p).

Next, we calculate wa [[c′; c′′]] p, recalling that t c is shorthand for Tc s.

wa [[c′; c′′]] p ≡ 〈Def. wa (6.3)〉 wla [[c′; c′′]] p ∧ t [[c′; c′′]]
≡ 〈Thm. 6.11〉 wla c′ (wla c′′ p) ∧ t [[c′; c′′]]
≡ 〈Lemma 6.13〉 wla c′ (wla c′′ p) ∧ wa c′ (t c′′)
≡ 〈Borrow. (15)〉 wa c′ (wla c′′ p ∧ t c′′)
≡ 〈Def. wa (6.3)〉 wa c′ (wa c′′ p)

Hence we have derived

THEOREM 6.12. wa [[c′; c′′]] p ≡ wa c′ (wa c′′ p).

The invoked lemma (stated next) amounts to recognizing the shape of Defini-
tions 6.1 (for wla) and 6.3 (for wa) in the righthand side of Definition 6.10.b.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 769

LEMMA 6.13. t [[c′; c′′]] ≡ wa c′ (t c′′).

6.3.2 On Theorems and Lemmata. In most mathematics texts, theorems
are presented as finished products and lemmata are given in advance. We typ-
ically calculate theorems, not even assuming the “result” to be known, and
record proof obligations arising along the way as lemmata, proved afterwards
for theorems worth keeping.

6.3.3 Strongest Postcondition. We calculate slp [[c′; c′′]] a.

slp [[c′; c′′]] a ≡ 〈Def. slp (6.5)〉 ∃ �s • �a ∧ Rc′; c′′ (�s, s)
≡ 〈Def. R (6.10.a)〉 ∃ �s • �a ∧ ∃ s′ • Rc′ (�s, s′) ∧ Rc′′ (s′, s)
≡ 〈Distr. ∧/∃〉 ∃ �s • ∃ s′ • �a ∧ Rc′ (�s, s′) ∧ Rc′′ (s′, s)
≡ 〈Swapping ∃〉 ∃ s′ • ∃ �s • �a ∧ Rc′ (�s, s′) ∧ Rc′′ (s′, s)
≡ 〈Distr. ∧/∃〉 ∃ s′ • ∃ (�s • �a ∧ Rc′ (�s, s′)) ∧ Rc′′ (t, s′)
≡ 〈Def. slp (6.5)〉 ∃ s′ • (slp c′ a)[s

s′ ∧ Rc′′ (s′, s)
≡ 〈Def. slp (6.5)〉 slp c′′ (slp c′ a)

Hence, we have derived the following

THEOREM 6.14. slp [[c′; c′′]] a ≡ slp c′′ (slp c′ a).

Deriving the strict variant Termc′; c′′ a ⇒ (sp [[c′; c′′]] a ≡ sp c′′ (sp c′ a)) reuses
the last two steps from the calculation by invoking Termc′ a ⇒ (sp c′ a ≡ slp c′ a)
and Termc′′ (sp c′ a) ⇒ (sp c′′ (sp c′ a) ≡ slp c′′ (sp c′ a)). Checking the antecedents:

Termc′; c′′ a ≡ 〈Def. Term (5.2)〉 a � t[[c′; c′′]]
≡ 〈Lem. 6.13; def. 6.3〉 a � (t c′ ∧ wla c′ (t c′′))
≡ 〈L-distribut. �/∧〉 (a � t c′) ∧ (a � wla c′ (t c′′))
≡ 〈Galois conn. (6.8)〉 (a � t c′) ∧ (slp c′ a � t c′′)
≡ 〈Def. Term (5.2)〉 Termc′ a ∧ (slp c′ a � t c′′)
≡ 〈Def. sp (6.7)〉 Termc′ a ∧ (sp c′ a � t c′′)
≡ 〈Def. Term (5.2)〉 Termc′ a ∧ Termc′′ (sp c′ a).

6.4 Calculations for Choice

Let c := [[if i : I . bi -> c′
ifi]] throughout this subsection. Table V yields

Definition 6.15. (a) Rc (�s, s′) ≡ ∃ i : I . �bi ∧ Rc′
i
(�s, s′) ;

(b) Tc
�s ≡ ∃ (i : I . �bi) ∧ ∀ i : I . �bi ⇒ Tc′

i
�s.

6.4.1 Weakest Antecondition. As usual, we simply calculate. For wla c p,

wla c p ≡ 〈Def. wla (6.1)〉 ∀ s′ • Rc (s, s′) ⇒ p′

≡ 〈Def. R (6.15.a)〉 ∀ s′ • ∃ (i : I . bi ∧ Rc′
i
(s, s′)) ⇒ p′

≡ 〈Rdist. ⇒/∃〉 ∀ s′ • ∀ i : I . bi ∧ Rc′
i
(s, s′) ⇒ p′

≡ 〈Shunting ∧〉 ∀ s′ • ∀ i : I . bi ⇒ Rc′
i
(s, s′) ⇒ p′

≡ 〈Swapping ∀〉 ∀ i : I . ∀ s′ • bi ⇒ Rc′
i
(s, s′) ⇒ p′

≡ 〈Ldistr. ⇒/∀〉 ∀ i : I . bi ⇒ ∀ s′ • Rc′
i
(s, s′) ⇒ p′

≡ 〈Def. wla (6.1)〉 ∀ i : I . bi ⇒ wa c′
i p.

This calculation yields

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

770 • R. T. Boute

THEOREM 6.16. wla [[if i : I . bi -> c′
ifi]] p ≡ ∀ i : I . bi ⇒ wla c′

i p.

The calculations for wa c p are equally straightforward:

wa c p ≡ 〈Def. wa (6.3)〉 t c ∧ wla c p
≡ 〈Def. 6.15.b, Thm. 6.16〉 ∃ b ∧ ∀ (i : I . bi ⇒ t c′

i) ∧ ∀ i : I . bi ⇒ wla c′
i p

≡ 〈Distrib. laws〉 ∃ b ∧ ∀ i : I . bi ⇒ t c′
i ∧ wla c′

i p
≡ 〈Def. wa (6.3)〉 ∃ b ∧ ∀ i : I . bi ⇒ wa c′

i p

Clarification: b = i : I . bi, so ∃ b ≡ ∃ i : I . bi. The preceding calculation yields

THEOREM 6.17. wa [[if i : I . bi -> c′
ifi]] p ≡ ∃ b ∧ ∀ i : I . bi ⇒ wa c′

i p.

COROLLARY 6.18. wa [[if b then c′ else c′′ fi]] p ≡ (b⇒ wa c′ p) ∧ (¬ b⇒
wa c′′ p).

Observing that (q ⇒ r) ∧ (¬ q ⇒ r ′) ≡ (q ∧ r) ∨ (¬ q ∧ r ′) yields an equivalent
form.

6.4.2 Strongest Postcondition. Calculating slp c a

slp c a ≡ 〈Def. slp (6.5)〉 ∃ �s • �a ∧ Rc (�s, s)
≡ 〈Def. R (6.15.a)〉 ∃ �s • �a ∧ ∃ i : I . �bi ∧ Rc′

i
(�s, s)

≡ 〈Distrib. ∧ /∃〉 ∃ �s • ∃ i : I . �a ∧ �bi ∧ Rc′
i
(�s, s)

≡ 〈Swapping ∃〉 ∃ i : I . ∃ �s • �a ∧ �bi ∧ Rc′
i
(�s, s)

≡ 〈Def. slp (6.5)〉 ∃ i : I . slp c′
i (a ∧ bi)

yields

THEOREM 6.19. slp [[if i : I . bi -> c′
ifi]] a ≡ ∃ i : I . slp c′

i (a ∧ bi).

COROLLARY 6.20. slp [[if b then c′ else c′′ fi]] a ≡ slp c′ (a ∧ b) ∨ slp c′′

(a ∧ ¬ b).

The antecedent for justifying the last step in a similar calculation of the strict
variant is covered by Termc a ≡ ∀ (s • a ⇒ ∃ b) ∧ ∀ i : I . Termc′

i
(a ∧ bi) (exercise).

6.5 Calculations for Repetition

Letting c := [[do b -> c′ od]] for this subsection, we calculate termination first.

t c ≡ 〈Def. c〉 t [[do b -> c′ od]]
≡ 〈Table V, rep.〉 t [[if ¬ b -> skip b -> c′ ; c fi]]
≡ 〈Def. t (6.15.b)〉 (¬ b⇒ t [[skip]]) ∧ (b⇒ t [[c′ ; c]])
≡ 〈Def. t skip〉 (¬ b⇒ 1) ∧ (b⇒ t [[c′ ; c]])
≡ 〈Prop. calcul.〉 b⇒ t [[c′ ; c]]
≡ 〈Lemma 6.13〉 b⇒ wa c′ (t c)

The result of this calculation is recorded as

THEOREM 6.21. t c ≡ b⇒ wa c′ (t c).

By a similar calculation, using 〈Def. c〉, 〈Table V〉, 〈Def. 6.15.a〉, 〈R skip〉,
〈Def. 6.10.a〉:

THEOREM 6.22. r c ≡ (¬ b⇒ s = s′) ∧ (b⇒ ∃ �s • Rc′ (s, �s) ∧ Rc (�s, s′)) ,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 771

and, using the theorems for choice (6.16, 6.17), skip, composition (6.11, 6.12):

THEOREM 6.23. wla cp ≡ (¬ b⇒ p) ∧ (b⇒ wla c′ (wla cp)) ;

THEOREM 6.24. wa cp ≡ (¬ b⇒ p) ∧ (b⇒ wa c′ (wa cp)).

6.5.1 Calculating the Weakest Antecondition. Solutions of recursion equa-
tions such as (6.21), (6.23), and (6.24) are not always unique. The choice depends
on operational considerations that can be intricate [Dijkstra and Scholten 1990]
and will be given for wa only. For this purpose, we use the termination equation
and an interesting “absorption” technique using the borrowing Equation (15).

We fix the choice of solution by bounding the number of iterations. Opera-
tionally, let gn ≡ “c started in state s terminates in at most, n iterations.” The
easiest formalization is by recursion: g0 ≡ ¬ b (obvious) and gn+1 ≡ “either c
terminates immediately (case ¬ b) or c′ executes a first time and, from there on,
c terminates in, at most, n steps”, that is, gn+1 ≡ ¬ b∨(b∧ t c′ ∧∀ s′ • r c′ ⇒ gn[s

s′).
Simplified,

g0 ≡ ¬ b and gn+1 ≡ b⇒ wa c′ gn. (21)

A simple inductive proof5 using (6.21) yields ∀ n : N . gn ⇒ t c, so ∃ (n : N . gn) ⇒ t c.
By construction, ∃ n : N . gn operationally means that the number of iterations
is bounded. We make this a requirement, strengthening ∃ (n : N . gn) ⇒ t c to

t c ≡ ∃ n : N . gn. (22)

Later on, we shall get rid of this requirement. As for now, let us calculate wa cp.

wa cp ≡ 〈Def. wa (6.3)〉 wla cp ∧ t c
≡ 〈Eqn. t (22)〉 wla cp ∧ ∃ n : N . gn

≡ 〈Distrib. ∧ /∃〉 ∃ n : N . wla cp ∧ gn

≡ 〈Intro. h〉 ∃ n : N . hn

introducing h with hn ≡ wla cp ∧ gn. So, h0 ≡ wla cp ∧ ¬ b or, by (6.23), h0 ≡
¬ b ∧ p.

hn+1 ≡ 〈Def. h〉 wla cp ∧ gn+1

≡ 〈Thm. 6.23〉 (¬ b⇒ p) ∧ (b⇒ wla c′ (wla cp)) ∧ gn+1

≡ 〈Def. g (21)〉 (¬ b⇒ p) ∧ (b⇒ wla c′ (wla cp)) ∧ (b⇒ wa c′ gn)
≡ 〈Ldistr. ⇒/∧〉 (¬ b⇒ p) ∧ (b⇒ wla c′ (wla cp) ∧ wa c′ gn)
≡ 〈Borrow. (15)〉 (¬ b⇒ p) ∧ (b⇒ wa c′ (wla cp ∧ gn))
≡ 〈Def. h〉 (¬ b⇒ p) ∧ (b⇒ wa c′ hn)
≡ 〈Shannon cnv.〉 (¬ b ∧ p) ∨ (b ∧ wa c′ hn)
≡ 〈Intro. w (6.25)〉 w hn

introducing w by

Definition 6.25. w q ≡ (¬ b ∧ p) ∨ (b ∧ wa c′ q) .

Conversion from one Shannon form into the other helps to cover h0 in the result
hn ≡ wn (¬ b ∧ p). Considering wa cp ≡ ∃ n : N . hn, we have derived

5In this context, the proof of the inductive case typically uses isotony of wa c, of ∧ and ∨, and right

isotony of ⇒, all with respect to ⇒. A more interesting example of induction is given later.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

772 • R. T. Boute

THEOREM 6.26. wa cp ≡ ∃ n : N . wn (¬ b ∧ p).

Note how the desired solution of the recursion equation of Theorem 6.24
for wa cp was calculated by absorbing (22) into Theorem 6.23, bypassing
Theorem 6.24.

If LEM is assumed, w 0 ≡ ¬ b∧ p, hence hn ≡ wn+10, yielding the following
theorem, which is essentially Equation (9.45) in Dijkstra and Scholten [1990].

THEOREM 6.27. wa cp ≡ ∃ n : N . wn 0 .

6.5.2 Outline for wla. Taking Theorem 6.23, unfolding suggests introduc-
ing rn ≡ wln (¬ b⇒ p), where wl q ≡ (¬ b⇒ p) ∧ (b⇒ wla c′ q), and so on.
Instead, as a convenient abbreviation [Dijkstra and Scholten 1990] we let
d := [[if b -> c′fi]] and write Theorem 6.23 as wla cp ≡ (b∨ p) ∧ wla d (wla cp).

Hence, wla c is a solution of f p ≡ (b ∨ p) ∧ wla d (f p) with unknown f .
Prompted by unfolding, we introduce rn ≡ (wla d)n (b ∨ p). By induction, we
prove f p ⇒ rn for any solution f . Mere substitution in the equation and pred-
icate calculus shows that the particular f ′ defined by f ′ p ≡ ∀ n : N . rn is itself
a solution, and since f p ⇒ f ′ p for any solution f , it is the weakest. By the
operational arguments in Dijkstra and Scholten [1990], f ′ is the desired wla c.
Hence, we have proved the following equivalent of Equation (9.41) in Dijkstra
and Scholten [1990, p. 185].

THEOREM 6.28. wla cp ≡ ∀ n : N . (wla d)n (b ∨ p).

6.5.3 Calculating s(l)p. Recall that sp and slp differ only by the condition
with Term. The equation Termc a ≡ Term′

c (b ∧ a) ∧ Termc (sp c′ (b ∧ a)) is easily
derived. For slp, one could use unfolding as for wla to obtain slp c a ≡ ¬ b ∧
∃ n : N . (slp d)n a, which is Equation (9.13) in Dijkstra and Scholten [1990, p.
213], noting that our slp is named sp in Dijkstra and Scholten [1990]. Yet, for
the sake of diversity, and to obviate separate operational arguments, we proceed
differently.

6.5.4 Using Galois Connections. We recall slp c a � p ≡ a � wla cp from
Theorem 6.8, which uniquely defines for given wla c the matching slp c, and vice
versa.

For c := [[do b -> c′ od]] and wla c given by Theorem 6.28, we derive a propo-
sition transformer f that satisfies f a � p ≡ a � wla cp and hence, must
be slp c. With shorthands h := slp d and k := wla d , we calculate for arbitrary a
and p,

a � wla cp ≡ 〈Thm. 6.28, def. k〉 a � ∀ n : N . kn (b ∨ p)
≡ 〈Remark to follow〉 ∀ n : N . a � kn (b ∨ p)
≡ 〈Lem. 6.30 to follow〉 ∀ n : N . (¬ b ∧ hn a) � p
≡ 〈Remark to follow〉 ∃ (n : N . ¬ b ∧ hn a) � p
≡ 〈Distribut. ∧/∃〉 ¬ b ∧ ∃ (n : N . hn a) � p

Remark: the justifications are properties of � that were calculated “in line”
in our first version of this proof, but are now factored out as ∀ (i : I . p � qi)
≡ p � ∀ i : I . qi and ∀ (i : I . qi � p) ≡ ∃ (i : I . qi) � p for p : B and q : I → B

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 773

(easy exercise). So, f defined by f a ≡ ¬ b ∧ ∃ (n : N . hn a) satisfies f a � p ≡
a � wla cp, yielding

THEOREM 6.29. slp ca ≡ ¬ b ∧ ∃ n : N . (slp d)n a.

The lemma invoked (originally conjectured in the spirit of Section 6.3.2) is

LEMMA 6.30. a � kn (b ∨ p) ≡ (¬ b ∧ hn a) � p.

This “rabbit” of conjecturing 6.30 can be made digestible by observing that (i)
the r.h.s. of � must be p; (ii) for n = 0 it is obvious what to do; and (iii) ¬ b is
clearly part of any postcondition, which is why we opt for ¬ b∧hn a rather than
hn (¬ b ∧ a).

We still must prove 6.30, given h a � p ≡ a � k p (Theorem 6.8). As
shorthands, we define families f and g of proposition transformers with
gn p ≡ kn (b ∨ p) and fn a ≡ ¬ b ∧ hn a. For the proof, we introduce the in-
duction predicate P : N → B with P n ≡ ∀ (a, p) : B2 . a � gn p ≡ fn a � p
and use the weak induction principle [Gries and Schneider 1993]: ∀ P ≡
P 0 ∧ ∀ n : N . P n⇒ P (n + 1). Base case:

P 0 ≡ 〈Def. of P〉 ∀ (a, p) : B2 . ∀ (s • a ⇒ g0 p) ≡ ∀ (s • f0 a ⇒ p)

≡ 〈Def. f , g〉 ∀ (a, p) : B2 . ∀ (s • a ⇒ k0 (b ∨ p)) ≡ ∀ (s • ¬ b ∧ h0 a ⇒ p)

≡ 〈function0 x = x〉 ∀ (a, p) : B2 . ∀ (s • a ⇒ b ∨ p) ≡ ∀ (s • ¬ b ∧ a ⇒ p)

≡ 〈Propos. calcul.〉 ∀ (a, p) : B2 . ∀ (s • ¬ b⇒ a ⇒ p) ≡ ∀ (s • ¬ b⇒ a ⇒ p)
≡ 〈Leibniz, refl. ≡〉 1

Inductive case: given n, assume P n and prove P (n + 1) by calculating

a � gn+1 p ≡ 〈Def. g〉 a � kn+1 (b ∨ p)
≡ 〈Def. funcn〉 a � k (kn (b ∨ p))
≡ 〈Galois h, k〉 h a � kn (b ∨ p)
≡ 〈Def. g〉 h a � gn p
≡ 〈Hypoth. P n〉 fn (h a) � p
≡ 〈Def. f 〉 (¬ b ∧ hn (h a)) � p
≡ 〈Prop. funcn〉 (¬ b ∧ hn+1 a) � p
≡ 〈Def. f 〉 fn+1 a � p.

6.6 Intermezzo: From Galois Connections to Converses

The beauty of Galois connections is most salient at the algebraic level in a
point-free style [Backhouse 2002]. Support for this style in our formalism is
given by Boute [2003], but since developing it fully is beyond the scope of this
article, we feel free to do some calculations pointwise. Also, assuming matching
types as in Section 6.1.3, we write 〈 F | G 〉 for ∀ x :D F . ∀ y :D G . F x � y ≡
x � G y .

A Galois connection in general is not symmetric, and this is also the case for
a/p-conditions. Yet, note that ∀ (s • f a ⇒ p) ≡ ∀ (s • a ⇒ g p) ≡ ∀ (s • ¬ (f a)
∨ p) ≡ ∀ (s • ¬ a ∨ g p), so letting q := ¬ a yields 〈 f | g 〉 ≡ ∀ (p, q) : B2 . ∀
(s • f ∗ q ∨ p) ≡ ∀ (s • q ∨ g p).

This suggests the following: A proposition transformer g is called the con-
verse [Dijkstra and Scholten 1990] of a proposition transformer f iff they satisfy

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

774 • R. T. Boute

f � g according to the definition

Definition 6.31. f � g ≡ ∀ (p, q) : B2 . ∀ (s • f q ∨ p) ≡ ∀ (s • q ∨ g p).

Observe that g � f ≡ f � g . In contexts more general than a/p-conditions,
existence is not guaranteed, but uniqueness is: f � g ∧ f � g ′ ⇒ g = g ′.

As shown, 〈 f | g 〉 ≡ f ∗ � g and, in particular, (slp c)∗ � wla c, the equiv-
alent of Theorem (12.2) in Dijkstra and Scholten [1990, p. 211]. Some equally
simple and useful properties are:

(1) (f ◦ g)∗ = f ∗ ◦ g∗ and hence, by induction, (f ∗)n = (f n)∗.

(2) f � g∧ f ′ � g ′ ⇒ f ◦ f ′ � g ′ ◦ g ; hence, by induction, f � g ⇒ f n � gn.

Property (2) is essentially Theorem (11.11) in Dijkstra and Scholten [1990, p.
206].

Finally, if h and k are families of proposition transformers having common
the index set I and satisfying ∀ i : I . hi � ki, then the proposition trans-
formers f and g , defined by f q ≡ ∀ i : I . hi q and gp ≡ ∀ i : I . ki p, re-
spectively, satisfy f � g . This is essentially Theorem (11.14) in Dijkstra
and Scholten [1990, p. 208]. The proof is similar to the calculation leading to
Theorem 6.29.

Arguments based on Galois connections can be rewritten in terms of con-
verses.

6.7 Practical Calculation Rules for Repetition

Again let c := [[do b -> c′ od]]. The formulas in Theorems 6.26 and 6.28 are diffi-
cult to calculate in concrete situations. The alternatives that follow are easier
in practice.

6.7.1 Invariants. We call i a loop invariant for c iff {i ∧b} c′ {i}. Intuitively,
if c′ has to be executed, the invariant i is preserved. Hence, a loop that starts
with i satisfied and terminates is expected to establish ¬ b and i. Formally:

THEOREM 6.32. If {i ∧ b} c′ {i} then {i} do b -> c′ od {i ∧ ¬ b}.
Proving Theorem 6.32 via (6.28) is routine: ∀ s • i ⇒ wla c (i ∧¬ b) is transformed
into the equivalent ∀ n : N . ∀ s • i ⇒ (wla d)n (b ∨ i), which is proved by induction
using {i ∧ b} c′ {i} ≡ {i} d {i}. The details are omitted, since Theorem 6.32 will
be obviated by Theorem 6.34, which is more practical and independent of (6.28).

6.7.2 Bound Expressions. Let D be a set with order < and let W :P D be
a well-founded subset under <. Then, an expression e of type D is a bound
expression for c iff (i) ∀ s • b⇒ e ∈ W ; (ii) ∀ w : W . [b ∧ w = e] c′ [e < w]. Hence
the following

Definition 6.33. Proposition i and expression e are an invariant/bound
pair for the loop c iff (i) ∀ s • i ∧ b⇒ e ∈ W and (ii)∀ w : W . [w = e ∧ i ∧ b] c′ [e <

w ∧ i].

The next theorem is quite general, and unlike (6.26), does not assume a bounded
number of iterations. This allows more interesting forms of nondeterminacy.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 775

THEOREM 6.34. If i, e is an invariant/bound pair for c then [i] c [i ∧ ¬ b].

PROOF. Let i, e be an invariant/bound pair. The added value being termina-
tion, we first calculate Termc i, that is, ∀ s • i ⇒ t c. Initial steps are factored out
for reuse.

i ⇒ t c ≡ 〈Thm. 6.21〉 i ⇒ b⇒ wa c′ (t c)
≡ 〈Shunting ∧〉 i ∧ b⇒ wa c′ (t c)
≡ 〈Def. 6.33.i〉 e ∈ W ∧ i ∧ b⇒ wa c′ (t c)
≡ 〈Shunting ∧〉 e ∈ W ⇒ i ⇒ b⇒ wa c′ (t c)
≡ 〈Thm. 6.21〉 e ∈ W ⇒ i ⇒ t c.

This yields a LEMMA: i ⇒ t c ≡ e ∈ W ⇒ i ⇒ t c, used first in calculating Termc i.

Termc i ≡ 〈Def. Term (5.2)〉 ∀ s • i ⇒ t c
≡ 〈Lem. preceeding〉 ∀ s • e ∈ W ⇒ i ⇒ t c
≡ 〈One-p. rule〉 ∀ s • ∀ w : W . w = e ⇒ i ⇒ t c
≡ 〈Swapping ∀/∀〉 ∀ w : W . ∀ s • w = e ⇒ i ⇒ t c
≡ 〈Intro. P〉 ∀ w : W . P w
≡ 〈Well-founded W 〉 ∀ w : W . ∀ (v : W . v < w ⇒ P v) ⇒ P w.

Here, P : D → B with P v ≡ ∀ s • v = e ⇒ i ⇒ t c. The last step is the equiva-
lence between well-foundedness and supporting induction [Gries and Schneider
1993]. Finally, we prove the last line by calculating for arbitrary w : W

∀ v : W . v < w ⇒ P v ≡ 〈Def. P〉 ∀ v : W . v < w ⇒ ∀ s • v = e ⇒ i ⇒ t c
≡ 〈Rearrange ∀〉 ∀ s • ∀ v : W . v = e ⇒ v < w ⇒ i ⇒ t c
≡ 〈One-pt. rule〉 ∀ s • e ∈ W ⇒ e < w ⇒ i ⇒ t c
≡ 〈Shunt, lem.〉 ∀ s • e < w ⇒ i ⇒ t c
⇒ 〈Shunt, (12)〉 ∀ s • wa c′ (e < w ∧ i) ⇒ wa c′ (t c)
⇒ 〈Def. 6.33.ii)〉 ∀ s • w = e ∧ i ∧ b⇒ wa c′ (t c)
≡ 〈Shunt, (6.21)〉 ∀ s • w = e ⇒ i ⇒ t c
≡ 〈Def. P〉 P w .

In our original proof for (6.34), we just joined Termc i to (6.32), yielding
[i] c [i ∧ ¬ b].

However, our proof for (6.32) depends on (6.28) and hence, on the underlying
operational arguments from Dijkstra and Scholten [1990], which are rather
intricate. To obtain a simpler and self-contained treatment, we calculate
directly [i] c [i ∧ ¬ b], or equivalently, ∀ s • i ⇒ wa c (i ∧ ¬ b).

i ⇒ wa c (i ∧ ¬ b) ≡ 〈Thm. 6.24〉 i ⇒ (¬ b⇒ i ∧ ¬ b) ∧ (b⇒ wa c′ (wa c (i ∧ ¬ b)))
≡ 〈Prop. calc.〉 i ⇒ b⇒ wa c′ (wa c (i ∧ ¬ b).

The formal similarity to i ⇒ t c ≡ 〈Thm. 6.21〉 i ⇒ b⇒ wa c′ (t c) in the calcu-
lation for Termc i is striking. Moreover, this calculation uses no intrinsic prop-
erties of t c apart from Theorem 6.21, and is entirely an exercise in predicate
calculus. Hence, as the reader can verify, just replacing t c by wa c (i∧¬ b) in this
calculation completes the proof for ∀ s • i ⇒ wa c (i∧¬ b) and for Theorem 6.34.

As promised, nondeterminacy need not be bounded.
Using (6.34) in practice is best done via a checklist [Gries and Schneider

1993]: To show [a] do b -> c′ od [p], find suitable i, e and prove

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

776 • R. T. Boute

(i) i satisfies [i ∧ b] c′ [i] ;
(ii) i satisfies a ⇒ i ;
(iii) i satisfies i ∧ ¬ b⇒ p ;
(iv) e satisfies i ∧ b⇒ e ∈ W ; and
(v) e satisfies [w = e ∧ i ∧ b] c′ [e < w] for arbitrary w : W .

Heuristics for finding i are (a) writing p as a conjunct of two propositions and
taking one of these as i, the negation of the other as b; and (b) making a constant
parameter of the problem into a variable. More can be found in Gries and
Schneider [1993].

7. RAMIFICATIONS AND LINKS WITH OTHER THEORIES

Background for the following exploration is the deeper motive for our approach:

—Pushing the limits of what can be done with simple and basic theories.

—Tightening the links with systems modelling methods in classical
engineering.

The first motive is in the spirit of some interesting observations in Lamport
[2004]; the second is shared by a program initiated in the U.S. [Lee and
Messerschmitt 1998; Lee and Varaiya 2003] aimed at evolving towards a
unified discipline of electrical and computer engineering (ECE).

Fully exploring how the approach can be applied to all other theories is
beyond the scope of any article. Hence, only some samples are presented, and
even so, rather unevenly: in some detail if the application yields immediate and
interesting rewards, by a few remarks and references if deeper investigation is
clearly necessary.

We start with some general observations and choices of conventions for later
use.

7.1 On Formulations, Abstractions, and Concretizations

7.1.1 Rationale in Algebraic Systems Description. Two views can be
distinguished.

—The prescriptive view: The central topic is the algebra; it is used to pre-
scribe abstract properties, whereas the instances (“models” in the nomencla-
ture of logic) just describe realizations (systems) satisfying them in a given
interpretation.

—The descriptive view: The central topic is system behavior, and the algebra is
primarily a means for calculational reasoning at an abstract level (without
irrelevant details) in a compact (e.g., point-free) style.

Some authors [Dijkstra 1976; Dijkstra and Scholten 1990; Nelson 1989]
strongly advocate the prescriptive view. Others (less explicitly) seem to consider
the correspondence between the abstract formalism and program execution (or
some other kind of system behavior) also important [Gries and Schneider 1993;
Hehner 2004; Hoare 1969; Hoare and Jifeng 1998], and sometimes provide
a careful formal treatment of this correspondence [Back 1983; Dijkstra 1994,
1998].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 777

In our view, abstract algebras are very valuable for capturing common as-
pects of different useful instances (models), for example, as in group, ring, lat-
tice, . . . theory. However, we also observe that in engineering the reverse is more
common: A single model (specific to a class of systems) may require different
theories pertaining to different aspects. Moreover, most programming theories
(perhaps due to their specificity) appear to have only one useful model.

Hence, we have no compunctions against the descriptive view. Yet, we achieve
abstraction by deriving theorems expressible in point-free style (i.e., not refer-
ring to points in the interpretation domain) and then, as a discipline, using only
those theorems, which thereby play the same role as axioms in an abstract alge-
bra. This yields the best of both worlds and avoids the so-called “formalization
gap” [Dijkstra 1998].

Generic functionals [Boute 2003] play a crucial role in deriving such the-
orems, but for theorems with counterparts in other theories, we shall often
replace applications of generic functionals (like ∧̂ and ⇒̂) by single abstract
symbols (like and) for emphasis.

7.1.2 Conventions in Propositional Formulations. As a concession to direct
compatibility with practical application, where it is most common to reason
about programs via propositions (like x > 3 and x > 7 in wa [[x := x + 4]] (x >

7) = (x > 3)), most derivations thus far are given in the propositional style, also
to show that it can be done properly and fluently with little overhead. The price
is some care with the use of variables and implicit bindings, requiring one or
two calculations for familiarization.

We must also briefly comment on a ubiquitous convention in mathemat-
ics that is quite useful provided we remain aware of it, namely, implicit
quantification.

As observed by the author [Boute 2002] and in Lamport [2002], if we write
x < y , this is usually interpreted as a Boolean value that depends on x and y .
However, if we write x + y = y + x, this is usually meant as a theorem where
quantification is left implicit yet is understood (making it explicit is done by
generalization).

Specifically, whenever we write an expression like Tc s or r c in iso-
lation, it is just a Boolean expression, but formulas like t [[c′; c′′]] ≡
t c′ ∧ ∃ s′ • r c′ ⇒ (t c′′)[s

s′ appearing as statements of theorems are implicitly
quantified (over meta- and state variables). For instance, a theorem like
wa [[c′; c′′]] p ≡ wa c′ (wa c′′ p) is implicitly quantified over c′, c′′, p and s,
reading ∀ (c′, c′′) : C2 . ∀ p : B . ∀ s : S . wa [[c′; c′′]] p ≡ wa c′ (wa c′′ p). This is why
its equivalent in Dijkstra and Scholten [1990] is written [wp.“S0;S1”.X ≡
wp.S0.(wp.S1.X)] for all X .

Arguably, quantification is best made explicit to ensure clarity. On the other
hand, the notational clutter of many quantifications reduces clarity. Experience
indicates that implicit quantification is quite “safe”, except in inductive proofs,
where explicit quantification helps to avoid errors (illicit instantiations) in the
inductive step.

Borrowing Dijkstra’s [] by writing [p] for the universal closure of p over all
state variables (as in Hoare and Jifeng [1998]) is a good compromise in specific

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

778 • R. T. Boute

contexts (such as programming theories) if it cannot cause confusion with other
uses of [], but even then, quantification remains implicit for commands (e.g.,
S0, S1) and verbal for propositions (e.g., X).

A few tacit conventions further smooth the propositional style. Readers
may have noticed that, as a mnemonic aid, we write wa cp, r c, and t c for
propositional-style expressions (dummies hidden), but subscript, as in Rc and
Tc, for predicative-style expressions. Other conventions minimize parentheses
and [[]]-quotes, for example, around subscripts. There is more, but we do not
elaborate since all this is quite secondary.

Indeed, more important are alternative formulations that are not subject
to restrictions imposed by immediate practicality, but are aimed at a broader
scope, especially unification with theories in other areas of ECE.

In such a wider context, predicates are definitely superior, as explained next.

7.1.3 Predicates and Engineering Formalisms. Consider, for instance,
Hoare-triples as (parameterized) predicates on predicates, for example, of type
pred S × C × pred S → B, and Term : C → pred S → B, with image definitions
given by

Definition 7.1. (a) {A} c {P} ≡ ∀ �s • ∀ s′ • Rc (�s, s′) ⇒ A �s ⇒ P s′ ;
(b) [A] c [P] ≡ {A} c {P} ∧ Termc A ;
(c) Termc A ≡ ∀ �s : S . A �s ⇒ Tc

�s .

Here and in the sequel, predX = X → B for the “predicate space” over a set X .
The “pure mathematical” style (i.e., without syntactic mappings) of the cal-

culations is illustrated by reformulating the first calculation of Section 6.1
predicatively:

{A} c {P} ≡ 〈Def. {A} c {P}〉 ∀ �s • ∀ s′ • Rc (�s, s′) ⇒ A �s ⇒ P s′

≡ 〈Shunting ⇒〉 ∀ �s • ∀ s′ • A �s ⇒ Rc (�s, s′) ⇒ P s′

≡ 〈Ldist. ⇒/∧〉 ∀ �s • A �s ⇒ ∀ s′ • Rc (�s, s′) ⇒ P s′ .

(23)

A predicative style raises the abstraction level, for example, with an abstract
state space (generically written as S) and the choice of dummies not depending
on concrete program variables. This allows creating a space of abstractions (for
specifications) extending beyond behavioral descriptions (of realizations).

This view supports a strong analogy with systems modelling in electronics:
The abstract space [Lee and Varaiya 2003] is that of signals and systems as
signal transformers, the concrete space is that of electric phenomena (voltages,
currents) and circuits. The device level is comparable to assignment in programs
(involving reference to program variables).

This similarity is not just vague speculation, but extends to the formal level.
Observe first that operators like wla are replaced by genuine predicate trans-
formers (noting that, even for abstract spaces, �s, s′ remains good mnemonics):

def Wla : C → predS → predS with Wlac P s ≡ ∀ s′ : S . Rc (s, s′) ⇒ P s′ ;

def Wa : C → predS → predS with Wac P = Wlac P ∧̂ Tc.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 779

We obtain a direct formal similarity between the equations in the following list.

Wlac P s ≡ ∀ s′ : S . Rc (s, s′) ⇒ P s′

Slpc A s ≡ ∃ �s : S . Rc (�s, s) ∧ A �s
Rspd f x = �x : I . Gd (�x, x) · f �x (linear d)
Rspd f t = �t : R . hd (t − �t) · f �t (for LTI d)

F f ω = t : R . exp(− j · ω · t) · f t

The first two refer to our current topic (and can be generalized). The third
expresses for a linear system d with Green’s function Gd the “response” Rspd f
to “input” f . By convention, f = ∫ b

a f x · d x if D f is the interval from a to b.
A mechanics example: If d is a beam and f is a continuous load distribution,

then in the usual first order approximation, Rspd f x is the shearing force,
bending moment, slope, or deflection at position x if we take Gd (�x, x) to be the
shearing force, bending moment, slope, or deflection (respectively) at position
x for unit point load in �x.

Closer to home: with signals as functions over time domain R (particular-
izing the interval of interest I) and systems as signal transformers of type6

sigC → sigC, the response of linear system d to input signal f is Rspd f . As-
suming time independence yields the fourth equation, where hd is the impulse
response of d .

The last equation obviously expresses the Fourier transform.

7.1.4 Conventions Regarding Predicates and Relations. For any set S, in
this context called the base set, predS = S → B and relS = predS2 . For the
reasons given earlier, we often use , , , , , instead of ¬, ⇒̂, ∧̂, ∨̂,
S • 0, S • 1, respectively.

For predicates P and Q with common base set,7 we define Q P ≡
∀ (Q P), read “Q is at least as strong as P” or “Q refines P”. Clearly,
Q P ≡ Q = P Q .

In saying “Q refines P ,” we borrow terminology from the refinement calculus,
for which an overview is given in Hancock [2004] and some of the schools of
thought are represented by Back and von Wright [1992], Hehner [1999, 2004],
Morgan [1994], and Morris [1987].

Still, some subtle differences due to independent developments must be con-
sidered, for example, in the refinement literature some would write P Q (“P
is refined by Q”) instead. Since ⇒ coincides with ≤ on B, we prefer Q P ≡
∀ s : S . Q s ≤ P s, or with sets Q P ≡ {s : S | Q s} ⊆ {s : S | P s}, which aligns
the various ordering symbols , ≤, ⊆, � (as is convenient in a wider context).

The setgraph of a predicate P is defined by GP = {x :D P | P x}. Clearly
(assuming common base set), Q P ≡ GQ ⊆ GP and similar isomorphism
properties hold. When we use this concept, the predicates are usually relations,
for example, with base set X × Y .

7.1.5 Observations, Specifications, Refinements and Realizability. In
Q P as a refinement relation, P may be a specification (abstract, minimal

6In general, sigX = T → X for the signal space over time domain T, here T = R.
7This restriction can be lifted with proper generalizations [Boute 2002] with not needed here.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

780 • R. T. Boute

Table VII. Characterizing a One-Bit Machine

x, x ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0, 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1, 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1, 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(a) The 16 relations of type B
2 → B

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 u 0 1 d u 0 1 d u 0 1 d u 0 1 d
1 u u u u 0 0 0 0 1 1 1 1 d d d d

(b) The 16 functions of type B → {u, 0, 1, d } .

detail) and Q a realization (concrete implementation), usually with intermedi-
ate levels in between.

Often the fact that P is interpreted as saying that implements any-
thing (in a trivial but unintended way), and similarly that can be imple-
mented by anything. Theory design decisions such as choosing fixpoints are
based on such interpretations.

As argued next, a concrete view of the predicate space suggests that these
interpretations are not always appropriate, in the sense that often does not
describe any implementation. This view is based on analogies with classical
physics and systems theory, and with the use of “don’t care terms” in specifying
digital circuits [Gries and Schneider 1993; McCluskey 1965].

The principle is that a predicate describing an implementation must precisely
characterize all observable phenomena. It is always (implicitly) assumed that
the system under observation is of the considered class and that the observation
is done properly. The predicate then simply indicates that the assumption is
not satisfied.

For instance, the possible observations of signals on an ideal linear amplifier
with gain G are captured by RG (x, y) ≡ ∀ t : T . y t = G · x t for any input
signal x and output signal y . Clearly, RG �= , since for any input signal x
there is a signal y expressing the matching output, otherwise the device does
not implement any amplifier.

Here are two examples that can be elaborated more completely in a few lines.

—The One-Bit Machine. The simplest possible nontrivial system has 1 value
and 1 variable, but more enlightening is considering 2 values (say, in B) and 2
variables (say, x and x ′). All possible observations on such a system can be de-
scribed by a relation of type B

2 → B. There are 16 relations of this type, listed
in Table VII(a) as a family R : 16 → B

2 → B with Ri (x, x ′) ≡ ρ4 i (2·x+x ′),
where ρn i j is the j -th bit in the n-bit binary representation of i (column i,
row j).

Not each of these relations describes a system; which ones do depends
on the class of system considered. The one-bit machine (OBM) is the class
where x is input and x ′ is output. For every x in B, some x ′ in B is ob-
servable, unless the OBM is defective. Hence, Ri describes an OBM only

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 781

if ∀ x : B . ∃ x ′ : B . Ri (x, x ′), that is, 7 relations (columns 0, 1, 2, 3, 4, 8, 12;
R0 =) do not describe OBMs.

For OBMs, more synoptic descriptions than relations are I/O functions
of type B → {u, 0, 1, d }, with u for undefined and d for don’t care, as in
Table VII(b). The 4 functions of type B → B describe OBMs (columns 5, 6,
9, 10). The 5 remaining functions with ds express nondeterminism (as a
realization) or design freedom (as a specification). Hence, as a relation,
(column 15) is not an absurdity.

There is a close correspondence to Gries and Schneider [1993], specify-
ing circuits by propositions with I/O variables. For instance, specification
x ′ ∧ x ≡ x is equivalent to x ⇒ x ′ and corresponds to R11. Although Ri R11

for any i in {0, 1, 2, 3, 8, 9, 10, 11}, only 9 and 10 describe circuits. Specifica-
tion x ′ ≡ ¬ x ′ is , and not realizable.

In this context, realizations may involve extra variables for internal con-
nections, for instance, the data selector specification z = (x, y) s is realized
by the AND/OR circuit (u ≡ ¬ s ∧ x) ∧ (v ≡ s ∧ y) ∧ (z ≡ u ∨ v), or to avoid
hazards [McCluskey 1965], (u ≡ ¬ s ∧ x) ∧ (v ≡ s ∧ y) ∧ (w ≡ x ∧ y) ∧ (z ≡
u ∨ v ∨ w).

—The Square Machine. With state space S := N, consider the family of
relations

def R : N
′ → S2 → B with Ri (n, n′) ≡ n < i ⇒ n′ = n2.

Observe that j ≤ i ⇒ Ri R j for all (i, j) : N
′2. Proof: for any n and n′ in S,

j ≤ i ⇒ 〈Trans. ≤〉 n < j ⇒ n < i
⇒ 〈Trans. ⇒〉 (n < i ⇒ n′ = n2) ⇒ (n < j ⇒ n′ = n2).

Observe that R∞ (n, n′) ≡ n′ = n2, describing the “complete” square ma-
chine, whereas R0 (n, n′) ≡ 1 or R0 = is the “empty” one, with arbitrary
behavior over S (Ri guarantees squaring only for natural numbers smaller
than i) .

7.1.6 Structure and Pragmatics of Specifications. We place the preceding
examples in a wider context, starting with function specifications.

In set-theoretic frameworks, relations are defined as sets of pairs with func-
tions as a subcase. In other frameworks, including ours (where functions are
objects in their own right and relations are B-valued functions), such sets of
pairs are called graphs.

The graph G f of a function f is defined by G f = {x, f x | x :D f }. We also
define f ⊆ g ≡ f = g �D f , read “ f is a subfunction of g .” Note that f ⊆
g ≡ G f ⊆ Gg .

For relations, we saw that R S ≡ GR ⊆ GS , given a common base set.
Still, it would be misleading to use the set-theoretic definitions of functions (as
relations) as specification relations; this yields inclusion in the wrong direction.

A better design decision regarding relational specification for functions in
X →/ Y (→/ being defined by f ∈ X →/ Y ≡ D f ⊆ X ∧ R f ⊆ Y) is the
following.

def R : (X →/ Y) → (X × Y → B) with R f (x, y) ≡ x ∈ D f ⇒ y = f x. (24)

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

782 • R. T. Boute

The difference with graphs is highlighted by x, y ∈ G f ≡ x ∈ D f ∧ y = f x
(exercise). The idea is ensuring ∀ (x, y) : X × Y . x �∈ D f ⇒ R f (x, y), making
images of arguments outside the domain of “don’t care” values. Calculating
R f Rg yields

THEOREM 7.2. R f Rg ≡ (|Y | > 1 ⇒D g ⊆ D f) ∧ ∀ x :D f ∩ D g . f x =
g x.

The calculation starts by expanding R f Rg , shunting ⇒, then using the propo-
sitional rule (a ⇒ b) ⇒ c ≡ (¬ a ⇒ c)∧(a ⇒ b⇒ c). Further, by routine predicate
calculus ∀ (x :D g . ∃ (y : Y . y �= g x) ⇒ x ∈ D f) ∧ ∀ (x :D g . x ∈ D f ⇒ f x =
g x), noting that ∀ (x :D g . ∃ (y : Y . y �= g x) ≡ |Y | > 1) and cleaning up.

Important is the corollary for |Y | > 1 (as in all nontrivial situations):

COROLLARY 7.3. If |Y | > 1 then R f Rg ≡ g ⊆ f .

Let us explore some lessons of applying the preceding examples to programs,
and generalize the observations for function specifications to general specifica-
tions. By the circuit analogy, we say that an ante/postspecification R is realiz-
able iff ∀ �s • ∃ s′ • R (�s, s′).

Consider now Dijkstra’s guarded command language. According to the lan-
guage specification in Dijkstra [1976], the following commands are equivalent
to abort.

c′ := [[if 0 -> skip fi]] and c′′ := [[do 1 -> skip od]]

Indeed, c′ has no alternative with a satisfied guard, so the body cannot even
start, and no s′-value can be observed. This is reflected in the program equations
from Definition 6.15: Rc′ (�s, s′) ≡ 0 (so Rc′ =) and Tc′ �s ≡ 0. This does not
mean that c′ realizes : it rather means that c′ is “not a program” (nop) but a
program error, as stated in Dijkstra [1976].

Command c′′ does not terminate according to Equation (22), hence, no
s′-value can be observed, which one might express as Rc′′ = . Yet, this
would be just a convention since it does not follow from the program equa-
tions. However, a weaker requirement than realizability is the LEM, re-
quiring for any command c that ∀ �s • Tc

�s ⇒ ∃ s′ • Rc (�s, s′), implying Rc′′ = .
Even weaker than LEM is ∀ �s • Tc

�s ⇒ ∀ s′ • Rc (�s, s′) ≡ Qc (�s, s′), where Qc

is a specification as desired, possibly assigning a poststate even in case of
nontermination.

Comparing R f (x, y) ≡ x ∈ D f ⇒ y = f x from (24) with LEM and weaker
forms, the recurring pattern is the appearance of an antecedent. This matches
the observation that, in practice, most specifications are not absolute but con-
ditional, leaving design freedom (“don’t care” situations) if the condition is not
satisfied.

Assume all specifications S are conditional propositions of the form C P .
Then R S ≡ C R C P (shunting, distributivity of ⇒), so the condition
C of the specification may be exploited by all realizations (and intermediate
design levels). For predicates over some set Z , calculations similar to those for

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 783

Theorem 7.2 yield

C′ P ′ C P ≡ ∀ (z : Z¬ P . C z ⇒ C′ z) ∧ ∀ (z : ZC!C′ . P ′ z ⇒ P z). (25)

For the important subcase when Z = X × Y and C refers to X only, the r.h.s.
becomes

∀ (x : X C . ¬ ∀ (y : Y . P (x, y)) ⇒ C′ x) ∧ ∀ (x : X C!C′ . ∀ y : Y . P ′ (x, y) ⇒ P (x, y)),

showing how (25) generalizes (7.2). In particular, (C C′) ⇒ (C′ P C P)
captures the antimonotonicity j ≤ i ⇒ Ri R j from the square machine
example.

7.2 Extending the Collection of Language Constructs

7.2.1 Simple I/O. One might consider adding an input command inp v
and an output command out e. One way to express the program equations
is extending R to include sequences of inputs and outputs, for instance,
R′ : C → (S × X × Y)2 → B with

(a) for the commands thus far, R′
c ((�s, �x, �y), (s′, x ′, y ′)) ≡ Rc (�s, s′) ∧ x ′, y ′ =

�x, �y
(b) for an input command, R′

inp v ((�s, �x, �y), (s′, x ′, y ′)) ≡ s′, x ′, y ′ =
�s[

�v
�x 0, σ �x, �y
(c) for an output command, R′

out e ((�s, �x, �y), (s′, x ′, y ′)) ≡ s′, x ′, y ′ =
�s, �x, (�e >− �y).

7.2.2 Guards and Assertions. In Leavens [1995], we find a brief account of
Hesselink’s [1992] language constructs based on guards and assertions. Typical
axioms are:

Guard ?b Assertion !b
wla [[?b]] p ≡ b⇒ p wla [[!b]] p ≡ b⇒ p
wa [[?b]] p ≡ b⇒ p wa [[!b]] p ≡ b ∧ p .

Simple reverse engineering by Definitions 6.1 and 6.3 yields the program
equations:

Guard ?b Assertion !b
R?b (s, s′) ≡ b ∧ s′ = s R!b (s, s′) ≡ b ∧ s′ = s
T?b s ≡ 1 T!b s ≡ b.

This is left as an exercise, as are the proofs for the program equivalences skip =
?1 = !1 as well as miracle = ?0 (not obeying LEM) and abort = !0. Just for
completeness: The program equations for havoc [Dijkstra and Scholten 1990]
are r [[havoc]] ≡ 1 and t [[havoc]] ≡ 1.

These two examples present only one view. Variants of guards and assertions
have been used under various names in Back and von Wright [1998], De Bakker
[1980], Morgan [1994], Morris [1987], Nelson [1989], and other sources. Also,
terminology about abort, miracle, etc. is not uniform throughout the literature;
for instance, in Hoare and Jifeng [1998] “abort” (or “chaos”) corresponds to

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

784 • R. T. Boute

Rc = , and “miracle” to Rc = , without reference to a termination equation
such as Tc.

7.2.3 Choice and Nondeterminism. Hesselink defines a choice operator
by the axioms

wla [[c′ c′′]] p ≡ wla c′ p ∧ wla c′′ p and wa [[c′ c′′]] p ≡ wa c′ p ∧ wa c′′ p,

whence the program equations r [[c′ c′′]] ≡ r c ∨ r c′ and t [[c′ c′′]] ≡ t c ∧ t c′.
Generalization to i : I . ci assuming nonempty I is immediate. Together with
guards, this synthesizes the familiar conditional: If b then c′ else c′′ fi =
(b? ; c′) (¬b? ; c′′).

The nondeterminism of is known as demonic. Let us write � for as
a matching symbol for the angelic counterpart ∇ defined by wa [[c′∇c′′]] p ≡
wa c′ p ∨ wa c′′ p.

Expanding wla cp ≡ wla c′ p ∨ wla c′′ p by (6.1) does not yield an expression
for r c, mainly because ∀ P ∨∀ Q ⇒ ∀ (P ∨̂ Q). The closest is r c ≡ r c′∧r c′′, yield-
ing wla c′ p∨wla c′′ p � wla cp. Similarly, in expanding wa cp ≡ wa c′ p∨wa c′′ p
by (6.3) the distributivity of ∨/∧ generates undesirable “cross modulation prod-
ucts.” Taking t c ≡ t c′ ∨ t c′′ gets only wa c′ p ∨ wa c′′ p � wa cp.

Conversely, the pair of equations r c ≡ r c′ ∧ r c′′ and t c ≡ t c′ ∨ t c′′ cannot be
expressed via proposition or predicate transformers.

The fact that angelic nondeterminism has no counterpart as program equa-
tions does not prevent using it in specifications in the sense that wa c′ p �
wa [[c′∇c′′]] p and wa c′′ p � wa [[c′∇c′′]] p, viewing � as propositional refinement.

Thorough treatments of combining specifications are given from a lattice-
theoretic perspective in Back and von Wright [1992] and in Leino and Manohar
[1999].

7.3 Calculational Semantics in Relation to Other Theories

7.3.1 Hehner’s Practical Theory of Programming. As shown in Table VI,
commands in Hehner’s [2004] theory stand for propositions that can be used
directly in calculation without any special semantic theory. Here are some notes
on the style of use.

The style is clearly propositional. The full language expresses specifications:
p and q in Table VI may be any propositions. Flexibility is illustrated by p ∨ q
expressing nondeterministic choice. A program is a specification where all parts
are executable.

Program derivation or verification uses refinement: q is refined by p iff q ⇐ p.
For instance, x′ > x is refined by x := x + 1, which stands for x′ = x+1∧r ′ = r,
where r represents the other variables. Repetition is covered by taking

q ⇐ while b do p to stand for q ⇐ if b then (p ; q).

A drawback of language constructs directly standing for propositions is that
no other semantics can be attached, for example, termination. However,
Hehner [1999] deems total correctness inappropriate and analyzes termina-
tion by inserting a time variable, as in

q ∧ t ′ < ∞ ⇐ if b then (p ; t := t + 1 ; q).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 785

Table VIII. Anteconditions in the Dijkstra Scholten Formalism and by Program Equations

Dijkstra Scholten Predicate Calculus Formulation with Program Equations

Axioms for wla and wa Definition: wla cp ≡ ∀ s′ • Rc (s, s′) ⇒ p′
Property: wa cp ≡ wla cp ∧ wa c 1 Definition: wa cp ≡ wla cp ∧ Tc s
Definition: LEMc ≡ [wa c 0 ≡ 0] Definition: LEMc ≡ ∀ �s • Tc

�s ⇒ ∃ s′ • Rc (�s, s′)

This brief explanation captures the essence of the language in its full sim-
plicity and generality. In many ways, the language is superior to any other
(imperative) language, and arguably should be the basis for any introduction
to imperative programming.

The many derivations in Section 6 show that calculational semantics is em-
inently suitable for reasoning about specifications and programs in Hehner’s
language.

7.3.2 Dijkstra and Scholten’s Predicate Calculus. Section 6 shows how
calculational semantics (re)discovers the crucial results from Dijkstra and
Scholten [1990], in a few pages, with all nontrivial proofs. Some readers may
even find this number of example calculations excessive, but as in Dijkstra and
Scholten [1990], each derivation tells something extra beyond the mere result.

The epistemological importance of theory compression is discussed in Bass
[2003]. Still, Section 6 focuses on program semantics whereas Dijkstra and
Scholten [1990] additionally provides a theory on predicate transformers (Chap-
ter 6) and extremal solutions to equations (Chapter 8). Together with the very
readable style in which the book is written, this makes it required reading in
any serious computing curriculum.

A basic difference with our approach is in the rationale. The prescriptive
view (see Section 7.1) is very explicit in its aim in Dijkstra and Scholten [1990]
to “relegate what used to be considered the subject matter to the secondary
rôle of (ignorable) model.” Yet, this rôle is not altogether ignorable, given the
many operational elements covered by words in Dijkstra and Scholten [1990]
when defining and reasoning about ap-conditions. This, as well as other con-
siderations from Section 7.1, explains why we prefer the descriptive view, and
to derive rather than postulate.

Resulting similarities and differences in the formulations are shown in
Table VIII. Derived properties and ramifications have already been discussed in
Section 6.1. Also important is that calculational semantics makes many argu-
ments that are presented verbally in Dijkstra and Scholten [1990] amenable to
formal calculation. When operational interpretations of formulas are desired,
these are simple and direct via program equations.

7.3.3 Hoare and Jifeng’s Unifying Theories of Programming. The objective
of Hoare and Jifeng [1998] is similar to ours, namely the design of unifying the-
ories. Here we point out some technical issues, using our notational conventions
to bypass nonessential differences.

As in Hehner’s theory, commands are propositions with the drawback pre-
viously mentioned. In Hoare and Jifeng [1998], Hoare-triples are defined by
{a} c {p} ≡ [c ⇒ �a ⇒ p′] (partial correctness), and “weakest preconditions” are

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

786 • R. T. Boute

defined via composition as wp cp ≡ ¬ (c ; ¬ p). The property wp c 1 ≡ 1 is
noted in Hoare and Jifeng [1998] as a discrepancy with Dijkstra [1976], but
is easily explained in calculational semantics by observing that this wp corre-
sponds to wla, not wa.

Repetition is studied by fixpoints. With the weakest fixpoint, a nonterminat-
ing command evaluates to 1. This is unwanted since, if 1 is nonterminating,
then so are 1 ; c and c ; 1 (any c), hence 1 ; c ≡ 1 and c ; 1 ≡ 1, which not all c
satisfies.

With the strongest fixpoint, nontermination evaluates to 0, which is more
acceptable, since it is a 2-sided zero for composition. Still, Hoare and Jifeng
[1998] express concerns about 0 S which we hope are alleviated, perhaps
eliminated, by the discussion in Section 7.1.

We conclude by noting that Hoare and Jifeng [1998] addresses this con-
cern differently, namely, by characterizing commands c such that 1 ; c ≡ 1
and c ; 1 ≡ 1 (hence clearly c ≡/ 0). This is achieved by so-called designs.
Let ok be a distinguished variable meant to indicate that a program has
started, and ok′ indicating that it has finished. A design is a (command)
proposition of the form c b, standing for ok ∧ c ⇒ ok′ ∧ b. By redefin-
ing assignments as designs, and observing that applying program combina-
tors (choice, conditional, composition) to designs yields designs, programs be-
come designs. So-called healthiness conditions ensure the required algebraic
properties.

7.3.4 R. Dijkstra’s Computation Calculus. In the spirit of reducing the
formalization gap, R. Dijkstra proposed computation calculus [Dijkstra 1998],
henceforth called CC.

We prefer CC over an earlier variant [Dijkstra 1994] because it needs no
“infinity” state, but instead elegantly incorporates infinite computations into
the definition of composition.

Here, we elaborate it as an example (a) to show how to apply calculational
semantics to a theory whose formulas look quite different from those derived
thus far; and (b) as a bonus, to calculate very appealing system equations for
computations (in the CC sense).

As in Boute [1988, 2003], we define n = {m : N | m < n} for any n : N
′,

where N
′ := N ∪ ι ∞. Further, S ↑ n (with shorthand Sn) is the set of sequences

of length n over set S (formally: S ↑ n = n→ S) for any n : N
′. Obviously,

S0 = ι ε and S∞ = N → S. As expected, we also define S∗ = ⋃
n : N . Sn and

S+ = ⋃
n : N>0 . Sn and Sω = ⋃

n : N
′ . Sn.

An operator on sequences is shift (σ) with σ x = n : (# x − 1) . x (n + 1) for
nonempty sequence x. Redundant, but for the sake of symmetry we define take
(%) and drop (&) by f % n = x<n and f & n = σ n x for any x : Sω and n : (# x + 1).
Useful properties are # (f % n) = n and # (f & n) = # f − n. Recall also that
τ s = 0 �→ s.

With these preliminaries, we present CC in computational semantics. Auxil-
iary results are just mentioned for later use; for the main result the calculation
is shown.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 787

Given state space S, we define computations as elements of C := S
+ ∪ S

∞.
Specifications and behaviors are expressed by computation predicates of type
CP := C → B. For later use, let T := C • 1 en F := C • 0. The central operator for
this theory is composition ; : CP2 → B with, for arbitrary C′, C′′ : CP2 and
γ : C,

(C′ ; C′′) γ ≡ (# γ = ∞ ∧ C′ γ) ∨ ∃ n :D γ . C′ (γ % (n + 1)) ∧ C′′ (γ & n).

By predicate calculus one can show that composition is associative and that
the predicate 1l : CP with 1lγ ≡ # γ = 1 is a 2-sided, and hence unique
unit element. Convention: Composition has precedence over and , hence
C C′ ; C′′ = C (C′ ; C′′).

States are represented by sequences of length 1 (satisfying 1l), for exam-
ple, γα with γα = τ γ0 for initial states and γω with γω = τ γ# γ−1 if # γ �= ∞
for final states. State predicates are predicates of type SP := {P : CP | P 1l}
(observing that P 1l ≡ P = P 1l). Predicate calculus shows that (i)
(P ; T) γ ≡ P γα, (ii) (T ; P) γ ≡ # γ �= ∞ ⇒ P γω, (iii) P ; C = P ; T C, and
(iv) C ; P = C T ; P for any P : SP and C : CP.

Defining the eternity predicate E := T ; F and the bounded predicate
B := ¬ E, clearly, E γ ≡ # γ = ∞ and B γ ≡ # γ �= ∞. Now, R. Dijkstra’s

definition of Hoare-triples amounts to the following: For any A en P in SP en
C in CP,

{A} C {P} ≡ A ; C T ; P (26)

[A] C [P] ≡ A ; C B ; P (27)

A calculation example within this theory is deriving a formula expressing
[A] C [P] as the conjunction of {A} C {P} and some termination formula (to be
discovered).

[A] C [P] ≡ 〈Def. triple (27)〉 A ; C B ; P
≡ 〈Prop. (iv) above〉 A ; C B T ; P
≡ 〈Left distr. / 〉 A ; C B ∧ A ; C T ; P
≡ 〈Def. triple (26)〉 A ; C B ∧ {A} C {P}.

Hence, [A] C [P] ≡ A ; C B ∧ {A} C {P}; the termination formula is A ; C B.
A calculation example spanning across theories is the “reverse engineering”

of systems equations, the abstract form of the earlier program equations, cap-
turing CC. Specifically, we calculate R : CP → S

2 → B en T : CP → S → B to
satisfy

{A} C {P} ≡ ∀ (�s, s′) : S
2 . RC (�s, s′) ⇒ A (τ �s) ⇒ P (τ s′) (28)

A ; C B ≡ ∀ �s : S . A (τ �s) ⇒ TC
�s. (29)

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

788 • R. T. Boute

These are variants of Definition 7.1, with sequences of length one replacing
states. Calculating:

A ; C B ≡ 〈Prop. (iii)〉 A ; T C B
≡ 〈Def. 〉 ∀ γ : C . (A ; T C) γ ⇒ B γ

≡ 〈Def. 〉 ∀ γ : C . (A ; T) γ ∧ C γ ⇒ B γ

≡ 〈Prop. (i)〉 ∀ γ : C . Aγα ∧ C γ ⇒ B γ

≡ 〈Shunt ∧〉 ∀ γ : C . Aγα ⇒C γ ⇒ B γ

≡ 〈γα = τ γ0〉 ∀ γ : C . A (τ γ0) ⇒C γ ⇒ B γ

≡ 〈One-pt. rule〉 ∀ γ : C . ∀ �s : S . �s = γ0 ⇒A (τ �s) ⇒C γ ⇒ B γ

≡ 〈Shunt ⇒〉 ∀ γ : C . ∀ �s : S . A (τ �s) ⇒C γ ⇒�s = γ0 ⇒ B γ

≡ 〈Swap ∀〉 ∀ �s : S . ∀ γ : C . A (τ �s) ⇒C γ ⇒�s = γ0 ⇒ B γ

≡ 〈Ldst. ⇒/∀〉 ∀ �s : S . A (τ �s) ⇒∀ γ : C . C γ ⇒�s = γ0 ⇒ B γ.

So, defining TC
�s ≡ ∀ γ : C . C γ ⇒γ0 = �s ⇒# γ �= ∞ satisfies (29). Similarly

expanding {A} C {P} yields ∀ γ : C . C γ ∧ B γ ⇒Aγα ⇒P γω halfway, and finally,
∀ (�s, s′) : S

2 . ∃ (γ : C . C γ ∧ B γ ∧ �s = γ0 ∧ s′ = γ# γ−1) ⇒A (τ �s) ⇒P (τ s′). Hence,

RC (�s, s′) ≡ ∃ γ : CC . γ0 = �s ∧ # γ �= ∞ ∧ γ# γ−1 = s′

TC
�s ≡ ∀ γ : CC . γ0 = �s ⇒# γ �= ∞

satisfies (28) and (29). Both equations have a very direct intuitive
interpretation.

The weakest antecondition operator can be expressed as follows. Let
• : SP → CP with •P = P ; T. Then A : CP → SP and E : CP → SP are defined
by

•P C ≡ P AC and E C P ≡ C •P.

Proving uniqueness is easy; existence is shown by the explicit equations

AC γ ≡ 1l γ ∧ ∀ γ ′ : C . γ ′
0 = γ0 ⇒C γ ′ and E C γ ≡ 1l γ ∧ ∃ γ ′ : C . γ ′

0 = γ0 ∧ C γ ′.

We find Wla C P = A (C T ; P), TermC = A (C B), Wa C P = A (C
B ; P).

7.3.5 Comparing Some Design Decisions About the Mathematical Formal-
ism. A few comments on formalism design may avoid confusion due to possibly
subtle differences.

(a) Our formalism deviates less than most semantic theories from common
conventions in applied mathematics. This bonus emerged a posteriori, since in
the design suitability for expression and calculation, and freedom from ambi-
guities and from inconsistencies were paramount.

Common operators have their familiar meaning and properties. By contrast,
in Dijkstra and Scholten [1990] operators inherently extend to structures in
the sense that, with + as an example8, (x + y).n = x.n + y .n. Even x = y does
not denote a Boolean value, but rather a function with (x = y).n =– x.n = y .n.
Expressions that seem like formulas in common mathematics, for example,
x = y and X ∧ Y ⇒ X , are Boolean structures. A Boolean structure X being

8We use boldface for “standard” +, =. The dot in function application is Dijkstra’s notation.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 789

true everywhere is written [X]. Most formulas have this form, for example,
[[X] ∨ Y] ≡ [X ∨ [Y]].

Note that still others [Hoare and Jifeng 1998] use [] for universal quantifi-
cation over “all” (e.g., state) variables, yielding deceptively (yet seldom danger-
ously) similar-looking formulas.

For reasons explained in Boute [2003], we prefer the selectivity of an ex-
plicit extension operator such as ̂ from Definition (3). Since in our formal-
ism structures are functions, we write f =̂ g for point-by-point equality, so
f = g ≡ D f = D g∧∀ (f =̂ g) expresses “equality everywhere” for functions.9

As in common mathematics, we always let “=” denote “equality everywhere,” in
the spirit of Recorde’s justification for writing it with two parallel lines “bicause
noe 2 thynges can be moare equalle” [Recorde 1557].

(b) Despite the similarity between our conventions for the propositional style
and Hehner’s [2004] theory some design decisions are necessarily different.
Indeed, Hehner considers a specific language, whereas our purpose is deriving
theories for other languages as well, requiring more generality in fundamental
and technical aspects.

As mentioned, simply identifying language constructs with propositions pre-
cludes attaching other semantics to constructs, which is useful for certain the-
ories. It also makes variable bindings less uniform even for similar-looking
expressions; for instance, the free occurrences of variables in p ∨ q are those
from both p and q, but in p ; q some occurrences from p and q are hidden. This
would be confusing in a general formalism.

Hehner uniquely uses the propositional style, handling “arguments” by
name, not position. This is helpful for individual programs where names are
the familiar items. Yet, in developing general theories, functions, and hence,
predicates can be used as higher-order objects in a cleaner way than expres-
sions or propositions. They also handle arguments by position, which is less
biased (more abstract) than names.

As in Gries and Schneider [1993], we decided using both styles is appropri-
ate: functions and relations for generality, expressions and propositions when
matching the style of a given theory.

7.4 Epilogue: Functional Predicate Calculus in Analysis

A small example shows how the functional predicate calculus together with
generic functionals contributes to unifying continuous and discrete mathemat-
ics. It presents a calculational solution to a problem from a well-known textbook
on analysis [Lang 1983].

As in other areas, we found that formulating the relevant concepts via predi-
cates is more elegant than via sets. Hence, we express adjacency by a predicate
transformer.

def ad : (R → B) → (R → B) with ad P v ≡ ∀ ε : R>0 . ∃ x : RP . |x − v| < ε

9These f and g may contain free variables, for example, as first applications of higher-order

functions.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

790 • R. T. Boute

The usual concepts of open and closed sets are expressed by predicates on
predicates.

def open : (R → B) → B with
open P ≡ ∀ v : RP . ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒P x

def closed : (R → B) → B with closed P ≡ open (¬ P)

The problem selected from the exercises in Lang [1983] is proving the closure
property closed P ≡ ad P = P . Here is the calculation (using some more rules
from Boute [2002, 2006] and generic operators from Boute [2003])

closed P
≡ 〈Def. closed〉 open (¬ P)

≡ 〈Def. open〉 ∀ v : R¬ P . ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒¬ P x
≡ 〈Trading sub ∀〉 ∀ v : R . ¬ P v ⇒∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒¬ P x
≡ 〈Cntrps., twice〉 ∀ v : R . ¬ ∃ (ε : R>0 . ∀ x : R . P x ⇒¬ (|x − v| < ε)) ⇒P v
≡ 〈Duality, twice〉 ∀ v : R . ∀ (ε : R>0 . ∃ x : R . P x ∧ |x − v| < ε) ⇒ P v
≡ 〈Def. ad〉 ∀ v : R . ad P v ⇒ P v
≡ 〈P v ⇒ ad P v〉 ∀ v : R . ad P v ≡ P v (proving P v ⇒ ad P v is near-trivial)

By “contrapositive” we mean p ⇒ ¬ q ≡ q ⇒ ¬ p. Observe the similarity be-
tween this calculation and the other calculations in this article, especially those
like (7.1.3).

It is hardly exaggerated to say that program semantics and mathematical
analysis are just applications of predicate calculus, in an even more direct and
practical way than quantum mechanics is often said to reduce chemistry to
mathematics.

The style breach between the formality of calculations with derivatives and
integrals on one hand, and the informality of the underlying logical arguments
as deplored in Taylor [2000] on the other hand, has been overcome. The re-
sult appears to be removed only a very short distance (if any) away from the
realization of Leibniz’s dream [Dijkstra 2000].

8. CONCLUSIONS

We have demonstrated how the calculational approach helps in deriving theo-
ries and in discovering or elucidating semantic issues where intuitive consid-
erations are uncertain, misleading, or otherwise inadequate.

Program equations at the same time provide the simplest possible and in-
tuitively most satisfying description of program behavior, and a suitable basis
for calculating more abstract theories in a convenient way. In passing, we have
shown how a well-documented inadequacy of purely relational formulations
of program behavior can be overcome by simply adding a separate equation
expressing guaranteed termination.

We have shown the relationship to some other theories and extensions, and
justified the major design decisions.

All this was done in a formalism that is equally suitable for continuous and
discrete mathematics. This makes acquiring proficiency in formal calculation
with predicates, quantifiers, and generic functionals a worthwhile intellectual
investment.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 791

Finally, we remark that during the past decade, many interesting variants
or alternatives for axiomatic semantics and program derivation have been pro-
posed, such as those referenced along the way in this article. Sadly, these have
not yet found their way into most computing curricula, although they are suffi-
ciently mature for that purpose since they represent valuable insights resulting
from decades of research.

Of all these, only a few were discussed in some detail here, but the results
obtained thus far indicate that our approach can similarly incorporate others
in the calculational unification as well, thereby lowering the threshold for their
dissemination, further emphasizing common principles, and facilitating com-
parison.

ACKNOWLEDGMENTS

The author is grateful to Eric Hehner for the enlightening discussions on his
approach to programming theory. He also wishes to thank the anonymous re-
viewers for many useful remarks that helped in improving this article and for
pointers to other sources with very exciting material on related topics.

REFERENCES

BACK, R.-J. 1983. A continuous semantics for unbounded nondeterminism. Theor. Comput.
Sci. 23, 2, 187–210.

BACK, R.-J. AND VON WRIGHT, J. 1992. Combining angels, demons and miracles in program speci-

fications. Theor. Comput. Sci. 100, 2, 365–383.

BACK, R.-J. AND VON WRIGHT, J. 1998. Refinement Calculus: A Systematic Introduction. Springer,

New York.

BACKHOUSE, R. 2002. Galois Connections. Number 7 in Programming Algebra. Univ. of Notting-

ham. http://www.cs.nott.ac.uk/~rcb/G53PAL/G53PAL.html.

BASS, H. 2003. The Carnegie initiative on the doctorate: The case of mathematics. Notices of the
AMS 50, 7 (Aug.), 767–776.

BOITEN, E. AND MÖLLER, B. 2002. 6th international conference on mathematics of program con-

struction. Conference announcement: http://www.cs.kent.ac.uk/events/conf/2002/mpc2002.

BOUTE, R. 1988. Systems semantics: Principles, applications and implementation. ACM Trans.
Program. Languages Syst. 10, 1 (Jan.), 118–155.

BOUTE, R. 1993. Funmath illustrated: A declarative formalism and application examples. Declar-

ative Systems Series 1, Computing Science Institute, University of Nijmegen.

BOUTE, R. 2002. Functional mathematics: A unifying declarative and calculational approach to

systems, circuits and programs — Part I. Ghent University. Course notes.

BOUTE, R. 2003. Concrete generic functionals: Principles, design and applications. In Generic
Programming, J. Gibbons and J. Jeuring, eds. Kluwer Academic, Hingham, Mass, 89–

119.

BOUTE, R. 2005. Functional declarative language design and predicate calculus: A practical ap-

proach. ACM Trans. Program. Languages Syst. 27, 5 (Sept.) 988–1047.

COHEN, E. 1990. Programming in the 1990’s: An Introduction to the Calculation of Programs.

Springer, New York.

DE BAKKER, J. W. 1980. Mathematical Theory of Program Correctness. Prentice-Hall, Upper Sad-

dle River, N. J.

DEAN, C. N. AND HINCHEY, M. G. 1996. Teaching and Learning Formal Methods. Academic Press,

London.

DIJKSTRA, E. W. 1976. A Discipline of Programming. Prentice-Hall, Upper Saddle River, N. J.

DIJKSTRA, E. W. 2000. Under the spell of Lcibniz’s dream. Technical Note EWD1298.

http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1298.pdf.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

792 • R. T. Boute

DIJKSTRA, E. W. AND SCHOLTEN, C. S. 1990. Predicate Calculus and Program Semantics. Springer,

New York.

DIJKSTRA, R. M. 1994. Relational calculus and relational program semantics. Computing Science

Reports CS-R9408, Dept. of Computer Science, University of Groningen.

DIJKSTRA, R. M. 1998. Computation calculus: Bridging a formalization gap. In Proceedings of
the Conference Mathematics of Program Construction. LNCS, vol. 1422. Springer, New York,

151–174.

GORDON, M. 2003. Specification and Verification I. University of Cambridge.

http://www.cl.cam.ac.uk/Teaching/mjcg/Lectures/SpecVer1/Notes03/Notes.pdf.

GRIES, D. 1996. The need for education in useful formal logic. IEEE Computer 29, 4 (Apr.), 29–30.

GRIES, D. AND SCHNEIDER, F. B. 1993. A Logical Approach to Discrete Math. Springer, New York.

HANCOCK, P. 2004. Refinement calculus: Some references and pointers. Technical note.

http://homepages.inf.ed.ac.uk/v1phanc1/RC-bib.pdf.

HEHNER, E. 1999. Specifications, programs and total correctness. Sci. Com-
put. Program. 34, 3 (July), 191–205. Original version (1998) also on the web:

http://www.cs.toronto.edu/~hehner/SPTC.pdf.

HEHNER, E. 2004. A Practical Theory of Programming, 2nd ed. Springer, New York.

http://www.cs.toronto.edu/~hehner/aPToP/.

HESSELINK, W. H. 1992. Programs, Recursion, and Unbounded Choice. Cambridge, New York.

HOARE, C. A. R. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10 (Oct.),

576–580, 583.

HOARE, C. A. R. AND JIFENG, H. 1998. Unifying Theories of Programming. Prentice-Hall, Upper

Saddle River, N. J.

LAMPORT, L. 2002. Specifying Systems. Addison-Wesley, Reading, Mass.

LAMPORT, L. 2004. All I really need to know I learned in high school. Proceed-
ings of the 2004 CoLogNET/FME Symposium on Teaching Formal Methods.

http://www.intec.UGent.be/groupsites/formal/Sympos2004/Sympos2004.htm.

LANG, S. 1983. Undergraduate Analysis. Springer, Berlin.

LEAVENS, G. 1995. Weakest preconditions. Course notes Semantics Program. Languages (Com S
641). http://www.cs.iastate.edu/~leavens/ComS641-Hesselink.html.

LEE, E. A. AND MESSERSCHMITT, D. G. 1998. Engineering—An education for the future. IEEE Com-
puter 31, 1 (Jan.), 77–85. http://www.gigascale.org/pubs/5/computermag.pdf.

LEE, E. A. AND VARAIYA, P. 2003. Structure and Interpretation of Signals and Systems. Addison-

Wesley, Reading, Mass.

LEINO, K. R. M. AND MANOHAR, R. 1999. Joining specification statements. Theor. Comput.
Sci. 216, 1–2 (Mar.), 375–394.

LOECKX, J. AND SIEBER, K. 1984. The Foundations of Program Verification. Wiley-Teubner.

MCCLUSKEY, E. J. 1965. Introduction to the Theory of Switching Circuits. McGraw Hill, New York.

MEYER, B. 1991. Introduction to the Theory of Programming Languages. Prentice Hall, Upper

Saddle River, N. J.

MORGAN, C. 1994. Programming from Specifications, 2nd ed. Prentice Hall, Upper Saddle River,

N. J.

MORRIS, J. M. 1987. A theoretical basis for stepwise refinement and the programming calculus.

Sci. Comput. Program. 9, 3 (Dec.), 287–306.

NELSON, G. 1989. A generalization of Dijkstra’s calculus. ACM Trans. Prog. Lang. Syst. 11, 4

(Oct.), 517–561.

PLOTKIN, G. D. 1980. Dijkstra’s predicate transformers and Smyth’s powerdomains. In Abstract
Software Specifications, D. Björner, ed. LNCS, vol. 86. Springer, New York, 527–583.

RAVAGLIA, R., ALPER, T., ROZENFELD, M., AND SUPPES, P. 1999. Successful pedagogical applications

of symbolic computation. In Computer-Human Interaction in Symbolic Computation, N. Kajler,

ed. Springer, New York. http://www-epgy.stanford.edu/research/chapter4.pdf.

RECORDE, R. 1557. The Whetstone of Witte. http://www-gap.dcs.st-and.ac.uk/~history/

Mathematicians/Recorde.html.

TAYLOR, P. 2000. Practical Foundations of Mathematics, 2nd printing. Cambridge Studies in Ad-

vanced Mathematics, no. 59. Cambridge University Press, New York. Comment about chapter 1

of this book on http://www.dcs.qmul.ac.uk/~pt/Practical Foundations/html/s10.html.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

Calculational Semantics: Deriving Programming Theories • 793

WIGNER, E. 1960. The unreasonable effectiveness of mathematics in the natural sciences.

Comm. Pure Appl. Math. 13, I (Feb.), 1–14. http://nedwww.ipac.caltech.edu/level5/March02/

Wigner/Wigner.html.

WINSKEL, G. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT

Press, Cambridge, Mass.

Received May 2004; revised January 2005; accepted February 2005

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.

