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1. INTRODUCTION

Motivation (a): Declarative Expression. Automation seemingly has reduced
programming to menu selection and mouse clicking. Yet, such Nintendo-style
environments have severe limitations. They provide no adequate way to ex-
press formal specification (which needs abstraction) and restrict design models
to those supported by the tools. This is especially inconvenient for hybrid sys-
tems [Alur et al. 1996; Buck et al. 1994; Vaandrager and van Schuppen 1999],
for example, by imposing an algorithmic view on systems that are better mod-
elled by equations [Boute 1991], as in physics.

So, in reality, the main design issues have just shifted to a higher abstraction
level. Programming is not only writing programs to instruct computers (direct
programming), but also specifying and reasoning about the task in the problem
domain (which may be anything) and in the implementation domain (languages,
semantics). Languages covering all these indirect programming issues must be
declarative, which means at least: able to express what is required, rather than
how to realize it.

Definitions of declarativity often come with the warning [Illingworth et al.
1989; Rechenberg 1990] that languages for direct programming, including func-
tional and logic ones, fall short of this criterion. For instance, to express sorting,
such languages require choosing an algorithm, so they are essentially algorith-
mic. Such overspecification can be avoided in declarative formalisms.

As argued in Rushby et al. [1998], declarative languages should not be re-
stricted by executability concerns but must also include quantification, in a
practical, convenient form [Gries 1996a; Parnas 1993].

Motivation (b): Practical Calculation Rules. Beside software engineering
[Page 2000], programming languages constitute the main de facto practical
application area of predicate logic, namely, in describing and analyzing the var-
ious language-oriented formalisms and theories [Dijkstra and Scholten 1990;
Gries and Schneider 1993; Meyer 1991; Tennent 1991; Winskel 1993]. Yet, with
few exceptions [Dijkstra and Scholten 1990; Gries and Schneider 1993; Parnas
1993], even there the logic is not really used as a calculus, but loosely, just for
descriptive purposes.

In proofs and derivations, quantified formulas are handled on a “see what
I mean” basis, making quantifiers mere abbreviations for “there exists” and
“for all” in natural language. Taylor [2000] calls this syncopation and rightly
observes that it often obscures the logical structure of the arguments in other
areas of mathematics as well. Thus, predicate logic is used far below its potential
as a practical intellectual tool to assist reasoning [Gries 1996a]. Indeed, formal
calculation, guided by the shape of the formulas, has the invaluable benefit of
letting the symbols do the work (“Ut faciant opus signa” [Boiten and Möller
2002]).

Of course, automated tools [Rushby et al. 1998; Paulson 2001] are also for-
mal. However, it is at least as rewarding to exploit formality in formalisms for
human communication and reasoning, since the “parallel” syntactic intuition
fostered by formal calculation proves extremely useful, especially when explor-
ing (new) areas where traditional semantic intuition is clueless, uncertain, or

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



990 • Raymond Boute

still in the development stage. This is tacitly taken for granted in classical
applied mathematics, for example, (hand) calculation with derivatives and in-
tegrals is essentially formal and trouble-free, but in other areas similar fluency
is rare.

Indeed, common mathematical conventions are strong in Algebra and Anal-
ysis (e.g., rules for

∫
in every introductory Analysis text), weaker in Discrete

Mathematics (e.g., rules for
∑

only in very few texts [Graham et al. 1994]),
and poor in Predicate Logic (e.g., disparate conventions for ∀ and ∃, rules in
most logic texts not suited for practice). These relative strengths are inversely
proportional to the needs in CS and programming.

The main cause is insufficient attention to calculation rules. Even excellent
texts on logic [Cori and Lascar 2000; Mendelson 1987] present predicate logic
only as a proof- and model-theoretic topic, and with rules so impractical that the
effort is abandoned after the first few chapters, reverting to an informal style
for the remainder. Using predicate logic formally in everyday practice requires
a calculus with a comprehensive collection of rules [Gries and Schneider 1993]
capturing recurrent patterns that otherwise have to be spelled out in detail
every time.

There is considerable agreement [Dijkstra 1992; Gries and Schneider 1993;
Parnas 1993] that in any language design to solve the unsatisfactory state of
affairs, the calculation rules must be the prime criterion, to the extent that
calculations can be guided by the shape of the expressions.

Relation to Other Approaches. To achieve these goals, some authors advo-
cate total redesign [Dean and Hinchey 1996; Dijkstra and Scholten 1990; Gries
1996a], even at the cost of compatibility with the rest of mathematics.

Our design has the same priorities, yet salvages common conventions better
than one might expect. Orthogonal combination of just four constructs avoids
the defects, yet adds simple formal calculation rules and new, surprisingly flex-
ible forms of expression.

The approach to predicate calculus is practical in many ways. It extends
the concept of functionals familiar from applied mathematics and engineering,
and embeds logic in mathematics as arithmetic restricted to {0, 1}. Its focus is
designing rules needed for actual use rather than the technicalities expounded
in logic texts. Quantifiers ∀ and ∃ are predicates over predicates, extend ∧ and
∨ in a simpler way than

∑
extends +, and have clear rules. This is very close to

Leibniz’s ideal of a true logic calculus [Dijkstra 2000], invalidating the prejudice
that formal predicate calculus is unavoidably tedious.

The resulting reasoning style is calculational [Gries and Schneider 1993],
that is, by expression manipulation and chaining formulas as in elementary
algebra and analysis. The steps are justified by given axioms or derived theo-
rems and chained by transitive relations, rather than via sequent and inference
rules. Proofs and derivations are thereby more linear than with the traditional
tree structure.

The most similar predicate calculus in the literature is found in Gries
and Schneider [1993]. Ours differs in the following ways: (i) it supports
both pointwise and point-free formulations, (ii) it is function- rather than
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expression-centered, (iii) elastic operators replace ad hoc abstractors, (iv) the
design principle extends beyond associative and commutative operators, (v) full
handling of types (also empty domains) is embedded in the calculation rules,
(vi) derivation starts from fewer axioms (function equality).

Overview. Section 1 outlines the language requirements, a simple de-
sign that fulfils them, the principle of calculational reasoning, and generic
functionals supporting the sequel. Section 2 presents a functional predicate cal-
culus, axiomatizes quantifiers, calculationally derives some typical rules, and
lists various others. A first batch of applications in Section 3 illustrates how
defects in common conventions are corrected, how certain oversights in other
calculi are avoided, and how reasoning guided by the shape of the expressions
becomes an instrument for discovery expanding intuition.

The second part of the article shows how the same language design covers
a much wider application range. Section 4 explains the underlying language
pragmatics and the functional mathematics principle used in designing elastic
operators and additional generic functionals. Section 5 provides more specific
examples in formal semantics, program transformation, program correctness
and a minitheory of recursion obviating partial functions. Examples in the
“continuous” world allow to conclude that, just as Gries’ calculational logic is
the “glue” between topics in discrete mathematics, our functional calculus is
the glue between discrete and continuous applied mathematics.

The relation to mechanized tools, proof style and related issues is briefly
discussed.

NOTE. Common programming languages are illustrated by programs, declarative
ones by formulas and proofs. So this article will contain many proofs, illustrating issues
ranging from style to concepts and applications. To reduce its length, we mostly (but not
always) restrict application-related proofs to programming topics, and minimize deriva-
tions of the rules themselves, referring to Boute [2004] for a more extensive treatment.

2. DECLARATIVE FORMALISM DESIGN

A formalism is a language (notation) together with formal manipulation rules.
The merits of the language are measured not only by its scope and expressive-
ness but even more by the degree to which it supports formal rules assisting
human reasoning.

2.1 Language Requirements versus Common Conventions

2.1.1 Styles of Expression. Mathematical expression can be pointwise, us-
ing variables (or dummies), or point-free, without dummies. Common mathe-
matics is mostly pointwise.

Combinator calculus [Barendregt 1984], Tarski’s set theory [Tarski and
Givant 1987], and Backus’ FP [Backus 1978] are point-free variants of lambda
calculus, set theory and (functional) programming, respectively. Point-free
styles are more compact and yield rules with an appealing algebraic flavor.

Yet, as illustrated in later application examples, formalisms meant for prac-
tical use should support both styles, including smooth transformation rules
between them.
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2.1.2 Avoiding Defects. Even if we needed only pointwise styles, common
conventions fall short because of their many peculiarities, ambiguities, incom-
patibilities and imprecise definitions hampering formal reasoning. The typical
excuses that they are “just a matter of notation” or that “we have learned how to
be careful” are counterproductive, since having to be on guard precludes letting
the symbols do the work. Notational flaws are never “just a matter of nota-
tion” but symptoms of deeper conceptual defects; to paraphrase Boileau: good
concepts induce clear notation. So, only overall conceptual design, not ad hoc
patching, can avoid all problems. For concreteness, we give a few illustrations
of common defects in general formalism design and in operator design.

(a) Binding conventions for variables (dummies) are sloppy, ambiguous, and
require context information (precluding clear formal rules). Let us show how
pervasive this is.

Dummies in expressions like
∑

i< j f (i, j ) are bound “by suggestion” via
the context: a = ∑

i< j f (i, j ) suggests sum over i and j (sure?), but aj =∑
i< j f (i, j ) over i only.
A typical defect is abusing the set membership relation ∈ for binding

a dummy. Ubiquitous patterns are (i) {x ∈ X | p} with p Boolean, and (ii)
{e | x ∈ X } with any e, as in {m ∈ Z | m < n} and {n · m | m ∈ Z}. The ambiguity is
revealed by taking y ∈ Y for p and e. Example: If Even = {2 · m | m ∈ Z}, then
{n∈ Z | n∈ Even} and {n∈ Even | n∈ Z} depend on choosing (i) or (ii) and which
occurrence of ∈ binds n. Ad hoc preference for (i) in this case does not remove
the inherent ambiguity and restricts expressivity: what if (ii) is wanted? Such
defects explain why formal calculation with expressions like {x ∈ X | p} is rare
to nonexistent in the literature.

(b) Many conventions violate a crucial criterion in formalism design, namely
Leibniz’s principle: stated informally (and formalized later), equals should al-
ways be replaceable by equals. One example is ellipsis, writing dots as in
a0 + a1 + · · · + an. By Leibniz’s principle, if ai = i2 and n = 7, this should
equal 0 + 1 + · · · + 49 or 49 · 50/2, whereas more likely a sum of squares (equal
to 140) is intended.

(c) Universal use of notations of the form
∑n

i=m e and, more insidiously, han-
dling them by informal interpretation (“see what I mean”), creates the illusion
that they are fairly well understood. Mathematical software often contains er-
rors as a result, but may also expose them. For instance, Pugh [1994] notes
that, in Mathematica [Wolfram 1996]:

n∑
i=1

m∑
j=i

1 = n · (2 · m − n + 1)
2

. (1)

In Maple, sum(sum(1,j=i..m),i=1..n); returns m(n + 1) + 3
2 n + 1

2 − 1
2

(n + 1)2 − m, which is the same after simplifiction. However, correct formal
calculation yields

n∑
i=1

m∑
j=i

1 = (if k ≥1 then
k · (2 · m−k+1)

2
else 0) where k := min (m, n). (2)

For instance, substituting n, m := 3, 1 in (1) yields 0 instead of the correct sum 1.
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With the growing role of mathematical software, poor conventions in many
areas need attention to avoid regrettable design decisions that are hard to
revoke once work is spent on implementations. Hand calculation is an even
more demanding benchmark.

2.1.3 The Design Task. Poor language design may appear tolerable if one
considers only expressivity (ignoring ambiguities, inconsistencies), but to for-
mal calculation it is fatal. So, part of declarative formalism design is providing
simple, trouble-free notation.

In view of the preceding discussion, this task appears huge, but in retrospect
(as seen by the end of this article) a very small design proves sufficient. This is
due to many lessons learned from programming language design, in particular
the discipline of careful language engineering and the principle of orthogonality.

More demanding were the pragmatics, that is, designing a framework for
the language’s actual use, in particular formal calculation rules, which are the
main topic of this article.

2.2 A Simple Declarative Formalism

2.2.1 The Functional Mathematics Approach and the Function Concept.
Functional mathematics is an approach to formalism design, based on defining
existing and new mathematical concepts as functions. This turns out most fruit-
ful where it is not (yet) common. A preferred embodiment in concrete syntax is
Funmath [Boute 1993a, 1993b].

From just four constructs, common conventions as well as new forms are
synthesized. The first use yields expressions with familiar form, readable with-
out knowledge of Funmath. It allows “use before/without (formal) definition”,
since it differs from common conventions only by being defect-free and enjoying
formal calculation rules. The second use includes the point-free style, and may
require prior familiarization.

Our function concept is the usual one, but given the variations in the liter-
ature (e.g., some include a codomain), we add a brief comment. A function is
an object in its own right, not identified with its set-theoretic representation
by pairs (its graph [Lang 1983]). By definition, it is fully specified by two at-
tributes: a domain (the set on which it is defined) and its mapping, associating
with every domain element a unique image.

2.2.2 The Four Syntactic Constructs for Mathematical Expressions. This
is a first outline; refinements not needed for our predicate calculus are given
later. Although we use the concrete Funmath syntax, the abstract syntax is
easily inferred.

Given the simplicity, we freely alternate BNF with the convention as in logic
texts of using metavariables for expressions, whichever is convenient. Here are
the constructs.

expression ::= identifier | application | abstraction | tupling. (3)

Henceforth, we use metavariables d , e for arbitrary expressions, f , g , h, � for
function expressions, p, q, r for Boolean expressions (propositions), X , Y , Z
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for set expressions, all possibly with primes. This type distinction will become
obvious soon. Metavariables for identifiers or tuples of identifiers are: i for any
kind and u, v for variables.

(1) Identifier. An identifier can be any symbol or string except binding
colon, filter mark, abstraction dot, parentheses, and a few boldface keywords
(given as we proceed).

Identifiers are introduced (declared) by bindings of the form i : X ∧. p , read
“i in X satisfying p”. Identifiers in i should not occur free in expression X .
The filter ∧. p (or with p) is optional, for example, n : N and n : Z ∧. n ≥ 0 are
interchangeable. Syntactic sugar: i := e stands for i : ι e. As explained later, we
write ι e, not {e}, for singleton sets.

Identifiers can be variables (in an abstraction) or constants (declared by
def binding). Well-established symbols (e.g., B, ⇒, R, +,

√
) are seen as pre-

defined constants.

(2) Application. For function f and argument e, the default is f e. Other
affix conventions are specified by dashes in the operator’s binding, for example,
— � — for infix.

For clarity, parentheses are never used as operators, but only for emphasis
or overruling affix conventions, for example, (�) (x, y) = x � y if � is infix. Rules
for making them optional (precedence rules) are the usual ones. Prefix always
has precedence over infix. If f is a function-valued function, f x y stands for
( f x) y .

For infix �, partial application is of the form x � or � y , with (x �) y = x � y =
(� y) x. Variadic application is of the form x ∗ y ∗ z etc., and is always defined
to equal F (x, y , z) for a suitably defined elastic extension F of �. The vast
ramifications will appear later.

(3) Abstraction. The form is b . e, where b is a binding and e an expression
(extending after “ . ” as far as compatible with parentheses present). In b . e,
occurrences of variables declared in b are bound, others are free [Barendregt
1984]. Intuitively, v : X ∧. p . e denotes a function whose domain is the set of v
in X satisfying p, and mapping v to e. Formally,

DOMAIN AXIOM: d ∈D (v : X ∧. p . e) ≡ d ∈ X ∧ p[v := d ] (4)
MAPPING AXIOM: d ∈D (v : X ∧. p . e) ⇒ (v : X ∧. p . e) d = e[v := d ], (5)

where e[v := d ] or e[v
d is e in which d is substituted for all free occurrences of v

[Barendregt 1984; Gries and Schneider 1993].
A trivial example: If v is not free in e, we define • by X • e = v : X . e, denoting

constant functions. Special cases are the empty function ε := ∅ • e (any e) and
defining → by d → e = ι d • e for one-point functions, similar to maplets in Z
[Spivey 1989].

Syntactic sugar: We let e | b stand for b . e and v : X | p for v : X ∧. p . v.
Application of elastic operators (

∑
, {—}, ∀ defined as functionals) to abstrac-

tions yields familiar expressions such as
∑

i : 0 . . . n . qi, {m : Z | m < n} and
∀ x : R . x2 ≥ 0.
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(4) Tupling. The 1-dimensional form is e, e′, e′′ (any number of items), de-
noting a function with domain axiom D (e, e′, e′′) = {0, 1, 2} and mapping ax-
iom (e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ and (e, e′, e′′) 2 = e′′. Matrices are 2-
dimensional tuples. We justify later why the empty tuple is ε and for singleton
tuples we define τ with τ e = 0 → e.

Parentheses are not part of tupling, and are as optional in (m, n) as in (m + n).

Remarks

(a) In economy of constructs, this resembles lambda calculus [Barendregt
1984], but the tupling construct is a crucial addition. Even though lambda
calculus can simulate tuples to some extent, we explain later why that is
not adequate for our purpose.

(b) The denotational semantics is the usual mathematical interpretation.
(c) Abstractions can make expressions cryptic to the uninitiated, except as

arguments of elastic operators to synthesize common notation. Yet, they
can also make definitions succinct: a mapping axiom like x ∈D f ⇒ f x = e
with f not free in e merges with the domain axiom x ∈D f ≡ x ∈ X ∧ p into
simply f = x : X ∧. p . e.

2.2.3 Axiomatic Semantics: Calculational Reasoning. In reasonably well-
designed formalisms such as algebra and analysis, calculations and proofs are
usually presented as chained equalities of the form e = e′ = e′′ etc.

Calculational reasoning [Dijkstra and Scholten 1990; Gries and Schneider
1993] extends this to relations beyond “=” in the format

e R 〈Justification〉 e′

R ′ 〈Justification〉′ e′′ etc.,

where the relational operators R, R ′ are mutually transitive, for instance =,
≤, etc. in arithmetic, ≡, ⇒ etc. in logic. The layout for the 〈justification〉s is
attributed to Feyen.

A general inference rule (here strict in that the premiss must be a theorem)
is

INSTANTIATION:
p

p[v := e]
. (6)

Important Remark for the Sequel: In this setting, a theorem p, say,
n∈ Z ⇒ n + 1 > n, is interchangeable with a metatheorem p[n := e] (or p[n

e ),
say, e ∈ Z ⇒ e + 1 > e, the choice of formulation being a matter of emphasis,
style, or mere convenience.

For equality, the rules [Gries and Schneider 1993] are reflexivity, symmetry,
transitivity and

LEIBNIZ’S PRINCIPLE: e = e′ ⇒ d
[v

e = d
[v

e′ . (7)

For instance, x + 3 · y = 〈x = z2〉 z2 + 3 · y , where (7) is recognized by d :=
v + 3 · y .

Calculational chaining is clear, synoptic, and avoids repetition. It highlights
a principal chain of reasoning with the crucial steps. Such “linearization” used
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to be slightly controversial since general deduction is tree-structured. Yet,
in practice it comes rather naturally (e.g., factorizing out essential branches
as lemmata). As a result, calculational proofs can be formal, more com-
plete, more clearly structured and not longer than informal proofs, yet much
shorter than traditional formal proofs [Gries and Schneider 1993; Ostroff,
http://www.cs.yorku.ca/˜logicE/curriculum/logic discrete maths.html].

2.3 Calculating with Boolean, Set and Function Expressions

2.3.1 Boolean Equality, Operators on Booleans and Boolean Calculi. The
terms Boolean expression and proposition are used interchangeably, and the
formal rules constitute proposition calculus. The main operators are ¬, ⇒, ≡,
∧, ∨.

In this calculus, ≡ is the equality sign and is used as such in calculational
chaining. There are many advantages in not keeping just “=” but also “≡” as a
separate operator [Gries and Schneider 1993], namely, reducing parentheses by
giving ≡ lowest precedence of all, and highlighting associativity of ≡, which is
not shared by =. We prefer “≡” over “⇔” to stress its equational character over
⇐-cum-⇒. Given the associativity, we let p ≡ q ≡ r stand for both p ≡ (q ≡ r)
and (p ≡ q) ≡ r, hence clearly not for (p ≡ q) ∧ (q ≡ r).

Implication ⇒ is not associative, but we make parentheses in p ⇒ (q ⇒ r)
optional, hence required in (p ⇒ q) ⇒ r. Its precedence is lower than ∧, ∨ but
higher than ≡.

2.3.1.1 Proposition Calculus in Practice. For a practical calculus, a much
more extensive collection of rules is required than found in classical texts on
logic. Overviews can be found in Boute [2002] and Gries and Schneider [1993].
To manage this large variety, it is very helpful to have a nomenclature of well-
chosen mnemonic names and a quick way for reconstruction or checking rules.

For instance, apart from the usual associativity and commutativity for ∧ and
∨, we also have monotonicity (or isotony; unfortunately the nomenclature is not
uniform).

Right monotonocity of �: (p ⇒ q) ⇒ (r � p ⇒ r � q)
Left antimonotonocity of ⇒: (p ⇒ q) ⇒ (q ⇒ r) ⇒ (p ⇒ r),

where � is either ∧, ∨ or ⇒; the former two are also left monotonic by com-
mutativity. These transitivity-like properties justify writing calculations in the
following layouts

· · · 〈Steps leading to r � p〉 r � p · · · 〈Steps leading to q ⇒ r〉 q ⇒ r
⇒〈Justification for p ⇒ q〉 r � q ⇒ 〈Justification for p ⇒ q〉 p ⇒ r.

Less often found in theoretical texts is shunting (parentheses here for emphasis
only):

Shunting with ⇒: x ⇒ ( y ⇒ z) ≡ y ⇒ (x ⇒ z)
Shunting with ∧: x ⇒ ( y ⇒ z) ≡ (x ∧ y) ⇒ z.

Examples of quick shortcuts are case analysis: p[v
0, p[v

1 p, and the many
variants of Shannon’s theorem, such as p ≡ (¬ v ∧ p[v

0) ∨ (v ∧ p[v
1). We call v the
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Table I. Binary Algebra as a Restriction of Plain Arithmetic to 0 and 1

x, y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0,0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0,1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1,0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1,1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B ∨− < > ≡/ ∧− ∧ ≡ 〉〉 ⇒ 〈〈 ⇐ ∨
R

′ < > �= ∧ = 〉〉 ≤ 〈〈 ≥ ∨

fulcrum. These are also used in automated tautology checking, model checking
and similar applications [Bryant 1992]. Rules of humanly tractable size can be
verified or derived by mere head calculation. The reader can try this on (x ⇒ y)∧
( y ⇒ z) ≡ ¬ (x ∨ y) ∨ ( y ∧ z) taking fulcrum y and applying “Shannon” to the
left-hand side for derivation (also using De Morgan’s rule), or case analysis to
the entire equality for verification.

2.3.1.2 Binary Algebra. Although not essential to our predicate calculus,
we use propositional constants 0 and 1 rather than FALSE and TRUE. For rea-
sons explained elsewhere [Boute 1990, 1993a] and more eloquently by [Hehner
1996], we embed binary algebra in plain arithmetic as a restriction of minimax
algebra to {0, 1} (note: Hehner uses {−∞, +∞}). Since this issue is also relevant
to programming language design, we briefly explain.

Minimax algebra is what we call the algebra of the least upper bound (∨)
and greatest lower bound (∧) operators over R

′ := R ∪{−∞, +∞} [Boute 1993a].
One definition is

x ∨ y ≤ z ≡ x ≤ z ∧ y ≤ z and z ≤ x ∧ y ≡ z ≤ x ∧ z ≤ y . (8)

Since ≤ is total, x ∧ y = ( y ≤ x) ? y x, where p ? e′ e is read as “if p then e′

else e”; formally: p ? e′ e = (e, e′) p. Similarly, z ≤ x ∨ y ≡ z ≤ x ∨ z ≤ y and
its dual.

For the ∨ and ∧ operators alone, there exist commutativity laws, for ex-
ample, x ∨ y = y ∨ x, associativity laws, for example, x ∨ ( y ∨ z) = (x ∨ y) ∨ z,
distributivity laws such as x ∨ ( y ∧ z) = (x ∨ y) ∧ (x ∨ z), monotonicity laws such
as x ≤ y ⇒ x ∨ z ≤ y ∨ z etc.

In addition, there is a rich algebra of laws combined with other arithmetic
operators, such as distributivity: x + ( y ∨ z) = (x + y) ∨ (x + z) and x − ( y ∨ z) =
(x − y) ∧ (x − z).

Such laws can be derived by high school algebra, using duality to save work.
Binary algebra is then the algebra of the operators ∨ and ∧, defined in

[Boute 1993a] as the restrictions of ∨ and ∧ to B := {0, 1}. Table I, reproduced
from [Boute 1993a], illustrates this for the 16 functions from B

2 to B by listing
fi (x, y) for i : 0 .. 15 and (x, y) : B

2.
All laws of minimax algebra now particularize to laws over B, for instance:

x ∨ y ⇒ z ≡ (x ⇒ z) ∧ ( y ⇒ z) and z ⇒ x ∧ y ≡ (z ⇒ x) ∧ (z ⇒ y) (9)

is just a particularization of (8) for Boolean x, y and z.
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2.3.2 Set Equality and Operators on Sets. For handling sets in pred-
icate calculus, we assume a modicum of calculation rules. The basic oper-
ator is ∈ . Set equality is defined in two parts. First, Leibniz’s principle:
X = Y ⇒ (e ∈ X ≡ e ∈ Y ) or, equivalently, (p ⇒ X = Y ) ⇒ p ⇒ (e ∈ X ≡ e ∈ Y ).
Second, the converse, expressed here as a strict inference rule: for new v,

SET EXTENSIONALITY:
p ⇒ (v ∈ X ≡ v ∈ Y )

p ⇒ X = Y
. (10)

The presence of p allows embedding set extensionality in a calculation chain
as

p ⇒ 〈Calculations to right-hand side〉 v ∈ X ≡ v ∈ Y
⇒ 〈Set extensionality〉 X = Y

Warning: This is a deduction for p ⇒ X = Y ; do not read (v ∈ X ≡ v ∈ Y ) ⇒ X = Y .
Such inference rules are used only to bootstrap the predicate calculus, not beyond.

The axioms for set operators are expressed via proposition calculus, for in-
stance, defining ∩ by x ∈ X ∩Y ≡ x ∈ X ∧x ∈ Y and × by (x, y) ∈ X × Y ≡ x ∈ X ∧
y ∈ Y .

The empty set ∅ has axiom x �∈ ∅, and singletons ι e have axiom d ∈ ι e ≡ d = e.
Using Frege’s singleton injector ι is motivated in [Forster 1992]. Our reasons
to avoid { } for singletons is that it violates Leibniz’s principle and that { }
can be salvaged for better purposes shown later, leading to the calculation rule
e ∈ {x : X | p} ≡ e ∈ X ∧ p[x

e .
Not essential but convenient is letting U stand for the general universe, F

for the function universe, T for the set universe and E for the universe of enu-
meration sets [Jensen and Wirth 1978]. In view of portability, we avoid making
this specific: in some formalisms, U may be just the universe of discourse, in
others, a general universe [Forster 1992]. Like the designers of PVS [Rushby
et al. 1998], we are not overly concerned with paradoxes, but some readers may
wish to consider R := {X : T | ¬ (X ∈ X )}, expand R ∈ R and solve the resulting
equation.

2.3.3 Functions, Equality and Operators on Functions: Generic Functionals

2.3.3.1 Functions, Types, Guards. We specify functions by a domain axiom
and a mapping axiom of the form (or rewritable as) v ∈D f ≡ p (or D f = X )
and v ∈D f ⇒ q respectively, with f �∈ ϕ p and v �∈ ϕ f . Here ϕ e is the set
of free variables in e. An example is D fac = N and fac 0 = 1 ∧ (n∈ N ⇒ n >

0 ⇒ fac n = n · fac (n − 1)). When stating both axioms together, we often write
q for x ∈D f ⇒ q”, but “x ∈D f ⇒” is understood, for example, defining

√
by

x ∈D
√ ≡ x ∈ R ∧ x ≥ 0 and

√
x2 = x ∧ √

x ≥ 0. More refined and less verbose
styles of definition will appear later.

In declarative/mathematical languages, it is sensible to identify types with
sets [Lamport and Paulson 1997]. Type systems in programming languages can
be seen as simplifications that ensure easy decidability (by compilers), but are
often too restrictive for declarative formalisms.

Out-of-domain function applications routinely occur in nonpathologi-
cal mathematical expressions [Boute 2000; Parnas 1993]. An example is

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Functional Declarative Language Design and Predicate Calculus • 999

(x ≥ 0 ⇒ √
x2 = x) ∧ (x < 0 ⇒ √−x2 = −x). Instantiation for nonzero x

causes an out-of-domain application in one of the roots, but the corresponding
antecedent ensures that the entire formula remains a theorem.

Using antecedents (or conjuncts) so that parts of a formula do not make the
entire formula undefined is called guarding and makes it “robust” against out-
of-domain applications. The approach is “portable” across formalisms, that is:
largely independent of the conventions for handling “undefined” [Boute 2000;
Schieder and Broy 1999]. Contrary to expectation, putting guards in theorems
and function definitions turns out to be no burden at all: for theorems they
just formalize the hypotheses, and for functions they make domain information
“pop up” exactly when needed in formal calculation. Guarding and its ramifica-
tions are discussed extensively in [Boute 2000], but most will become evident
from examples, including how refined domain specifications obviate “partial”
functions.

2.3.3.2 Function Equality. We proceed as for sets, but with domain mem-
bership as guards.

LEIBNIZ FOR FUNCTIONS: f = g ⇒ D f = D g ∧ (e ∈D f ∩ D g ⇒ f e = g e) (11)

FUNCTION EXTENSIONALITY:
p ⇒ D f = D g ∧ (v ∈D f ∩ D g ⇒ f v = g v)

p ⇒ f = g
, (12)

with new v. Example: ∅ • e = ∅ • e′. Calculations are chained in the same way
as with (10) but, again, the inference rule is only a bootstrap to more elegant
formulations.

A consequence is abstraction equality: letting f := v : X ∧. q . d and g := v :
Y ∧. r . e in f = g ⇒ D f = D g ∧ (v ∈D f ∩ D g ⇒ f v = g v), using (4), (5)
and set equality,

(v : X ∧. q . d ) = (v : Y ∧. r . e) ⇒ (v ∈ X ∧ q ≡ v ∈ Y ∧ r)∧(v ∈ X ∧ q ⇒ d = e).

We omitted v ∈ Y ∧ r to save space at the cost of symmetry. Extensionality (12)
yields a similar metatheorem, which can be reformulated elegantly by splitting
into a domain part, obtained by assuming d = e, and a mapping part, by
assuming Y , r = X , q.

p ⇒ (v ∈ X ∧ q ≡ v ∈ Y ∧ r) p ⇒ (v : X ∧. q . e) = (v : Y ∧. r . e)
p ⇒ v ∈ X ∧ q ⇒ d = e p ⇒ (v : X ∧. q . d ) = (v : X ∧. q . e)

with v �∈ ϕp. As usual, r s stands for “from r one can deduce s”. These rules
are often tacitly invoked when calculating with abstractions.

2.3.3.3 Operators on Functions: Generic Functionals. Operators on func-
tions common in mathematics impose certain restrictions on the argument
functions. For instance, the usual definition of f ◦ g requires R g ⊆ D f and
then specifies D ( f ◦ g ) = D g and ( f ◦ g ) x = f (g x). We make such opera-
tors generic [Boute 2003] by removing the restrictions. The key is defining the
domain of the result function to avoid out-of-domain applications in the image
definition; a bonus is the design of novel operators.
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Here we present only the generic functionals used in our predicate calculus;
others are defined later and in [Boute 2003]. The first example defines f ◦ g for
any functions f , g

f ◦ g = x :D g ∧. g x ∈D f . f (g x). (13)

By (4), x ∈D ( f ◦ g ) ≡ x ∈D g∧ g x ∈D f , henceD ( f ◦ g ) = {x :D g | g x ∈D f }.
Direct extension extends operators over a set X to X -valued functions. Ex-

tension can be monadic (—) for one-argument g , or dyadic (—̂) for 2-argument
— � —:

g f = x :D f ∧. f x ∈D g . g ( f x). Clearly, g f = g ◦ f . (14)
f �̂ g = x :D f ∩ D g ∧. ( f x, g x) ∈D (�) . ( f x) � (g x) (15)

Variants of —̂ are left ( ↼—) and right ( ⇀—) half direct extension:

f ↼� e = f �̂ (D f • e) and e ⇀� f = (D f • e) �̂ f (16)

For easy reference, we recall the constant function definer (•) and its particu-
larizations.

X • e = x : X . e (provided x �∈ ϕ e) ε = ∅ • e d → e = ι d • e (17)

Function merge (∪· ) unites domains as far as possible. Note: p ? e′ e =
(e, e′) p.

f ∪· g = x :D f ∪ D g ∧. ( x ∈D f ∩ D g ⇒ f x = g x) . (x ∈D f ) ? f x g x (18)

Filtering (↓) introduces/eliminates arguments and generalizes f = x :D f .

f x. Particularization to P := X • 1 yields the familiar function restriction (�).

f ↓P = x :D f ∩ D P ∧. P x . f x. (19)
f � X = f ↓(X • 1) (20)

Here (and in the sequel), P is a predicate, that is, B-valued function. We also
extend ↓ to sets, defining x ∈ (X ↓ P ) ≡ x ∈ X ∩D P ∧ P x. Moreover, writing de
for d ↓ e and using partial application, this yields useful shorthands like f<n
and Z>0 that are clear without comment, yet are entirely formal and inherit all
calculation rules from ↓.

Typical relational generic functionals are equality and compatibility ( c©)

f c© g ≡ f �D g = g �D f . (21)

For many other generic functionals and their elastic extensions, we refer to
[Boute 2003]. Later on, we present some interesting ramifications for program-
ming language design.

A very important use of generic functionals is supporting the point-free style,
that is, without referring to domain points. The elegant algebraic flavor is il-
lustrated next.
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3. FUNCTIONAL PREDICATE CALCULUS

3.1 Introductory Remarks

This predicate calculus is called functional because predicates and quantifiers
are functions and all calculation rules stem from function equality.

Most rules are equational (equivalences). Deriving the first few rules re-
quires separating ≡ into ⇒ and ⇐, but the need to do so will diminish as laws
accumulate, and vanishes by the time we reach applications. Since derivation
examples are perhaps less interesting to the programming community than
application examples, we give only a few of them, chosen for various reasons:
being typical, or just atypical, or because someone asked some question about
them. Omitted derivations can be found in [Boute 2004].

3.2 Axioms and Basic Calculation Rules

3.2.1 Predicates and Quantifiers. A predicate is a function P satisfying
x ∈D P ⇒ P x ∈ B. We define the quantifiers ∀ and ∃ as predicates over predi-
cates by the following axioms. For any predicate P ,

AXIOMS FOR QUANTIFIERS. ∀ P ≡ P = D P • 1 and ∃ P ≡ P �= D P • 0. (22)

We read ∀ P as “everywhere P” and ∃ P as “somewhere P”. The simplicity of
(22) makes all calculation rules intuitively obvious to any mathematician or
engineer.

The point-free style is chosen for clarity, but familiar forms are obtained
just by taking P := x : X . p. Then, we read ∀ x : X . p as “all x in X satisfy p”
and ∃ x : X . p as “some x in X satisfy p” or any of the other commonly used
phrases. The attention to the domains yields some rules that are not common
in untyped variants.

Taking P := p, q, we can show ∀ (p, q) ≡ p∧q; hence, ∀ is an elastic extension
of ∧.

3.2.2 Introductory Application to Function Equality and Function Types

3.2.2.1 Calculation Example. Compressing function equality (11, 12) into
one equation.

THEOREM, FUNCTION EQUALITY. f = g ≡ D f = D g ∧ ∀ ( f =̂ g ). (23)

PROOF. We show (⇒), the converse (⇐) is similar.

f = g ⇒ 〈Leibniz (11)〉 D f =D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)
≡ 〈p ≡ p = 1〉 D f =D g ∧ (x ∈ D f ∩ D g ⇒ ( f x = g x) = 1)
≡ 〈Def. ̂ (15)〉 D f =D g ∧ (x ∈ D ( f =̂ g ) ⇒ ( f =̂ g ) x = 1)
≡ 〈Def. • (17)〉 D f =D g ∧ (x ∈ D ( f =̂ g ) ⇒ ( f =̂ g )x = (D ( f =̂ g ) • 1)x)
⇒ 〈Extns. (12)〉 D f =D g ∧ ( f =̂ g ) = D ( f =̂ g ) • 1
≡ 〈Def. ∀ (22)〉 D f =D g ∧ ∀ ( f =̂ g )

Step 〈Extns. (12)〉 tacitly uses D h = D h ∩ D (D h • 1). Note. f c© g ≡
∀ ( f =̂ g ).
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3.2.2.2 Function Types. Our function concept has no (unique) codomain
associated with it. Yet, often it is useful to indicate a set as a first approxima-
tion to or a restriction on the images. For this purpose, two familiar operators
for expressing function types (i.e., sets of functions) are formalized here; more
refined alternatives are shown later.

The function arrow (→) with f ∈ X → Y ≡ D f = X ∧ ∀ x :D f . f x ∈ Y (24)
The partial arrow (�→) with f ∈ X �→Y ≡ D f ⊆ X ∧ ∀ x :D f . f x ∈ Y (25)

Example. We rewrite an earlier definition as def
√

: R≥0 → R≥0 with√
x2 = x.

Functions of type X �→Y are often called “partial”, which is a misnomer
[Boute 2000]: they are proper functions, the type just leaves the domain more
loosely specified. In fact, X �→Y = ⋃

(S :P X . S → Y ) and, for finite X and
Y with n := |X | and m := |Y |, also |X → Y | = mn and |X �→Y | = ∑

(k : 0 .. n .(
n
k

) · mk) = (m + 1)n = |X → (Y ∪ ι )|.
3.2.3 A First Collection of Calculation Rules for Quantifiers. The axioms

yield some elementary properties directly by “head calculation”, such as

—for constant predicates: ∀ (X • 1) ≡ 1 and ∃ (X • 0) ≡ 0 (PROOF. (17) and (22));
—for the empty predicate: ∀ ε ≡ 1 and ∃ ε ≡ 0 (PROOF. Using ε = ∅ • 1 = ∅ • 0).

3.2.3.1 Duality. Illustrative of the algebraic style is the following theorem.

THEOREM, DUALITY (GENERALIZED DE MORGAN). ∀ (¬P ) ≡ (¬∃) P (26)

PROOF:

∀ (¬P ) ≡ 〈Def. ∀ (22), Lemma A〉 ¬P = D P • 1
≡ 〈Lemma B〉 P = ¬ (D P • 1)
≡ 〈Lemma C, 1 ∈D¬ 〉 P = D P • (¬ 1)
≡ 〈¬ 1 = 0, definition ∃ (22)〉 ¬ (∃ P )
≡ 〈Defin. and ∃ P ∈D¬ 〉 ¬ ∃ P

The following lemmata were invoked; their proofs are simple exercises [Boute
2004].

LEMMA A : D (¬P ) = D P
LEMMA B : ¬P = Q ≡ P = ¬Q
LEMMA C : x ∈D g ⇒ g (X • x) = g ◦ (X • x) = X • (g x)

3.2.3.2 Distributivity Rules. A first batch are the following rules:

Collecting ∀/∧ : ∀ P ∧ ∀ Q ⇒ ∀ (P ∧̂ Q)
Splitting ∀/∧ : D P = D Q ⇒ ∀ (P ∧̂ Q) ⇒ ∀ P ∧ ∀ Q
Distributivity ∀/∧ : D P = D Q ⇒ (∀ (P ∧̂ Q) ≡ ∀ P ∧ ∀ Q) Duals for ∃:
Collecting ∃/∨ : D P = D Q ⇒ ∃ P ∨ ∃ Q ⇒ ∃ (P ∨̂ Q)
Splitting ∃/∨ : ∃ (P ∨̂ Q) ⇒ ∃ P ∨ ∃ Q
Distributivity ∃/∨ : D P = D Q ⇒ (∃ (P ∨̂ Q) ≡ ∃ P ∨ ∃ Q)
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Merge rules for ∀ : ∀ P ∧ ∀ Q ⇒ ∀ (P ∪· Q)
P c© Q ⇒ ∀ (P ∪· Q) ⇒ ∀ P ∧ ∀ Q
P c© Q ⇒ (∀ (P ∪· Q) ≡ ∀ P ∧ ∀ Q) (and duals for ∃).

PROOF (given here only for the first rule of the list)

∀ P ∧ ∀ Q ≡ 〈Defin. ∀〉 P = D P • 1 ∧ Q = D Q • 1
⇒ 〈Leibniz〉 ∀ (P ∧̂ Q) ≡ ∀ (D P • 1 ∧̂ D Q • 1)
≡ 〈Defin.̂ 〉 ∀ (P ∧̂ Q) ≡ ∀ x :D P ∩ D Q . (D P • 1) x ∧ (D Q • 1) x
≡ 〈Defin. •)〉 ∀ (P ∧̂ Q) ≡ ∀ x :D P ∩ D Q . 1 ∧ 1
≡ 〈∀ (X • 1)〉 ∀ (P ∧̂ Q) ≡ 1.

3.2.3.3 Rules for Equal Predicates and Monotonicity Rules. The main ones
are

Equal predicates under ∀ : D P = D Q ⇒ ∀ (P ≡̂ Q) ⇒ (∀ P ≡ ∀ Q)
Equal predicates under ∃ : D P = D Q ⇒ ∀ (P ≡̂ Q) ⇒ (∃ P ≡ ∃ Q)
Monotonicity of ∀/⇒ : D Q ⊆ D P ⇒ ∀ (P ⇒̂ Q) ⇒ (∀ P ⇒ ∀ Q)
Monotonicity of ∃/⇒ : D P ⊆ D Q ⇒ ∀ (P ⇒̂ Q) ⇒ (∃ P ⇒ ∃ Q).

The latter two help chaining proof steps: ∀ (P ⇒̂ Q) justifies ∀ P ⇒ ∀ Q or
∃ P ⇒ ∃ Q if the stated set inclusion for the domains holds.

3.2.3.4 Quantifying Constant Predicates. These rules show how domain
issues naturally emerge without having to be continuously on guard: the rules
themselves are robust.

THEOREM, CONSTANT PREDICATE UNDER ∀. ∀ (X • p) ≡ X = ∅ ∨ p (27)

PROOF (with every detail shown, but optional parentheses omitted)

∀ (X • p) ≡ 〈Def. ∀ and •〉 X • p = X • 1
⇒ 〈Leibniz (11)〉 x ∈ X ⇒ (X • p) x = (X • 1) x
≡ 〈Definition •〉 x ∈ X ⇒ p = 1
≡ 〈Prop. calc.〉 (x ∈ X ≡ 0) ∨ p
≡ 〈x ∈ ∅ ≡ 0〉 (x ∈ X ≡ x ∈ ∅) ∨ p
⇒ 〈Set ext. (10)〉 X = ∅ ∨ p

X = ∅ ∨ p ≡ 〈p = 1 ≡ p〉 X = ∅ ∨ p = 1
⇒ 〈Leibniz (7)〉 (X • p = X • 1 ≡ ∅ • p = ∅ • 1) ∨ p = 1
⇒ 〈Leibniz (7)〉 (X • p = X • 1 ≡ ∅ • p = ∅ • 1) ∨ X • p = X • 1
≡ 〈∅ • p = ∅ • x〉 X • p = X • 1 ∨ X • p = X • 1
≡ 〈Idempot. ∨〉 X • p = X • 1
≡ 〈Def. ∀ (22)〉 ∀ (X • p)

Particular instances are ∀ ε ≡ 1 and ∀ (X • 1) ≡ 1 and ∀ (X • 0) ≡ X = ∅.
The dual form ∃ (X • p) ≡ X �= ∅ ∧ p is most easily obtained via duality (26)

and particular instances are ∃ ε ≡ 0 and ∃ (X • 0) ≡ 0 and ∃ (X • 1) ≡ X �= ∅.

3.3 Additional Derived Proof Techniques and Rules

3.3.1 Case Analysis, Generalized Shannon Expansion and Distributivity
Rules. Let us extend the power of case analysis and Shannon expansion to
predicate calculus.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



1004 • Raymond Boute

A technicality: we assign domains to free variables in expressions similarly
to [Gries and Schneider 1993], letting D(v, e) denote the intersection of the
function domains corresponding to the argument positions where v occurs free
in e (defined inductively, details omitted here).

LEMMA, PARTICULARIZATION. v ∈ D (v, P ) ∧ e ∈ D (v, P ) ⇒ ∀ P [v
e ⇒ v = e ⇒ ∀ P.

THEOREM, CASE ANALYSIS. v ∈ B ⇒ B ⊆ D (v, P ) ⇒ ∀ P [v
0 ∧ ∀ P [v

1 ⇒ ∀ P. (28)
THEOREM, SHANNON EXPANSION. If v ∈ B and B ⊆ D (v, P ) then
∀ P ≡ (

v ∧ ∀ P
[v

1

) ∨ (¬ v ∧ ∀ P
[v

0

)
and ∀ P ≡ (¬ v ∨ ∀ P

[v
1

) ∧ (
v ∨ ∀ P

[v
0

)
(29)

∀ P ≡ (
v ⇒ ∀ P

[v
1

) ∧ (¬ v ⇒ ∀ P
[v

0

)
(and some evident other variants).

3.3.1.1 More Distributivity Rules. Theorem (29) allows elegant proofs for
the following rules, presented in point-free and pointwise form, (the latter as-
suming v not free in p).

Distributivity ∨/∀ : ∀ (p ⇀∨ P ) ≡ p ∨ ∀ P
L(eft)-distrib. ⇒/∀ : ∀ (p ⇀⇒ P ) ≡ p ⇒ ∀ P
R(ight)-distr. ⇒/∃ : ∀ (P ↼⇒ p) ≡ ∃ P ⇒ p
P(seudo)-dist. ∧/∀ : ∀ (p ⇀∧ P ) ≡ (p ∧ ∀ P ) ∨ D P = ∅
Distributivity ∨/∀ : ∀ (v : X . p ∨ q) ≡ p ∨ ∀ v : X . q
L(eft)-distrib. ⇒/∀ : ∀ (v : X . p ⇒ q) ≡ p ⇒ ∀ v : X . q
R(ight)-distr. ⇒/∃ : ∀ (v : X . q ⇒ p) ≡ ∃ (v : X . q) ⇒ p
P(seudo)-dist. ∧/∀ : ∀ (v : X . p ∧ q) ≡ (p ∧ ∀ v : X . q) ∨ S = ∅.

The names mark generalizations of rules such as p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
etc., while p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r) really is AC and idempotency of ∧. One
proof:

∀ (p ⇀∨ P ) ≡ 〈Shannon (29)〉 (p ∨ ∀ (0 ⇀∨ P )) ∧ (¬ p ∨ ∀ (1 ⇀∨ P ))
≡ 〈Def. ⇀, def. •〉 (p ∨ ∀ x :D P . 0 ∨ P x) ∧ (¬ p∨∀ x :D P .1∨P x)
≡ 〈Prop. calc., (27)〉 p ∨ ∀ x :D P . P x
≡ 〈 f = x :D f . f x〉 p ∨ ∀ P.

Similar rules for ∃ are distributivity ∧/∃, pseudodistributivity ∨/∃, left pseu-
dodistributivity ⇒/∃ and right pseudodistributivity ⇒/∀. They are easily ob-
tained by duality.

3.3.2 Instantiation, Generalization and Their Use in Proving Equational
Laws

3.3.2.1 Instantiation and Generalization. The following theorem replace
homonymous axioms in traditional logic [Mendelson 1987]. It is proven from
(22) using (11, 12).

THEOREM, INSTANTIATION. ∀ P ⇒ e ∈D P ⇒ P e (30)
GENERALIZATION. p ⇒ v ∈ D P ⇒ P v p ⇒ ∀ P (fresh v). (31)

Two typical proof techniques are captured by the following metatheorems.

METATHEOREM, ∀-INTRODUCTION/REMOVAL. Assuming fresh v,
p ⇒ ∀ P is a theorem iff p ⇒ v ∈D P ⇒ P v is a theorem. (32)
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METATHEOREM, WITNESS. Assuming fresh v,
∃ P ⇒ p is a theorem iff v ∈D P ⇒ P v ⇒ p is a theorem. (33)

We explain their significance: for p = 1, (32) reflects typical implicit use of
generalization: to prove ∀ P , prove v ∈D P ⇒ P v, or assume v ∈D P and prove
P v.

Likewise, (33) formalizes a well-known informal proof scheme: to prove
∃ P ⇒ p, “take” a v in D P satisfying P v (the “witness”) and prove p.

As expected, and with the usual warning, we allow weaving (31) into a
calculation chain in the following way, called generalization of the consequent:
for fresh v,

p ⇒ 〈Calculation yielding v ∈D P ⇒ P v〉 v ∈D P ⇒ P v
⇒ 〈Generalization of the consequent〉 ∀ P.

This is used to derive a few more basic rules, but rarely (if ever) beyond.

3.3.2.2 Trading. The scheme just shown is illustrated in the proof of the
following theorem.

THEOREM, TRADING UNDER ∀. ∀ PQ ≡ ∀ (Q ⇒̂ P ) (recall: f P = f ↓ P ) (34)

PROOF. We prove only (⇒); (⇐) is similar. Some of the parentheses are for
emphasis.

∀ PQ ⇒ 〈Instantiation (30)〉 x ∈D (PQ ) ⇒ PQ x
≡ 〈Definition ↓ (19)〉 (x ∈D P ∩ D Q ∧ Q x) ⇒ P x
≡ 〈Shunting ∧ to ⇒〉 x ∈D P ∩ D Q ⇒ (Q x ⇒ P x)
≡ 〈Defin.̂, remark〉 x ∈D (Q ⇒̂ P ) ⇒ (Q ⇒̂ P ) x
⇒ 〈Gen. consequent〉 ∀ (Q ⇒̂ P )

The remark in question is x ∈D P ∩ D Q ⇒ (Q x, P x) ∈D ( ⇒), by definition of
predicates and ⇒.

From (34) and using duality (26), one can prove the ∃-counterpart.

THEOREM, TRADING UNDER ∃. ∃ PQ ≡ ∃ (Q ∧̂ P ) (35)

3.4 Expanding the Toolkit of Calculation Rules

Building a full toolkit is beyond the scope of this article and fits better in a text-
book. Therefore, we just complement the preceding section with some guidelines
and observations the reader will find sufficient for expanding the toolkit as
needed.

3.4.1 Some Chosen Rules for ∀. For the point-free formulation, we use the
following legend: let P and Q be predicates, R a family of predicates (i.e., R x is
a predicate for any x in D R), and S a relation. The currying operator —C maps
f : X × Y → Z into a f C of type X → (Y → Z ) defined by f C x y = f (x, y).
For the transposition operator —T in its simplest form, (x : X . y : Y . e)T =
y : Y . x : X . e. The range operator R is defined by y ∈R f ≡ ∃ x :D f . f x = y .
Here are some rules in point-free and pointwise form.
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a. Merge rule P c©Q ⇒ ∀ (P ∪· Q)=∀ P ∧∀ Q with ∪· and c© as in (18, 21)
b. Transposition ∀ (∀ ◦ R) = ∀ (∀ ◦ RT)
c. Nesting ∀ S = ∀ (∀ ◦ S C)
d. Composition rule ∀ P ≡ ∀ (P ◦ f ) provided D P ⊆ R f (otherwise only ⇒)
e. One-point rule ∀ P=e ≡ e ∈D P ⇒ P e

a. Domain split ∀ (x : X ∪ Y . p) ≡ ∀ (x : X . p) ∧ ∀ (x : Y . p)
b. Dummy swap ∀ (x : X . ∀ y : Y . p) ≡ ∀ ( y : Y . ∀ x : X . p)
c. Nesting ∀ (x, y : X × Y . p) ≡ ∀ (x : X . ∀ y : Y . p)
d. Dummy change ∀ ( y :R f . p) ≡ ∀ (x :D f . p[ y

f x)
e. One-point rule ∀ (x : X ∧. x = e . p) ≡ e ∈ X ⇒ p[x

e

The one-point rule deserves a comment, since it is underrated in theory, yet
found crucial in applications. Instantiation (∀ P ⇒ e ∈D P ⇒ P e) has the same
right-hand side, but the one-point rule is an equivalence, hence stronger [Gries
and Schneider 1993]. Its proof is also interesting:

∀ P=e ≡ 〈Filter, trading〉 ∀ x : X . x = e ⇒ P x
⇒ 〈Instantiation〉 e ∈ X ⇒ e = e ⇒ P e
≡ 〈Reflexivity =〉 e ∈ X ⇒ P e whereas, for the converse,

(e ∈ X ⇒ P e) ⇒ ∀ P=e
≡ 〈Filter, trading〉 (e ∈ X ⇒ P e) ⇒ ∀ x : X . x = e ⇒ P x
≡ 〈L-dstr.⇒/∀〉 ∀ x : X . (e ∈ X ⇒ P e) ⇒ x = e ⇒ P x
≡ 〈Shunting〉 ∀ x : X . x = e ⇒ (e ∈ X ⇒ P e) ⇒ P x
≡ 〈p ≡ 1 ⇒ p〉 ∀ x : X . x = e ⇒ (e ∈ X ⇒ P e) ⇒ (x ∈ X ⇒ P x)
≡ 〈Leibniz (7)〉 1.

Duals are ∃ P=e ≡ e ∈D P ∧ P e and ∃ (x : X . x = e ∧ p) ≡ e ∈ X ∧ p[x
e .

Calculating what happens when “⇒” in ∀ (x :D P . x = e ⇒ P x) is re-
versed yields an interesting variant, half-pint rule: ∀ (x :D P . P x ⇒ x = e) ⇒
∃ P ⇒ P e.

3.4.2 Rules for Swapping Quantifiers and Function Comprehension.
Dummy swap ∀ (x : X . ∀ y : Y . p) ≡ ∀ ( y : Y . ∀ x : X . p) and its ∃-dual support
“homogeneous” swapping. For mixed swapping in one direction (proven using
p ⇒ q ≡ p ∧ q ≡ q [Gries and Schneider 1993]),

THEOREM, SWAP ∀ OUT. ∃ ( y : Y . ∀ x : X . p) ⇒ ∀ (x : X . ∃ y : Y . p). (36)

The converse does not hold, but the following axiom, called function comprehen-
sion, can be seen as a “pseudo-converse”: for any relation —R— : Y × X → B,

AXIOM. ∀ (x : X . ∃ y : Y . y R x) ⇒ ∃ f : X → Y . ∀ x : X . ( f x) R x. (37)

This axiom (whose converse can be proven) is crucial for implicit function
definitions.

A technicality: when symbols otherwise used as metavariables appear in
bindings, like f in (37), they stand for variables, not expressions (evident, but
worth stating).
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4. APPLICATION EXAMPLES: FIRST BATCH

Applications of predicate calculus abound; one could say that it is universal
in mathematics, although often tacitly. In particular, all logics, even fuzzy and
intuitionistic ones, use “common” predicate logic at the metalevel.

Here we consider only examples that illustrate the particular flavor distin-
guishing our approach from others. Some examples are endogenous, prompted
by issues within predicate calculus or mathematics, others are exogenous,
prompted by issues elsewhere.

4.1 Endogenous Application Examples

4.1.1 The Empty Domain Issue: A Fresh View on “Andrew’s Challenge”.
Manolios and Moore [2001] observed that many calculational predicate logics
are error-prone due to insufficient attention to types of variables and function
domains. In our formalism, exactly those items form the basis of the axioma-
tization, thereby avoiding the errors and making calculation “robust”. This is
what will be illustrated here.

First, we clear up some terminology. Commonly, the “extent” of ad hoc ab-
stractors like ∀ and

∑
is syntactically linked to the symbol (as in ∀x:X . and∑n

i=m) and called the range. This notion differs from function range. Moreover,
in Funmath, this “extent” is not associated with the abstractor but is the do-
main of the function appearing as the argument of the elastic operator (e.g.,
D P in ∀ P and D f in

∑
f ). We call this domain modulation, and it applies by

design to all elastic operators. Hence, we decide to avoid confusion and separate
nomenclature by using the term domain.

Andrew’s challenge is the term used by Gries [1996b] for calculationally
proving

((∃x∀ y | : p.x ≡ p. y) ≡ ((∃x | : q.x) ≡ (∀ y | : p. y))) ≡
((∃x∀ y | : q.x ≡ q. y) ≡ ((∃x | : p.x) ≡ (∀ y | : q. y))),

(notation from [Gries 1996b]). The stronger (∃x∀ y | : p.x ≡ p. y) ≡ (∃x | : p.x)
≡ (∀ y | : p.y) has been proven in different ways by Gries [1996b], Dijkstra
[1996a] and independently by Rajeev Joshi and Kedar Sharad Namjoshi, as
shown in [Dijkstra 1996b].

The latter is direct, but proves only what is asked, without useful “side
results”. The reader can easily paraphrase this proof in our formalism (see
[Boute 2004]) and observe that the ad hoc shorthands [t] ≡ 〈∀x :: t.x〉 and 〈t〉 ≡
〈∃x :: t.x〉 introduced in [Dijkstra 1996b] to keep formulas sort are obviated
in Funmath, writing ∀ P and ∃ P in point-free style. So Andrew’s Challenge
becomes: ∃ P ≡ ∀ P ≡ ∃ x :D P . ∀ y :D P . P x ≡ P y .

More interesting is the proof in [Dijkstra 1996a] meant to reveal a pitfall
requiring case distinction between empty and nonempty “range”, information
that is unavailable in the quantified formulas used. In our formalism, domain
modulation together with the calculation rules make it appear exactly when
needed. Our proof reflects the issues in [Dijkstra 1996a], but arose in a quite
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different context: given the constant function predicate con

con f ≡ ∀ x :D f . ∀ y :D f . f x = f y , (38)

we wanted to see to what extent con f equals ∃ x :D f . f = D f • f x by ex-
ploring it formally (to be safe) and make adaptations as calculations indicate.
We start by observing that f = D f • f x ≡ ∀ y :D f . f y = f x by (23, 17) and
calculate

∃ x :D f . ∀ y :D f . f y = f x
≡ 〈Idempotency ∧〉 ∃ x :D f . ∀ ( y :D f . f y = f x) ∧ ∀ (z :D f . f z = f x)
≡ 〈Distribut. ∧/∀〉 ∃ x :D f . ∀ ( y :D f . f y = f x ∧ ∀ z :D f . f z = f x)
≡ 〈Distribut. ∧/∀〉 ∃ x :D f . ∀ y :D f . ∀ z :D f . f y = f x ∧ f z = f x
⇒ 〈Transitivity =〉 ∃ x :D f . ∀ y :D f . ∀ z :D f . f y = f z
≡ 〈Definition con〉 ∃ x :D f . con f
≡ 〈Constant pred.〉 D f �= ∅ ∧ con f .

The idempotency step may seem surprising, but is (i) a standard technique for
inserting a second ∀, (ii) a way to enable an essential property of equality, viz.,
transitivity. Unfortunately, this broke the ≡ chain, so the converse has to be
explored separately:

D f �= ∅ ∧ con f ≡ 〈Definition con〉 D f �= ∅ ∧ ∀ x :D f . ∀ y :D f . f x = f y
⇒ 〈Remark below〉 ∃ x :D f . ∀ y :D f . f x = f y , so we have:

LEMMA D. D f �= ∅ ∧ con f ≡ ∃ x :D f . ∀ y :D f . f x = f y .

Remark. The first line (with ∀) and the goal (with ∃) suggests calculating
∀ P ⇒ ∃ P :

∀ P ⇒ ∃ P ≡ 〈From ⇒ to ∨〉 ¬ ∀ P ∨ ∃ P
≡ 〈Duality (26)〉 ∃ (¬P ) ∨ ∃ P
≡ 〈Distrib. ∃/∨〉 ∃ (¬P ∨̂ P )
≡ 〈Excl. middle〉 ∃ (D P • 1)
≡ 〈Const. pred.〉 D P �= ∅, which proves:

LEMMA E. ∀ P ⇒ ∃ P ≡ D P �= ∅.

Hence, D P �= ∅ ∧ ∀ P ⇒ ∃ P . Taking P := ∀ y :D f . f x = f y completes the
remark.

Lemma D together with (¬ p∧q ≡ r) ⇒ (p∨q ≡ p∨r) and p ⇒ q ≡ p∨q ≡ q
andD f = ∅ ⇒ con f , and recalling f = D f • f x ≡ ∀ y :D f . f y = f x, yields
the

CONSTANT FUNCTION THEOREM. con f ≡ D f =∅ ∨ ∃ x :D f . f =D f • f x. (39)

Our proof of Andrew’s Challenge arises as a by-product. Indeed, Lemma D
specializes to D P �= ∅ ∧ con P ≡ ∃ x :D P . ∀ y :D P . P x ≡ P y . Since D P �=
∅ ≡ ∀ P ⇒ ∃ P , only con P is left to calculate. The result clearly completes the
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desired proof.

con P ≡ 〈Definition con〉 ∀ x :D P . ∀ y :D P . P x ≡ P y
≡ 〈Remark below〉 ∀ x :D P . ∀ y :D P . P x ⇒ P y
≡ 〈L-distr. ⇒/∀〉 ∀ x :D P . P x ⇒ ∀ P
≡ 〈R-distr. ⇒/∃〉 ∃ P ⇒ ∀ P, which proves:

LEMMA F. con P ≡ ∃ P ⇒ ∀ P .

Remark. Uneventful steps not written out are: split P x ≡ P y as mutual
implication, use distributivity ∀/∧ to obtain conjunction of two quantified for-
mulas, swap ∀’s in one and rename dummies to make these formulas the same,
use idempotency of ∧.

As promised, we have seen how the formal rules make the domain emptiness
issue emerge exactly when relevant, without requiring to beware of it, so the
formalism is “robust” against oversights. More strongly: we have seen how the
shape of the formulas provides clues about how to proceed. To highlight this, we
adopted the somewhat unusual format of stating lemmata and theorems after
deriving them. Recasting this example into the “finished product” format as in
textbooks is a simple exercise.

4.1.2 The Function Range, with an Application to Set Comprehension

4.1.2.1 Function Range. We define the function range operator R by the
axiom

AXIOM, FUNCTION RANGE. e ∈R f ≡ ∃ (x :D f . f x = e). (40)

Equivalently, in point-free style: e ∈R f ≡ ∃ ( f ↼= e). A useful familiarization ex-
ercise is proving f ∈ X → Y ≡ D f = X ∧R f ⊆ Y given Z ⊆ Y ≡ ∀ z : Z . z ∈ Y .

4.1.2.2 A Very Useful Theorem. This point-free theorem underlies “dummy
change”. The proof is particularly illustrative for the one-point rule and right
distributivity ⇒/∃.

THEOREM, COMPOSITION RULE.

(i) ∀ P ⇒ ∀ (P ◦ f ) and (ii) D P ⊆ R f ⇒ (∀ (P ◦ f ) ≡ ∀ P ) (41)

We prove the common part; items (i) and (ii) follow in one more step each.

∀ (P ◦ f ) ≡ 〈Definition ◦〉 ∀ x :D f ∧. f x ∈D P . P ( f x)
≡ 〈Trading sub ∀〉 ∀ x :D f . f x ∈D P ⇒ P ( f x)
≡ 〈One-point rule〉 ∀ x :D f . ∀ y :D P . y = f x ⇒ P y
≡ 〈Swap under ∀〉 ∀ y :D P . ∀ x :D f . y = f x ⇒ P y
≡ 〈R-dstr. ⇒/∃〉 ∀ y :D P . ∃ (x :D f . y = f x) ⇒ P y
≡ 〈Definition R〉 ∀ y :D P . y ∈R f ⇒ P y .

The dual is ∃ (P ◦ f ) ⇒ ∃ P and D P ⊆ R f ⇒ ∃ (P ◦ f ) ≡ ∃ P , whereas the
pointwise variant is “dummy change”: ∀ ( y :R f . p) ≡ ∀ (x :D f . p[ y

f x) provided
R f ⊆ D ( y , p).
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4.1.2.3 Set Comprehension. Introducing {—} as an operator fully inter-
changeable with R, expressions like {2, 3, 5} and Even = {m : Z . 2 · m} have
a familiar form and meaning.

Indeed, since tuples are functions, {e, e′, e′′} denotes a set by listing its el-
ements. Also, k ∈ {m : Z . 2 · m} ≡ ∃ m : Z . k = 2 · m by (40). To cover common
forms (without their flaws), recall that abstraction has two variants e | x : X
standing for x : X . e and x : X | p for x : X ∧. p . x, yielding expressions like
{2 · m | m : Z} and {m : N | m < n}.

The only “custom” to be discarded is using {} for singletons. This is no
loss, since respecting it would violate Leibniz’s principle, for example, f =
a, b⇒ { f } = {a, b}. With our convention, this is consistent. Yet, to avoid baf-
fling the uninitiated, we advise writing R f rather than { f } if f is a function
identifier. Hence, we keep both symbols in stock.

Now binding is always trouble-free, even in {n : Z | n∈ Even} = {n : Even |
n∈ Z} and {n∈ Z | n : Even} �= {n∈ Even | n : Z}. All desired calculation rules fol-
low from predicate calculus by the axiom for R. A repetitive pattern is captured
by

THEOREM, SET COMPREHENSION. e ∈ {x : X | p} ≡ e ∈ X ∧ p[x
e (42)

PROOF. e ∈ {x : X ∧. p . x} ≡ 〈Def. range (40)〉 ∃ x : X ∧. p . x = e
≡ 〈Trading, twice〉 ∃ x : X ∧. x = e . p
≡ 〈One-point rule〉 e ∈ X ∧ p

[x
e

Furthermore, for the quantifiers Q : {∀ , ∃ }

THEOREM, COMPREHENSION TRADING. Q (w : {e | v : V } . p) ≡ Q
(
v : V . p[v

e

)
. (43)

PROOF. Let f := e | v : V and P := w :R f . p, in the composition rule.

4.1.2.4 Calculation Examples. The chosen topic is partial application, also
relevant to (functional) programming, for example, Haskell [Hudak et al. 1999]
supports a variant called sections. For any infix � and any x, we define the
domain of (x �) by D (x �) = { y | u, y :D (�) ∧. u = x}.

A first example is calculating R (x �), apart from R (x �) = {x � y | y :
D (x �)}.

z ∈R (x �) ≡ 〈Definition R〉 ∃ v :D (x �) . z = x � v
≡ 〈Defin. D (x �)〉 ∃ v : { y | u, y :D (�) ∧. u = x} . z = x � v
≡ 〈Compr. trad.〉 ∃ u, y :D (�) ∧. u = x . z = x � y
≡ 〈Definition R〉 z ∈ {x � y | u, y :D (�) ∧. u = x}

Hence, we found R (x �) = {x � y | u, y :D (�) ∧. u = x} (not surprising, but in
such matters a formal proof is not a luxury). A second example is verifying
the conjecture x ⇀� f = (x �) ◦ f , which turns out to hold but is left as a quite
pleasant exercise.
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Finally, we verify the conjecture D (�) = ⋃
x : {x | x, y :D (�)} . {x, y | y :

D (x �)}.
x, y ∈ ⋃

x : {x | x, y :D (�)} . {x, y | y :D (x �)}
≡ 〈Definition

⋃ 〉 ∃ u : {x | x, y :D (�)} . x, y ∈ {u, y | y :D (u �)}
≡ 〈Definition R〉 ∃ u : {x | x, y :D (�)} . ∃ v :D (u �) . x, y = u, v
≡ 〈Func. equal.〉 ∃ u : {x | x, y :D (�)} . ∃ v :D (u �) . x = u ∧ y = v
≡ 〈One-pt. rule〉 ∃ u : {x | x, y :D (�)} . y ∈D (u �) ∧ x = u
≡ 〈One-pt. rule〉 x ∈ {x | x, y :D (�)} ∧ y ∈D (x �)
≡ 〈Def. D (x �)〉 x ∈ {x | x, y :D (�)} ∧ y ∈ { y | u, y :D (�) ∧. u = x}
≡ 〈Definition R〉 ∃ (u, v :D (�) . x = u) ∧ ∃ (u, v :D (�) ∧. u = x . v = y)
≡ 〈Trading\∃〉 ∃ (u, v :D (�) . x = u) ∧ ∃ (u, v :D (�) . u = x ∧ v = y)
≡ 〈Distrib. ∃/∧〉 ∃ u, v :D (�) . x = u ∧ u = x ∧ v = y
≡ 〈Func. equal.〉 ∃ u, v :D (�) . u, v = x, y
≡ 〈One-pt. rule〉 x, y ∈D (�)

So the conjecture holds. Note: Previous exposure to sloppy practice may cause
people to read x, y ∈ X wrongly as x ∈ X ∧ y ∈ X . When in doubt, parenthesize
all pairs.

Additional rules shorten the proof but presenting them would lengthen the
article. A similar exercise is verifying R (�) = ⋃

x : {x | x, y :D (�)} . R (x �).

4.2 Exogenous Application Examples

We start with an example quite removed from computing, making it all the more
apparent how much the later proofs in computing are similar and how predi-
cate calculus contributes to the methodological unification of widely different
disciplines.

The examples show how calculation is guided by the shape of the formulas
rather than by their meaning. Some proofs may appear unintuitive to those used
to the latter approach only, but the opposite is true: they mark a “parallel” in-
tuition for syntactic reasoning, complementing existing “semantic” approaches
to problem solving and discovery. Like all forms of intuition, it can be acquired
only by active participation.

4.2.1 Limits in Mathematical Analysis

4.2.1.1 Motivation. In a comment about the first chapter of his book Taylor
[2000] observes:

The notation of elementary school arithmetic, which nowadays everyone takes
for granted, took centuries to develop. There was an intermediate stage called
syncopation, using abbreviations for the words for addition, square, root, etc.
For example Rafael Bombelli (c. 1560) would write

R. c. L. 2 p. di m. 11 L for our 3
√

2 + 11i.

Many professional mathematicians to this day use the quantifiers (∀,∃) in a
similar fashion,

∃δ > 0 s.t. | f (x) − f (x0)| < ε if |x − x0| < δ, for all ε > 0,

in spite of [. . .] Even now, mathematics students are expected to learn
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complicated (ε-δ)-proofs in analysis with no help in understanding the logi-
cal structure of the arguments. Examiners fully deserve the garbage that they
get in return.

Key words in the quotation are “understanding the logical structure of the ar-
guments”. This is exactly one of the advantages formal calculational predicate
logic offers over the traditional informal arguments in words or using ∀ and ∃
as mere syncopation.

Even if some proofs in words are as good as this medium permits, there
is a chafing style breach between calculating derivatives and integrals, where
symbols really do the work, and the logical arguments supporting these rules,
which are felt as a burden.

Bridging this gap is illustrated by recasting a classical introduction to lim-
its, taken from Lang’s excellent Undergraduate Analysis [Lang 1983], into our
predicate calculus.

Although analysis may not interest all members of the programming com-
munity, we feel that at least a few examples are needed to convey the flavor
and the wide scope of the formalism. The full treatment and the omitted proofs
can be found in [Boute 2004].

4.2.1.2 Proof Examples. We first define adherence. Formalizing the version
in Lang [1983] yields

def Ad : P R →P R with Ad S = {v : R | ∀ ε : R>0 . ∃ x : S . |x − v| < ε}. (44)

Although we have adequate calculation rules for set expressions, formulations
with predicates based on the obvious isomorphism between P X and X → B are
shorter and make calculations more homogeneous. Therefore, we proceed from
the definitions

def ad : (R → B) → (R → B) with ad P v ≡ ∀ ε : R>0 . ∃ x : RP . |x − v| < ε

def open : (R → B) → B with
open P ≡ ∀ v : RP . ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒ P x

def colsed : (R → B) → B with colsed P ≡ open (¬P ).

The latter reformulate the usual concepts of open and closed sets. We take two
exercises from Lang [1983] because the proofs show striking similarities with
later theorems directly relevant to programming, both in the issues raised and
in the shape of the formulas. The exercises consist in proving two properties.
Both use P v ⇒ ad P v (easy to show).

CLOSURE PROPERTY. colsed P ≡ ad P = P
PROOF

colsed P
≡ 〈Definit. colsed〉 open (¬P )
≡ 〈Definit. open〉 ∀ v : R¬P . ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒ ¬P x
≡ 〈Trading sub ∀〉 ∀ v : R . ¬P v ⇒ ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒ ¬P x
≡ 〈Contrapositive〉 ∀ v : R . ¬∃ (ε : R>0 . ∀ x : R . P x ⇒ ¬ (|x − v| < ε)) ⇒ P v
≡ 〈Duality, twice〉 ∀ v : R . ∀ (ε : R>0 . ∃ x : R . P x ∧ |x − v| < ε) ⇒ P v
≡ 〈Definition ad〉 ∀ v : R . ad P v ⇒ P v
≡ 〈P v ⇒ ad P v〉 ∀ v : R . ad P v ≡ P v.
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IDEMPOTENCY OF ADHERENCE. ad ◦ ad = ad
PROOF. By function equality and the definition of ◦, proving

ad (ad P ) v ≡ ad P v suffices. Instantiating P v ⇒ ad P v yields
ad P v ⇒ ad (ad P ) v. For the converse,

ad (ad P ) v
≡ 〈Definition ad〉 ∀ ε : R>0 . ∃ x : Rad P . |x − v| < ε

≡ 〈Trading sub ∃〉 ∀ ε : R>0 . ∃ x : R . ad P x ∧ |x − v| < ε

≡ 〈Definition ad〉 ∀ ε : R>0 . ∃ x : R . ∀ (ε : R>0 . ∃ z : RP . |z − x| < ε)∧|x − v|<ε

⇒〈Instantiation〉 ∀ ε : R>0 . ∃ x : R . ∃ (z : RP . |z − x| < ε) ∧ |x − v| < ε

≡ 〈Distrib. ∧/∃〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − x| < ε ∧ |x − v| < ε

≡ 〈Monot. + /<〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − x| + |x − v| < 2 · ε
⇒〈Triangle ineq.〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − v| < 2 · ε
≡ 〈Dummy swap〉 ∀ ε : R>0 . ∃ z : RP . ∃ x : R . |z − v| < 2 · ε
≡ 〈Const. pred.〉 ∀ ε : R>0 . ∃ z : RP . |z − v| < 2 · ε
≡ 〈Dummy chng.〉 ∀ ε : R>0 . ∃ z : RP . |z − v| < ε

≡ 〈Definition ad〉 ad P v.

Note again how the calculation rules for quantification are a major help in
deciding at every step what to do next. Although brief, this example shows “how
to rewrite your favorite analysis text and exercise mathematics for computing
science in the process”.

4.2.1.3 Limits: Conventional Treatment. A representative example [Lang
1983] is:

Definition. Let S be a set of numbers and a be adherent to S. Let f be a
function defined on S. We shall say that the limit of f (x) as x approaches a
exists, if there exists a number L having the following property. Given ε, there
exists a number δ > 0 such that for all x ∈ S satisfying |x − a| < δ we have
| f (x) − L| < ε. If that is the case, we write

lim
x → a
x ∈ S

f (x) = L.

[. . .] PROPOSITION 2.1. Let S be a set of numbers, and assume that a is adher-
ent to S. Let S′ be a subset of S, and assume that a is also adherent to S′. Let f
be a function defined on S. If limx→a,x ∈ S f (x) exists, then limx→a,x ∈ S′ f (x) also
exists, and those limits are equal. In particular, if the limit exists, it is unique.

PROOF. (Proof in words, not reproduced here).

4.2.1.4 Discussion, Formal Treatment. The definition reflects a custom,
found in many mathematics texts, of writing an equality when the definition
actually characterizes a relation; in this example: limx→a,x ∈ S f (x) = L. This is
not innocuous abuse of notation1: It ruins the argument. For instance, it sug-
gests fallacious uniqueness proofs like: let L and M satisfy limx→a,x ∈ S f (x) = L
and limx→a,x ∈ S f (x) = M , then L = M by transitivity.

Some mathematicians who have grown up with this custom may argue that
they have learned how to be careful, but thereby abandon all hope for safe formal

1Abuse of notation is never innocuous; even when temptation arises, it reveals a conceptual flaw.
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reasoning. Moreover, there is no reason for perpetuating flaws if prevention is
known and easy.

For this case, a proper relational formulation suffices. For this example, we
define a relation islim f (parameterized by any function f : R �→R) between R

and the set of points adherent to D f , that is: islim f ∈ R × Ad (D f ) → B. We
shall see later how such types are expressed formally. The image definition is

L islim f a ≡ ∀ ε : R>0 . ∃ δ : R>0 . ∀ x :D f . |x − a| < δ ⇒ | f x − L| < ε. (45)

The affix convention is chosen such that L islim f a is read “L is a limit for f at
a”. Domain modulation (via D f ) subsumes S in the conventional formulation.

PROPOSITION 2.1, FORMALIZED. For any function f : R �→R, any subset S of
D f and any a adherent to S,

(i) ∃ (L : R . L islim f a) ⇒ ∃ (L : R . L islim f � S a),

(ii) ∀ L : R . ∀ M : R . L islim f a ∧ M islim f � S a ⇒ L = M .

The calculational proofs are very similar to those for adherence and are given
in Boute [2004].

Our calculational approach to limits is completed by defining a functional
lim such that, for any argument f : R �→R, the function lim f is defined by

lim f ∈ {a : Ad (D f ) | ∃ b : R . b islim f a} → R

∀ a :D (lim f ) . (lim f a) islim f a. (46)

Well-definedness follows from function comprehension and uniqueness. We
shall formalize the type of lim later. Important for now are the following
observations.

First, lim is a functional, not an ad hoc abstractor, and supports point-free
expressions like lim f a (versus limx →a f x). Second, domain modulation covers
left, right and two-sided limits, for example, given def f : R → R with f x =
(x ≥ 0) ? 0 x + 1, then lim f<0 0 = 1 and lim f≥0 0 = 0, whereas 0 �∈ D (lim f≤0).

No separate concepts or notations are needed. Conventional notations can
be synthesized from lim by macro definitions such that, for instance, if e is
a real expression, limx →ae stands for lim (x : R . e) a and limx→<a e stands for
lim (x : R<a . e) a and so on.

4.2.2 Calculating with Properties and Operators Regarding Orderings.
Orderings are perhaps the most important concept in programming and lan-
guage semantics, and hence a good source of application examples for predicate
calculus.

Definitions. For set X , define predX = X → B and relX = X 2 → B. Table II
defines well-known possible properties of relations in relX via a predicate
P : relX → B.

In the last line, x ismin≺ S ≡ x ∈ S ∧ ∀ y : X . y ≺ x ⇒ y �∈ S. We often
write ≺ for R. Here ismin— had type relX → X ×P X → B but, as explained in
Section 4.2.1 for adjacency, predicate transformers of type relX → predX →
predX are more elegant. Hence we use the latter in the characterization of
extremal elements in Table III.
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Table II. Classification of Relations

Characteristic P Image, i.e., P R ≡ formula below
reflexive Refl ∀ x : X . x R x
irreflexive Irfl ∀ x : X . ¬ (x R x)
symmetric Symm ∀ (x, y) : X 2 . x R y ⇒ y R x
asymmetric Asym ∀ (x, y) : X 2 . x R y ⇒ ¬ ( y R x)
antisymmetric Ants ∀ (x, y) : X 2 . x R y ⇒ y R x ⇒ x = y
transitive Trns ∀ (x, y , z) : X 3 . x R y ⇒ y R z ⇒ x R z
total Totl ∀ (x, y) : X 2 . x R y ∨ y R x
equivalence EQ Trns R ∧ Refl R ∧ Symm R
preorder PR Trns R ∧ Refl R
partial order PO PR R ∧ Ants R
total order TO PO R ∧ Totl R
quasi order QO Trns R ∧ Irfl R (also called strict p.o.)
well-founded WF ∀ S :P X . S �= ∅ ⇒ ∃ x : X . x isminR S

Table III. Characterization of Extremal Elements by Predicate Transformers

Name Symbol Type: relX → predX → predX . Image: below
Lower bound lb lb≺ P x ≡ ∀ y : X . P y ⇒ x ≺ y
Least lst lst≺ P x ≡ P x ∧ lb P x
Minimal min min≺ P x ≡ P x ∧ ∀ y : X . y ≺ x ⇒ ¬ (P y)
Upper bound ub ub≺ P x ≡ ∀ y : X . P y ⇒ y ≺ x
Greatest gst gst≺ P x ≡ P x ∧ ub P x
Maximal max max≺ P x ≡ P x ∧ ∀ y : X . x ≺ y ⇒ ¬ (P y)
Least upper bound lub lub≺ = lst≺ ◦ ub≺
Greatest lower bound glb glb≺ = gst≺ ◦ lb≺

Educational experience shows that less formal characterizations cause be-
ginning students to confuse least, minimal and greatest lower bound as being
just different words for “at the lower side”. This is aggravated by the fact that
the well-foundedness axiom for natural numbers is stated in one textbook as
“every nonempty subset has a minimal element”, and in another as “every
nonempty subset has a least element”.

In fact, for any given relation ≺, no element can be both minimal and
least, because ¬ (min≺ P x ∧ lst≺ P x); moreover Refl (≺) ⇒ ¬ (min≺ P x) and
Irfl (≺) ⇒ ¬ (lst≺ P x). However, if we define a relation transformer ¬ : relX → relX
with x ≺¬ y ≡ ¬ ( y ≺ x), then min≺¬ = lst≺. If X is the set of naturals, min< = lst≤,
which clears up the issue.

4.2.2.1 Calculational Reasoning about Extremal Elements. In this exam-
ple, we derive some properties used later. A predicate P : predX is called mono-
tonic (or upward closed or isotonic) with respect to a relation —≺— : relX ac-
cording to the following definition.

Definition, Monotonicity. ∀ (x, y) : X 2 . x ≺ y ⇒ P x ⇒ P y . (47)

This definition and most properties below are common knowledge in certain sci-
entific communities and quite unknown in others. However, here the proofs are
the important aspect, since they illustrate the similarity with the examples in

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



1016 • Raymond Boute

mathematical analysis, in particular how calculation makes proofs easy where
semantic intuition offers no clue.

THEOREM, PROPERTIES OF EXTREMAL ELEMENTS. For any —≺— : relX and P : predX ,
(48)

(1) If ≺ is reflexive, then ∀ ( y : X . x ≺ y ⇒ P y) ⇒ P x.
(2) If ≺ is transitive, then ub≺ P is monotonic with respect to ≺.
(3) If P is monotonic with respect to ≺, then lst≺ P x ≡ P x ∧ ∀ ( y : X . P y ≡

x ≺ y).
(4) If ≺ is reflexive and transitive, then lub≺ P x ≡ ∀ ( y : X . ub P y ≡ x ≺ y).
(5) If ≺ is antisymmetric, then lst≺ P x ∧ lst≺ P y ⇒ x = y (uniqueness).

Replacing lb by ub and so on yields dual theorems (straightforward).

PROOF (OR OUTLINE). For part (1), instantiate the antecedent with y := x.
For part (2), we assume ≺ transitive and prove x ≺ y ⇒ ub≺ P x ⇒ ub≺ P y in
shunted form.

ub≺ P x ⇒ 〈p ⇒ q ⇒ p〉 x ≺ y ⇒ ub≺ P x
≡ 〈Definition ub〉 x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ x ∧ 1
≡ 〈

p ⇒ e
[v

1 = e
[v

p

〉
x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ x ∧ x ≺ y

⇒ 〈Transitiv. ≺〉 x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ y
≡ 〈Definition ub〉 x ≺ y ⇒ ub≺ P y .

For part (3), we assume P monotonic and calculate lst≺ P x

lst≺ P x
≡ 〈Defin. lst, lb〉 P x ∧ ∀ y : X . P y ⇒ x ≺ y
≡ 〈Modus Pon.〉 P x ∧ (P x ⇒ ∀ y : X . P y ⇒ x ≺ y)
≡ 〈L-dstr. ⇒/∀〉 P x ∧ ∀ y : X . P x ⇒ P y ⇒ x ≺ y
≡ 〈Monoton. P〉 P x ∧ ∀ y : X . (P x ⇒ P y ⇒ x ≺ y) ∧ (P x ⇒ x ≺ y ⇒ P y)
≡ 〈L-dstr. ⇒/∧〉 P x ∧ ∀ y : X . P x ⇒ (P y ⇒ x ≺ y) ∧ (x ≺ y ⇒ P y)
≡ 〈Mut. implic.〉 P x ∧ ∀ y : X . P x ⇒ (P y ≡ x ≺ y)
≡ 〈L-dstr. ⇒/∀〉 P x ∧ (P x ⇒ ∀ y : X . P y ≡ x ≺ y)
≡ 〈Modus Pon.〉 P x ∧ ∀ ( y : X . P y ≡ x ≺ y)

Some variations in this proof are outlined in [Boute 2004]. Furthermore, part (4)
is a direct consequence from the preceding parts. Proving part (5) is simple but
very typical.

lst≺ P x ∧ lst≺ P y
≡ 〈Defin. lst, lb〉 P x ∧ ∀ ( y : X . P y ⇒ x ≺ y) ∧ P y ∧ ∀ (x : X . P x ⇒ y ≺ x)
⇒ 〈Instantiation〉 P x ∧ (P y ⇒ x ≺ y) ∧ P y ∧ (P x ⇒ y ≺ x)
≡ 〈Rearranging〉 P x ∧ (P x ⇒ y ≺ x) ∧ P y ∧ (P y ⇒ x ≺ y)
≡ 〈Modus Pon.〉 P x ∧ y ≺ x ∧ P y ∧ x ≺ y
⇒ 〈Weakening〉 y ≺ x ∧ x ≺ y
⇒ 〈Antisymm.〉 x = y

These properties are crucial in programming and in formal language
semantics.
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As shown for limits, we use the predicate transformers to define functionals
(and ) mapping X -valued functions to the glb (and lub) of their range

in case existence and uniqueness are satisfied. The relevant predicate is the
range predicate R— : (Y → X ) → X → B defined by R f x ≡ x ∈R f . This allows
defining infix operators like by x y = (x, y) by variadic application
(defined in Section 2.2.2).

Furthermore, when appropriate, X is extended by adding (top) and
(bottom) elements, as in any textbook on lattice theory [Gierz et al. 1980] or
formal semantics [Loeckx and Sieber 1984; Stoy 1977; Winskel 1993].

4.2.2.2 Brief Note on Induction. Relation ≺ : X 2 → B supports induction
iff SI (≺), where

SI (≺) ≡ ∀ P : predX . ∀ (x : X . ∀ ( y : X ≺ x . P y) ⇒ P x) ⇒ ∀ P (49)

One can show SI (≺) ≡ WF (≺); a calculational proof is given in [Boute 2002].
Examples are the familiar strong and weak induction over N, where one of the
axioms is that every nonempty subset has a least element under ≤ (or minimal
element under <). They can be obtained by taking for ≺ respectively < and ≺
with m ≺ n≡ m + 1 = n.

STRONG INDUCTION. ∀P : predN . ∀ (n : N . ∀ (m : N . m < n⇒ P m) ⇒ P n) ⇒∀ P,
WEAK INDUCTION. ∀ P : predN . P 0 ∧ ∀ (n : N . P n⇒ P (n + 1)) ⇒ ∀ P.

A later example is structural induction over data structures.
An important preparatory step to avoid errors in inductive proofs is always

making the predicate P and all quantification explicit, avoiding vague desig-
nations such as “induction over n”. This is especially important in case other
variables are involved.

Remark. This section showed the advantages of formal predicate calculus
over the usual informal style in exposition. The case study next illustrates
exploration.

4.2.3 A Case Study: When Is a Greatest Lower Bound a Least Element?
The next few theorems, if reported at all in the literature, were unknown to the
author before deriving them calculationally. Hence, they illustrate well how the
formal rules serve as an instrument for discovery when entering an area where
one feels uncertain at first. Indeed, general orderings being rather abstract,
examples are not only difficult to construct, but may also have hidden properties
not covered by the assumptions.

The motivation arose in a minitheory for recursion (given later) as follows.
The g.l.b. operator ∧| , being the particularization of to R

′ := R ∪ {−∞, +∞}
under ≤, is important in analysis. The recursion theory required least elements
of nonempty subsets of N. For these, it seems “intuitive”, for example, from a
picture as in Figure 1, that both concepts coincide. This would imply that a
separate “least” operator is avoidable (contrary to first impression, we do not
like introducing operators without necessity).

However, is this really obvious? The diagram provides no clue as to which
axioms of N, ≤ are involved, and hence is useless for generalization. So the
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�
0 elements → ↓ least element

� � � �

� � � � � � ← lower bounds

Fig. 1. Least element and greatest lower bound for natural numbers.

exercise consisted in formally proving this property, not for verifying it, but for
uncovering the more basic properties of natural numbers that give rise to it,
and finding generalizations.

The linear diagram suggests totality as the basic property. This is mislead-
ing, since R is totally ordered, yet P : R → B with ∀ x :D P . P x ≡ x �= 0∧1/x ∈ N

has g.l.b. 0 but no least element. Proof details are given in [Boute 2004], after
showing lb≤ P x ≡ x ≤ 0.

This negative result (a g.l.b. but no least element) is a standard example
in analysis courses, but here we want to know which properties of N yield
positive results. A major difference with R is well foundedness, which therefore
is expected to play a role.

Yet, in proving certain theorems for N with ≤, it was found that no assump-
tions were needed, and hence such theorems will be restated here in general
form. Moreover, another useful by-product of certain proofs was the following
general-purpose rule.

THEOREM, QUANTIFIED SHUNTING. For P : X → B, Q : Y → B, —R— : X ×
Y → B, ∀ (x : X . P x ⇒ ∀ ( y : Y . Q y ⇒ x R y)) ≡ ∀ ( y : Y . Q y
⇒ ∀ (x : X . P x ⇒ x R y))

PROOF. By left distributivity of ⇒/∀, shunting and dummy swap.

This pattern arose in (and is now factored out of) the proof of the following
lemma.

LEMMA. ∀ (x : X . P x ⇒ ∀ y : X . lb≺ P y ⇒ y ≺ x) (parentheses for clarity
only)

PROOF. Weaken the definition ∀ (x : X . lb≺ P x ≡ ∀ y : X . P y ⇒ x ≺ y) from
≡ to ⇒, apply quantified shunting and rename dummies.

An immediate application is the following.

THEOREM, LEAST ELEMENTS AS GLBS. lst≺ P x ≡ P x ∧ glb≺ P x.
PROOF

lst≺ P x ≡ 〈Def. lst, lemma〉 P x ∧ lb≺ P x ∧ (P x ⇒ ∀ y : X . lb≺ P y ⇒ y ≺ x)
≡ 〈Modus Ponens〉 P x ∧ lb≺ P x ∧ ∀ y : X . lb≺ P y ⇒ y ≺ x
≡ 〈Definition glb〉 P x ∧ glb≺ P x

As a corollary, lst≺ P x ⇒ glb≺ P x. We saw that the converse does not generally
hold. In checking that it holds for N with ≤, we introduce known properties of
N, but as weak as possible, yet enabling the next step. Guidance is given by the
formal rules.

THEOREM, GLBS AS LEAST ELEMENTS (FOR N). glb≤ P n ⇒ P n ⇒ lst≤ P n. (50)
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PROOF. Since the relation and the predicate are fixed, we use shorthands
L for lb≤ P and K for lst≤ P and I (infimum) for glb≤ P to reduce handwriting.

I n⇒ 〈Weakening〉 ∀ m : N . L m ⇒ m ≤ n
≡ 〈Contraposit〉 ∀ m : N . n < m ⇒ ¬L m
≡ 〈Definition L〉 ∀ m : N . n < m ⇒ ¬∀ k : N . P k ⇒ m ≤ k
≡ 〈Duality ∀/∃〉 ∀ m : N . n < m ⇒ ∃ k : N . P k ∧ k < m
⇒ 〈Weakening〉 ∀ m : N . n < m ⇒ ∃ P
≡ 〈R-dstr. ⇒/∃〉 ∃ (m : N . n < m) ⇒ ∃ P
≡ 〈Property α〉 ∃ P
⇒ 〈Property β〉 ∃ K

I n≡ 〈I n⇒ ∃ K 〉 ∃ K ∧ I n
⇒ 〈Property γ 〉 ∃ K ∧ ∀ m : N . I m ⇒ m = n
⇒ 〈K n⇒ I n〉 ∃ K ∧ ∀ m : N . K m ⇒ m = n
⇒ 〈Half-pt. rule〉 K n

Property α is ∀ n : N . ∃ m : N . n < m, which is fairly weak. Property β is just
the predicative formulation of well foundedness, namely ∀ P : N → B . ∃ P ⇒
∃ (lst≤ P ), which may also be written ∃ P ≡ ∃ (lst≤ P ) since lst≤ P n⇒ P n. Prop-
erty γ is antisymmetry of ≤, with consequence ∀ n : N . I n⇒ ∀ m : N . I m ⇒
m = n.

For the general case, we separate the concerns, in this case, the assumptions.
Observe that, in case ¬∃ P (or P x ≡ 0), one has lst≺ P x ≡ 0 but lb≺ P x ≡ 1,

hence glb≺ P x ≡ ∀ y : X . y ≺ x. For having glb≺ P = lst≺ P , a necessary and
sufficient condition is ∀ x : X . glb≺ P x ≡ 0, or ∀ x : X . ∃ y : X . ¬ ( y ≺ x), gener-
alizing property α. Hence, unless we accept ¬∃ P as an exception, this condition
is necessary.

Since many orderings of interest in computing are antisymmetric, it is
worthwhile investigating how far this leads. One result is the lemma

LEMMA. If ≺ is antisymmetric, ∃ (lst≺ P ) ⇒ glb≺ P x ⇒ lst≺ P x.

PROOF (SHUNTED)

glb≺ P x ⇒ 〈Antisymmetry〉 ∀ y : X . glb≺ P y ⇒ x = y
⇒ 〈lst≺ P ⇒̂ glb≺ P〉 ∀ y : X . lst≺ P y ⇒ x = y
⇒ 〈Half-pint rule〉 ∃ (lst≺ P ) ⇒ lst≺ P x

Combining this with the property lst≺ P x ⇒ glb≺ P x obtained earlier yields.
THEOREM. If ≺ is antisymmetric, then ∃ (lst≤ P ) ⇒ glb≺ P = lst≺ P;

if ≺ is antisymmetric and well founded, then ∃ P ⇒ glb≺ P = lst≺ P.

Observe that the argument has become shorter than the first proof for
I n⇒ K n, which still remains interesting to reflect the flavor of a first attempt.

Without further elaboration, we conclude by generalizing ∧ from (8) to the
g.l.b operator ∧| mapping any R-valued function f to an element of R

′, with

∀ x : R
′ . ∧| f =x ≡ ∀ ( y :R f . x ≤ y) ∧∀ z : R

′ . (∀ y :R f . z ≤ y) ⇒ z ≤ x (51)

and likewise for ∨| . Let P : N → B and g :=∧| n : N | P n, then ¬∃ P ≡ g = ∞
and ∃ P ≡ g ∈ N ∧P g ∧∀ m : N . m < g ⇒ ¬P m, linking ∧| to the least element.
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5. INTERMEZZO: DECLARATIVE LANGUAGE PRAGMATICS

The simple design described in Section 2.2 has a wide applicability, sufficient
to cover most, if not all, mathematics needed in engineering and computing.
Precisely because of its smallness, the syntax alone gives few clues about how
to do this. This situation is reminiscent of LISP as compared to more baroque
programming languages. Claiming wide applicability while leaving readers to
try it all out in their own field is not sufficient. Therefore, in this and the follow-
ing sections, we address successively the language design aspects that validate
the claim, provide a general-purpose operator package or “user library”, and a
fair number of examples in diverse application domains.

5.1 Pragmatics of Language Constructs and Operator Design

5.1.1 Some Additional Notes on the Language Constructs

5.1.1.1 Identifiers. As explained in Section 2.2 and illustrated in many ex-
amples, the bound variables (dummies) in an abstraction (binding . expression)
have local scope, and their names can be changed (so-called α-conversion) in
the manner familiar to anyone who has handled multiple sums or integrals and
formalized in lambda calculus [Barendregt 1984; Stoy 1977].

Constants introduced in a definition (def binding) have global scope. A def-
inition def a : X with p states the axiom a ∈ X ∧ p for a and asserts existence,
viz., ∃ x : X . p[a

x and uniqueness, viz., ∀ (x, y) : X 2 . p[a
x ∧ p[a

y ⇒ x = y , which
are proof obligations. For explicit definitions, as in most examples in this paper,
these are met trivially.

We briefly comment on functions. In definitions def f : X with f v = e, the
with part stands for ∀ v :D f . f v = e (this convention can be generalized and
made sufficiently precise, even for automation). For explicit image definitions
(with f v = e where f �∈ ϕ e), the proof obligations are met trivially. For im-
plicit definitions, as shown for lim in (46) and ∧| in (51), they are met by function
comprehension (37) and a uniqueness proofs; the conditions are included in the
domain specification. A systematic discipline for organizing this is the trilogy
principle in [Boute 2002].

A variant is specification, which has the form spec binding and states an
axiom without existence or uniqueness claims. A last variant is the local defini-
tion of the form expression where binding, which is the same as def but with
local scope. Further mechanisms for packaging and import/export can be freely
borrowed from elsewhere.

In contexts containing many definitions with common conventions (as
in many places in this article), a global legend (with metavariables) from
Section 2.2.1 obviates repetitive type definitions that def-definitions would
entail.

5.1.1.2 Tupling. For various reasons, tupling deserves a separate construct
rather than some simulation by lambda terms. First, lambda terms impose Cur-
rying. In most of mathematics, the Cartesian product is a central concept and
Currying is not always wanted. Second, mimicking our functional tuples in
lambda calculus requires at least the following. Assuming Church numerals
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γ n = λx y .xn y , one must design two combinators: a tuple constructor M spec-
ified by M (γ k) N0 · · · Nk−1 (γ i) = Ni, where the Ni are any terms (0 ≤ i < k),
and a length operator L such that L (M (γ k) N0 · · · Nk−1) = γ k (an instructive
exercise). Third, even such simulation remains too clumsy for practical use
(try translating f (x, y) = x2 + y2) and synthesizing common conventions. Fi-
nally, handling tuples as first-class-functions is better served by a dedicated
construct.

Our tuples also differ from those in functional programming. In most pro-
gramming languages, even functional ones, tuples and lists are mutually dis-
tinct concepts and are not functions. For instance, in Haskell [Hudak et al. 1999]
tuples are just aggregates of the form (x,y,z), and lists are defined recursively
from the empty list [] and:, writing [x,y,z] for x:y:z:[]. The same holds in
languages for proof assistants like Isabelle [Paulson 2001].

By contrast, in Funmath, we unify tuples, sequences, lists, etc. as first-
class functions with all privileges, such as appearing as arguments of generic
functionals and variadic operators. Due to the evident isomorphism between
Funmath tuples and the variety of tupling and list constructs in programming
languages, all calculations in our formalism are relevant to these constructs
even in languages not supporting them as functions.

5.1.2 Elastic Operators, Variadic Infix Application and Design Issues

5.1.2.1 Elastic Operators. Common mathematics contains many ad hoc ab-
stractors such as limx →a, {x : X | . . .}, ∑k−1

i=0 and (∀ x). We replace these in a
uniform way by so-called elastic operators, that is, functionals such as lim, R,∑

, ∀, applied to functions.
Advantages are: (a) supporting point-free expression, as in lim f a,R f ,

∑
f ,

∀P ; (b) pointwise expression requires only one kind of abstraction (function
abstraction), providing separation of concerns in the calculation rules; (c) the
domain modulation principle mentioned in Section 4.1.1 together with function
filtering (19) yields finer expressivity than the “range” associated with ad hoc
abstractors.

Given the variety of existing conventions, some abstractor notations are
bound to be textually identical, as in Nuprl [1992] but the different parsing must
be observed: in Funmath, E v : X . e is the application of a function E (elastic
operator) to a function v : X . e, as opposed to an ad hoc abstractor “E v : X .”
before an expression e. Moreover, our approach differs from other unifications
of ad hoc abstractors [Dijkstra and Scholten 1990; Gries and Schneider 1993] by
its functional nature, by supporting both point-free and pointwise styles, by not
being restricted to associative and commutative operators, and by applicability
to tuples.

For instance, the so-called Eindhoven Quantifier Notation 〈Q x : p.x : f .x〉 is
uniform in the sense that Q can be the symbol ∀, �, S (for sets), but this is not an
operator, and each abstraction is monolithic. This precludes sharing properties
with functions such as the calculation rules and the generic functionals defined
later. The compactness of point-free expressions can be achieved only by ad
hoc conventions, for example, [t] for 〈∀ z :: t.z〉 and 〈t〉 for 〈∃ z :: t.z〉, as in
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Table IV. Examples of Variadic Infix Application

Expression Traditional justification
x + y + z associativity,
x ∨ y ∨ z associativity
x {} y {} z (not considered)
X × Y × Z ad hoc convention
x = y = z conjunctionality
x �= y �= z (not considered)

Expression Funmath justification
x + y + z = ∑

(x, y , z)
x ∨ y ∨ z ≡ ∃ (x, y , z)
x {} y {} z = {x, y , z}

X × Y × Z = ×(X , Y , Z )
x = y = z ≡ con (x, y , z)
x �= y �= z ≡ inj (x, y , z)

[Dijkstra 1996b]. By contrast, any of our elastic operators E simply yields E f =
E x :D f . f x (Leibniz’s principle), as in ∀ P ≡ ∀ x :D P . P x.

For ∀ and ∃, a similar formulation as predicates about the constancy of pred-
icates is found in HOL Light [Harrison 2000], but since HOL Light abstractions
are untyped, essential concepts such as domain modulation are not supported
(and neither is variadic ∧, ∨).

5.1.2.2 Variadic Infix Application. Tuple arguments for elastic operators
like ∀, R and

∑
may have any length. Generally, operators whose arguments

are tuples of any length are called variadic [Illingworth et al. 1989], for example,
restrictions of elastic operators to tuples in their domain.

Argument/operator alternations like x � y � z (any length) are ubiquitous in
mathematics, but provided with various ad hoc justifications, as shown in the
leftmost half of Table IV. Associativity for an operator — � — : A2 → A means
x � ( y � z) = (x � y) � z and conjunctionality for a relation —R— : A2 → B means
x R y R z ≡ x R y ∧ y R z.

Instead of resorting to such disparate ad hoc justifications, we uniformly
define variadic infix application via the application of an appropriate variadic
operator F , viz., x� y�z = F (x, y , z), as shown in the rightmost half of Table IV.
Like the elastic operator con from (38), the elastic inj (injective) is a predicate
on functions, with

inj f ≡ ∀ x :D f . ∀ y :D f . f x = f y ⇒ x = y . (52)

The last four rows illustrate uniform treatment of operators that are not com-
mutative or not associative. The “superconjunctionality” in the last row gives
x �= y �= z its most useful purpose (x, y , z distinct), which traditional conven-
tions cannot achieve.

5.1.2.3 Design Issues. Formally, F : D → Y is an elastic extension of
— � — : X 2 → Y iff X ∗ ⊆ D ⊆ fam X ∧ ∀ x, x ′ : X 2 . F (x, x ′) = x � x ′. The family
operator fam is defined by

f ∈ fam X ≡ R f ⊆ X , (53)

and f ∈ fam Z is read: “ f is a family of integers”. The most elastic case is
D = fam X , but this is not achievable for all �. It is for quantifiers, noting that
∀ (x, x ′) ≡ x ∧ x ′. Elastic extensions are not unique, leaving room for judicious
design.

For instance, if � is associative, it is wise to honor common convention
by choosing the elastic extension F such that x � y � z = (x � y) � z.
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To that effect, F � X ∗ must be a list homomorphism [Bird 1998], viz.,
∀ f , g : (X ∗)2 . F ( f ++ g ) = F f � F g , where ++ is concatenation. To appreciate
this, it is worth designing such an elastic extension of ≡. For elastic operators
not related to pre-existing operators, design is unrestricted.

Our approach was first meant just to generalize Zamfirescu’s [1993] design
method for resolution functions in VHDL [IEEE 1994], and the name “elastic
operator” for our solution was coined by Jacques Zahnd (personal communi-
cation, 1993). Wider applicability was soon apparent throughout “everyday”
mathematics and in the design of formal mathematical languages. For instance,
the approach solves all reported problems with variadic operators in OpenMath
[Davenport 2000].

5.2 Generic Functionals

Predicate calculus allows expanding the library of generic functionals started
in Section 2.3.3, with the same design principle of avoiding restrictions on the
argument functions. A small number suffices, even for practical purposes and
not just in the theoretical sense whereby K and S suffice in combinator calculus
[Barendregt 1984]. They can be seen as typed variants of combinators, but
typing is crucial to making them practical, since it enables specifying the result
domains according to the design principle. They possess interesting algebraic
properties, forming in a concrete variant of category theory [Aarts et al. 1992;
Reynolds 1980].

We adopt the discipline of keeping generalizations of existing operators con-
servative in that they specialize to the common definitions in case the usual
restrictions are satisfied. In this way, no familiar properties are lost. Other-
wise, we reserve all freedom.

5.2.1 Auxiliary Operators for Function Typing. The following generic op-
erator is designed later but defined here so the reader can use it to specify
the types of other generic functionals in Section 5.2.2 which is a most useful
familiarization exercise. We define ×as follows: for any set-valued function T ,

×T = { f :D T → ⋃
T | ∀ x :D f ∩ D T . f x ∈ T x}. (54)

By calculation, ×(X , Y ) = X × Y and ×(X • Y ) = X → Y . We introduce
X � x → Y (while allowing x ∈ ϕY ) as a macro for ×x : X . Y , which is conve-
nient for chained dependencies, as in X � x → Y � y → Z (allowing x ∈ ϕ(Y , Z )
and y ∈ ϕZ ).

We define the block operator over N
′ := N ∪ ι ∞ as follows: for any n : N

′,

n = {m : N | m < n}. (55)

Examples. 0 = ∅ and 2 = B and ∞ = N. We define the power of
a set X by X ↑ n = n→ X (shorthand: X n) and (re)define Kleene’s ∗ by
X ∗ = ⋃

n : N . X n.

5.2.2 A Package of Generic Functionals

5.2.2.1 Basic Functionals. For explicit definitions, we use abstraction,
which is compact and keeps domain and mapping together during calculations:
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handling both simultaneously yields shorter and more synoptic derivations. We
present the operators in groups.

(i) Operators from Functions to Sets. domain D (specified in the binding),
range R (40), graph G (56), bijective domain Bdom (57) and bijective range Bran
(58).

G f = {x, f x | x :D f } (56)
Bdom f = {x :D f | ∀ y :D f . f x = f y ⇒ x = y} (57)
Bran f = { f x | x : Bdom f } (58)

(ii) Operators for Function Typing. function arrow → (24), partial arrow �→
(25), family type fam (53) and funcart product ×(54).

(iii) Function Transformer with One Function Argument. function
inverse —−.

f − ∈ Bran f → Bdom f and ∀ x : Bdom f . f − ( f x) = x. (59)

To remove doubts: (59) does not assume inj f , but yields the usual inverse in
case inj f .

(iv) Function Transformer with One Function and One Predicate Argument.
filter ↓ (19); function transformer with one function and one set argument:
restrict � (20).

(v) Function Transformers with Two Function Arguments. composition ◦ (13),
dispatching using Meyer’s [1991] symbol & (60), parallel ‖ (61), override >©
(62), overridden <© (63), and function merge ∪· (18). Obviously, f c© g ⇒ f ∪· g =
f <© g = f >© g .

f & g = x :D f ∩ D g . f x, g x (60)
f ‖g = (x, y) :D f ×D g . f x, g y (61)

f >© g = x :D f ∪ D g . (x ∈D f ) ? f x g x (62)
f <© g = x :D f ∪ D g . (x ∈D g ) ? g x f x (63)

(vi) Function Transformers for direct extension in Several Variants. monadic
— (14), dyadic —̂ (15), left half ↼— and right half direct extension ⇀— (16).

(vii) Predicates with One Function Argument. constant con (38), injective inj
(52), surjective srj (64), bijective bij (65), finite fin (66) and with two function argu-
ments (i.e., relational): compatibility c© (21), function equality (23), subfunction
⊆ (67)

f srj Y ≡ R f = Y (64)
f bij Y ≡ inj f ∧ f srj Y (65)

fin f ≡ ∃ n : N . ∃ g : n→D f . g srjD f . (66)
f ⊆ g ≡ f = g �D f (67)

Clearly, ⊆ is a partial ordering on functions, and coincides with the set ordering
on the function graphs, hence reading ⊆ from the usual “functions as sets” view
is harmless.
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5.2.2.2 Elastic Extensions of Two-Argument Generic Functionals. We only
show extensions that are “interesting” in that their arguments can be fully
arbitrary families of functions, not necessarily with discrete domains. The main
operators are: transpose —T (68), which extends & since ( f , g )T = f & g , and its
“uniting variant” —U (69), elastic parallel ‖ (70), elastic direct extension —< (71),
elastic compatibility c© (72): for any family of functions F and any function g
(in practice an elastic operator),

F T = y :
⋂

(D ◦ F ) . x :D F . F x y (68)
F U = y :

⋃
(D ◦ F ) . x :D F ∧. y ∈D (F x) . F x y (69)

‖F f = x :D F ∩ D f ∧. f x ∈D (F x) . F x ( f x) (70)
g<F = g ◦ F T (71)

c© F ≡ ∀ (x, y) : (D F )2 . F x c© F y . (72)

Noteworthy is also the elastic function merge
⋃· , defined by domain axiom

D (
⋃· F ) = { y :

⋃
(D ◦ F ) | ∀ (x, x ′) : (D F )2 . y ∈D (F x) ∩ D (F x ′) ⇒ F x y =

F x ′ y} and mapping y ∈D (
⋃· F ) ⇒ ∀ x :D F . y ∈D (F x) ⇒ ⋃· F y = F x y .

Writing out the types is an instructive familiarization exercise for such func-
tionals. An example for T is fam F � F → ⋂

(D ◦ F ) →D F � x →R (F x). In def-
format,

def —T : fam F � F → ⋂
(D ◦ F ) →D F � x →R (F x) with F T y x = F x y .

Remark. The generic functionals constitute an interesting algebra of func-
tions (point-free rules) and also point-wise rules. These are not stated here,
except for one example: f = ⋃· x :D f . x → f x and, more remarkably, f

− =⋃· x :D f . f x → x, showing how well-matched the functionals designed via the
stated principle are.

6. APPLICATION EXAMPLES: SECOND BATCH

6.1 Application to Mathematical and Programming Formalisms

Qua language design, we have shown how a very simple syntax makes common
notations defect-free and generates new forms of expression whereby, contrary
to common belief, formality increases freedom (e.g., x �= y �= z to mean that
x, y , z are distinct).

The formal rules endow predicate logic and discrete mathematics with the
calculational style formerly found only in analysis and algebra.

The following application examples illustrate the ramifications of elastic
and generic functionals. Occasional remarks indicate the practical origins of
generic functionals.

6.1.1 More Elastic Operator Design Examples and Ramifications

6.1.1.1 Proper Designs for
∑

-Operators. Operators over discrete struc-
tures are often defined recursively via an empty rule, a one-point rule and a
combining rule [Bird 1998]. This also explains why we use τ for singleton tu-
ples (the empty tuple already being ε).
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For more general operators, these rules often emerge as properties, for in-
stance ∃ ε ≡ 0, ∃ (d → p) ≡ p and P c© Q ⇒ (∃ (P ∪· Q) ≡ ∃ P ∨ ∃ Q), respectively.

We use this style in defining
∑

, which is inherently more complex than ∃
or ∀, since + is not idempotent like ∨ or ∧. Here are the axioms, assuming any
number-valued functions f and g with finite, nonintersecting domains, any d
and any number c:

Empty rule:
∑

ε = 0
One-point rule:

∑
(d → c) = c

Merge rule: f ∪· g = ∑
f + ∑

g .

(73)

Well-definedness is left as an exercise. Variadic + is defined as in x + y + z =∑
(x, y , z).
The ambiguities in common usage and software design errors as shown in

Section 2.1 are avoided by making the vague common notation
∑n

i=m e precise
as standing for

∑
i : m . . n . e, where m . . n is defined as in PASCAL [Jensen

and Wirth 1978]. Aside: In calculations with intervals, it is advantageous to
use m n, including the lower but not the upper bound:

PASCAL-like variant: m . . n = {i : Z | m ≤ i ≤ n}
Preferable variant: m n = {i : Z | m ≤ i < n} for integer m, n. (74)

Formula (2) is obtained via algebraic properties of
∑

, for example, trading:∑
f P = ∑

( f ·̂ P ).
A different design shows one way to correct (1) while preserving its

right-hand side. Define a function transformer —]n
m by f ]n

m = (m ≤
n) ? (i : m n . f i) (i : n m . −( f i)) for m, n : Z

2 and f : Z → C. Then define the
parameterized

∑—
— : Z

2 → (Z → C) → C with
∑n

m f = ∑
( f ]n

m). This ensures∑k
m f + ∑n

k f = ∑n
m f regardless of the order of the integers m, k, n. Note

the analogy with
∫ c

a f + ∫ b
c f = ∫ b

a f . This property is shared by a
∑

abstrac-
tor defined in Graham et al. [1994], based on expressions, but our variant is
functional and developed independently to correct (1). Observe that, for any
integers m, n, k,

n∑
k

i : Z .

m∑
i

j : Z . 1 = (n − k) · (2 · m − n − k + 1)
2

.

Substituting k := 0 yields a salvaged version of (1) with the same right-hand
side.

Another important advantage of definition (73) for
∑

is that the do-
main of the argument need not be numeric. Various ad hoc “shorthands”
thereby obtain a formally correct version. For instance, in texts on electric-
ity, Kirchhoff ’s current law at a circuit node K is often written sloppily as∑

K i = 0. With our approach, writing iK for the family of the currents
flowing out of node K (iK L for the current from K to L), one writes rigor-
ously

∑
iK = 0, which illustrates the flexibility of domain modulation. Sim-

ilar advantages in software specification and programming are mentioned
later.
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6.1.1.2 Origin and Ramifications of the ×-Operator. This interesting de-
sign arose from formalizing a convention for specifying a radio frequency filter
characteristic f within a given tolerance [Carson 1990], for example, m x ≤
f x ≤ M x. Here is the approach [Boute 2003].

Let T be an interval-valued function, for example T x = [m x, M x]. A func-
tion f meets tolerance T iff D f = D T and, for all x in the domain, f x ∈ T x. We
generalize this by defining an operator ×over arbitrary set-valued functions
T as shown in (54).

The equivalent form f ∈×T ≡ D f = D T ∧∀ x :D f ∩D T . f x ∈ T x high-
lights the analogy with equality: f = g ≡ D f = D g∧∀ x :D f ∩D g . f x = g x,
and hence f = g ≡ f ∈×(ι ◦ g ). In other words, the tolerance can be com-
pletely “tight”.

By calculation, X × Y = ×(X , Y ), which differs from the common Carte-
sian product only by the extra structure that tuples are functions. The extension
is conservative. This explains our choice of the symbol ×and the name Func-
tional Cartesian Product. As expected, × is the elastic operator for defining
variadic infix application of ×.

Expressions like ×i : I . Ai capture the so-called dependent type or product
[Tennent 1991], usually written

∏
i ∈ I Ai. However, the latter is just an ad hoc

abstractor and ×is a genuine functional, with algebraic properties not shared
by the conventional forms and for which we have not yet seen counterparts
elsewhere, such as the inverse ×−.

The axiom of choice is equivalent to ×T �= ∅ ≡ ∀ x :D T . T x �= ∅, which
also characterizes Bdom×. If ×T �= ∅, then ×− (×T ) = T . For × this im-
plies that, for nonempty sets, ×− (X × Y ) = X , Y . Especially interesting is
an explicit formula for the inverse: one can show calculationally that, for any
nonempty S in the range of ×,

×− S = x :
⋂

( f : S . D f ) . { f x | f : S}. (75)

With×, we can formally express intricate conditions on arguments of a func-
tional in its type expression (rather than separately in the surrounding text) as
announced in Section 4.2.1. An illustration is the elastic lim-operator from (46):

def lim : (R �→R) � f → {a : Ad (D f ) | ∃ b : R . b islim f a} → R

with ∀ f :D lim . ∀ a :D (lim f ) . (lim f a) islim f a.

Such cascaded conditions are even more apparent in the Newton quotient
functional

def Q : FD � f →D f � x →D f \ ι x → R with Q f x y = f y − f x
y − x

,

where FD is the set of real-valued functions whose domain is an interval [Lang
1983] of more than one point. This is used as an auxiliary function in defining
the derivation operator with image definition D f x = lim (Q f x) x and type
definition left as an exercise.

6.1.1.3 Variant: An Operator for Polymorphism. Clearly,×is directly suit-
able for parameterized (Church-style) polymorphism, details being given in
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[Boute 2003]. For completeness, we mention the function type merge (⊗), de-
signed by van den Beuken [1997] to express overloading and parameterless
(Curry-style) polymorphism, and also discussed in [Boute 2003]: for any family
G of function types, ⊗G = {⋃· F | F :×G ∧. c© F }.

6.1.2 Unifying Structures as Functions in Mathematics and Programming.
Tuples, lists sequences and so on are ubiquitous structures and benefit most
from being defined as functions. This intuitively evident design decision is sur-
prisingly rare in the literature, where said structures are handled as entirely
or subtly distinct from functions [Gierz et al. 1980; Lang 1983; Roberts and
Mullis 1987; Wechler 1987]. The few exceptions [Halmos and Givant 1998] con-
cern homogeneous cases only and do not exploit the function properties, thereby
missing the advantages.

First, defining structures as functions bestows all function properties and
generic functionals. Conversely, tuples guide the design of many elastic oper-
ators, including generic ones such as transposition. Moreover, all calculations
and theorems about these structures as functions remain applicable even in
formalisms and programming languages not viewing them as functions.

6.1.2.1 Sequences. We use this term to encompass tuples, arrays, lists and
similar structures.

A sequence is any function with domain n for some n : N
′. In this discussion,

x and y stand for sequences. The length operator # is defined by # x = n≡ D x =
n.
Arrays of length n over a set A are functions of type An. For lists, A∗ =⋃
n : N . An (finite) and A∞ = N → A (infinite). We also define Aω = A∗ ∪ A∞.

A tuple has type ×S for some sequence S of nonempty sets. Clearly, ×S ⊆
(
⋃

S)# S ⊆ (
⋃

S)∗.
The usual recursive formulations and inductive arguments from the liter-

ature [Bird 1998] carry over in the functional formulation. For instance, as in
[Boute 1991], we define the operators prefixing (— >− —) and concatenation
(— ++ —) for any e and sequences x and y by

e >− x = i : (# x + 1) . (i = 0) ? e x (i − 1) (76)
x ++ y = i : (# x + # y) . (i < # x) ? x i y (i − # x). (77)

The formulas ε ++ y = y and (e >− x) ++ y = e >− (x ++ y) can be seen as either
theorems derived from (77) or a recursive definition replacing (77). Elastic op-
erators applied to lists enjoy properties like

∑
(a >− x) = a + ∑

x (theorems,
not definitions). Structural induction on A∗ has the usual formulation but is
again a theorem:

P ε ∧ ∀ (x : A∗ . P x ⇒ ∀ a : A . P (a >− x)) ⇒ ∀ x : A∗ . P x. (78)

For infinite lists, one can similarly reformulate co-induction, but in many cases
just induction on the index suffices because A∞ = N → A.

To further illustrate the versatility of × for typing sequences: if S and T
are sequences of sets, then any x :×S and y :×T satisfy x ++ y ∈×(S ++ T ).
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6.1.2.2 Records and Other Structures. Records in the sense of PASCAL
[Jensen and Wirth 1978] are important in programming. One functional
approach, similar to projection in category theory, uses selector functions corre-
sponding to field labels, and the records are arguments. This is used in Haskell
[Hudak et al. 1999], and was also explored earlier in an other context [Boute
1982]. However, it does not view records as functions, and has a rather hetero-
geneous flavor.

With ×we can define the records themselves as functions whose domain is
a set of field labels defined as an enumeration type [Jensen and Wirth 1978],
for instance, {name, age} in

Person :=×(name → A
∗ ∪· age → N).

This defines a function type such that person : Person satisfies person name∈ A
∗

and person age∈ N. Obviously, by defining Record F = ×(
⋃· F ), one can also

define Person := Record (name → A
∗, age → N), which is more suggestive.

We define trees as functions whose domains are branching structures, that
is, sets of sequences describing the path from the root to a leaf in the obvious
way (for any branch labeling). For instance, for a binary tree, the branching
structure is a subset of B

∗.
Data structures defined or modelled as functions inherit all elastic and

generic functionals, which facilitates reasoning about programs using them.
Given a data structure s : D → Z (sequence, a tree etc. depending on the struc-
ture of D) we can simply write, for instance,

∑
s for the sum of the elements if

they are numbers.

6.1.3 Applications of Generic Functionals in Mathematics and Program-
ming

6.1.3.1 Mathematical Software. For good reasons, mathematical software
often tries to accommodate common usage, but thereby inherits deficient parts
as well. Typical are floating pieces of syntax and operator arguments that
are not expressions but ad hoc constructs merging poor conventions from dis-
crete mathematics with imperative constructs from the implementation. For
instance, iterators introduce a range variable and specify step size and bound-
aries, such as i=1..n in sum(sum(1,j=i..m),i=1..n).

Using domain modulation instead would yield a definite improvement in
existing mathematical software (MATLAB, Mathcad, Maple, Mathematica etc.).
The resulting expressions are conceptually simple, clear, compact, and have
precise calculation rules.

More generally, our approach markedly simplifies languages by using few
constructs.

6.1.3.2 Obviating Ellipsis. An entrenched mathematical convention is el-
lipsis (Section 2.1). It is a clumsy way of expression and hampers designing
precise rules. “Continuous” mathematics has the fortune of lacking this “fea-
ture”. Elastic and generic functionals, together with sequences as functions,
make complete cleanup a routine matter.
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Lengthy expressions like f x0, f x1, . . . , f xn−1 are replaced by f x or
f x<n as needed. For f x0, f x1, . . . , f xm−1, e, f xm+1, . . . , f xn−1 one writes
f x <© (m → e) (or defines an operator on this basis). All redundancy that has
no redeeming value is gone, which also improves clarity. Such use of generic
functionals is not limited to numerical domains.

Furthermore, we define a sequence constructor · · · with, for integer m, n,

m · · · n = i : |n − m| . (m ≤ n) ? (m + i) (m − 1 − i) (79)

This replaces fm, fm+1, . . . , fn−1 by f ◦ (m · · · n), assuming m ≤ n.
More generally, to fully appreciate the use of generic functionals in obviating

ellipsis, it suffices to apply these ideas to a few randomly selected papers.
Unifying functions, tuples, lists and so on results in useful algebraic prop-

erties. Noteworthy are composition, for example, (3, 4, 5, 6) ◦ (1, 0, 2) = 4, 3, 5,
and inverses, for example, (3, 3, 7)− 7 = 2. An application of list inverses in
formal semantics is shown later.

6.1.3.3 Applications in Programming. Generic functionals subsume
many special-purpose functions or conventions and generalize them to arbi-
trary functions. Examples from functional programming, mainly from Haskell
[Bird 1998; Hudak et al. 1999], are written in typewriter font.

Composition (◦ or ) subsumes the usual map operator, for example, map
f [a, b, c] = [f a, f b, f c] is subsumed by f (a, b, c) = f a, f b, f c, as-
suming {a, b, c} ⊆ D f .

Transposition (T) is the dual of composition in various ways, for example,
the distributivity laws (provided y ∈D f ∩ D g and {x, y} ⊆ D f , respectively)

( f , g )T y = f y , g y and f ◦ (x, y) = f x, f y . (80)

In the discrete domain of functional programming, this subsumes the zip opera-
tor: zip[[a,b,c],[a′,b′,c′]] = [[a,a′],[b,b′],[c,c′]] (up to Currying), if lists
are modelled as functions. Indeed, ((a, b, c), (a′, b′, c′))T = (a, a′), (b, b′), (c, c′).

More generally, given f : A→ B → C (nonempty A, B, C), then f T ∈ B →
A→ C and ( f T)T = f , a useful algebraic law for functional programs of the
given type.

Direct extension (–, ̂etc.) more recently also made its appearance in pro-
gramming, but without generic design. In Dijkstra and Scholten’s [1990] pro-
gram semantics, operators are inherently extended to structures, for example,
for arithmetic +, as expressed by (x + y).n = x.n + y .n. This even includes
equality: if x and y are structures, then x = y does not express equality of x
and y but a function with (x = y).n≡ x.n = y .n, that is, point-by-point equality.
Polymorphism in LabVIEW [Bishop 2001] is a similar implicit extension.

Implicit extension is reasonable in special areas but too rigid for general
practice. An explicit operator offers more flexibility and generalization via
our design principle. Hence, we write f =̂ g for point-by-point equality, and
f = g ≡ D f = D g ∧ ∀ ( f =̂ g ) for “equality everywhere” (function equal-
ity). Explicit extension is evidently also useful for describing the semantics of
languages where extension is implicit [Bishop 2001].
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Function inverse has an interesting application in modelling pattern match-
ing as in functional languages, for example, f (a >− x) = h (a, f x) in recursive
definitions over lists. This can be seen as a special form of more general implicit
definition, allowing not just constructors but also other functions. Given the
more general form f (g (a, x)) = h (a, f x), application of f to an actual pa-
rameter y : Bran g satisfies f y = h (g− y 0, f (g− y 1)). In the list example,
Bran(>−) = A+, so (>−)− (a >− x) 0 = a and (>−)− (a >− x) 1 = x.

The funcart product ×offers high flexibility to express types in program-
ming languages. This is most relevant for languages that do not treat types
as first-class objects and hence lack flexibility by themselves. Types often have
their own sublanguage with conventions that, in an orthogonal language, would
be considered an abuse of notation.

Typical in many functional languages is expressing the type of a pair
(x,y) as a pair (X,Y), meant to express the Cartesian product X× Y. Simi-
larly, whereas [a] stands for τ a, the similar [A] stands for A∗. Some design
decisions go back to certain conventions in category theory, which luckily are
easy to improve (not discussed here).

In such languages, properties like x ++ y ∈×(S ++ T ) are hard to express,
hence using Funmath as a metalanguage is most appropriate. Educationally,
distinguishing (A, B) from A× B right from the start avoids later confusion
and creates a conceptual framework in which particularities of programming
languages can be clearly explained.

6.2 Generic Functionals vs. Domain-Specific Language Concepts

Paradoxically, generic functionals prove directly usable in areas where most
language designs resort to domain-specific concepts. Here are some “snapshots”
from Boute [2003].

6.2.1 Hardware Description Languages (HDLs). Hardware description is
the first topic since it provided the original motivation for our operator design,
and the chosen example yields an interesting fixpoint equation.

Let system behaviors be modelled as functionals from signals (functions of
continuous or discrete time) to signals. By design, the generic functionals cap-
ture system description constructs: cascade connection by f ◦ g , replication
by f (s, s′) = f s, f s′, input sharing by ( f , g )Ts = f s, g s, signal pairing by
(s, s′)T t = s t, s′ t and so on.

Hence, generic functionals can fulfil the same purpose as the various special-
purpose operators in Hudak et al. [2003] for combining subsystems in reactive
and robotics applications.

Likewise, they are very convenient in calculational transformation, for ex-
ample, from behaviors (specifications) to structures (realizations) by eliminat-
ing the time variable.

An example is the recursive definition (with given set A, a : A and g : A→ A)

def f : N → A with f n = (n = 0) ? a g ( f (n − 1)). (81)
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The image definition can be transformed calculationally as follows. For any n
in N,

f n = 〈Defin. f (81), ◦〉 (n = 0) ? a (g ◦ f ) (n − 1)
= 〈Defin. D below〉 Da (g ◦ f ) n
= 〈Definition —, ◦〉 (Da ◦ g ) f n,

where D— : A→ (N → A) → (N → A) is defined by Da x n = (n = 0) ? a x (n−1).
By function equality, this yields the fixpoint equation f = (Da ◦ g ) f , which

has the same solution for f as the recursion equation (81). It also has a very
concrete signal flow interpretation with N as the time domain. D is then inter-
preted as the behavior of a clocked memory cell containing one element of type
A, with given initial contents.

Similarly, given fac : N → N with fac n = (n = 0) ? 1 n · fac (n − 1)), the
image definition can be transformed into fac = D1 (succ ·̂ fac ) where succ =
D1 (1 ⇀+ succ).

Block diagrams for systems realizing the three fixpoint equations are

Such realizations are directly implementable in signal flow languages such as
LabVIEW [Bishop 2001], a graphical language for instrumentation often used
in laboratories and plants.

From a programming point of view, recursion has been transformed into
iteration.

In the domain of HDLs such as VHDL [IEEE 1994] the variety of constructs
for system description in general and for detailed issues such as array shift-
ing, subarray selection etc. is similarly captured by the generic functionals.
As a result, everything one can express in VHDL can be expressed at least as
conveniently in our formalism [Boute 1993b].

This was found useful in describing formal semantics of system description
languages ranging from textual ones such as VHDL to graphical ones such
as LabVIEW [Boute 2003]. As the next item, we shall consider programming
language semantics.

6.2.2 Programming Language Semantics. Most approaches to formal se-
mantics uses special-purpose conventions and operators [Meyer 1991; Tennent
1991]. We show how the various operators of Section 5 are directly usable
instead.

For example, to describe abstract syntax, Metanot [Meyer 1991] is subsumed
by elastic and generic functionals. Repetition constructs are covered by the
∗-operator, for example,

def Declist := Declaration∗
.

Aggregate constructs are covered by ×or its Record variant:

def Program := Record (decl → Declist, body → Instruction)
def Declaration := Record (var → Variable, typ → Type)
def Assignment := Record (target → Variable∗, source → Expression∗).
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To express choice constructs requiring disjoint union, we define an elastic oper-
ator | by | T = ⋃

x :D T . {x → y | y : T x} for any set-valued function T . The
expression A | B | C familiar from BNF is now just the variadic infix application
for | (A, B, C), for example,

def Instruction := Skip | Assignment | Compound | Conditional | Loop.

Labels thus introduced are numbers, but more enlightening labels can be given,
as in | (skip → Skip ∪· asgn → Assignment etc.). In fact, disjoint union is useful
for this purpose only, since syntactic domains are mostly disjoint and regular
union suffices.

Abstract syntax trees are then Curried versions of branching structures.
Semantic functions can be used for mapping abstract to concrete syntax.

To define semantic functions and calculate with them, generic functionals
are ideal. For instance, in a functional recast of Meyer’s [1991] formulation,
static semantics for validity of declaration lists (no double declarations) and
the variable inventory are

def Valdcl : Declist → B with Valdcl dl = inj (dlTvar)
def Vars : Declist →P Variable with Vars dl = R (dlTvar).

The (static) semantic function Tmap derives from a valid declaration list a type
map [Meyer 1991] from declared variables to their types.

def Tmap : DeclistValdcl � dl → Vars dl → Type with
Tmap dl = (dlTtyp) ◦ (dlTvar)−.

A style variant: defining Vars dl = Bran (dlTvar) obviates filtering by
Valdcl. Instantiating f − = ⋃· x :D f . f x → x with f := dlTvar is the cen-
tral step in showing that Tmap dl = ⋃· d :Rdl . d var → d typ. This, and
i ∈D dl ⇒ Tmap dl (dl i var) = dl i typ for valid dl, yields alternative definitions,
for example, for validation. Indeed, although no method can show that a formula
reflects what is intended, one can obtain confidence by reflecting the intention
through nontrivially different formulas via separate routes, and proving equiv-
alence. This principle is crucial in validating formal specifications.

Dynamic semantics is similar in style, especially the use of generic function-
als [Boute 2003].

In brief, using general operators we covered the essence of several dozens
of pages from Meyer [1991] (using three kinds of domain-specific operators)
within a few paragraphs.

Similar observations apply to other structures such as directories used on
most computers, XML and relational databases [Boute 2003].

6.2.3 Relational Databases in a Functional Formalism. Database systems
store information and present an interface to the user for retrieving it in the
form of virtual tables. A relational database presents the tables as relations,
which makes including column headings awkward. We define table rows as
records in the functional way, with column headings as field names. This embeds
databases in a wider framework with more general algebraic properties and
using generic functionals.
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For handling virtual tables in constructing queries, the main operations
usually are selection, projection and natural join [Gries and Schneider 1993].
Since, in our formalism, tables are sets of records (functions), generic function-
als directly provide all desired functionality [Boute 2003].

—The selection operator (σ ) selects for any table S :P R of records of type R pre-
cisely those records satisfying a given predicate P : R → B. This is achieved
by the set filtering operator in the sense that σ (S, P ) = S ↓ P .

—The projection operator (π ) yields for any table S of records a subtable con-
taining only the columns corresponding to a given set F of field names. This
is just a variant of function domain restriction expressible by π (S, F ) =
{r � F | r : S}.

—The (“natural”) join operator (�) combines tables S and T by uniting the
domains of the elements (field name sets), but keeping only those records for
which field names common to both tables have the same contents, that is,
only compatible records are combined: S � T = {s ∪· t | (s, t) : S × T ∧. s c© t}.
This is precisely the earlier function type merge in the sense that S � T =
S ⊗ T = ⊗ (S, T ).

The algebraic properties of generic functionals allow proving that, in con-
trast with function merge (∪· ), function type merge (⊗) and hence join (�) is
associative.

6.3 Examples from Informal Statements to Formal Calculation

These examples are chosen to highlight another issue in parallel, namely how
binary algebra as arithmetic combines with elastic operators in more general
contexts.

6.3.1 Formalizing and Solving Parameterized Word Problems. As shown
by Gries and Schneider [1993], word problems are good exercises in formalizing
specifications. A valuable bonus is demystifying certain self-referential state-
ments by viewing them as (systems of) equations that may have zero or multiple
solutions. For instance, “This statement is false.” is formalized as x ≡ ¬ x, an
equation with no solution.

Such exercises are not a luxury: borrowing some simple examples used
by Johnson-Laird [2000], [http://webscript.princeton.edu/˜psych/PsychSite/fac
phil.html] for investigating fallacious logic reasoning by humans, we found
that difficulties were not only experienced by novice computer science students
[Almstrum 1996], but also caused serious errors by those who had an earlier
course on formal logic elsewhere.

Word problems with a fixed number of statements fall under proposition
calculus. However, the problem: “How many of the following statements list
are true?

1. Exactly 1 of these statements is false.
· · ·

10. Exactly 10 of these statements are false.”
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benefits from parameterizing it in the number of statements, say n, and using
predicates. Let us define P : 0 . . n→ B with P i ≡ “exactly i of the n given state-
ments are false”. Formalizing this via the arguments in [Boute 2004] yields the
specification

spec P : 0 . . n→ B with P i ≡
∑

(i : 1 .. n . ¬P i) = i.

Solving this for P leads to the requirement n ≥ 2 and a unique solution,
P i ≡ i = n − 1, hence spec may be replaced by def. The calculation details
can be found in [Boute 2004].

Replacing “false” by “true” in every statement yields a problem with two
solutions.

6.3.2 Formal Specification and Program Correctness. The chosen example
is sorting. We found it also useful in various courses to illustrate some essential
but often-neglected points, which are also recalled below.

6.3.2.1 Abstract Specification. Let A be a set with total order . Sorting
means that the result is ordered and has the same content. First point: Stu-
dents asked to formalize “sorting” often forget the latter requirement as being
“evident”. We specify

spec sort : A∗ → A∗ with ndesc (sort x) ∧ (sort x) samecontents x,

postponing auxiliary functions. Second point: Often existence and uniqueness
is assumed tacitly, especially when “specifying” sorting in a programming
language.

The predicate ndesc reflects the usual choice, viz., “nondescending” or,
loosely, “ascending”. Modulo seeing lists as functions, definitions in the litera-
ture amount to:

def ndesc : A∗ → B with ndesc x ≡ ∀ (i, j ) : (D x)2 . i ≤ j ⇒ x i x j .

For samecontents, most formulations amount to y samecontents x ≡ y perm x
using a permutation relation, say, g perm f ≡ ∃ π :D f →D g . (π bijD g ) ∧ f =
g ◦ π .

We prefer a less circuitous definition [Boute 1993a], expressing contents by
functions. An appropriate data structure to reflect contents (ignoring order) is
a multiset or bag, also used to specify sorting in Cohen [1990]. However, we
define bags as functions: bag A = A→ N with the idea that, for b : bag A and
a : A, the number of a’s in b is ba. In this setting, fuzzy predicates, ordinary
predicates and bags over A are all defined as “degree of membership” functions
of type A→ B where B is [0, 1], {0, 1} and N respectively.

With this preamble, we define an inventory operator that maps functions to
bags:

def § : (fam A)fin → bag A with § f a =
∑

x :D f . a = f x,

again based on binary algebra. Defining y samecontents x ≡ § y = § x allows
rewrite the specification as spec sort : A∗ → A∗ with ndesc (sort x) ∧ § (sort x) =
§ x. Proving existence and uniqueness (so spec may become def) is not as evi-
dent as it may look.
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This specification is declarative but, recast as a relation — sorted — :
(A∗)2 → B with y sorted x ≡ ndesc y ∧ § y = § x to be used for testing, it is di-
rectly implementable.

6.3.2.2 Implementation. A typical (functional) program implementation is

def qsort : A∗ → A∗ with
qsort ε = ε ∧
qsort (a >− x) = qsort u −< a >− qsort v where u, v := split a x

def split : A→ A∗ → A∗ × A∗ with
split a ε = ε, ε ∧
split a (b>− x) = (a b) ? (u, b>− v) (b>− u, v) where u, v := split a x

6.3.2.3 Verification. The proof obligations are clearly ndesc (qsort x) and
§ (qsort x) = § x.

For the proof, we give an outline only; more details are found in [Boute
1993a]. Based on a simple problem analysis [Boute 2004], we introduce func-
tions le and ge, both of type A× A∗ → B, with a le x ≡ ∀ i :D x . a x i and
a ge x ≡ ∀ i :D x . x i a.

Properties most relevant here are expressed by two lemmata: for any x and
y in A∗ and a in A, and letting u, v := split a x, we can show:

Split lemma Concatenation lemma
(a) § u +̂ § v = § x § (x ++ y) = § x +̂ § y
(b) a ge u ∧ a le v ndesc (x ++ τ a ++ y) ≡ ndesc x ∧ ndesc y ∧ a ge x ∧ a le y

Combining § (x ++ y) = § x +̂ § y with § ε = A • 0 and § (τ a) = (= a) � A show §
to be a list homomorphism as defined in Bird [1998]. The properties ndesc ε ≡ 1
and ndesc (a >− x) ≡ a le x ∧ ndesc x and the mixed property § x = § y ⇒ ge x =
ge y ∧ le x = le y are the ingredients to make the proof of ndesc (qsort x) and
§ (qsort x) = § x a simple exercise.

6.4 A More Extended Case Study: A Minitheory of Recursion

Weaknesses in typical treatments of program semantics are: (a) specialized
conventions that are not useful for other topics, (b) proofs only in the usual
informal style (having no formal rules for the metalanguage, or assuming the
reader has rules from elsewhere).

This case study shows how our general formalism allows deriving a simple
theory of recursion with more complete proofs, yet still more compact, than
found elsewhere. It also covers the link between denotational and axiomatic
semantics, invariants and bound functions in loops but also in recursion—where
they are a neglected topic—and a complete example. The author found this
exercise very helpful in answering many questions essential to understanding,
yet not addressed in available texts.

It also demonstrates how avoiding “partial functions” by precise domain
definitions imposes no burden but, to the contrary, is convenient in formal
derivations.
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Table V. Illustration of Data structures derived from the declaration list

Item Example
Declaration var k : int, b : bool

State space S = ×(k → Z ∪· b → B)
Tuple representation T = ×(0 → Z ∪· 1 → B) = Z × B

State shorthand 〈—〉 : T → S with 〈k, b〉 = k → k ∪· b → b

6.4.1 Conventions Regarding Formal Semantics and State Space Refine-
ment. In every simple imperative language, one can identify syntactic cate-
gories E for expressions (including V , the variables and B, the Boolean expres-
sions) and C for commands.

(a) Denotational semantics usually defines a domain D, state space
S := V → D, and meaning functions E : E → S → D for expressions,
C : C → S → S for commands.

For practical reasons, we refine the state space, assuming all variables typed.
The data structures needed are derived from the declaration list, as illustrated
in Table V. Mappings needed are found in Section 6.2.2. Using 〈—〉 removes
much clumsiness from denotational semantics in reasoning about programs.
Ignored by theory, switching between state formats is important in practice,
and supported by generic functionals.

(b) Axiomatic semantics is usually expressed by Hoare triples [a]c[p] for
command c, precondition a (“ante”) and postcondition p, both in some assertion
language A.

The usual treatments vary from viewing it as a topic in metamathematics,
with emphasis on nomenclature, consistency and completeness [Loeckx and
Sieber 1984; Winskel 1993], to a calculus for developing programs, just stating
the rules and then proceeding to applications [Cohen 1990; Gries and Schneider
1993].

We adopt a middle ground. Omitting some technicalities, we embed A in E
and let

[a]c[p] stand for ∀ s : S . E a s ⇒ Q c s ∧ E p (C c s), (82)

where Q : C → S → B is the termination meaning function to cover total correct-
ness.

If one feels (82) too model-biased for axiomatic-style proofs, consider that
the usual “axioms” can be derived as theorems, but their form and actual use
remain identical.

Only the most interesting cases are exemplified: iteration for imperative
languages and related forms of recursion for functional languages. We model
iteration by

C [[whilebdo c od]] s = E bs ? C [[whilebdo c od]] (C c s) s (83)

and use its abstract form f x = B x ? f (g x) h x as an example of a recursion
equation. Calculation will yield (a) a termination condition, (b) an explicit solu-
tion, (c) recursion invariants and bound functions and, via (83), similar results
for iteration.
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6.4.2 Warming Up: Recursion and Iteration with Explicit Bounds. For ex-
ample (81), we derived a fixpoint equation f = (Da ◦ g ) f . Given that D f = N

and g ∈ A→ A, it has a unique solution, namely f n = gn a (proof by induction).
Parameterizing (81) as def f— : A→ N → A with fa n = (n =

0) ? a g ( fa (n − 1)) allows expressing the syphoning property: ∀ a : A . ∀
n : N . f g a n = fa (n + 1), proven by induction. This yields an imperative pro-
gram: declaring var a : A, n : nat, the loop

loop := [[while n /= 0 do a, n := g a, n − 1 od]].

leads by (83) to the equation C loop 〈a, n〉 = (n �= 0) ? C loop 〈g a, n − 1〉 〈a, n〉
and a

THEOREM : C loop 〈a, n〉 = 〈 fa n, 0〉,
proven by induction using the syphoning property. Hence, C loop 〈a, n〉 a =
fa n = gn a.

Such direct or ingenuous [Loeckx and Sieber 1984] proofs are simple but
repetitive. This is avoided by encapsulating them once and for all in axiomatic
semantics, as shown in Section 6.4.5.

6.4.3 A Generic Recursion Equation and Its Solution

6.4.3.1 A Generic Recursion Equation. As announced, we consider the
equation

f x = B x ? f (g x) h x, (84)

where B is a given predicate and g and h given functions. The unknown is
function f , with the added conditions that the definition of D f must ensure
termination, and out-of-domain applications are avoided in (84). The latter con-
dition is

x ∈D f ⇒ x ∈D B ∧ (B x ⇒ x ∈D g ∧ g x ∈D f ) ∧ (¬B x ⇒ x ∈D h). (85)

Similar conditions are imposed on B, g and h, recursively propagating the
conditions via the function domains. Assuming the domain of interest is X , we
can write

D f ⊆ X X ⊆ D B X B ⊆ D g R (g � X B) ⊆ X X ¬B ⊆ D h (86)

in partial fulfilment of (85). Specifying R (g � X B) ⊆ X instead of R (g � X B) ⊆
D f separates concerns (D f is part of the unknown) but requires verifying (85)
afterwards.

6.4.3.2 Solving the Equation. Generally f is not total on X , but instead
of using “partial” functions (Section 3.2.2) and solving (84) for f in X �→Rh,
we shall determine D f as the subset of X to satisfy termination and (85), and
an explicit image formula for f . The rules for conditionals [Boute 2000] allow
writing (84) as

∀ x :D f . (B x ⇒ f x = f (g x)) ∧ (¬B x ⇒ f x = h x). (87)
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We understand “termination” in the mechanics of actual execution, and do
not just “postulate” (as most treatments with partial functions do) that it is
just what our mathematical formulas model. These mechanics mean unfolding
B x ⇒ f x = f (g x) as B x ⇒ f x = B (g x) ? f (g (g x)) h (g x). The resulting
pattern shows that the elements of X that ensure termination are characterized
by the termination predicate

def Q : X → B with Q x ≡ ∃ n : N . ¬B (gn x); (88)

hence, D f = X Q . The same pattern yields f x = h (gµ x x), where µ x is the
least natural number such that ¬B (gµ x x), is the explicit image definition. So
we have the solution, and readers not interested in further details may wish to
skip to Section 6.4.4.

6.4.3.3 Formal Verification. To formally verify that the solution solves (84)
and meets (86), we note that gn is recursively defined by g0 = id (identity
function) and gn+1 = g ◦ gn with the generic ◦ (13). The desired least element
is obtained indirectly via the g.l.b.

def µ : X → N
′ with µ x = ∧| n : N | ¬B (gn x). (89)

Indeed, by the case study in Section 4.2.3, µ also yields the desired least element
since

Q x ≡ µ x ∈ N ∧ ¬B (gµ x) ∧ ∀ n : N . n < µ x ⇒ B (gn x), (90)

whereas ¬Q x ≡ µ x = ∞. This yields the following theorem.

THEOREM, STRONG INVARIANCE

∀ x :D f . ∀ n : N . n ≤ µ x ⇒ f x = f (gn x) (91)

PROOF. For arbitrary x :D f , let P : N → B with P n≡ n ≤ µ x ⇒ f x =
f (gn x).

We prove ∀ P by induction, that is, P 0 and ∀ n : N . P n⇒ P (n + 1).

P 0 ≡ 〈Definition P 〉 0 ≤ µ x ⇒ f x = f (g0 x)
≡ 〈g0 x = x, refl. =〉 0 ≤ µ x ⇒ 1
≡ 〈p ⇒ 1 ≡ 1〉 1

P n ≡ 〈Definition P 〉 n ≤ µ x ⇒ f x = f (gn x)
⇒ 〈n < m ⇒ n ≤ m〉 n < µ x ⇒ f x = f (gn x)
≡ 〈Extract below〉 n < µ x ⇒ f x = f (gn+1 x)
≡ 〈n < m ≡ n + 1 ≤ m〉 n + 1 ≤ µ x ⇒ f x = f (gn+1 x)
≡ 〈Definition P 〉 P (n + 1).

To reduce writing, we extracted the proof for n < µ x ⇒ f (gn x) = f (gn+1 x):
n < µ x ⇒ 〈Lemmata B,D below〉 x ∈D gn ∧ gn x ∈ X B ∧ gn x ∈ X Q

⇒ 〈X Q = D f , eq. (87)〉 x ∈D gn ∧ gn x ∈ X B ∧ f (gn x) = f (g (gn x))
⇒ 〈X B ⊆ D g , definit. ◦〉 f (gn x) = f (gn+1 x).

Intuitively, some steps may appear too detailed, but only if one takes for granted
certain properties of gn, neglecting its definition. Verifying the properties in-
volves a few subtle domain aspects collected in the following lemmata, whose
proofs can be found in Boute [2004].
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LEMMATA FOR COMPOSITION. The following properties are successive
refinements.

A. ∀ x : X . ∀ n : N . x ∈D gn ∧ gn x ∈ X B ⇒ x ∈D gn+1 ∧ gn+1 x ∈ X
B. ∀ x : X . ∀ n : N . n < µ x ⇒ x ∈D gn ∧ gn x ∈ X B
C. ∀ x : X . ∀ n : N . n ≤ µ x ⇒ x ∈D gn ∧ gn x ∈ X
D. ∀ x : X Q . ∀ n : N . n ≤ µ x ⇒ x ∈D gn ∧ gn x ∈ X Q

The following corollary now yields the obvious solution.

COROLLARY, SOLUTION OF THE RECURSION EQUATION. The unique solution of (84)
that terminates and satisfies (85) is f : X Q →Rh with f x = h (gµ x x).

PROOF. Termination of f x requires x ∈ X Q . For any such x, we calculate
f x:
f x =〈Strong invariance〉 f (gµ x x) =〈Eq. (87) with ¬B (gµ x x)〉 h (gµ x x).

Remark. Since the domain is fully defined by requiring termination,
multiple/least fixpoints (as is customary for “partial” functions) need not be
considered. This does not detract from fixpoint theory as essential background
for any professional software engineer. Multiple views on the same topic always
contribute to a better understanding. In fact, this minitheory is a good preamble
to fixpoint theory.

6.4.4 Practical Reasoning about Recursion: Invariants and Bound Func-
tions. While interesting theoretically, the explicit solution (especially calculat-
ing µ x) is not convenient in practice. This is alleviated by developing a minithe-
ory of invariants and bound functions, inspired by similarly named concepts in
imperative programming, but too rarely (if at all) done in recursion theory.

6.4.4.1 Recursion Invariants

Definition, (Invariant). An invariant for (84) is a predicate I : X → B satis-
fying ∀ x :D f . B x ⇒ I x ⇒ I (g x). (92)

THEOREM. For I as defined, ∀ x :D f . I x ⇒ ∀ n : N . n ≤ µ x ⇒ I (gn x) (93)

PROOF. Given x :D f satisfying I x, let P : N → B with P n≡ n ≤ µ x ⇒
I (gn x). We prove ∀ P by induction, that is, P 0 and ∀ n : N . P n⇒ P (n + 1).

P 0 ≡ 〈Definition P 〉 0 ≤ µ x ⇒ I (g0 x)
≡ 〈g0 x = x, I x〉 0 ≤ µ x ⇒ 1
≡ 〈p ⇒ 1 ≡ 1〉 1

P n ≡ 〈Definition P 〉 n ≤ µ x ⇒ I (gn x)
⇒ 〈n < m ⇒ n ≤ m〉 n < µ x ⇒ I (gn x)
⇒ 〈Excerpt below〉 n < µ x ⇒ I (gn+1 x)
≡ 〈n < m ≡ n + 1 ≤ m〉 n + 1 ≤ µ x ⇒ I (gn+1 x)
≡ 〈Definition P 〉 P (n + 1)

To reduce writing, we excerpt the proof for n < µ x ⇒ I (gn x) ⇒ I (gn+1 x):

n < µ x ⇒ 〈Lemmata B, D〉 x ∈D gn ∧ gn x ∈ X Q ∧ gn x ∈ X B
⇒ 〈XQ = D f , (92)〉 x ∈D gn ∧ gn x ∈ X B ∧ (I (gn x) ⇒ I (g (gn x))
⇒ 〈XB ⊆ D g , def . ◦〉 I (gn x) ⇒ I (gn+1 x)
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COROLLARY. If I is an invariant for (84) where h := id and P is a predicate
on X satisfying ∀ x :D f . I x ∧ ¬B x ⇒ P x, then ∀ x :D f . I x ⇒ P ( f x).

PROOF. For any x :D f ∧. I x, clearly ¬B (gµ x x), whereas (93) yields
I (gµ x x).

6.4.4.2 Independent Bound Functions

Definition. An independent bound function for (84) is a function β : X → Z

satisfying (a) ∀ x : X . B x ⇒ β (g x) < β x and (b) ∀ x : X . B x ⇒ 0 < β x (94)

THEOREM, TERMINATION. If (84) has an independent bound function β, then
∀ Q.

PROOF. Assume β is a function as stated. Since ∀ Q ≡ ∀ x : X . ¬∀ n :
N . B (gn x) by duality (26), we compute ∀ n : N . B (gn x) for arbitrary x : X .

∀ n : N . B (gn x)
≡ 〈Lemma A below〉 ∀ n : N . B (gn x) ∧ β (gn+1 x) < β (gn x)
≡ 〈m < n≡ m ≤ m − 1)〉 ∀ n : N . B (gn x) ∧ β (gn+1 x) ≤ β (gn x) − 1
≡ 〈Lemma B below〉 ∀ n : N . B (gn x) ∧ β (gn x) ≤ β x − n
⇒ 〈Inst. n := 0, n := β x〉 B (g0 x) ∧ (β x ∈ N ⇒ B (gβ x x) ∧ β (gβ x x) ≤ 0)
⇒ 〈∀ x : X . B x ⇒ 0 < β x〉 β x ∈ N ∧ (β x ∈ N ⇒ 0 < β (gβ x x) ≤ 0)
⇒ 〈Modus ponens〉 0 < β (gβ x x) ≤ 0
≡ 〈0 < m ≤ 0 ≡ 0〉 0.

LEMMATA, TWO AUXILIARY PROPERTIES. (proofs left to the reader)
A. If β is a bound function, ∀ (n : N . B (gn x)) ⇒ ∀ n : N . β (gn+1 x) < β (gn x).
B. If f : N → Z satisfies ∀ n : N . f (n+1) ≤ f n−1, then ∀ n : N . f n ≤ f 0−n.

Replacing 0 in (94(b)) by any integer constant yields an alternative formulation.

6.4.4.3 Invariant-Bound Function Pairs. Sometimes a stronger an-
tecedent is convenient.

Definition. An invariant-bound function pair is a pair of functions I : X → B

and β : X → Z satisfying (a) ∀ x : X . I x ∧ B x ⇒ I (g x) ∧ β (g x) < β x
(b) ∀ x : X . I x ∧ B x ⇒ 0 < β x (95)

THEOREM, TERMINATION. If (84) has an invariant-bound function pair I, β,
then ∀ x : X . I x ⇒ Q x ∧ I (gµ x x).

PROOF (OUTLINE, DETAILS LEFT TO THE READER). Let I, β be as stated and con-
sider x : X such that I x. Combining I and B in C := I ∧̂ B, prove
∃ n : N . ¬C (gn x). Letting κ : X I → N with κ x = ∧| n : N | ¬C (gn x), prove
∀ n : N . n ≤ κ x ⇒ I (gn x). From I (gκ x x) and ¬C (gκ x x) deduce ¬B (gκ x x)
and finally Q x and κ x = µ x.

Letting I := X • 1 yields the termination theorem for independent bound
functions.

6.4.5 Application: Deriving Axiomatic Semantics for Loops. As in (83), the
denotational semantics of the loop l := whilebdo c od is given by the equation
C l s = E bs ? C l (C c s) s, which is an instance of f x = B x ? f (g x)) h x

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



1042 • Raymond Boute

under the substitution f , B, g , h := C l , E b, C c, id and X := S. Hence, (88)
yields the termination predicate Q : S → B with Q s = ∃ n : N . ¬(E b) ((C c)n s).
Equivalently, the termination meaning function is Q : C → S → B with Q l s =
∃ n : N . ¬(E b) ((C c)n s).

By the strong invariance theorem (91), the solution to the recursion equation
is ∀ s : SQ . C l s = (C c)µ s s where µ : SQ → N with µ s = ∧| n : N | ¬(E b) ((C c)n s).
This directly leads to an axiomatic semantics as characterized by (82) and elab-
orated next.

Definitions, Invariants and Bound Expressions. Let l := whilebdo c od.
An invariant for l is an assertion i such that [i ∧ b]c[i]
An independent bound expression for l is an expression e such that
b⇒ 0 < e and [b ∧ v = e]c[e < v] (where v is a rigid variable).
An invariant/bound pair for l is an assertion i and an expression e such

that i ∧ b⇒ 0 < e and [i ∧ b ∧ v = e]c[i ∧ e < v] (where v is a rigid variable).

THEOREM. If i, e is an i/b pair for l := whilebdo c od, then [i]l [i ∧ ¬ b]. (96)

PROOF. For i, b as stated, [[i ∧ b⇒ 0 < e]] ≡ ∀ s : S . E i s∧E bs ⇒ E e s > 0
and

[i ∧ b ∧ v = e]c[i ∧ e < v]
≡ 〈Eq. (82)〉 ∀ s : S . ∀ v : D . E i s ∧ E bs ∧ v = E e s ⇒ Q c s ∧ E e (C c s) < v
≡ 〈One-pt.〉 ∀ s : S . E i s ∧ E bs ⇒ Q c s ∧ E e (C c s) < E e s.

So I, β := E i, E e satisfies (95), hence ∀ s : S . E i s ⇒ Q l s ∧ E i ((C c)µ s s) by the
termination theorem. Adding ¬(E b) ((C c)µ s s) and substituting C l s = (C c)µ s s
yields ∀ s : S . E i s ⇒ Q l s ∧ E i (C l s) ∧ ¬(E b) (C l s), which is [i]l [i ∧ ¬ b].

6.4.6 A Concrete Example: Euclid’s Algorithm. This example is chosen not
just because it is one of the first well-documented algorithms in history, but also
because its analysis illustrates some interesting decisions regarding the design
of auxiliary functions to embed it in the general model.

On P := N>0, define —|— : P
2 → B with d |a ≡ a/d ∈ P (“d divides a”). Next,

let —cd— : P × fam P → B with d cd f ≡ ∀ i :D x . d | f i. The greatest com-
mon divisor relation is —isgcd— : P × fam P → B with d isgcd f ≡ d cd f ∧
∀ a : P . a cd f ⇒ a ≤ d . The greatest common divisor function is specified by
Gcd : fam P → P with Gcd f isgcd f , but here we shall restrict it to pairs, that is:

spec Gcd : P
2 → P with Gcd (x, y) isgcd (x, y).

Existence and uniqueness can be proven directly from the definition, but also
emerges as a fringe benefit from analyzing Euclid’s algorithm.

(a) Consider the recursive functional program or recursion equation

def G : P
2
Q → P with G (x, y) = (x = y) ? x (x < y) ? G (x, y − x) G ( y , x − y),

where Q : P
2 → B is the termination predicate (to be determined) for G. The

image definition can be written in the general form (84) as

G (x, y) = (�=) (x, y) ? G (g (x, y)) (x, y) 0

where g : P
2�= → P

2 with g (x, y) = (x < y) ? (x, y − x) ( y , x − y).
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One can show that β : P
2 → P with β (x y) = (x < y) ? y x is an independent

bound function, that is, ∀ p : P
2 . (�=) p ⇒ β (g p) < β p, which ensures ∀ Q or

Q = P
2 • 1. Hence, the solution to the recursion equation is

G : P
2 → P with G (x, y) = gm (x, y) 0 where m :=∧| n : N . (=) (gn (x, y)).

From the specification of Gcd, one can deduce

(x = y ⇒ Gcd (x, y) = x) ∧ (x �= y ⇒ Gcd (g (x, y)) = Gcd (x, y)),

yielding the same recursion equation as the one for G, which has a unique
solution as given. One can also show that G indeed satisfies the specification.

(b) Consider now the imperative program loop

l := while x /= y do if x < y then y := y − x else x := x − y fi od.

The state space is S := {x, y} → P. With our earlier convention, we can write
elements of S as 〈p〉 such that 〈p〉 x = p 0 and 〈p〉 y = p 1, where p : P

2.
With b and c as “rigid variables” or “ghost variables”, we introduce the in-

variant and bound expression

i := [[0 < x ∧ 0 < y ∧ Gcd (x, y) = Gcd (b, c)]]
e := [[(x < y) ? y x]].

Take the precondition a := [[0 < b ∧ 0 < c ∧ x = b ∧ y = c]], which clearly implies
i. Hence, by theorem (96), [a]l [i ∧ x = y]. The postcondition i ∧ x = y implies
Gcd (b, c) = Gcd (x, y) = x = y.

This example also illustrates how the many technical details that are nec-
essary for the derivation and justification of axiomatic semantics culminating
in theorem (96) become hidden in the application of axiomatic semantics to
concrete problems.

7. FINAL REMARKS AND CONCLUSION

7.1 Mechanization, Calculational Reasoning and Proof Style

Although the formalism presented is not (yet) automated, it can make an im-
portant contribution to the more effective use of automated tools in the long
term.

Indeed, in classical engineering areas, mechanized tools such as Maple,
Mathematica, Mathcad, MATLAB and Simulink have been easily adopted and are
widely used by practicing engineers. This is because they are based on algebra
and analysis, where the formalisms have evolved for human use (the hallmark
being formal calculation by hand), are part of every engineering curriculum,
and are routinely used in applications. Experience shows that a 50-year old
engineering calculus text is a good basis for immediate and problem-free use of
such tools.

The situation is quite different for logic-oriented tools. Current theorem
provers (like PVS [Rushby et al. 1998], HOL and variants [Harrison 2000;
Paulson 2001]) and model checkers (like SPIN [Holzmann 2003]) are not so
well adopted, and practical use typically relies on experts. This is because they
implement logic formalisms designed for automation, not for calculation by
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humans. Support for calculational logic is still very rare [Manolios and Moore
2001], although gradually emerging [Harrison 2000].

Basically, logic has skipped a crucial evolutionary step: unlike classical al-
gebra and calculus, it never had the opportunity to develop into a calculational
tool for use by humans [Dijkstra 2000; Gries 1996a] before attention shifted to
automation (predating the computer era).

Formalisms as presented in this article can provide the missing link, ulti-
mately facilitate the adoption of mechanized tools, and in the meantime address
issues that are still beyond current tools (which in the best case can only detect
design errors).

Examples of such issues are: offering multiple views or solutions, and proof
style. Proofs should be elegant, that is: concise, clear, not hiding difficult or
essential steps, and appealing to an aesthetic sense. The first three character-
istics are ensured by the calculational approach, the last requires considerable
effort on the part of the writer [Lamport 1993]. Gries and Schneider [1993]
emphasizes the need for repeated polishing or even redesign before a proof
can be considered sufficiently “finished”. Having proofs read and criticized by
others is most helpful. The proofs in this article are somewhat uneven in this re-
spect; they even include first attempts that have not been discussed with others.
Readers are therefore kindly invited to contribute to this process of continuing
improvement.

It is also clear that the concerns in this article are quite different from
classical formal logic: they certainly are not the usual foundational ones about
building mathematics from scratch, but practical, about providing a framework
in which mathematical concepts and reasoning can be fitted and equipped with
formal calculation rules.

By the same token, if we presented a few examples that seem not directly
related to programming or languages as a topic, the great similarity in the cal-
culations is meant to show how much our predicate calculus and generic func-
tionals erases distinctions and rapproaches various mathematical disciplines
methodologically.

7.2 Conclusion

The following has been demonstrated:

—The effectiveness of the formalism in (re)synthesizing common conventions,
while also generating new calculational properties, covering new areas, and
reducing unnecessary diversity and fragmentation. This is also crucial in
education.

—The syntactic simplicity obtained by functional semantics and full orthogo-
nality.

—Point-free and point-wise styles and formal rules for transition between them.
—The greater generality of elastic operators with respect to other generaliza-

tions of quantification.
—A formulation of predicate calculus that is simpler than ordinary summation,

yet provides a very rich collection of calculation laws that enables practical
use.
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—The unifying power of generic functionals by encapsulating calculational
properties in a domain-independent way.

—The wide range of applications in general, and in programming language
design and semantics in particular.

The functional predicate calculus gives working mathematicians and engineers
the opportunity to make formal manipulation of quantified expressions as rou-
tine as the familiar differential and integral calculus. Together with the generic
functionals, it provides the glue between “continuous” and discrete applied
mathematics in general, and between classical engineering and software en-
gineering in particular.
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